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1 Introduction

After research spanning more than 60 years, Lindenmayer-systems, or L-systems,
have evolved into elegant conceptual tools that are used in many di�erent sci-
enti�c �elds. One of the core problems concerning L-systems, the so-called
syntactical inference problem, did immediately spike the interest of researchers
in various disciplines. In this thesis we will explore L-systems, and one of the
subproblems of the inference problem.

Ever since Feliciangeli and Herman coined the inference problem [7], computer
scientists have been trying to solve all cases of the inference problem. Solu-
tions to this problem can give us valuable information about recurring topics in
computer science research such as machine learning, information retrieval and
formal language theory. However, to this day some subproblems of the inference
problem are still open.

L-systems can be described as term rewriting systems or a special kind of formal
grammars, consisting of a starting point (hereafter denoted as w0) and a set of
rules describing how productions can be rewritten. Instead of sequential appli-
cation of rewrite rules, L-systems are parallel rewriting systems. This means
that all applicable rules are being applied in one derivation step.

The syntactical inference problem poses the following question: given a sequence
of derived words from an unknown L-system, it is possible to reason back to the
L-system that created it?

L-systems come in many di�erent forms. This is the reason there are multiple
versions of the inference problem and the ways to obtain a valid solution are
manyfold. According to a recent survey on the inference problem, it's very
unlikely we will �nd one elegant universal solution for the inference problem of
all the di�erent variations in L-systems [3].

In this thesis, we will explore the current state of a�airs regarding the syntactical
inference problem for L-systems. Since there are many di�erent kinds of L-
systems, we decided to pick one speci�c type: deterministic, context-free L-
systems, also called D0L-systems.

Since L-systems are often used to model complex processes in �elds such as
biology, we can use solutions to the syntactical inference problem as a new way
of building models. If we would have a good solution to the inference problem,
we would be able to build models from a small set of snapshots from reality. In
this way, expert domain-knowledge is no longer necessary for obtaining a model
from a set of observations. The building of a model would also become more
cost-e�cient and easier.

Before we can look into the de�nition of L-systems and its myriad of properties,
we �rst have to take a step back and review the theoretical context. I will
start this paper by placing L-systems in the broader context of formal language
theory. After reviewing some preliminaires I will explain the most important
di�erent properties of L-system and give examples of their applications. After
this we will explore the inference problem, and look speci�cally at the still open
subproblems of the inference problem of D0L-systems. Finally, we will explain
and analyse an algorithm that has been put forward recently as a solution to
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this subproblem. We will consider this algorithm with a critical eye and check
whether the authors deliver a good solution to the subproblem in question. We
will �nish with some suggestions to improve this algorithm.
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2 Theoretical context

Since we will be speaking of concepts closely related to the theory of formal
languages, we will now review some preliminairies. L-systems and the associated
theory is especially related to formal grammars.

2.1 Formal Language theory

Formal language theory is the study of the form and behaviour of so-called
formal languages: mathematical structured, arti�cial engineered languages, as
opposed to human, informal, spoken languages. Ways to describe these for-
mal languages include context-free grammars, context-sensitive grammars and
regular expressions.

A formal language consists of words over an alphabet Σ. An alphabet Σ is
a �nite set of symbols. A words of length n over Σ is a string of symbols
u1u2u3...un, with every ui ∈ Σ. The set of all possible words over Σ is denoted
as Σ∗. Σ∗ includes the empty string (a word made up of 0 symbols), denoted as
λ. A way to describe a language is by de�ning a formal grammar. This grammar
contains rules that tell us how a word in the language should be generated.

2.2 Grammars

Context-free grammars

A formal grammar is a triple (Σ, V,R), where Σ is an alphabet, V is a set of
help-symbols, and R is a set of rules that de�ne how the grammars generates
words over Σ. In a context-free grammar, rules are of the form u → v, where
u ∈ V and v ∈ Σ ∪ V ∗. Symbols from V are called non-terminals and are
generally capitalized or uppercase. Symbols from Σ are also called terminals
and are usually lowercase.

Take for instance the following grammar G with Σ = {a, b} and V = {S,B}:

S → aB
B → Bb | b

Note that the rule

B → Bb | b

is shorthand for

B → Bb
B → b

We produce valid words by following the rules in the grammar. Generally, we
start with the symbol S. We then sequentially apply one of the rules from the
grammar. We can stop rewriting when we have only terminals left in the string.

Below are some examples of productions of words using G:
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S → aB → ab
S → aB → aBb→ abb
S → aB → aBb→ aBbb→ abbb
S → aB → aBb→ aBbb→ aBbbb→ ...

We start with the symbol S. We then rewrite S to aB. We can now choose
which rule we want to apply. We can either rewrite the B to Bb or to the
terminal b. The last option gives us the �rst valid word: "ab". If we rewrite
B to Bb, we can again either continue expanding the string with B, or make a
new word "abb", and so on. It may be clear that this grammar describes the
regular language L(G) that consists of the words {ab, abb, abbb, ..., abn}.

Context-sensitive grammars

One of the drawback of this type grammar is that it's not possible to de�ne
more complex constraints, such as "Symbol X should rewrite to Y, but only
when preceded by Z". Luckily, we can also de�ne context-sensitive grammars.
The di�erence with context-free grammars is that in context-sensitive grammars,
rules have the form u → v with both u and v ∈ Σ ∪ V ∗. Now we can de�ne
more complex rules. Here's an example of a context-sensitive grammar G2.
Σ = {a, b, c}, V = {S,A}.

S → aAbAcAA
aA → aa
bA → bb
cA → cc

This grammar can only rewrite the non-terminal A is there is either an a, b or c
preceding it. The A will then be rewritten to two times the preceding character.
Here is the derivation sequence for the production of the only word in L(G2).
For clarity, the underlined characters are rewritten in the succeeding step.

S → aAbAcAA → aabAcAA → aabbcAA → aabbccA → aabbccc

Let it be clear that in the second step of the derivation, we could have chosen
to rewrite either aAbAcAA, aAbAcAA or aAbAcAA. The last A in the string
can't be rewritten in this step, since it's preceded by another A. This means
that none of the rules from the grammar are applicable. After we have rewritten
the cA, the last A is preceded by a c. Only then are we able to apply rule 4.

The applications of formal grammars are endless. Some examples are syntax-
de�nitions of programming languages, and representations of sets, algorithms
and functions. L-systems are also a special kind of formal grammars. The
biggest di�erence between 'normal' grammars and L-systems, is that instead of
sequential application of rules, in L-system we apply all applicable rules in one
step. This is called parallel rewriting.
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3 L-systems

3.1 Origin and development

Aristid Lindenmayer introduced L-systems in 1968 [16] as a way of formalizing
the development rules for plants and other biological organisms. The symbols
from the grammar could be translated to real world objects or structures with
the use of an interpretation function.

At �rst, the systems were only used for very simpli�ed models of plants, bacteria
and fungi. Over the years, a group of researchers [14] has expanded the use of
L-systems beyond simpli�ed models. Later, Lindenmayer and Prusinkiewicz
introduced the use of brackets to denote branching systems. This extension of
L-systems made it possible to model more than �at, simpli�ed objects: now
we could model branching systems such as trees, plants, but also branching
structures in medicine such as arteries and dendrites.

With the evolution of computer imaging, L-systems are now also used to pseudo-
randomly generate realistic images of trees, plants, and other structures. In the
medical and biological sciences, L-systems are used to model and simulate the
behaviour of cells, organs, organisms [21] and various processes associated with
cell metabolism (such as the production of hormones in plants which greatly
in�uence growth processes [15]).

At the moment there are numerous tools and frameworks online that can be
used to interactively explore the possibilities of L-systems [2, 9, 17].

Figure 1: 3D plants generated with L-systems
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3.2 What is an L-system?

Since we have clearly described how grammars work, we can now look at L-
systems in the context of formal language theory. Basically, L-systems are
grammars. The characteristic di�erence is that instead of choosing only one
production rule when rewriting a word, we apply all possible rewriting rules in
one step. This is called parallel rewriting.

If we want to de�ne an L-system, we need to specify an alphabet, a set of rules
and a starting point. The starting point is comparable to the starting symbol
S of a formal grammar.

Take the following grammar that represents a very small subset of all valid
sentences in English (adapted from [8]). Here the starting symbols S is denoted
by the term "Sentence".

Grammar G3

Sentence → Subject FiniteVerb
Subject → Article Noun
Article → The
Noun → cat | dog | mouse
FiniteVerb → sleeps | eats | plays

A possible derivation sequence is the following:

Step
1 Sentence → Subject FiniteVerb
2 → Article Noun FiniteVerb
3 → The Noun FiniteVerb
4 → The dog FiniteVerb
5 → The dog sleeps

Note that it takes 5 rewriting steps to arrive at a valid sentence.

We can de�ne the following L-system, based on the example above:

L-system L1 based on G3

The alphabet Σ {A, a, b, c}
Starting point w0 Sentence
Rewriting rules rule 1 Sentence → Subject FiniteVerb

rule 2 Subject → Article Noun
rule 3 Article → The
rule 4 Noun → dog
rule 5 FiniteVerb → sleeps

The derivation sequence to obtain the same sentence is as follows for L1:

Step
1 Sentence → Subject FiniteVerb
2 → Article Noun sleeps
3 → The dog sleeps

Note that it takes only 3 rewriting steps to arrive at a valid sentence.
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Here we can clearly see the di�erence between a normal grammar and an L-
system. Whereas in the grammar example, we had to choose which one of the
two applicable rules we would apply �rst, we can now rewrite `Article Noun' in
one step to `The dog'.

3.3 Formal de�nition

There are various de�nitions of L-systems . Here we will use the one de�ned by
Lindenmayer in [16].

An L-system is a triple (Σ, P, w0) with an alphabet Σ, a grammar or set of
production rules P and a starting point, w0. The production rules are of the
form A→ w, with A ∈ Σ and w ∈ Σ∗.

Note that there is a di�erence with the de�nition of a formal grammar we
encountered earlier. L-systems have only one symbol from the alphabet on the
left side of the rule, whereas rules in standard grammars can have multiple.
Secondly, there is no di�erence between terminals and non-terminals. For all
symbols σ ∈ Σ that don't have a rule, we implicitly take the rule σ → σ.

3.4 Turtle interpretation of strings

Since L-systems are used to model all kinds of objects, we want to have some
kind of graphical interpretation for strings generated by an L-system. Many
interpretations have been suggested [16]. One of the most used interpretations
is the turtle interpretation of strings, which is closely linked to Turtle Geometry,
as is used in the programming language LOGO [1].

Turtle geometry is a notion from computer graphics theory that refers to draw-
ings �gures by means of "commanding" a turtle in a Carthesian plane. We
de�ne the state of the turtle as a triplet (x, y, α), with the x-coordinate, the y-
coordinate and the angle α to record the direction in which the turtle is facing.

The turtle starts at a certain point with a certain orientation. Given an angle δ
and a step size d, we can command it to move forward, turn left or right, with
the following commands: [1]

F Move forward a step of length d.
The state of the turtle changes from (x, y, α) to (x′, y′, α),
where x′ = x+ d cos α and y′ = y + d sin α.

+ Turn left with angle δ.
− Turn right with angle δ.

The commands for the turtle can be edited and ammended as desired depend-
ing on the application. We could, for instance, de�ne commands for drawings
squares, circles, etc. The three commands mentioned above are the most used
in the literature.

In the turtle interpretation of strings, each symbol or sequence of symbols in a
string is interpreted as a command to the turtle. Given a string s, a starting
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(a) The turtle starts fac-
ing north.

(b) The turtle draws a
line.

(c) The turtle turns right
by 90 degrees.

(d) The turtle draws an-
other line.

(e) The turtle draws a
third line.

(f) The turtle completes
the square.

Figure 2: The turtle interpretation of the string F-F-F-F

point, an angle and a step size, we can draw a the turtle interpretation of s as
a �gure. A simple example:

1. We want to interpret the string F-F-F-F.

2. We take an angle of 90◦ and a step size of 1.

3. Starting point of the turtle: (0,0).
Orientation of the turtle: the turtle is facing north.

4. The turtle starts drawing a square:

Symbol The following happens:
F The turtle moves forward (and draws a line).
− The turtle turns right (by 90 degrees).
F The turtle moves forward.
− The turtle turns right.
F The turtle moves forward.
− The turtle turns right.
F The turtle moves forward.

5. The turtle has drawn a square. We now have the turtle interpretation of
the string F-F-F-F.
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3.5 Variations

Because L-systems have been used to model various objects, structures and
processes, some authors have taken to extend the basic notion of L-systems. In
this section I will explain the most important variations.

Deterministic and stochastic L-systems

An L-system is deterministic if there is exactly one production rule for each
symbol s ∈ Σ. All elements of a derivation sequence then adhere to the unique
successor condition (as described in [7]). A L-system is stochastic if it is nonde-
terministic and the production rule chosen is dependent on some parameter in
the interval [0,1]. The chance that a derivation rule is chosen is depicted above
the arrow. A very simple but realistic example of a stochastic L-system is the
following:

Stochastic L-system Garden

w0 : SPACE

p1 : SPACE
0.15−−→ PLANT

p2 : SPACE
0.80−−→ WEEDS

p3 : SPACE
0.05−−→ FLOWER

Propagation

An L-system is non-propagating if it contains rules of the form s → λ, with
s ∈ Σ. It follows that a propagating L-system has no rule s → λ. This way,
symbols in a word can not simply disappear in a rewriting step. This means
that in a derivation sequence of a propagating L-system, the length of every
word in the sequence is the same or larger than its predecessor.

Context-free and Context-sensitive

Just as there are context-free grammars and context-sensitive grammars, there
exist context-free and context-sensitive Lindenmayer-systems. Context-free L-
systems, or 0L-systems, have production rules of the form s→ w, with s ∈ Σ
and w ∈ Σ∗.

In the literature we also encounter 1L-systems (unidirectional L-systems) and
2L-systems (bidirectional L-systems). The n in nL-systems refers to the number
of neighbour-symbols that have any in�uence on the derivation process. This
extension of L-systems was introduced to be able to take the "state" of neigh-
bouring cells into account when modelling biological structures such as plants
and fungi. Prusinkiewicz used these systems in [15] to model cell metabolism
processes such as the transport of enzymes from one cell to the next.

Before we can starting working with context-sensitive L-systems, we have to
extend the de�nition of an L-system. The production rules in the set P change
from
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s→ w, with s ∈ Σ and w ∈ Σ∗

to

(l, s, r)→ w, with l, s, r ∈ Σ and w ∈ Σ∗

With this extension we can set speci�c rules for s depending on the characters
of the left-neighbour-symbol l and the right-neighbour-cell r. We can take a
context-free L-systems and change it into a context-sensitive L-system by sub-
stituting all the rules

s→ w

by the rules

(a, s, b)→ w for all a, b in Σ.

In 2L-systems, both the left and right-neighbour cells exert in�uence over the
rewriting. This means that a symbol s can only be rewritten to w, if its left
and right neighbours are adhering to the constraints as stated by the production
rules. For example, given a rule (a, s, b)→ w, the symbol s can only be rewritten
to w if its left-neighbour is a and its right neighbour is b.

In 1L-systems, or unidirectional system, the derivation rule chosen is only depen-
dent on the left or right-neighbouring-symbol. This means that if an L-system
is unidirectional, all production rules have the following property:

(a) If (d, s, e)→ w then (d, s, f)→ w for all f ∈ Σ; or,

(b) if (e, s, d)→ w then (f, s, d)→ w for all f ∈ Σ;

Bracketed L-systems

A string of symbols between brackets denotes a branching structure. In this
way it has become possible to use L-systems to model branching systems and
organisms, such as trees and complex plant-structures. In the turtle interpreta-
tion of strings, a bracketed part of a word means that everything contained in
the bracket is a seperate branching structure.

The idea is that at the start of a bracket, the turtle continues the route de-
scribed within the brackets. At the closing bracket, the turtle is propelled back
towards the point and orientation where he was at the opening bracket, and the
remaining symbols of the word are interpreted from the point where the turtle
is now standing again. Keep in mind that in this interpretation, it is possible
for the turtle to overwrite the lines created by previous branches.

Simple example of a bracketed L-System

F → F[-F][+F]
angle = 5
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

Figure 3: Four iterations of the bracketed L-system

3.6 Applications

Biology

Leitner et al used stochastic L-systems in Matlab to model the interaction be-
tween soil and plant roots. [11]

Prusinkiewicz and Lane showed the use of L-systems in the study of morphology
in [15]. Models were built to predict heterocyst di�erentiation in Anabaena bac-
teria and growing patterns in ivy leaves. By modeling the exchange of auxins,
plant hormones that eventually determine the pattern of veins and the form of
the leaf, they could build a model of the molecular details of ivy leaf develop-
ment.

Figure 4: (a) An L-system model of ivy leaf development. (b) Comparison of
the �nal shape generated by the L-system with a real ivy leaf.
Image obtained from [15].

Since the morphology of the fungus Alternaria is very complex, Taralova et
al have made a model with L-systems [21] that can be used to explore the
morphology of Alternaria under di�erent circumstances. The model can also
generate model groups (depending on di�erent inputs) that can be compared
to microscopic images to �nd parameters for species-speci�c models. L-systems
are here used to facilitate research that would otherwise be too time-consuming
to undertake.
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Figure 5: 3D Trees generated by the blender plugin [4] based on L-systems

Computer science

Lima de Campos et al use L-systems as a representation of growing patterns
in brainstructures, to optimize the machine learning concept of arti�cial neural
networks [5].

Since we can use the turtle interpretation of strings for drawing 2D and 3D im-
ages, L-systems can also be used for various applications in computer graphics.
For instance, it is possible to download a plugin for the 3D-software Blender,
that generates vegetation in 3D by means of stochastic L-systems [4].

L-systems can also be used to generate fractals, signi�cantly self-similar, space-
�lling curves such as the Peano-curve.

Medical sciences

Mulchandani constructed a stochastic L-system [12] for the generation of axons
and dendrites. This way he obtained synthetic neurons that could be compared
to manually-traced neurons. The L-system contributes to the development of
neuron databases: it allows us to estimate the new information contributed by
the additional neuron morphological measurements.

In Jelinek et al [9] we �nd a new take on the modeling of growth patterns we saw
earlier in [15]. The research team presents a new model for neuron growth using
L-systems and a tool called Micromod, a web-based-tool for the generation
of neuron models based on some parameters. In [2] we �nd another model
generation toolkit based on L-systems. The tool L-neuron contains ways of
generating topolical models of dendrites that can be used for analytical research
and 3D-representation.

In 2001 Zamir investigated the possibility of using parametric L-systems [22]
to model arterial branching systems. The author concludes that we do not yet
have enough information regarding the range of variability in arteries to include
all properties in L-systems. We can only model some properties of the cardiac
system with L-systems.
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Figure 6: Four iterations of the peano-curve

Figure 7: A Purkinje cell [2] generated by L-neuron.
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Because some processes in the ventrikels of the heart cannot be observed in
living organisms, we need a di�erent way of obtaining a good biophysical model.
In two recent articles by Sebastian et al on medical imaging we encounter L-
systems again as a way of modeling the Cardiac Conduction System (CCS),
from samples obtained from calf and lamb tissue. [19, 20] The model is then
used to construct a 3D model of the CCS, given a ventricular anatomy.
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4 The inference problem

4.1 Problem statement

Basically, the inference problem for L-systems is this: given a derivation se-
quence of an L-system, can we reconstruct the L-system that generated it? The
inference problem is a lot like other grammatical inference problems. We could
describe it as the discovery of structures from examples that have presumably
been generated by the the same structure [3]. In this case the structures are
L-systems.

4.1.1 Original problem de�nition

We will use the description of the inference problem as coined by Feliciangeli
and Herman in [7]. Since the way we can solve this problem is dependent on
the input sequence, the authors distinguish three subproblems of the inference
problem:

1. Give an algorithm which decides for any �nite set of sequences of strings
whether or not there exists a grammar of a certain type (one of 12 possible
types) such that each of the sequences is

(a) a part of a derivation by a grammar; or,

(b) a regular sampled part of a derivation by the grammar; or,

(c) a randomly sampled part of a derivation by the grammar.

2. Give an algorithm which, whenever the algorithm in (1) produces a posi-
tive answer, will produce an appropriate grammar.

4.1.2 Input types

As stated in the problem de�nition above, the algorithm we can use to solve the
inference problem is dependent on the dataset that we use as input. Generally,
the input is a set of sequences of strings. The 'distance' between strings, the
number of derivation steps between two strings, plays also a vital role in the
hardness of the inference problem. The inference problem deals with three kinds
of derivation sequences:

(a) a part of derivation sequences. This means that the input is of the the form

si → si+1 → si+2 → ...→ si+n.

(b) a regular sampled part of a derivation sequences, in other words

si →n si+n →n si+2n →n ...→n si+mn.

(c) a randomly sampled part of a derivation sequence:

si →a si+a →b si+a+b →c ...→z si+a+b+..+z
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Bigger distances are more challenging and sometimes the derivation distance
between strings is unknown. Additionally, the distance between strings in a
sequence can vary. We need algorithms that can deal with all kinds of datasets.

4.1.3 Targets

Feliciangeli and Herman also made the distinction between 12 kinds of grammars
that we can choose as target. The target is the kinds of L-system we want to
infer from the derivation sequence. All targets have a combination of properties,
as described in section 3.5. We distinguish the various types of grammars. Each
type has a combination of the following properties:

1. the grammar is either non-deterministic or deterministic;

2. informationless, unidirectional or bidirectional;

3. propagating or non-propagating.

The properties of the target determine the hardness of the inference problem. It
also makes a big di�erence in the choices we have for picking a certain algorithm.
For instance, the inference problem for propagating deterministic 0-sided L-
systems (PD0L-systems) is on a complete di�erent level of hardness than the
inference problem for non-deterministic 2-sided L-systems. The PD0L-problem
has a search space of

|T | · |Σ∗|

possibilities, where T ⊆ Σ is the set of non-terminals in the alphabet. Most of
the time we can dramatically reduce that search space by taking into account
some properties of the input sequence.

The non-deterministic 2-sides L-system on the other hand, has a much larger
search space. Since every non-terminal is allowed to have more than one rule,
the possibilities are endless. The maximum size of the search space for a N2L-
system is

|N | · |Σ| · |T | · |Σ| · |Σ∗|

Thus, the inference problem of L-systems can be divided in 36 subproblems, one
for each combination of the twelve targets and three types of input.

4.2 Closed and open problems

In [7] Feliciangeli and Herman prove the existence of a solution to 30 of the 36
subproblems. They do this by o�ering constructive proofs [3] of the decidability
of existence of an inference algorithms for each input type. In the table below
we can �nd a schematic overview of the results of Feliciangeli and Herman.
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Type of L-system
Deterministic Non-deterministic

Propagating Non-propagating Propagating Non-propagating

x=0
A Dec Dec Dec Dec
B Dec Dec Dec Dec
C Open Open Dec Dec

x=1
A Dec Dec Dec Dec
B Open Open Dec Dec
C Open Open Dec Dec

x=2
A Dec Dec Dec Dec
B Dec Dec Dec Dec
C Dec Dec Dec Dec

`Dec' indicates that the problem in question is decided. x = n refers to the
context-sensitivity of the L-system. If n = 0 the system is informationless, if
x = 1 the system is unidirectional and if x = 2 the system is bidirectional. The
A, B and C refer respectively to (a),(b) and (c) in the de�nition of the inference
problem as stated above in section 4.1.1.

In the survey from 2010 by Ben-Naoum [3] the author shows that some of the
open problems mentioned by Feliciangeli and Herman have recently been solved.
However the algorithms that provide us with new solutions to the inference prob-
lem often need more information than just the target and a derivation sequence.
Some algorithms o�er only a partial solution to a subproblem. Furthermore, all
algorithms have their own strong and weak points. For a short overview, see
section 5.1.

4.3 Scienti�c relevance of the inference problem

Providing solutions to the inference problem is interesting for several reasons.
Below we will discuss the importance of the problem in the main areas of ap-
plication.

Computer science

From a computer science perspective, the inference problem for L-systems is
interesting because of its similarity to other grammatical induction problems.
L-systems are similar to grammars with parallel rewriting rules. A grammar
can be an e�cient tool to summarize the knowledge we have about a large set
of strings (a language) and �nding such a grammar for a small set of example
strings is a challenge that can be linked to the �elds of information retrieval,
modeling and machine learning. The inference problem addressed some of the
common problems in learning. It can also give us useful information about the
learnability of targets.

Biology and the life sciences

Since L-systems were originally made for modeling organisms in biology, let us
take a look at the way solution to the inference problem can contribute to this
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�eld.

In Biology, one way to build a model for an organism is to work bottom up:
starting at the way neighbouring cells interact, we move up until we have a
model that includes all relevant processes. For this way of modeling, a great
deal of domain knowledge (from molecular science to chemistry and physics) is
required. The process is time-consuming and prone to mistakes.

Another way to build a model is to observe an organism over time. If we can
formalize the observations, we can use solutions to the inference problems to
generate rules that explain these developments. This way of modeling requires
less domain knowledge, although we do need a sound method of formalizing
observations.

If we can �nd a proper string representation for scienti�c observations, we can
use solutions to the inference problem to infer a grammar that can serve as a
model for the observed processes. Depending on the kind of model we want, we
choose a target, and depending on the type of observations we have, we choose
an input type.
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5 Solutions to the DC0 inference problem

In this section we will discuss in short a few solutions to the open inference
problem for deterministic context-free L-systems. The inference problem for
D0L-systems is divided into three subproblems: DA0, DB0 and DC0.

DA0 problem : the inference problem given a part of a derivation sequence.

DB0 problem : the inference problem given a sampled part of a derivation
sequence. Between all strings in the sequence, there are n derivation steps.
We have no knowledge about the size of n, only that it's constant.

DC0 problem : the inference problem given a randomly sampled part of a
derivation sequence. Between all strings in the sequence, there is an un-
known random number of derivation steps.

Note that the A, B and C refer to the three subproblems as described in the
original problem statement, see section 4.1.1.

In this section, we are speci�cally looking at the subproblem for randomly sam-
pled derivation sequences. We will refer to this speci�c subproblem as the DC0
inference problem. Afterwards, we will analyse a new solution from recent lit-
erature and give an elaborated example to illustrate how the algorithm works.
Finally we will discuss some proposed changes to the algorithm and possibilities
for further research.

5.1 Earlier solutions to the DC0 inference problem

One of the �rst solutions to the DC0 problem was given by Doucet [6]. He gives
an algorithm for inferring D0L-system given a 'scattered word sequence'. The
algorithm is based on algebraic operations on Parikh vectors. However, Doucet
assumes that both the alphabet and the word-rank-numbers (their index in
the derivation sequence) are known. According to the de�nition of Feliciangeli
and Herman, we only have the derivation sequence as input. This algorithm
only works with more a priori knowledge than stated in the original problem
de�nition.

In [13], Nevill-Manning and Witten infer a D0L-system from a single string, by
following an algorithm named SEQUITUR that reminds us of data-compression.
Since this algorithm only takes one string as input, we can interpret algorithm
as a solution to the DA0, DB0 and DC0 inference problems. Recursively, the
algorithm replaces repeated substrings in the input string by L-system rules
that generate that same substring. The �nal number of rules is reduced by the
following two constraints:

1. No pair of adjacent symbols appears more than once in the D0L-system.

2. Every rule is used more than once.

The algorithm showed good results on large-sized DNA-sequences. Besides the
heavy memory usage, one drawback was that the algorithm was not able to deal
with brackets. Thus, any grammar it produced would be un�t for modeling
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problems in biology. A new version of SEQUITUR was made, but in the process
the algorithm lost its lineair time complexity [3].

In 1997 John Koza [10] introducted another way of inferring L-system, this time
by using genetic programming. He only demonstrates his algorithm with only
one example, so we can't be sure we will always arrive at a good solution within
reasonable time. Genetic algorithms are known for their high memory usage
and their ine�ciency. However, genetic algorithms can also lead to very good
results with di�cult problems.

5.2 A new partial solution to the DC0 inference problem

In [18] Santos and Coelho coin a solution to the inverse problem of L-systems,
which can be interpreted as a partial solution to the third inference problem
of D0L-systems. The inverse problem of L-systems is the problem that deals
with L-system induction given some productions of that L-system. Note that
the inference problem of L-systems is a subproblem of the inverse problem of
L-systems.

As mentioned before, the third inference problem deals with an input of a ran-
domly sampled derivation sequence. Since the algorithm of Santos and Coelho
takes only one string (as opposed to a complete sample of a derivation sequence),
we can interpret the input as a randomly sampled derivation sequence of length
1.

Santos and Coelho take a string and derive a L-system that possibly produced
it. They do this by means of a combination of pattern-searching and simple
mathematical operations. This method is fairly e�ective, but there are some side
notes to be made. Before we start analysing the e�ectiveness and complexity of
their solution, let us look at the algorithm.

An implementation of the algorithm as discussed in "Obtaining L-system rules
from strings" is provided in the appendix.

5.2.1 Algorithm

In this subsection we will provide the reader with an elaborated example of how
the algorithm processes the input string to arrive at a set of possible rules. The
pseudocode of the algorithm can be found in �gure 8.

We start with a string s over an alphabet Σ. This is the only input the algorithm
needs. For Σ = {F,+,−}, consider

s = F+F+++F+F++++

We count Fs, the number of times we encounter an F in s. The algorithm
expects that Fs > 1 (more on this in section 5.2.2). In our example,

Fs = 4

We then try to �nd a combination of Fr and n, where Fr is the number of F's
in the rule of the L-system we are trying to infer and n is the iteration of the
derivation in which s was produced. The following equation should hold
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1 Function InverseProblem(w:string):string
2 begin
3 Ft = CountSimbol(’F’,w)
4 St = length(w)-Ft
5 if Ft > 1 then
6 for Fq = 2 to int(sqrt(Ft)) do
7 n = ln(Ft)/ln(Fq)
8 if isInteger(n) then
9 str = w
10 oldpat = Slice(w,Ft,Fq)
11 if Replace(str,oldpatt,’F’) == Fq then
12 rule = TerminalClear(str,n)
13 if isPossible(rule,Fq,n,St) then
14 return rule
15 end if
16 end if
17 end if
18 end for
19 end if
20 rule = w
21 End

Figure 8: The Pascal code from the paper bij Santos and Coelho [18]

Fs = Fn
r

We �nd these combinations of Fr and n by brute-forcing all possibilities for Fr

between 2 and
√
Fs. Both Fr and n should be integers. We search an Fr and n

such that

logFr
Fs =

lnFs

lnFr
= n

For our example, we �nd the following combination of Fr and n:

(Fr, n) = (2, 2) because
ln 4

ln 2
= 2

Now we try to divide our input string in Fr equal parts with k occurences of
F each. Here k = Fs/Fr. We start searching for Fr = 2 substrings of s that
go from F0 to Fk and Fk+1 to Fs. The substrings should be the same. This is
done by the Slice-function, see line 10 in �gure 8.

ssliced = F+F +++ F+F ++++

We now substitue the pattern we found in the previous step with F. This oper-
ation, as implemented in the Replace()-function, gives us the following string:

sreplaced = F +++ F ++++

If Fsreplaced
= Fr, then we can try to make a rule out of this new string. But

there's one last post-processing step we must do. As we can see in the example,
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it is possible that some terminal-symbols have accumulated in sreplaced. The
TerminalClean-function (line 11 in �gure 8) processes the string such that we
will end up with the right amount of terminals in the rule. We count the leading
terminals Tl and the trailing terminals Tr. If we have the string

F+++F++++

any terminals in the head of the string are leading characters and any terminals
in the tail are trailing characters. Since the string starts with a non-terminal,
there are no leading characters we have to delete. The four plus signs in the tail
of the string are the trailing characters. This means that in our example

Tl = 0 and Tr = 4

We then determine how many terminals should be removed from s to make a
�tting rule. RL tells us how many terminals should be removed before each
occurrence of F, and Rr gives us how many terminals should be removed after
each occurence of F.

Rl =
Tl
n
∗ (n− 1)

Rr =
Tr
n
∗ (n− 1)

In our example, n = 2, which gives us

Rl =
0

2
∗ 1 = 0

Rr =
4

2
∗ 1 = 2

A Rr of 2 means that 2 trailing characters will be removed after each occurence
of F. The following characters will be deleted from s:

sreplaced = F+++F++++

which gives us

sterminalcleaned = F+F++

leading to the rule

F → F+FF++

The only thing left to do, is to check whether the inferred rule with is a good
rule. In other words, will the axiom F together with the inferred rule give us
the string s in n derivation steps?

The authors check this by counting the number of terminals Ts and the number
of F's in s and checking this with the nth iteration derivation-sequence made
by the inferred rule and the axiom F. We suggest that we check the derivation
more in depth, by generating the nth iteration.

axiom : F
rule : F → F+F++

1 F → F+F++
2 → F+F+++F+F++++
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Indeed, the derivation veri�es that F → F+F++ can produce the input string
in 2 steps. F → F+F++ is a valid rule.

5.2.2 Analysis

The algorithms from Santos and Coelho has a few strong points compared to
the other discussed algorithms from [3].

1. Compared to the other algorithms for the DC0 problem, this algorithm
can work without knowing the full alphabet. The only thing we need to
know is the symbol of the only non-terminal. This non-terminal we can
directly obtain from the input string. One could say that the algorithm
needs to know the alphabet for the TerminalClean()-operation, but since
we only have one rule (and thus one non-terminal), any symbol that's
not the non-terminal is automatically a terminal and should be taken into
account when counting the trailing and leading characters in the input
string.

2. The algorithm only needs one input string. This is both a strong and weak
point. Since we only have one input string, we don't have to delve into the
tedious task of inferring things from intervals in the derivation sequence
we do not know. The only thing we do need, is to �nd the iteration n,
which can simply be obtaining by brute-forcing all possibilities, which is
fairly easy. On the other hand, the algorithm will be prone to over�tting.
Because of this single input string, we are badly limited in the L-system
we can infer. Combined with the property of L-system that are limited to
one rule, we can only infer rather trivial L-systems.

3. Compared to the other proposed algorithms, this algorithm only uses very
basic operations. It will be relatively fast and hardly needs any memory.

4. The authors have included an L-system generator in their code, that gen-
erated random input strings with which they could validate the algorithm.
In all cases, the algorithm produced an appropriate L-system.

Besides these strong points, the algorithm by Santos and Coelho has some seri-
ous restrictions, that should also be taken into account.

The algorithm by Santos and Coelho has the following restrictions:

1. We have to assume that the input string is derived from an L-system with
only one rule. This is a very limiting constraint. For example, to generate
the Koch-island, a well-known and much-used example in L-systems, we
need two rules. By limiting the target to one-rule L-system, we exclude a
large and interesting subset of the set of all possible L-systems.

2. Furthermore, the authors assume that the input string is derived from an
axiom w0 which only contains one symbol, namely the only non-terminal
from Σ. This is also a strong limitation. Even if an L-system adheres to
the one-rule-constraint, it's not necessarily inferable with this algorithm.
For example, if we have an L-system L with the rule:

F → F+F
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then the algorithm can only infer L if and only if it has a string from the
following sequence as input:

F → F+F → F+F+F+F → F+F+F+F+F+F+F+F → ...

3. The authors don't take into account rules that contain only one non-
terminal and some terminals. Think for instance of an L-system with the
rule

F → F+

The algorithm won't work for this L-system, since it assumes that all L-
system rules F → x have an x with more than one non-terminal. This
is also the reason why the the algorithm (line 5 of 8) postulates that Fs

should be strictly larger than 1. But as we can see in this derivation
sequence

F → F+ → F++ → F+++ → ... → F+n

the authors exclude a large subset of the one-rule L-systems with this
constraint.

4. After we have derived a possible rule for the L-system based on the input
string, we have to verify our rule. The authors apply the derived rule
on their standard axiom F and verify their rule by counting the number
of terminals and non-terminals the generated string. If these numbers
accord with the numbers of non-terminals and terminals in the input-
string, they see their rule as valid. It would be better if the algorithm
would check the rules in more detail, since these kinds of algorithms are
prone to programming mistakes. We should be sure that the input string
i1i2i3...im is an exact copy of the derived string d1d2d3...dk.

5. The inference problem as speci�ed in 4.1.1 asks for an algorithm that
�rst checks whether it is possible to infer an L-system based on the input
string(s), and secondly an algorithm that provides the L-system if there
is one. However, because this algorithm was meant to provide a solution
to the inverse problem and not the inference problem, the termination
behaviour of the algorithm does not exactly correspond to the demands
of the inference problem. The inference problem de�nition states, that
an algorithm should either output 'False' (in the case that it can't infer
L-system for the input sequence of strings), or give an L-system as output.
This algorithm, on the other hand, always gives a rule as output, even in
the case that the algorithm wasn't able to infer one! In that case, the
algorithms outputs the trivial solution

F → i, where i is the input string

. We should keep in mind that, when the algorithm terminates, this means
that it was not possible to �nd a L-system

(a) that is not the trivial L-system with the rule F → i, where i is the
input string

(b) that is deterministic and informationless

(c) with only one rule
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(d) that contains more than one non-terminal in the tail of the rule

(e) that produced the input string by applying one rule to an axiom with
only one symbol

This means that the discussed algorithm only provides us with a partial
solution to the DCO-problem.

5.2.3 Improvements

It may be clear that the solution can only work for a very small subset of all
D0L-systems and a very small subset of input strings. We think the algorithm
can be greatly improved in the following way:

1. Firstly, we should improve the way the algorithm veri�es possible rules.
The original algorithm only compares the number of terminals and non-
terminals in the input string and the derived veri�cation string. An im-
proved veri�cation would check if the input string i = i1i2i3...im is an
exact copy of derived string d = d1d2d3...dk we obtained by applying the
inferred rule n times on the standard axiom F. We should check this by
determining whether m = k, i1 = d1, i2 = d2, and so on.

2. We also want to propose a small change to make the algorithm suitable
for a slightly larger set of input strings. The current algorithm doesn't live
up to its promise of providing a inference for all one-rule D0L-systems. It
should be expanded for rules with more than one character in the axiom.

3. Another point of point of improvement is the inability to deal with rules
that contain only one non-terminal in the tail.

4. We should devise a criterium or a weight-function for the algorithm so it
can decide which rule from the generated rule set is the best. For example,
we could choose the generated rule with the shortest tail.

5.2.4 Python code

In the appendix, we can �nd an implementation of the discussed algorithm.
The implementation has been made to clear up some ambiguities in the paper,
especially the functionality of the TerminalClean-operation. There are also few
di�erences between the implementation in the appendix and the original algo-
rithm from �gure 8. All line references in this section refer to the Python code
in the appendix, unless stated otherwise.

1. The description of the function TerminalClean() in the original paper was
very ambiguous. After working out some examples, the informal descrip-
tion from the original paper became clear. We hope that the Python code
and the elaborated example from section 5.2.1 provide a better description
of how this function works.

2. Furthermore, the Python code sacri�ces e�ciency for completeness. We
have chosen to calculate all possible combinations of (Fr,n) beforehand.
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This is done with the function Bftuples (lines 38 and 142), which returns
a list of tuples (Fr, n) such that Fs = Fn

r .

3. As a result, our algorithm tries to �nd all possible L-systems, instead of
just one. The algorithm iterates over all tuples generated by Bftuples (line
142) and checks whether they yield a valid rule (line 147). Therefore, the
output of the algorithm is not just one rule, but a set of possible rules. In
line 141 we add the solution F → i, where i is the input string. This way
the algorithm always outputs the trivial solution.

4. The implementation used a stricter way of checking whether a rule is
valid, as discussed in section 5.2.3. It uses the substitute-function from
the regular expressions library. In line 126, we recursively substitute all
occurences of F in a derivation string with the rule. The derivation string
starts with the axiom 'F'. After the derivation process, we check whether
the derived string is identical to the input string (line 146). Only then,
the rule is declared valid and added to the rule set (line 147).

5. A �nal di�erence is the working of the Replace-function. In the original
algorithm, the replace-function changes the original string in situ and
returns only an integer: the number of substitutions made by the function.
As such, it can be used in the if-statement from line 11 in the pseudocode.
In the implementation, we use two lines instead of one. The function
Replace returns the changed string (line 144), and we use the countF-
function (line 145) to check the number of replacements.
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6 Conclusion

6.1 Summary

In the �rst chapter of this thesis, we have put Lindenmayer-systems into the
context of formal language theory. We have seen the di�erences and similarities
between L-systems and grammars. We have explored the various properties of
L-systems that we encounter in the literature, such as branching systems and
stochastic systems, and their applications.

After stating the general de�nition of the inference problem for L-systems, we
have taken a closer look at the inference problems for deterministic, context-free
L-systems. We have reviewed some partial solutions from the literature for one
of the open subproblems, the DC0 problem. This problem deals with inferring
an D0L-system from a randomly sampled part of a derivation sequence.

Finally, we have elaborated on a recently coined solution. Our speci�c algorithm
deals with a random sampled input sequence of length 1, which can be used
to solve the DC0-subproblem. After analysing the algorithm, we came to the
conclusion that the algorithm can only deal with very speci�c kinds of L-systems,
namely one-rule D0L-system with more than one terminal in the tail. Secondly,
the algorithm can only infer rules if the input string was generated by applying
one rule to an axiom "F".

We have provided an annotated implementation of the algorithm that uses an
improved way of validating rules. Furthermore, our implementation generates
all possible rules, including the trivial rule, instead of just one rule.

The algorithm can probably be expanded so it can infer a broader range of
L-systems. It seems that there still no good solution to the DC0 problem.

6.2 Future research

The things discussed in previous sections lead us to the following further research
questions:

1. Can the algorithm as discussed in 5.2.1 be improved to deal with

(a) D0L-systems with more than one rule?

(b) D0L-systems with rules that contain only one terminal (for example
F → F+)?

(c) input strings that were generated from an axiom that is not "F"?

2. Can we �nd a better solution for the DC0-problem by reinterpreting a
solution to the inverse problem of L-systems?
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Appendix A: Python code

1 ’’’
2 Code by Judith van Stegeren
3 June 3, 2013
4 v3
5

6 This code was written to illustrate and validate the
7 algorithm for inference of L-systems from simple strings.
8 The original algorithm together with an example and
9 pseudo-code can be found in the paper "Obtaining L-system
10 rules from strings" by Santos and Coelho (2012).
11

12 This algorithm was tested with the following strings:
13

14 s = "F+F-+F+F--"
15 found rules:
16 F-> F+F-
17

18 s = "F+F+++F+F++++"
19 found rules:
20 F-> F+F++
21

22 s = "F+[F+F]-+[F+[F+F]-+F+[F+F]-]-"
23 found rules:
24 F-> F+[F+F]-
25 ’’’
26

27 import math
28 import re
29

30 # counts the number of non-terminals in string s
31 def countF(s):
32 n = 0
33 for char in s:
34 if char == ’F’:
35 n+=1
36 return n
37

38 #generate possible tuples for Fr, n, such that Fs = Fr ** n
39 def bftuples(Fs):
40 tuples = []
41 for Fr in range(2,int(math.ceil(math.sqrt(Fs)))+1):
42 n = (math.log(Fs)/math.log(Fr))
43 if not n == 0 and n % 1 == 0 and Fs == (Fr ** n):
44 tuples.append((Fr,n))
45 return tuples
46

47 #checks whether pattern occurs exactly k times within s
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48 def checkpatt(s,k,pattern):
49 if len(re.findall(r’%s’ %re.escape(pattern),s)) == k:
50 return True
51 return False
52

53 # Slices s in Fr slices with k times an ’F’
54 # and checks if each slice contains the same pattern
55 def Slice(s,Fs,Fr):
56 k = Fs / Fr
57 cF = 0
58 pattern = ""
59 for char in s:
60 if cF == k:
61 return pattern
62 if char == ’F’:
63 pattern+=char
64 cF+=1
65 if not char == ’F’ and cF>0:
66 pattern+=char
67 if cF == k and checkpatt(s,k,pattern):
68 return pattern
69 return ""
70

71 # replace all occurences of oldpatt with replacement
72 def Replace(string,oldpatt,replacement):
73 if oldpatt == replacement:
74 return string
75 return re.sub(’%s’ % re.escape(oldpatt),replacement,string)
76

77 # calculates the number of leading and trailing terminal
78 # characters
79 def findleading(string):
80 leading = len(string)-len(string.lstrip("+-[]"))
81 trailing = len(string)-len(string.rstrip("+-[]"))
82 return (leading,trailing)
83

84

85 # strips the leading and trailing from each substring
86 # with ’F’ in string
87 def strip(string,i,left):
88 new_string = ""
89 if not left:
90 for substring in re.findall(r’F[\-\+\]\[]+’,string):
91 counter = i
92 new_substring = ""
93 for char in substring:
94 if char == ’F’ or counter == 0:
95 new_substring += char
96 else:
97 counter-=1 #delete a character
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98 new_string += new_substring
99 else:
100 for substring in re.findall(’[\[\]\-\+]+F’,string):
101 counter = i
102 new_substring = ""
103 for char in substring[::-1]:
104 if char == ’F’ or counter == 0:
105 new_substring += char
106 else:
107 counter-=1
108 new_string += new_substring[::-1]
109 return new_string
110

111 #cleans up the accumulated terminal characters in string
112 def TerminalClean(string,n):
113 (l,r) = findleading(string)
114 l = (l / n) * (n-1)
115 r = (r / n) * (n-1)
116 if l > 0:
117 string = strip(string,l,True)
118 if r > 0:
119 string = strip(string,r,False)
120 return string
121

122 # returns whether it’s possible to make s by applying
123 # rule to axiom and deriving s in exactly n steps
124 def isPossible(axiom,rule,n,s):
125 for i in range(int(n)):
126 axiom = re.sub(’%s’ % re.escape("F"),rule,axiom)
127 if axiom == s:
128 return True
129 return False
130

131 # the algorithm to infer D0L-systems from a single string,
132 # as written down in ’Obtaining L-system Rules from Strings’
133 # by Santos & Coelho.
134 # This implementation contains small edits as proposed in
135 # the bachelor thesis of Judith van Stegeren
136 def paperalgo():
137

138 s = "F+[F+F]-+[F+[F+F]-+F+[F+F]-]-"
139 Fs = countF(s)
140 rules = []
141 rules.append(s)
142 for (Fr,n) in bftuples(Fs):
143 oldpatt = Slice(s,Fs,Fr)
144 string = Replace(s,oldpatt,’F’)
145 if countF(string)==Fr:
146 rule_tail = (TerminalClean(string,n))
147 if isPossible(’F’,rule_tail,n,s):
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148 rules.append(rule_tail)
149

150 print "------Rules-------"
151 for rule in rules:
152 print "F->",rule
153

154 return 1
155

156 def main():
157 paperalgo()
158

159 if __name__ == ’__main__’:
160 main()
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