
Radboud University Nijmegen

Bachelor Thesis

Session Proxy
A prevention method for session hijacking in

Blackboard

Author:
Willem Burgers
s0814830

Supervisor:
Prof.dr. M.C.J.D. van Eekelen

Second supervisor:
drs. ing. R. Verdult

July 4, 2012

Contents

1 Research Plan 2
1.1 Problem Statement . 2

1.1.1 Research Question . 2
1.2 Motivation . 4
1.3 Theoretical Scope . 4

1.3.1 Vulnerabilities and solutions 4
1.3.2 Session hijacking . 4

1.4 Strategy . 5

2 Blackboard vulnerabilities 5
2.1 vulnerabilities . 5
2.2 Prevention methods for Blackboard vulnerabilities 7

3 Session Hijacking 7
3.1 Session Hijacking Prevention . 8

3.1.1 SSL/TLS session-aware authentication 8
3.1.2 SessionProxy . 8
3.1.3 Related work . 11

3.2 Implementation . 12
3.3 Attacker model . 13

4 Conclusion 14

A Source code 16
A.1 Session Proxy index.php . 16
A.2 Config.php . 17
A.3 Shared Memory Class . 18
A.4 .htaccess . 21

1

1 Research Plan

1.1 Problem Statement

Blackboard Learn (previously Blackboard Academic Suite) is one of the most
popular e-learning systems or Learning Management System (LMS) in higher
education worldwide. Its main features are things like keeping track of grades
and providing the contents of a course to the student through the Internet. But
there are some flaws in the design of Blackboard[1]. It is possible to insert code
to be executed or send emails with virussus for example. Because of these flaws,
one of the possibilities is that students can elevate their permissions to the per-
missions of a teacher. This can be done by session hijacking. HTTP is a stateless
transmission protocol. To keep track of the pages a person can visit, sessions
can be implemented in the application. When a session id is obtained, you have
control over the session. A student can insert javascript code in assignment
forms that will be executed once the teacher looks at the handed in assignment.
This code can steal the session id of the teacher. With the session of a teacher,
a student can for example edit grades[2]. Universities can not make use of all
the features of Blackboard because of these flaws. Therefore some universities
decided to move to the open source e-learning platform Moodle[6][3][4].

1.1.1 Research Question

I want to know how fundamental these flaws in Blackboard are and how to pre-
vent them. The most common flaw in blackboard is cross-site scripting[2]. This
means that an attacker can execute code in the browser of a victim, without
the victim knowing. Usually this is javascript code. With cross-site scripting
someone can steal session id cookies called session hijacking. I want to give a
more fundamental solution for session hijacking. Therefore the research ques-
tion I will pose is:

How to prevent session hijacking in Blackboard?

In order to give an answer to this question, we have to find an answer to the
following subquestions:

1. What are the main vulnerabilities in the Blackboard Learn system and
how can we prevent them?

2. How to prevent the underlying problem, namely session hijacking, in a
structural way?

3. Will the prevention solve security risks in Blackboard?

The answer to subquestion 1 will be a list of vulnerabilities taken from the
online24 Blackboard security research paper[1] and the internal research paper
by R. Ben Moussa[2]. The answer to subquestion 2 will be in the form of
a session hijacking prevention method for Blackboard by comparing different

2

solutions. I also want to implement this proposed solution. After implementing
the solution, we also need to check if the problems with Blackboard are solved.
This is the answer to subquestion 3.

3

1.2 Motivation

As stated before, Blackboard is one of the most used Learning Management
Systems, but the problem is that there are some flaws in the design. Though
Blackboard Inc. provides updates to stop attacks from working, still a lot of
issues remain. Implementing a new system can be very expensive and can in-
troduce several new problems. But it is also not very useful when the university
can’t use all the features the Blackboard Learn system actually provides because
it has some serious security flaws. Therefore, we want to propose a fundamental
solution that works for Blackboard. In this proposal we want to focus on the
security aspects of the solution. If this solution works, it could be used in front
of any application to prevent session hijacking, but mainly we want to use it for
Blackboard. This security part is also my main personal motivation. I like writ-
ing code, and when I do, I always check my code to make sure I didn’t make any
mistakes that bring security risks with them. That is why my bachelor thesis is
about security.

1.3 Theoretical Scope

1.3.1 Vulnerabilities and solutions

Blackboard is implemented as a web based application. It must therefore be
defended against all kinds of web based attacks. The attacks discussed in the
research paper by Online24 show a lot of web based vulnerabilities that are still
possible to exploit in the latest version of Blackboard (version 9.1)[1]. These
vulnerabilities can be categorized in several vulnerability types. For all of the
vulnerability types mentioned in the paper, there are known solutions. For
example cross-site scripting can be prevented by validating the input a user
gives to the system[7]. The Open Web Application Security Project (OWASP)
also has loads of information on how to prevent many of the other attacks.

1.3.2 Session hijacking

Sessions are necessary to keep track of users and to see which pages they visit
and if they are allowed to visit them. HTTP is a stateless protocol, so it does not
provide this user tracking. Session are therefore implemented in the application.
The session id is kept by the client to be sent with each HTTP request to let
the server know the state of the session. The client is most vulnerable to steal
a session id from. The more fundamental problem that these vulnerabilities
are the cause of is session hijacking. The vulnerabilities can be solved, but as
long as the session can be stolen (in whatever way), grades and exams on the
Blackboard Learn system are not safe. There are some papers on preventing
session hijacking[8][9]. There is however another solution that I would like to
work out. The idea, explained to me by R. Verdult, is to combine the application
session and HTTPS session. With the combination of these two, you can make
use of the security of the HTTPS session to secure your application session.
It gets a lot harder to take over an application session if you also need to

4

take over the network session. There are already solutions like this. In 2006
Rolf Oppliger et al. wrote a paper about authentication with SSL/TLS. They
propose a system with client side certificates to make sure the same client is
requesting the page. The client has to prove that he is indeed who he claims
to be by sending the certificate to the server[10]. Our method is much like the
method of Rolf Oppliger et al., but it has some differences that we will discuss
later.

1.4 Strategy

The first step in finding an answer to the research question is explaining which
security risks exist in Blackboard. The vulnerabilities of the system are doc-
umented by some online research reports. One of them is by Online24[1], but
the vulnerabilities are not discussed in much detail because of a Non-Disclosure
Agreement. The list of vulnerabilities is a part of the answer to subquestion 1.

In order to protect against these vulnerabilities, there are many known
methods. OWASP and other literature documents can provide the informa-
tion needed to implement a safer web application. These methods will solve the
vulnerabilities that exist in the Blackboard system and are the second part of
the answer to subquestion 1.

Thought these methods can solve the vulnerabilities in Blackboard, there is
another more fundamental way for one of the attacks. By preventing session
hijacking, some of these solutions to vulnerabilities will not be necessary, though
it is still good practice to sanitize user input. This is because preventing session
hijacking does not prevent the cross-site scripting attack itself. Cross-site script-
ing will still be possible and can only be prevented by proper input sanitizing.
I will describe multiple ways of preventing session hijacking and will implement
one of these methods. This is the answer to subquestion 2.

With this method implemented, I want to make sure that the Blackboard
Learn system vulnerabilities are not exploitable anymore. This will form the
answer to subquestion 3.

2 Blackboard vulnerabilities

2.1 vulnerabilities

In a research paper the company Online24 identifies several vulnerabilities in the
Blackboard Learn system[1]. In the research they examine Blackboard version
8, but most of the vulnerabilities are not patched in version 9.0 and 9.1 or the
vulnerabilities are blacklisted, but still easily exploitable. Online24 categorized
all the vulnerabilities in eight types.

• Cross-site scripting

• Insufficient authorization

• Information leakage

5

• Mail command injection

• Abuse of functionality

• Local file inclusion

• Improper file system permissions

• Cross-site request forgery

Cross-site scripting Cross-site scripting (XSS) attacks form the largest group
of vulnerabilities in Blackboard[1]. With XSS it is possible to steal usernames
and passwords of all the Blackboard users. You can also change your permis-
sions or user roles for Blackboard. This can be performed by combining XSS
with Cross-site Request Forgery.

Insufficient authorization Blackboard does not check whether you have
access to view some files. You can for example view a calendar of another
person. It gets even more dangerous when you can also edit these files. Like
removing appointments from another users calendar.

Information Leakage Blackboard can give information about the database,
the network infrastructure and it’s own program code. This can be valuable
information for an attacker to get information about other vulnerabilities.

Mail command injection With mail command injection, an attacker can
make use of the mail server of Blackboard to send spam. The server can get
blacklisted for that and it will be a lot of hassle to get it off the blacklist again.
Also malware and viruses can be sent via mail.

Abuse of functionality By abuse of functionality some features can be used
for another purpose than originally intended. For example turning off the client
side WYSIWYG filters in the text editor. This can be used in combination with
other attacks.

Local file inclusion With local file inclusion, files of the host operating sys-
tem can be included to display information inside these files. For example the
/etc/passwd file on a unix system can be read (however this depends on the
system settings). Or some password file that is necessary for the application
to access the database. Getting access to a system gets easier with local file
inclusion.

Improper file system permissions A teacher is able to delete files on the
filesystem via the Blackboard application. This can take the whole application
offline when critical files are removed. It is possible for students to elevate their
permissions to teacher, so everyone can remove files.

6

Cross-site request forgery By editing URLs users can execute commands
they should not be able to execute. In combination with social engineering, a
user can let a teacher click a link. When the URL is requested, the teacher can
grant the user access as a student assistant or co teacher of a course.

2.2 Prevention methods for Blackboard vulnerabilities

The problem in Blackboard is that the user input is not properly checked. Every
textbox or form field should be scanned for unwanted input to make sure no
code is executed that should not be executed. Even URLs can be used to access
parts of Blackboard that should be off limits to most users. The most common
and risky flaw in the Blackboard system is the lack of input validation on any
form which will make XSS attacks possible. Blackboard made it possible to
insert HTML tags in these forms so the layout of an exercise for example can be
created with HTML. In the research paper by R. Ben Moussa,(2011), there is a
proposal to separate the code of the layout editors. One for the students that
cannot insert HTML and one for the teacher that will be able to use HTML.
This prevents the students from using javascript in the forms they fill in (like
assignments). Another proposal in this paper is to always check permissions.
This should be done for every page. In the current situation, Blackboard hides
the parts or links that should not be accessed from the user. But when they
are requested anyway, Blackboard will show this information. There are no
further checks to see if the user requesting this page is actually entitled to do so.
Authentication verification should be done for every page to make sure valuable
or confidential information will not leak. These suggestions will rule out most
of the vulnerabilities in the Blackboard system. The rest of the vulnerabilities
should be easy to fix and can be prevented with some minor changes to the code.
However, these solutions require modification of the source code of Blackboard.
So this means that all the universities depend on Blackboard Inc. to patch
these vulnerabilities. Blackboard Inc. has done something about the problem,
but has not yet provided a fundamental solution for the problem. They have
blacklisted some possibilities for inserting some javascript code. But there are
still many ways to be able to execute scripts.

3 Session Hijacking

Blackboard Inc. is not providing any solution for now. So it is necessary to
look for other ways of securing the system. As said before, the most common
vulnerability in Blackboard is XSS. This enables a user to execute scripts on
other machines. One of the uses of XSS is stealing session information stored in
cookies on the client machine. When the session id is copied, the whole session
can be taken by setting the cookie in the browser of the attacker to the same
value. The server then thinks you are the person it gave that session id to. In
this way the session of a teacher can be stolen by a student. The student will
get the permissions of the teacher. For Blackboard to be more secure, another

7

level of authentication needs to be added.

3.1 Session Hijacking Prevention

3.1.1 SSL/TLS session-aware authentication

As stated in the Theoretical Scope, there are already some methods to prevent
session hijacking available. One of those methods is made by Rolf Oppliger
et al.(2006) It combines the use of SSL/TLS sessions with the application ses-
sion by using client certificates. The coupling of the SSL/TLS session and
the application session provides a failsafe. If the session id is used by another
HTTPS connection, you know there is something wrong and the server can ask
for reauthentication[10]. The SSL/TLS client certificate and application session
combination is kept inside the application. This also requires the application
to be rewritten. This proposal is not only built on the session id of the SSL
connection. It uses client certificates to authenticate the user. SSL/TLS session
renegotiation has no influence this way. We didn’t want to use client certificates,
because this also requires a lot more work to install and users usually don’t want
that, our method is pretty much pluggable.

3.1.2 SessionProxy

I want to propose a method that combines SSL/TLS session-aware authenti-
cation with a reverse proxy. It is much like the method Rolf Oppliger et al.
proposed. Instead of implementing it inside the application, we want to im-
plement this inside a simple reverse proxy. This proxy relays the requests to
the backend server only if the client that originally got the application session
id is sending the request. To authenticate a client over HTTPS, you register
the SSL session and application session information. When a request with the
same application session id is used with a different SSL session, you know that
the session is stolen. By removing the session cookie from the request, the ap-
plication session is invalidated. The proxy makes sure the HTTPS session and
application session combination does not need to be kept inside the applica-
tion (server). The idea is to use a server side reverse proxy that handles the
HTTP(S) requests as they come in and sends them to the back end application
server. The application server should only be accessible internally and not from
the Internet. (See figure 1 and 2). To handle the sessions, the reverse proxy
needs to be extended with functionality to read the requests and responses and
manage the SSL/TLS session and application session. The proxy stores the
SSL/TLS session and application session combination in it’s own memory. The
public key of the client should be enough to authenticate the client. You encrypt
the application data sent to the client with this key and the incoming requests
are encrypted and can only be decrypted with the public key of the client. If
you intercept the ”set-cookie” header sent by the application server, you can
also read the application session status. When a request comes in, the cookie

8

header must be read and checked against the key value pair that is stored in
the proxy. If the public key, session id pair of the request does not match one
in the local database of pairs, the session is invalid. To invalidate the session
on the application server, the invalid request can be sent to the server without
the cookie header. The server will then return the login page. In practice, the
client’s public key cannot be requested from the SSL suite that implements and
handles the SSL connection. The suite does provide an SSL session id value.
This value is a unique identifier of an SSL session, but it does not identify a
client. When an SSL session is renegotiated, the SSL session id changes.

Figure 1: This is a simple model of the current setup for Blackboard.

Figure 2: This is a simple model of the setup for Blackboard with Session Proxy.

Protocol message sequence The first thing that the Session Proxy server
does when it gets a request, is redirect the user to the HTTPS port if the user
did not request that already. When the user’s browser does not provide a session
cookie, the Session Proxy can simply replay the request to the application server.
Any request without a session cookie will result in a redirect to the login page,

9

so this can’t go wrong. When the user logs in, the application server will send a
”Set-Cookie” header. This header is intercepted (but still sent back to the user)
by the Session Proxy and the Session Proxy will store the cookie data along with
the SSL session id of the client’s connection. Now with each request by the user,
the browser of the user will send the cookie along. When a request is received
with cookie data, the Session Proxy will check to see if the SSL session id of
the request is the same as the one that received the cookie from the application
server. So the cookie is the key and the SSL session id is the value in the key-
value pair. If the SSL session id’s match, the request can be replayed to the
application server along with the session cookie. If they don’t match, the cookie
is removed from the headers of the request and then the request is sent to the
application server. Because the application server cannot see the cookie, it will
automatically redirect to the login page as said before. The only thing that can
cause problems now is SSL renegotiation. Since Internet Explorer 5, the SSL
session id is mostly considered as a non persitent value and cannot be relied on
for client authentication/identification[5]. Most modern browsers however only
renegotiate an SSL connection every few hours. So this will just result in an
application session invalidation for now.

Figure 3: The message sequence for requests before authentication (including
the authentication request with cookie/SSL session id registration).

Figure 4: Requests while authenticated.

10

Figure 5: An invalidation of a session. The cookie/SSL session id couple will be
removed from local memory

3.1.3 Related work

There are several other proposals to prevent session hijacking. In the paper
by Martin Johns (2006), he proposes a solution where the cookies in which the
session id is kept are sent from a different subdomain. This way the javascript
code cannot get the cookie, because it doesn’t fall under the same-origin policy,
so the cookie is safe. This does not prevent every type of attack though. With
browser hijacking or XSS propagation session cookies can still be obtained by an
attacker. Johns uses URL randomization and one-time URLs to prevent these
attacks from being executed. He also writes that these methods are not meant as
a complete replacement for input and output validation in the application, but
it is an extra layer of protection. This sure is a good way of preventing session
hijacking, though it is a lot of hassle to implement. Most of the application
needs to be rewritten.

Another method is to run a piece of software on the client computer which
intercepts the ”set-cookie” header before it is sent to the browser. This way
the cookies will never be in the browser at all. This method is proposed by
Nikiforakis et al. (2011). Without much overhead this system will prevent
javascript code from accessing the cookie information. This still relies on the
client and a secure implementation of this piece of software, without memory
leaks, will indeed do the trick.

Server/Client side Application modification

Session Proxy Server side Pluggable (only configure),
with some firewall

modification.
SessionSafe (Johns) Server side Requires network structure

and application modification.
SessionShield
(Nikiforakis)

Client side Pluggable

SSL/TLS
Session-Aware User

Authentication

Server side Requires client certificates.

11

3.2 Implementation

We wanted to implement a proof of concept for Session Proxy as a module for
the popular reverse proxy server Nginx. Nginx is a very lightweight application
and can be used as reverse proxy, webserver and load balancer. Because Session
Proxy relies heavily on the reverse proxy, I chose to implement it as a module
for Nginx, so the framework can be used to handle the requests and only the
application logic of the cookies and SSL session id data should be implemented.
This was harder than I thought however. After learning about module develop-
ment for Nginx I took an existing module with the same basic setup. It gets a
request, then does something and then sends the request to the backend server.
This is exactly what I want to do, so this module was a great example. How-
ever, the module does not work as it should. This has to do with the Nginx
framework changing and not being too well documented. I have spent a lot of
time to get the module to work by looking through the code of the module,
as well as the framework, but I wasn’t able to get it working correctly. I have
made a different implementation based on PHP. Because PHP is not the most
secure language, we chose not to test this version on the blackboard servers. I
used an old application to test the Session Proxy system. The idea of using the
SSL session id in combination with the application session id is not Blackboard
specific and should work for any application.
To test whether the Session Proxy system will actually prevent session hijack-
ing, we have made a setup where an application server is reachable the normal
way, as well as through the Session Proxy reverse proxy. So it is like a combina-
tion of the current setup and the new setup. Both servers should be reachable.
With this setup, we can show that an XSS attack to steal the session id will
work on the current application server, but when you try to set the cookie while
connecting to the Session Proxy, your session will be invalidated. Below is a
model of the test setup.

12

Figure 6: This is a simple model of the test setup for Blackboard with Session
Proxy.

We plan to finish the Nginx module in the future, because the PHP version
is not very well written. It might still need some bugfixes like urlencoding
for spaces in filenames. Once the Nginx module is finished, this thesis will be
rewritten in the form of a paper for a conference.

3.3 Attacker model

When defining this new system to prevent a certain attack, we need to keep the
security of this application in mind as well. We need to consider what can go
wrong if an attacker targets the Session Proxy server or application. The appli-
cation runs on any Unix operating system. The only open ports should be port
80, 443 and 22 for HTTP, HTTPS and SSH access respectively. With a simple
rewrite rule all HTTP connections will be rerouted to the HTTPS port and thus
will activate an SSL/TLS secure channel. There is not much that can go wrong
with those two ports other than denial of service attacks. When the server is
secured with a proper password for the user(s) and the root user, it will also be
hard to gain access to the SSH terminal. When you run the application under
root and make sure the users have no root privileges, the configuration and data
of the application cannot be accessed by other users. An attacker should use op-
erating system exploits to gain root access. It is very hard to find such exploits.
Furthermore, the Nginx framework has implemented substitutions for memory
allocation functions in C, which implement the secure versions of the standard
C functions. By using these framework functions, buffer overflow mistakes are
very hard to make by the programmer. All these measures combined make it an
almost unbreakable setup. We do not recommend the use of the PHP version of
the Session Proxy system for production environments though. Let’s say there
is a way to take over the Session Proxy server or application. An attacker could
then compromise the cookie information stored in memory by the application.

13

With access to the cookie information, the attacker can modify the data and
take over the cookie. But this is the problem in the application now anyway.
This proposal does not have any other disadvantages, so the only thing that
can go wrong is a session hijack if this proposed Session Proxy fails to work.
Therefore Session Proxy only adds an extra layer of security and only brings us
back to the current state if the system is compromised.

4 Conclusion

When connecting to an application through the Session Proxy system, you are
still able to use the application the normal way. As stated before, Session Proxy
does not fix any cross-site scripting vulnerabilities. When trying to hijack a
session through XSS however, you are redirected to the login page. This means
that if you use Session Proxy to reach Blackboard, the session of a teacher
cannot be taken over by a student. The student will still be able to execute
other XSS attacks, but trying to edit your application session cookie with the
information obtained via XSS from a teacher will not work anymore. Session
hijacking is one of the most common uses for XSS, so this is a very useful extra
layer of security without rewriting the application itself.

References to webpages and other papers

[1] Online24 Blackboard security research paper. https://www.online24.nl/
blog/blackboard-security-research-paper-has-been-released/

[2] R. Ben Moussa(2011). Blackboard Security, Internal research paper on the
security of Blackboard at the Radboud University Nijmegen.

[3] http://west.wwu.edu/atus/blackboard/assets/Bb%20Satisfaction%

20Report%202011.pdf Found 23-02-2012 using Wikipedia http:

//en.wikipedia.org/wiki/Blackboard_Learning_System

[4] http://www.montanakaimin.com/mobile/news/

blackboard-no-match-for-moodle-1.1596737 Found 23-02-2012 using
Wikipedia http://en.wikipedia.org/wiki/Blackboard_Learning_

System

[5] http://support.microsoft.com/kb/265369 Microsoft(2007). Found 10-
06-2012 when searching for SSL session id persistence.

References to academic literature and articles

[6] Alan Lawler(2011). LMS transitioning to Moodle: A surprising case of suc-
cessful, emergent change management, Australasian Journal of Educational
Technology, 27(7), 1111-1123.

14

https://www.online24.nl/blog/blackboard-security-research-paper-has-been-released/
https://www.online24.nl/blog/blackboard-security-research-paper-has-been-released/
http://west.wwu.edu/atus/blackboard/assets/Bb%20Satisfaction%20Report%202011.pdf
http://west.wwu.edu/atus/blackboard/assets/Bb%20Satisfaction%20Report%202011.pdf
http://en.wikipedia.org/wiki/Blackboard_Learning_System
http://en.wikipedia.org/wiki/Blackboard_Learning_System
http://www.montanakaimin.com/mobile/news/blackboard-no-match-for-moodle-1.1596737
http://www.montanakaimin.com/mobile/news/blackboard-no-match-for-moodle-1.1596737
http://en.wikipedia.org/wiki/Blackboard_Learning_System
http://en.wikipedia.org/wiki/Blackboard_Learning_System
http://support.microsoft.com/kb/265369

[7] T. Pietraszek1 and C. Vanden Berghe (2006). Defending Against Injection
Attacks Through Context-Sensitive String Evaluation, Lecture Notes in
Computer Science, 3858, 124-145.

[8] Martin Johns(2006). SessionSafe: Implementing XSS Immune Session Han-
dling, Lecture Notes in Computer Science 4189, 444-460.

[9] Nick Nikiforakis et al.(2011). SessionShield: Lightweight Protection
Against Session Hijacking, International Symposium on Engineering Se-
cure Software and Systems.

[10] Rolf Oppliger et al.(2006). SSL/TLS Session-Aware User Authentication–
Or How to Effectively Thwart the Man-in-the-Middle, COMPUTER COM-
MUNICATIONS 29(12), 2238-2246.

15

A Source code

A.1 Session Proxy index.php

<?php

require(’simpleSHM.php ’);

include(’config.php ’);

$shm = new SimpleSHM(SHMID);

$url = "https ://". BACKEND_HOST;

if(isset($argv [1])) {

$url.= $argv [1];

} else {

isset($_SERVER[’REDIRECT_URL ’])?$url.= $_SERVER[’REDIRECT_URL

’]: $url .="";

}

if(! empty($_GET))

{

$url .="?";

$number = 0;

foreach ($_GET as $name => $value)

{

($number >0)?$url .="&": $url .="";

$url.= $name ."=". urlencode($value);

$number ++;

}

}

$ch = curl_init ();

if(! empty($_POST))

{

curl_setopt($ch , CURLOPT_POST , 1);

$postFields=array();

foreach ($_POST as $name => $value)

{

$postFields[$name]= $value;

}

curl_setopt($ch , CURLOPT_POSTFIELDS , $postFields);

}

if(! empty($_COOKIE)) {

$cookie=array ();

foreach($_COOKIE as $key=>$value){

if(in_array($key ,$sessioncookie)){

if(checkpair($value))

$cookie []="{ $key }={ $value }";

}

else{

$cookie []="{ $key }={ $value }";

}

}

$cookie=implode(’; ’, $cookie);

curl_setopt($ch , CURLOPT_COOKIE , $cookie);

}

if(isset($_SERVER[’REMOTE_ADDR ’]))

curl_setopt($ch , CURLOPT_HTTPHEADER , array(’X-Forwarded -For:

’.$_SERVER[’REMOTE_ADDR ’]));

curl_setopt($ch , CURLOPT_SSL_VERIFYPEER , 0);

curl_setopt($ch , CURLOPT_URL , $url);

curl_setopt($ch , CURLOPT_HEADERFUNCTION , ’read_header ’);

16

curl_setopt($ch , CURLOPT_RETURNTRANSFER , true);

if(($response = curl_exec($ch)) === FALSE) {

echo curl_error($ch);

}

curl_close($ch);

$response = preg_replace(BACKEND_HOST , ’willemburgers.nl’,

$response);

/* $filename = "/var/www/logs/log.txt";

$fh = fopen($filename , ’w’) or die ("can ’t open file");

fwrite($fh , $response);

fclose($fh);*/

echo $response;

function read_header($ch , $string)

{

$length = strlen($string);

$location ="";

$cookiearr = array ();

if(! strncmp($string , "Location:", 9))

{

$location = trim(substr($string , 9, -1));

}

if(! strncmp($string , "Set -Cookie:", 11))

{

$cookiestr = trim(substr($string , 11, -1));

$cookie = explode(’;’, $cookiestr);

$cookie = explode(’=’, $cookie [0]);

$cookiename = trim(array_shift($cookie));

$cookiearr[$cookiename] = trim(implode(’=’, $cookie));

}

$shm = new SimpleSHM(SHMID);

$storedarray = json_decode($shm ->read(),true);

$SSL_SESSION_ID = $_SERVER[’SSL_SESSION_ID ’];

foreach($cookiearr as $key=>$value)

{

header ("Set -Cookie: ".$key ."=". $value);

$storedarray[$SSL_SESSION_ID]= $value;

}

$shm ->write(json_encode($storedarray));

if(! empty($location))

header (" location: ". $location);

return $length;

}

function checkpair($cookievalue){

$shm = new SimpleSHM(SHMID);

$storedarray = json_decode($shm ->read(),true);

if(array_key_exists($_SERVER[’SSL_SESSION_ID ’], $storedarray))

if($storedarray[$_SERVER[’SSL_SESSION_ID ’]]== $cookievalue)

return true;

return false;

}

?>

A.2 Config.php

<?php

17

define (" BACKEND_HOST", "192.168.1.1");

global $sessioncookie;

$sessioncookie = array(" PHPSESSID",);

define ("SHMID " ,900);

?>

A.3 Shared Memory Class

<?php

/**

* SimpleSHM

*

* A simple and small abstraction layer for Shared Memory

manipulation using PHP

*

* @author Klaus Silveira <contact@klaussilveira.com >

* @package simpleshm

* @license http ://www.opensource.org/licenses/bsd -license.php

BSD License

* @version 0.1

*/

class SimpleSHM

{

/**

* Holds the system id for the shared memory block

*

* @var int

* @access protected

*/

protected $id;

/**

* Holds the shared memory block id returned by shmop_open

*

* @var int

* @access protected

*/

protected $shmid;

/**

* Holds the default permission (octal) that will be used in

created memory blocks

*

* @var int

* @access protected

*/

protected $perms = 0644;

/**

* Shared memory block instantiation

*

* In the constructor we’ll check if the block we’re going to

manipulate

18

* already exists or needs to be created. If it exists , let ’s

open it.

*

* @access public

* @param string $id (optional) ID of the shared memory block you

want to manipulate

*/

public function __construct($id = null)

{

if($id === null) {

$this ->id = $this ->generateID ();

} else {

$this ->id = $id;

if($this ->exists($this ->id)) {

$this ->shmid = shmop_open($this ->id, "w", 0, 0);

}

}

}

/**

* Generates a random ID for a shared memory block

*

* @access protected

* @return int Randomly generated ID, between 1 and 65535

*/

protected function generateID ()

{

$id = mt_rand(1, 65535);

return $id;

}

/**

* Checks if a shared memory block with the provided id exists or

not

*

* In order to check for shared memory existance , we have to open

it with

* reading access. If it doesn ’t exist , warnings will be cast ,

therefore we

* suppress those with the @ operator.

*

* @access public

* @param string $id ID of the shared memory block you want to

check

* @return boolean True if the block exists , false if it doesn ’t

*/

public function exists($id)

{

$status = @shmop_open($id , "a", 0, 0);

return $status;

}

/**

* Writes on a shared memory block

*

19

* First we check for the block existance , and if it doesn ’t, we’

ll create it. Now , if the

* block already exists , we need to delete it and create it again

with a new byte allocation that

* matches the size of the data that we want to write there. We

mark for deletion , close the semaphore

* and create it again.

*

* @access public

* @param string $data The data that you wan ’t to write into the

shared memory block

*/

public function write($data)

{

$size = mb_strlen($data , ’UTF -8’);

if($this ->exists($this ->id)) {

shmop_delete($this ->shmid);

shmop_close($this ->shmid);

$this ->shmid = shmop_open($this ->id, "c", $this ->

perms , $size);

shmop_write($this ->shmid , $data , 0);

} else {

$this ->shmid = shmop_open($this ->id, "c", $this ->

perms , $size);

shmop_write($this ->shmid , $data , 0);

}

}

/**

* Reads from a shared memory block

*

* @access public

* @return string The data read from the shared memory block

*/

public function read()

{

$size = shmop_size($this ->shmid);

$data = shmop_read($this ->shmid , 0, $size);

return $data;

}

/**

* Mark a shared memory block for deletion

*

* @access public

*/

public function delete ()

{

shmop_delete($this ->shmid);

}

/**

* Gets the current shared memory block id

*

* @access public

20

*/

public function getId()

{

return $this ->id;

}

/**

* Gets the current shared memory block permissions

*

* @access public

*/

public function getPermissions ()

{

return $this ->perms;

}

/**

* Sets the default permission (octal) that will be used in

created memory blocks

*

* @access public

* @param string $perms Permissions , in octal form

*/

public function setPermissions($perms)

{

$this ->perms = $perms;

}

/**

* Closes the shared memory block and stops manipulation

*

* @access public

*/

public function __destruct ()

{

shmop_close($this ->shmid);

}

}

A.4 .htaccess

RewriteEngine on

RewriteCond %{HTTPS} !=on

RewriteRule .* https ://%{ SERVER_NAME }%{ REQUEST_URI} [R,L]

RewriteRule ^ index.php [L]

21

	Research Plan
	Problem Statement
	Research Question

	Motivation
	Theoretical Scope
	Vulnerabilities and solutions
	Session hijacking

	Strategy

	Blackboard vulnerabilities
	vulnerabilities
	Prevention methods for Blackboard vulnerabilities

	Session Hijacking
	Session Hijacking Prevention
	SSL/TLS session-aware authentication
	SessionProxy
	Related work

	Implementation
	Attacker model

	Conclusion
	Source code
	Session Proxy index.php
	Config.php
	Shared Memory Class
	.htaccess

