
Bachelor thesis
Computer Science

Radboud University

DigiD vs. JavaScript: the risk of
using third party JavaScript on

government websites

Author:
Koen Buitenhuis
s4069471

First supervisor/assessor:
Jaap-Henk Hoepman

jhh@cs.ru.nl

Second assessor:
Erik Poll

erikpoll@cs.ru.nl

August 20, 2013

Abstract

Use of DigiD on goverment websites has grown to be more and more essen-
tial, and there has been an increasing presence of third-party JavaScript on
these websites as well. This paper attempts to answer the question: Can
third-party JavaScript applications compromise the DigiD authentication
process on a website that uses both? This is tested by formulating several
approaches by which JavaScript can attack DigiD and trying to attack from
there. Results show, however, that none of the considered approaches had
any real effect on DigiD. However, one approach did show risks for websites
themselves.

Contents

1 Introduction 2

2 Research Plan 4

3 Preliminaries 6
3.1 DigiD . 6

3.1.1 SAML . 7
3.2 Web Services . 14

3.2.1 HTML . 14
3.2.2 Iframes . 14
3.2.3 JavaScript . 14
3.2.4 Same Origin Policy . 15
3.2.5 Cookies . 15

4 Test Environment 17

5 Tests 19
5.1 Cookies . 19
5.2 Link . 20
5.3 Iframe . 20
5.4 Man In The Middle . 21

6 Conclusions 23

A Appendix 26

1

Chapter 1

Introduction

Anyone who has used Dutch government institutions, and especially their
online services, for the last decade or so has become quite familiar with
the DigiD system. DigiD is an authentication system used by the Dutch
goverment to let people sign in to government online services in a secure
manner over the web, so that they can interact with the goverment online
to file tax forms, apply for support and filing criminal complaints, among
other services. DigiD as a system has become essential to the Dutch people.
For example, the only way for someone to apply for a university is to go
through Studielink, a website which requires you to authenticate through
DigiD.

As such an essential system, naturally there have been questions about
the security of DigiD. It is a system making us depend on the web, and the
web is far from being secure, even (and perhaps especially) for goverment
work, as can be evidenced from the 2011 incident with Diginotar[9], for ex-
ample. There are more general concerns than just those singular incidents,
however. In particular, concerns can be raised over the security of the web-
sites that use DigiD themselves. These websites are usually made by the
government itself, which mostly ensures that no abuse can take place. How-
ever, it is prohibitively expensive for the goverment to have to make their
own version for everything, and so there are examples of several DigiD-
supported websites that make use of third party JavaScript applications.

Third party JavaScript applications are essentialy applications made by
a third party, unrelated to the goverment, in JavaScript, a common pro-
gramming language in web development. This poses a problem. JavaScript
is a relatively simple and open language. Many things can be done with it.
Furthermore, third party code is often subject to proprietary constraints, or
simply not scrutinized enough, being taken at face value as trusted. There is
thus an increased possibility that malicious code is present in a third party
application. This poses the following problem for the DigiD authentication
system: it was not designed to take into account security faults in the website

2

that uses it. It is uncharted territory. The question this paper will attempt
to answer is then: Can third-party JavaScript applications compromise the
DigiD authentication process on a website that uses both?

In order to answer this question we need to know several things. First,
how does DigiD work? It is important to know the system itself, and what
base assumptions are made for it to function. What security guarantees
does DigiD offer? These things are discussed in the first half chapter 3.

Second, JavaScript needs to be examined. In the second half of chap-
ter 3, JavaScript’s capabilities are covered, along with several other web
development concepts that are relevant, such as HTML iframes and cookies.

Knowing these things we can conceive a general idea of how and at what
points JavaScript can affect DigiD. In order to test these assumptions a test
environment simulating the basic process of DigiD login was constructed.
This environment consists of several servers imitating the agents involved
in logging in a user. In chapter 4, we describe the testing environment in
further detail.

Using this testing environment we can then test possible avenues of at-
tack. We have performed several attacks with JavaScript: cookie-stealing,
changing the redirect link, loading the DigiD page into an iframe and try-
ing to set a server in the middle. All but changing the redirect link proved
impossible for JavaScript to perform. In chapter 5, we fully detail these
attacks.

We ultimately conclude that while the DigiD process itself is secure,
there is still a risk in using third-party JavaScript on goverment websites,
as the only attack that worked did not involve DigiD at all.

3

Chapter 2

Research Plan

In order to answer our primary question, ”Can third-party JavaScript ap-
plications compromise the DigiD authentication process on a website that
uses both?”, we need to split it into several subquestions to solve:

How does DigiD work?

Answering this question will let us know exactly how DigiD works, which
will let us know where and how we can possibly affect it with JavaScript.
We answer this question by studying the DigiD documentation, and by
observing the authentication process itself via tools that capture network
request messages.

What security guarantees does DigiD offer?

Once we know how DigiD works, we will also need to know in what ways it
is secure. In what ways can it guarantee security, and what does this mean
for JavaScript? Answering this question narrows down the possibilities for
JavaScript attacks to a manageble degree. As with the previous question, we
answer this question by studying documentation and observing the process
in action.

What can JavaScript do?

Knowing the capabilities and limits of JavaScript is essential to figuring out
what harm it can cause on a goverment website. Answering this question
is difficult, as there is a lot JavaScript can do. Therefore we have chosen
to research the capabilities of JavaScript specifically with regards to the
possible avenues of attack: we think up a way to affect a part of the DigiD
process or a security guarantee, and then use documentation, examples and
tests to figure out if JavaScript can accomplish this.

4

What DigiD security guarantees can JavaScript compromise?

Knowing what security guarantees JavaScript can compromise will let us
know how JavaScript can affect the DigiD authentication process and if this
is indeed a problem. We will answer this question by using the answers of
the previous questions to formulate attacks on DigiD, and then testing these
attacks in a simulated DigiD environment to see their effectiveness.

Once all these questions are answered, we can conclude wether JavaScript
can compromise DigiD authentication.

5

Chapter 3

Preliminaries

3.1 DigiD

DigiD is a digital authentication system used by government websites and
web services [10]. The service was launched in limited fashion in 2003, under
the name Nieuwe Authenticatie Voorziening (NAV). It was renamed DigiD
(Digitale Identiteit) in 2004, and made available for use by all Dutch citizens
on 1 January 2005 [4]. The service is currently being managed by Logius,
a department of the Dutch Ministry of the Interior and Kingdom Relations
concerned with ICT-management. Logius provides ICT products used by
most branches of the goverment.

The goal of DigiD is to authenticate a user’s identity to a government
web service. The DigiD service is used for a variety of online government
services, among which are filing tax forms, applying for support and filing
criminal complaints. In order to authenticate a user the service is tied to the
BSN (Burgerservicenummer) of the user, a unique 9-digit number assigned
to each Dutch citizen. A user’s DigiD identity then consists of their BSN,
a username, a password and a mobile phone number. The latter three are
used when logging in to identify a user as being the person associated with
that particular BSN.

In the more general case, a DigiD identity is not always tied to the BSN,
but to their sector number. There are several sectors within DigiD (currently
four) that each have a sector code and an associated unique kind of sector
number to identify someone:

• Sector Code S00000000: this sector uses the BSN as sector number.

• Sector Code S00000001: this sector uses the SOFI number as sector
number.

• Sector Code S00000002: this sector uses the A-number number as
sector number.

6

• Sector Code S00000100: this sector uses the OEB as sector number.

This sector number is given to the websites to which the user signed in
using DigiD.

There are three security levels: basic, middle and high. At the basic
level, a user logs in with their username and password. At the middle level,
a user logs in with their username, password, and an SMS code that is sent
to their registered mobile phone number. The high level is not currently in
use, but in the future, the user will have to authenticate at this level with
an electronic identity card.

In addition to this, DigiD offers the option for Eenmalig Inloggen (EI),
also know as Single Sign On (SSO). EI allows a user to make use of several
different websites without having to reauthenticate for each. If a website
supports EI, DigiD remembers that the user has logged in. If they then try
to log in on another website that supports EI, they won’t have to prove their
identity for that website again. DigiD keeps several federations of websites
to which a user can authenticate simultaneously using EI.

A typical DigiD login session (from the user’s perspective) is as follows:
A user wants to access restricted content on a government website. The
user clicks on the DigiD login button on the website, and is redirected to
a DigiD login page. There, depending on the requested security level, the
user enters their username and password and optionally an SMS code sent
to their mobile phone. If these are entered correctly, the user is redirected
back to the government website. He is now logged in.

The DigiD system currently offers support for the following four proto-
cols:

• A-Select with CGI.

• A-Select with SOAP.

• A-select with WSDL.

• SAML.

In this paper we only describe DigiD using SAML, because this version is
intended to serve as a replacement for the others.

3.1.1 SAML

Security Assertion Markup Language (SAML) is an XML-based framework
used to exchange security information, such as authentication data. SAML
specifies three kinds of actors: Service Providers (SP), Principals and Iden-
tity Providers (IdP). A Service Provider is a service that wants to autheni-
cate a Principal via an Identity Provider. The Principal authenticates him-
self to the Identity Provider, who is trusted by the Service Provider. The

7

Identity Provider then securely sends the identity information of the Prin-
cipal to the Service Provider. In DigiD these roles are filled as follows:
the Service Providers are government web services that support the use of
DigiD, the Idenity Providers are the DigiD servers and the Principals are
Dutch citizens.

SAML itself is described by means of assertions, protocols, bindings and
profiles. An SAML assertion [6] is a secure information packet that contains
statements about a Principal that an asserting party considers true, and
is transferred to a relying party. The asserting party in this case is the
Identity Provider, with the relying parties being the Service Providers. An
SAML protocol [6] describes the way SAML elements are packaged into an
SAML request or response. An SAML binding [7] is a description of how
to transform an SAML message into a format that can be used by standard
communication protocols, such as a SOAP envelope or an HTTP Redirect.
An SAML profile [8] describes a combination of assertions, protocols and
bindings that can be used to convey security information to solve specific
problems. The SAML profiles used by DigiD are the standard Web Browser
SSO Profile and the Single Logout profile.

Web Browser SSO Profile

The Web Browser SSO Profile [8] is used to allow a user to make use of
several distinct webservices using the same Identity Provider without having
to reauthenticate at each webservice. DigiD uses this profile for both its
EI login and its normal login. The EI login is functionally identical to a
normal login, only after DigiD has authenticated the Principal, it checks if
the Principal has indicated that they want to use EI. If so, DigiD notes the
user in a table. A cookie is also stored on the Principal’s side, to identify
him as being part of an EI session to DigiD. After this, if a user attempts
to login to a different web service using DigiD, he sees a screen explaining
why he does not need to login again.

The protocol used by the Web Broswer SSO Profile as used by DigiD
can be summarized as follows [10]:

1. The user requests access to a government service using DigiD.

2. The user is redirected to the DigiD website via an HTTP GET or
POST message. This message contains a SAML AuthnRequest.

3. The user arrives at the DigiD login page.

4. The user logs in to the DigiD login page.

5. The user is redirected back to the government service, again via an
HTTP GET or POST message. DigiD gives the user a SAML artifact,
which the user passes on to the government service.

8

Figure 3.1: DigiD Single Sign On

6. The government service passes the received artifact directly back to
DigiD, without first passing it through to the user.

7. DigiD sends a SAML authentication message to the government ser-
vice.

8. The user gains access to the government service.

It is important to note that if an HTTP GET message is used in step 2, it
is required that an HTTP GET message is used in step 5 as well. This is
also true for the HTTP POST messages in those steps.

There are two channels of communication present between the Service
Provider and the Identity Provider: a direct backchannel between the two,
and a frontchannel where communication is passed through the Principal.
Backchannel SAML messages are passed along in signed SOAP envelopes [5]
sent via HTTP. As the backchannel is unreachable for JavaScript, it is not
relevant to this paper and will not be discussed in more detail.

Frontchannel messages are SAML messages sent directly as HTTP mes-
sages. This is done via either the SAML HTTP Redirect binding or the
SAML HTTP Post binding.

In the HTTP Redirect binding [7], an SAML message is transmitted
in URL parameters of an HTTP GET request using the Principal as an
intermediary. First, any signature on the message itself is removed (this

9

excludes signatures in the content of the message). Second, the message is
compressed according to the DEFLATE compression mechanism [17]. The
compressed data is base64-encoded according the the IETF RFC 2045 for-
mat [18]. The resultant data is then URL-encoded, and added to the URL
as a query string parameter named SAMLRequest. If the original SAML
message was signed, a new signature is computed from the SAMLRequest
parameter and a new SigAlg paramter, which indicates which algorithm was
used to sign the message.

In the HTTP POST binding [7], an SAML message is transmitted in
the content of an HTML form control in an HTTP POST request using the
Principal as an intermediary. A SAML message is encoded into the form
by first encoding the XML representation of the message in base64 [18] and
then placing the result in a form as per HTML 4.01 specification [15] section
17. If the message is a SAML request, the form control is named SAMLRe-
quest. If it is a response, the form is named SAMLResponse. The action
attribute of the form is the HTTP endpoint to which the message is to be
delivered. The method attribute is POST.

In this profile, there are two messages passed through the frontchannel:
an AuthnRequest and a SAML artifact.

The AuthnRequest [6] contains the following standard attributes:

• ID: A unique identifier for the request.

• Version: The version of the request. The SAML version DigiD uses
is 2.0.

• IssueInstant: The time instant the request was issued. This time is
in Coordinated Universal Time (UTC).

In addition, there are several DigiD specific attributes [10]:

• Issuer: The name of the web service. This is used to check the signa-
ture.

• RequestedAuthnContext: Contains an attribute ”Comparison =
minimum” and a AuthnContextClassRef which contains the minimum
required security level of the webservice.

• ForceAuthn: A boolean field which defaults to ”false”. A web service
can use this field to force a user to authenticate.

• ProviderName: An optional field. This contains the name of the
web service shown to the user during DigiD authentication.

• AssertionConsumerServiceIndex or AssertionConsumerServiceURL:
The metadata index or URL the user is sent to when authentication
ends.

10

• Digital Signature: The signature of the web service over the entire
message. This field is only included when the HTTP Post binding is
used.

The SAML artifact [7] is a small message passed along from the Identiy
Provider via the Principal to the Service Provider. The Service Provider
uses this message to directly request an authentication response from the
Identity Provider via the backchannel. The artifact itself is a short string.
SAML V2.0 specifies one artifact type, of the following format:

1. TypeCode: A two-byte code identifying the artifact type. In this
case the type code has value 0x0004.

2. EndpointIndex: A two-byte index identifying a specific endpoint
that the Service Provider must contact to receive an authentication
response.

3. SourceID: The SHA-1 hash of the identification URL of the Identity
Provider.

4. MessageHandle: A pseudorandom number sequence padding the
total length of the string to 20 bytes.

This string is then base64-encoded [18]. An SAML artifact is passed on
unsigned. This is not a security risk because the information in the arti-
fact is only a reference to an authentication message the Identity Provider
has. Without access to the Identity Provider this information is essentially
useless.

Single Logout Profile

The Single Logout Profile [8] is used to simultaneously end all of a user’s
sessions with all webservices he is currently authenticated to. DigiD only
uses this profile to let a user logout from an EI session.

The Single Logout process as used by DigiD can be summarized as fol-
lows [10]:

1. The user indicates he wants to globally log out to the webservice.

2. The user is redirected to the DigiD website via an HTTP GET or
POST message. This message contains a LogoutRequest.

3. DigiD uses the HTTP-SOAP binding to send a LogoutRequest to all
other webservices the user is logged into.

4. All other webservices remove the user’s local session and send a Lo-
goutResponse to DigiD.

11

Figure 3.2: DigiD Single Logout

5. DigiD removes the user’s SSO-session from its servers and sends the
user back to the webservice it logged out from via an HTTP GET
or POST message. This message contains a LogoutResponse for the
webservice.

6. De webservice informs the user he is logged out, and sends him to a
publically available page.

It is again important to note that if an HTTP GET message is used in step
2, it is required that an HTTP GET message is used in step 5 as well. This
is also true for the HTTP POST messages in those steps.

This profile, like the Web Service SSO profile, contains a backchannel
and a frontchannel. Backchannel SAML messages are passed along in signed
SOAP envelopes [5] sent via HTTP. Frontchannel communication is achieved
via either the HTTP Redirect binding or the HTTP POST binding [7].

There are two kinds of messages passed along the frontchannel: a Lo-
goutRequest and a LogoutResponse.

The LogoutRequest and LogoutResponse contain the same attributes as
specified by DigiD [10]:

• IssueInstant: The time instant the request was issued. This time is
in Coordinated Universal Time (UTC).

• Issuer: The name of the web service. This is used to check the signa-
ture.

12

• Subject: The sectorcode and sectornumber of the user.

• Digital Signature: The signature of the web service over the entire
message. This field is only included when the HTTP Post binding is
used.

Security Guarantees

The Digid with SAML protocol provides the following security guaran-
tees [10].

Firstly, all HTTP messages are protected because they are transported
using either TLS 1.0 or SSL 3.0 with PKIoverheid certificates. This holds
for messages from DigiD to the Service Provider as well as messages from
DigiD to the Principal. This means that for messages in transit to and from
DigiD, confidentiality and data integrity are assured.

Secondly, the SOAP messages on the backchannel between DigiD and the
Service Provider are always signed, as are Authentication Request messages.
This is a further measure to ensure data integrity.

Thirdly, the protocol itself offers a guarantee of safety from weaknesses
on the Principal’s device by the use of the SAML artifact to identify the
user to the Service Provider. Because the artifact is only a reference to an
actual Authentication Message, no actual sensitive information is passed via
the insecure channel of the Principal.

In addition to this, DigiD offers some special guarantees for its EI service.
DigiD keeps track of the IP adress of a user currently in an EI session. If
the IP adress changes during the course of this session, the EI session is
terminated immediately. This is done to prevent someone remotely hijacking
the EI session.

There is also a time limit on an EI session. The time limit is present to
ensure the user is active during the EI session and to minimize the possibility
of a malicious third party with physical access to the user’s machine being
able to misuse his DigiD. In order to enforce this time limit, DigiD keeps
track of three timers: a session timeout (15 minutes), a grace period timeout
(15 minutes) and an absolute timeout (2 hours). After the session timeout
runs out, the user’s EI session will be marked inactive; if the user tries to
access a different website with EI, he will have to reauthenticate. Upon
reauthentication the session timeout will be reset to 15 minutes. After the
session timeout runs out, the grace period timeout starts running. If the
user accesses resources on the same website within the grace period, their
EI session will be marked as active again. If the absolute timeout, which
runs from the start of the EI session, runs out, the EI session is permanently
deleted.

13

3.2 Web Services

In this section we will describe some key JavaScript concepts, as well as
related web development items.

3.2.1 HTML

HyperText Markup Language [15] (HTML) is a publishing language used
by the World Wide Web. HTML is used to create webpages to be displayed
in a browser. An HTML webpage consists of an HTML document, which is
retrieved from a server and interpreted by a browser to display the desired
information/webpage. A document is made up of several elements. These
elements represent different parts of a webpage, such as links, tables, and
paragraphs of text. An HTML element generally consists of two tags, a start
tag (representend as < element >) and an end tag (< /element >), and
the content in between these tags. An element can also be assigned specific
attributes, such as a name or class. These attributes are codified into the
start tag as follows: < elementattribute1 = ”value”attribute2 = ”value” >.

3.2.2 Iframes

A specific type of HTML element is the frame. Frames allow an HTML
webpage to be seperated into several different segements. Each of these
segments can contain a seperate HTML document. This allows several pieces
of seperate content to be viewed on the same webpage. A particular frame
of interest is the iframe, which is short for inline frame. An iframe is a
frame present inside another HTML document, instead of several HTML
documents existing alongside each other as with normal frames.

As iframes load other pages directly into the current webpage, it is pos-
sible for them to be used to inject malicious code into the webpage [16].
Iframes can also be used in, for example, malicious advertising, embedding
hidden, malicious advertisements into a webpage [21].

3.2.3 JavaScript

JavaScript is a programming language for web development. JavaScript is
generally used to make client-side scripts, which are computer programs
executed in a user’s web browser. These programs can alter the HTML
document, allowing for a measure of interactivity on webpages. JavaScript
is a very open programming language, and can be used in many ways. For
example, there is the concept of bookmarklets [19], which are JavaScript
applications contained in a bookmark. Such applications can then be ex-
ecuted on any page the user wishes, allowing one to alter practically any
website locally. Another example is Greasemonkey [2], a Mozilla Firefox
extension. Greasemonkey allows users to install scripts which can alter the

14

webpage content in their browser before or, like bookmarklets, after the page
is loaded. For Greasemonkey, changes made to a page are repeated every
time the page is loaded, which effectively makes them permanent alterations
as far as the user is concerned.

JavaScript is a well known and popular language, and is used on virtu-
ally every website for many things, allowing for dynamic content without
refreshing the page, for example. As it is so omnipresent, it is also used in
a lot of hacks and for circumventing browser security. A popular method
of using JavaScript is for Cross-Site Scripting attacks (XSS) [22]. These
attacks enable attackers to inject client-side scripts into websites visited by
other people. This allows them to alter the site to, for example, gather and
pass on data to a third party.

3.2.4 Same Origin Policy

JavaScript subscribes to the security concept of the Same Origin Policy
(SOP) [13]. The SOP is a policy that prevents malicious scripts from one
site accessing resources on another site. It accomplishes this by restricting
the access a script has. A script running under SOP can only access resources
that come from the same origin. An origin, in this case, is a combination
of the scheme, host and port from which the script originated. The host is
generally represented by the domain name of the site, the scheme by the
application layer protocol and the port by the port number of the HTML
document to which the script belongs. This prevents, for example, one site
from accessing the cookies of another site, as cookies have a field specifying
the domain. Thus, following SOP, a site that has a different domain has
a different origin, and cannot access these cookies. All modern commonly
used browsers (Firefox, Chrome, Internet Explorer) have built-in support
for the SOP.

3.2.5 Cookies

Cookies [12] are small pieces of data that a server stores on a user’s hard
drive. These small pieces of data contain information about the user relevant
to the server, such as a session-id or information that identifies a user as
being logged in to that site. Each individual cookie is a name-value pair.
Cookie information exchange goes as follows: on an initial visit to a webpage,
its server sends a Set-Cookie header, which contains the cookie. The user
stores this cookie on their hard drive. On subsequent visits to the page, the
user adds the cookie to its initial request. In this way, the server can receive
information about the user.

In addtion to the normal name-value pair, cookies also commonly have
most of the following attributes:

• Expires: This attribute represents the maximum lifetime of the cookie,

15

represented as the time and date at wich the cookie expires. Once ex-
pired, a cookie will no longer be recognized as in use.

• Max-Age: This attribute represents the maximum lifetime of the
cookie, represented as the number of seconds till its expiration. Once
expired, a cookie will no longer be recognized as in use.

• Domain: This attribute specifies to which hosts a cookie will be sent.
If the Domain value is ”example.com” , the cookie will be sent with
HTTP requests to example.com and all its subdomains.

• Path: This attribute represents with which HTTP requests a cookie
will be sent. A cookie is only included if the path of the request
matches the path in the Path attribute. This allows different cookies
to be associated with different pages of a website.

• Secure: This attribute ensures that a cookie is only included in an
HTTP request if that request is sent over a secure channel.

• HttpOnly: This attribute ensures that the user only sends back this
cookie with HTTP requests. This prevents ”non-HTTP” requests,
such as a JavaScript script, from accessing the cookie values, when
they can otherwise do so.

These attributes serve to grant information about the cookie itself: when it
stops being valid and when it needs to be sent along with a request.

A common attack on a webpage is to steal cookies from a user. Specifi-
cally, stealing a user ID cookie would allow an attacker to impersonate the
original owner of the cookie. We will explore this method of attack on DigiD
in the next section.

16

Chapter 4

Test Environment

In order to test our hypothetical attacks we have constructed a simple test
environment to simulate the basic interaction of DigiD authentication. For
this test environment, only the login process will be considered, as there is
not enough difference between the structure of the messages being passed
along. The only difference between messages in the login and logout proce-
dures is the specific information fields that are passed on.

We have three seperate servers: a Service Provider, an Identity Provider
and an Evil server. These servers are Apache 2.4 servers[1]. The Service
Provider emulates the SAML Service Provider. It shows the user a basic
page, based on the goverment website uwv.nl[3]. This page loads malicious
JavaScript from the Evil server. If the user tries to login to DigiD, they
are directed to the Identity Provider page. This page allows a user to au-
thenticate (in this case by pressing a button) and sends one back to the
Service Provider once authenticated. The Evil server serves as a container
for all malicious JavaScript. In addition to this, if a user is directed to the
Evil server from the Service Provider, they are redirected to the Identity
Provider, with the Evil server acting as an intermediary. The user uses a
Browser to access these pages/servers.

We can illustrate the test login process as follows:
The process starts immediately upon opening the Service Provider page:

1. As the page loads, the malevolent JavaScript scripts are loaded from
the Evil Server alongside the rest of the page.

2. The user tries to login.

3. The user is redirected towards the Identity Provider.

4. The identity provider asks the user to login.

5. The user logs in.

6. The user is directed back towards the Service Provider.

17

Figure 4.1: The Test Login Process

This represents the basic process, but does not cover the entirety of what
is possible. The process is subject to change depending on the specifics of
the executed malevolent JavaScript from the Evil Server. For example, a
script could change the redirect to the Identity Provider, altering the entire
process from 3. onwards.

In this test environment we used Google Chrome as the Browser. Chrome
was chosen because it is a widely used browser and because it has powerful
developer tools. These developer tools allow us to easily view the HTML
document of a webpage, as well as see all the HTTP requests, responses
and redirects that are related to that instance of that webpage. Viewing
the HTML document makes us able to see the changes a JavaScript script
makes to the page.

18

Chapter 5

Tests

In this section we try to construe an attack on the DigiD authentication
process using a third party JavaScript application on a government website.
We define no particular restrictions on this application except for those
imposed on it by JavaScript itself.

To determine possible avenues of attack, we refer to figure 3.1: essen-
tialy every step that originates from or passes through the user’s browser
can theoretically be affected by JavaScript. Furthermore, we consider the
process before it is initiated and after it is complete.

5.1 Cookies

The first avenue of attack considered is trying to steal an active DigiD session
from a user. The most direct way to go about this is simply via trying to
acquire the session id cookie DigiD stores in a user’s browser. There are,
however, two major obstacles preventing this from being a viable approach:
the Same Origin Policy (SOP) and the httponly attribute of the cookie.
The SOP prevents a script from accessing resources not belonging to the
same origin. The attacking script has as part of its origin the government
website domain, while the session id cookie has as its origin the DigiD
authentication server. As such, it is generally not possible for the attacking
script to reach the cookie. Even assuming the SOP can be bypassed [14],
the cookie would still remain inaccessible due to the fact that its httponly
attribute is set. This attribute allows only HTTP requests to use this cooke,
which means that no script can ever access that particular cookie. Thus,
JavaScript cannot access any DigiD cookies to impersonate a user, rendering
this avenue of attack impossible.

19

5.2 Link

The second avenue of attack considered is trying to change the link to the
protected resource that initiates the DigiD login process. If possible, this
opens up several possibilities, like linking the user to a malicious copy of the
DigiD site, or attempting to establish a Man-In-The-Middle setup.

A cursory evaluation of several government sites (in this case, http:

//mijn.overheid.nl and http://www.uwv.nl/Particulieren/mijnuwv/

index.aspx) reveals that the links to the protected resource are usually
present as the href attribute of an < a > tag in the body of the html page.
In both cases, the tag also had either a class or id attribute. Taking this
knowledge into account, changing the link becomes fairly trivial with the
following JavaScript code:

1 window . onload = function () {
2 document . getElementsByClassName ("digid") [0] . h r e f="http://evil.

com" ;
3 }

Listing 5.1: Changing the link via Class

or

1 window . onload = function () {
2 document . getElementById ("DigiD") . h r e f="http://evil.com" ;
3 }

Listing 5.2: Changing the link via ID

This code waits until the page has finished loading, and then locates and
changes the link to the protected resource, making it point anywhere the
attacker might want it to. As a result, it becomes possible for the attacker
to bypass DigiD entirely. He might make the link point to a duplicate DigiD
site to phish for login details, or he might insert himself in between the user
and DigiD, potentially allowing him to eavesdrop on sensitive information.
It should be noted that this is not an attack on the DigiD process per se, as
the protocol is never initiated. It is still a risk, however, as it can allow an
attacker to phish for login info.

5.3 Iframe

Another option that was considered was to try and obtain usernames and
passwords in a different way. This could theoretically be done by loading the
DigiD site into an iframe and then, by using an overlay over the full screen,
reading in the user input. This was intially tested using the following script,
which creates an iframe when clicking the link to DigiD:

1 function makeFrame () {
2 i f rm = document . createElement ("IFRAME") ;
3 i f rm . s e tAt t r i bu t e ("src" , "https://digid.nl") ;

20

http://mijn.overheid.nl
http://mijn.overheid.nl
http://www.uwv.nl/Particulieren/mijnuwv/index.aspx
http://www.uwv.nl/Particulieren/mijnuwv/index.aspx

4 i f rm . s t y l e . width = 100+"%" ;
5 i f rm . s t y l e . p o s i t i o n="fixed" ;
6 i f rm . s t y l e . top=0+"px" ;
7 i f rm . s t y l e . l e f t=0+"px" ;
8 i f rm . s t y l e . z index=5;
9 i f rm . s t y l e . he ight = 100+"%" ;

10 document . body . appendChild (i f rm) ;
11 }
12
13 window . onload=function () {
14 document . getElementsByClassName ("digid") [0] . h r e f="#" ;
15 document . getElementsByClassName ("digid") [0] . o n c l i c k=

makeFrame ;
16 }

Listing 5.3: Iframe

The makeFrame function creates an iframe that opens the DigiD page. On
loading the webpage, the script locates the original link to the protected
resource, nullifies it, and then changes the link so that it instead opens the
DigiD iframe when clicked.

However, when attempting to load the DigiD site, the iframe was unre-
sponsive. This is because of the X-Frame-Options HTTP response header[11].
The X-Frame-Options header is used to indicate whether or not a browser
should be allowed to render a page in a frame or an iframe. There are three
possible values for this header:

• DENY: The page cannot be displayed in a frame.

• SAMEORIGIN: The page can only be displayed in a frame of the
same origin as the page, following the SOP.

• ALLOW FROM uri : The page can only be displayed in a frame of
the specificed origin.

DigiD has set the X-Frame-Options HTTP response header to ”SAMEORI-
GIN”. As modern browsers respect the response headers, it thus becomes
impossible for the DigiD site to be accessed via iframe for a majority of
target users. This makes the attack near impossible, as without the iframe,
an overlay created by the initial goverment page cannot possibly reach the
DigiD site. The DigiD site is either open in another window/tab, or it re-
places the goverment page. Overlays cannot be created for other windows,
and if the DigiD site replaces the goverment page the script is gone as well,
rendering it impossible to act.

5.4 Man In The Middle

The final option that was looked at was to try to intercept the messages
between the Service Provider and the Identity Provider. There are two types

21

of messages: messages that go directly between the two and messages that
travel via the user’s browser. Obviously, JavaScript cannot affect the direct
messages in any way, so we will look only at messages that pass through the
browser.

We were unable to devise a method to capture or observe the messages
that passed through the browser using only JavaScript, so we had to look at
placing an intermediary agent between the user and the Identity Provider.
The chosen agent in this case was the Evil server. This server would, once
in place between the user and the Identity Provider, let all traffic throug,
recording all the messages.

Unfortunately, we were also unable to create a method to place the Evil
server in between the user and Identity Provider. The only way to make it
possible would appear to be to change the browser’s proxy settings, which
a user can do either directly or by receiving a PAC file (Proxy Auto Config
file)[20]. However, neither appear to be an option for client-side JavaScript
scripts.

22

Chapter 6

Conclusions

As the importance of the web continues to grow in our lives, so too does
DigiD become ever more important. It is therefore important that we con-
tinue to question and test the way it is used. In this work, we attempt to
attack DigiD through the use of third-party JavaScript applications on gov-
erment websites. This was done by formulating several attacks on different
parts of the DigiD login process. Our findings show that for the most part,
DigiD is secure from our attempts to compromise it with JavaScript. The
only viable attack found was one that assumed that the DigiD authenti-
cation has yet to start. This attack is still a risk, however. It can allow
an attacker to phish for passwords, by redirecting the user to a fake DigiD
site. This shows that while DigiD itself is secure, it is still important to look
at how it is used on websites, and extra care should be taken with using
third-party scripts on pages that allow one to access DigiD.

23

Bibliography

[1] Apache HTTP Server Version 2.4 Documentation. from https://

httpd.apache.org/docs/2.4/.

[2] Greasespot. from http://www.greasespot.net/.

[3] Uitvoeringsinstituut Werknemersverzekeringen. retrieved from http:

//www.uwv.nl on the 29th of May, 2013.

[4] DigiD voor alle burgers beschikbaar, 2005. from
https://www.digid.nl/nieuws/artikel/artikel/

digid-voor-alle-burgers-beschikbaar/.

[5] SOAP Version 1.2 Part 1: Messaging Framework (Second Edition).
Technical report, World Wide Web Consortium (W3C), 2007. http:

//www.w3.org/TR/2007/REC-soap12-part1-20070427/.

[6] Assertions and Protocols for the OASIS Security Assertion Markup
Language (SAML) V2.0 - Errata Composite. Technical report, Organi-
zation for the Advancement of Structured Information Standards (OA-
SIS), 2009. https://www.oasis-open.org/committees/download.

php/35711/sstc-saml-core-errata-2.0-wd-06-diff.pdf.

[7] Bindings for the OASIS Security Assertion Markup Language (SAML)
V2.0 - Errata Composite. Technical report, Organization for
the Advancement of Structured Information Standards (OASIS),
2009. https://www.oasis-open.org/committees/download.php/

35387/sstc-saml-bindings-errata-2.0-wd-05-diff.pdf.

[8] Profiles for the OASIS Security Assertion Markup Language (SAML)
V2.0 - Errata Composite. Technical report, Organization for
the Advancement of Structured Information Standards (OASIS),
2009. https://www.oasis-open.org/committees/download.php/

35389/sstc-saml-profiles-errata-2.0-wd-06-diff.pdf.

[9] Meest gestelde vragen over Diginotar, 2011. from http://nos.nl/

artikel/269652-meest-gestelde-vragen-over-diginotar.html.

24

https://httpd.apache.org/docs/2.4/
https://httpd.apache.org/docs/2.4/
http://www.greasespot.net/
http://www.uwv.nl
http://www.uwv.nl
https://www.digid.nl/nieuws/artikel/artikel/digid-voor-alle-burgers-beschikbaar/
https://www.digid.nl/nieuws/artikel/artikel/digid-voor-alle-burgers-beschikbaar/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
https://www.oasis-open.org/committees/download.php/35711/sstc-saml-core-errata-2.0-wd-06-diff.pdf
https://www.oasis-open.org/committees/download.php/35711/sstc-saml-core-errata-2.0-wd-06-diff.pdf
https://www.oasis-open.org/committees/download.php/35387/sstc-saml-bindings-errata-2.0-wd-05-diff.pdf
https://www.oasis-open.org/committees/download.php/35387/sstc-saml-bindings-errata-2.0-wd-05-diff.pdf
https://www.oasis-open.org/committees/download.php/35389/sstc-saml-profiles-errata-2.0-wd-06-diff.pdf
https://www.oasis-open.org/committees/download.php/35389/sstc-saml-profiles-errata-2.0-wd-06-diff.pdf
http://nos.nl/artikel/269652-meest-gestelde-vragen-over-diginotar.html
http://nos.nl/artikel/269652-meest-gestelde-vragen-over-diginotar.html

[10] Koppelvlakspecificaie SAML Authenticatie. Technical report,
Logius, Ministerie van Binnenlandse Zaken en Koningkrijksrelaties,
2012. http://www.logius.nl/fileadmin/logius/product/digid/

documenten/Koppelvlakspecificatie_SAML_DigiD4_v2.2.pdf.

[11] The X-Frame-Options response header, 2013. https://developer.

mozilla.org/en-US/docs/HTTP/X-Frame-Options.

[12] Barth, Adam. RFC 6265-HTTP State Management Mechanism. Inter-
net Engineering Task Force (IETF), ISSN, pages 2070–1721, 2011.

[13] Barth, Adam. The web origin concept. 2011.

[14] Brian Chess, Yekaterina Tsipenyuk O’Neil, and Jacob West.
Javascript hijacking. Online document, 2007. http://scholar.

googleusercontent.com/scholar?q=cache:Rrr2Ephqbj0J:

scholar.google.com/+javascript+hijacking&hl=en&as_sdt=0,5.

[15] D. Ragget et al. HTML 4.01 Specification. Technical report, World
Wide Web Consortium (W3C), 1999. http://www.w3.org/TR/html4/.

[16] Danchev, D. Mass iframe injectable attacks, March
2008. http://ddanchev.blogspot.nl/2008/03/

massive-iframe-seo-poisoning-attack.html.

[17] Deutsch, P. RFC1951, DEFLATE Compressed Data Format Specifica-
tion, 1996.

[18] Freed, N and Borenstein, N. Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies. November 1996.
RFC2045.

[19] Kangas, Steve. About Bookmarklets. http://www.bookmarklets.

com/about/.

[20] Pashalidis, Andreas. A cautionary note on automatic proxy configu-
ration. In IASTED International Conference on Communication, Net-
work, and Information Security, CNIS 2003, New York, USA, Decem-
ber 10-12, 2003, Proceedings, pages 153–158. ACTA Press, 2003.

[21] Sood, Aditya K and Enbody, Richard J. Malvertising–exploiting web
advertising. Computer Fraud & Security, 2011(4):11–16, 2011.

[22] Spett, Kevin. Cross-site scripting. SPI Labs, 2005.

25

http://www.logius.nl/fileadmin/logius/product/digid/documenten/Koppelvlakspecificatie_SAML_DigiD4_v2.2.pdf
http://www.logius.nl/fileadmin/logius/product/digid/documenten/Koppelvlakspecificatie_SAML_DigiD4_v2.2.pdf
https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options
http://scholar.googleusercontent.com/scholar?q=cache:Rrr2Ephqbj0J:scholar.google.com/+javascript+hijacking&hl=en&as_sdt=0,5
http://scholar.googleusercontent.com/scholar?q=cache:Rrr2Ephqbj0J:scholar.google.com/+javascript+hijacking&hl=en&as_sdt=0,5
http://scholar.googleusercontent.com/scholar?q=cache:Rrr2Ephqbj0J:scholar.google.com/+javascript+hijacking&hl=en&as_sdt=0,5
http://www.w3.org/TR/html4/
http://ddanchev.blogspot.nl/2008/03/massive-iframe-seo-poisoning-attack.html
http://ddanchev.blogspot.nl/2008/03/massive-iframe-seo-poisoning-attack.html
http://www.bookmarklets.com/about/
http://www.bookmarklets.com/about/

Appendix A

Appendix

Figure A.1: The Service Provider Test Page

26

Figure A.2: The Identity Provider Test Page

27

	Introduction
	Research Plan
	Preliminaries
	DigiD
	SAML

	Web Services
	HTML
	Iframes
	JavaScript
	Same Origin Policy
	Cookies

	Test Environment
	Tests
	Cookies
	Link
	Iframe
	Man In The Middle

	Conclusions
	Appendix

