
Bachelor thesis
Computer Science

Radboud University

Learning a State Diagram of TCP
Using Abstraction

Author:
Ramon Janssen
s0711667

First supervisor/assessor:
Prof.dr. Frits W. Vaandrager

F.Vaandrager@cs.ru.nl

Second supervisor:
Msc. Fides Aarts

F.Aarts@cs.ru.nl

Second assessor:
dr. ir. Sicco Verwer
s.verwer@cs.ru.nl

August 22, 2013

Abstract

Techniques have been developed for automated generation of state
diagrams for modelling network automata, by only observing the ex-
ternal behaviour of such an automaton. Although these techniques
have been applied on simple protocols and on software simulations,
very few complex real-world network interfaces have been modeled in
this manner. For this thesis, these modelling techniques have been ap-
plied to TCP-interfaces by connecting an implementation of a learning
algorithm to them over a network. In this way, the behaviour of TCP-
implementations of four different operating systems has been modeled,
and compared to the standard model.

Contents

1 Introduction 2

2 Transmission Control Protocol 3

3 Preliminaries 5
3.1 Mealy machines . 5
3.2 The learner . 7
3.3 Abstraction . 8
3.4 The TCP-mapper . 9

4 Experimental setup 11

5 Results 13
5.1 The normal path . 16
5.2 Sending multiple syn-fragments 16
5.3 Sequence and acknowledgement numbers 17
5.4 Ubuntu 12.10 . 17
5.5 Comparision with ns-2 . 17
5.6 Performance . 18
5.7 Invalid parameters as inputs 18

6 Conclusions 19

7 Future work 19

A Model of TCP in ns-2 21

1

1 Introduction

To find errors or unexpected behaviour of a network interface, having access
to an abstract model is useful, as this makes model-based testing possi-
ble [4]. An abstract model such as a state diagram can assist in proving the
correctness of a network interface, finding security flaws, or in studying the
behaviour of a protocol. However, a formal model of a network interface
may not be available: the corresponding model may not have been made
or published. Also it may be uncertain whether a customly-made model is
consistent with the actual implementation.

Effort has been made to tackle this problem. D. Angluin [3] has intro-
duced the L* algorithm, which was extended by Niese [6] to model Mealy
machines. This algorithm can be used to learn a state diagram of a device
in an active way, by externally observing the behaviour: the learning algo-
rithm sends input queries to the device, and analyses the returning output
messages to generate a state diagram which is consistent with the given in-
put and output. This can be applied to a network interface, also called the
System Under Test (SUT), by connecting the learner to it. The learner may
then send messages over the network and analyse the returning messages.
As only external behaviour is observed, the SUT can be seen as a black box
and the code used to implement it is not needed.

Such methods work well if the number of input symbols and states is not
too large. However, many protocols make use of messages with parameters
such as sequence numbers and flags. Also, state variables may be used to
store information about the network connections. The number of possible
symbols and states of such network interfaces may therefore be nearly in-
finite, making it impossible to learn the corresponding state diagram. F.
Aarts et al. [2] describe a framework to describe such interfaces with a state
diagram by introducing a mapper. The mapper reduces the numerous differ-
ent values of parameters and variables to a small number of abstract values,
so that the L* algorithm can be applied. By applying this framework to
the ns-2 network simulator, they have been able to make models of the
Transmission Control Protocol (TCP) and the Session Initiation Protocol
(SIP).

This technique has not yet been applied on a real TCP-interface. For
this thesis, a mapper is made and connected to a module that can send
network packets. By using another computer on the network as a SUT, an
actual implementation of a TCP-server has been modelled to show that the
framework described can actually be applied in a non-simulated environ-
ment. Models of different operating systems have been made in this way,
and the results are discussed.

Related work. In addition to software simulations of network protocols,
the framework described by Aarts et al. has also been used to generate
state diagrams of embedded control software [10] and banking cards [1].

2

Furthermore, Dawn Song et al. [5] have developed techniques to learn the
state diagram of a communication protocol used to control botnets.

Organization. In the following section, the relevant parts of TCP will
be briefly summarized. In section 3, a description of Mealy machines, the
learner-setting and abstraction will be given. In section 4, the practical setup
of the software used and of the network will be described. The obtained
results will be presented in section 5, and conclusions and possibilities for
future work can be found in sections 6 and 7.

2 Transmission Control Protocol

The transmission control protocol [7], or TCP, is a widely used network
protocol which is in the internet protocol (IP) suite. It allows two devices
to set up a connection (or possibly two software components on the same
device), and send data in both directions over that connection. The protocol
is designed to be reliable, and data sent over the connection will be received
in the right order. In this section, the relevant parts of the protocol will be
briefly summarized.

To use a TCP connection, a device needs to assign a port to it. This is an
integer used to distinguish different connections, so that one device can set
up multiple connections in parrallel. As both sides of the connection have
an IP-address and a TCP-port, a single TCP-connection is defined by the
four-tuple (source-IP, destination-IP, source-port, destination-port). This
implies that a device can open multiple connections on one of it’s ports, as
long as the IP-addresses or ports of the remote end are different.

Every segment exchanged between the two devices contains (among oth-
ers) the syn, ack and fin control flags, an acknowledgement number (ack),
and a sequence number (seq). These control flags are used to inform the
other device about a change of state (e.g. open a connection, close a con-
nection), or to request the other device to change state. The numbers seq
and ack are used to verify that the segments are received in the right order
and that no segments are lost. A segment in which the syn-flag is set is also
called a syn-message; the same is true for other flags. The flow of TCP can
be described with a state diagram such as in Figure 1, which is based on a
state diagram in the official specifications.

Both devices communicating through TCP initially have a different role:
one device acts as a server and the other as a client. Before the connection is
set up, the server must be in the listen state, waiting for a client to connect
with it. Setting up a TCP-connection happens with a three-way handshake:
the client sends a segment to the server in which only the syn-flag is set.
On receiving this message, the server responds with a segment in which only
the syn- and ack-flags are set. Finally, the client acknowledges the server’s
synchronization with an ack.

3

CLOSED

LISTEN

SYN SENTSYN RCVD

ESTABLISHED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

CLOSING
LAST ACK

TIME WAIT

Passive open Close

SYN/SYN + ACK Send/SYN

Timeout/RST
Close

Active open/SYN

SYN/SYN + ACK

Close/FIN

ACK SYN + ACK/ACK

Close/FIN FIN/ACK

ACK

ACK

FIN +
ACK-
/ACK

FIN/ACK

ACK

Close/FIN

ACK

Timeout after two max-
imum segment lifetimes

Figure 1: A state diagram describing TCP. Code to generate this
model was retrieved from http://www.texample.net/tikz/examples/tcp-
state-machine/. Copyright 2009 Ivan Griffin. Reprinted under the LaTeX
Project Public License, version 1.3.

The connection is then ready for data transmission, by sending segments
with a PSH-flag and data, which will be acknowledged. When either side
has finished sending data, it sends a segment with a fin-flag, after which
it cannot send any more data. This can be acknowledged with a fin+ack
if the other device also wants to close the connection, or with only an ack
if that device still wants to send data until it also sends a fin. When the
connection from both sides is closed, the corresponding four-tuple defining
the connection will be blocked for an arbitrary period. This is to prevent
a new connection being set up, while there might still be network packets
incoming from the last connection. If anything goes wrong during commu-
nicating (e.g. an unexpected flag is set), either end may send a fragment

4

with the rst-flag set, which aborts the connection.
For this thesis, the states of the SUT that will be reached will be lis-

ten, syn rcvd, established and close wait. These states are reachable
by letting the SUT start in the listen-state, and by sending fragments
over the network. A syn is sent to reach the syn rcvd state, an ack is
then sent to reach the established state and a fin is sent to reach the
close wait state. To reach other states, the learner would have to be able
to send messages from the application layer of the SUT as well. Note that
the connection cannot be closed entirely by a fin, as this only closes the
communication in one way. The application layer of the SUT would have to
send a fin as well to close the connection entirely.

The description and state diagram in Figure 1 do not fully describe the
behaviour of a TCP-implementation. It is not described what response will
be given if either side sends an unexpected segment, i.e. a segment for which
there is no transition from its current state. A rst-message may be sent,
the implementation may not respond at all, or the implementation may even
show different behaviour.

The first segment sent by each device contains an arbitrary sequence
number, usually randomly chosen. In all following segments, this sequence
number is incremented, such that the correct order of the segments can be
retrieved by the receiving device. Every segement also contains an acknowl-
edgement number, which is set to the next sequence number expected from
the other device. The acknowledgement number only needs to have this
value if the ack-flag is set, otherwise it is undefined.

3 Preliminaries

3.1 Mealy machines

The TCP interface will be modelled as a deterministic Mealy machine. In
this section, a definition of such a Mealy machine will be given. This termi-
nology is based on the terminology used by Aarts et al. [2]. A deterministic
Mealy machine M is defined as M = (I,O,Q, q0, δ, λ), where

• I and O are sets of input and output symbols, respectively,

• Q is the set of states, of which q0 is an element. q0 is the starting
state,

• δ : Q× I → Q is the transition function,

• λ : Q× I → O is the output function.

A transition q′ = δ(q, i) with output o = λ(q, i) can be interpreted in
the following way: if the machine is in state q, it will accept input i. It will
then return output o, and will change to state q′. This is also denoted as the

5

transition q
i/o−−→ q′. This definition assumes a deterministic Mealy machine;

for every state and input, there is exactly one transition and output. A
Mealy machine is finite if |I| and |Q| are finite.

q0 q1

B/B

B/A

A/A A/B

Figure 2: An example of a Mealy machine. The state with the thick edge is
the starting state.

Figure 2 shows a graphical representation of a Mealy machine, which has
the following properties:

• I = O = {A,B}

• Q = {q0, q1}, with q0 as the starting state.

• δ(q0, A) = q0
δ(q0, B) = q1
δ(q1, A) = q1
δ(q1, B) = q0

• λ(q0, A) = A
λ(q0, B) = B
λ(q1, A) = B
λ(q1, B) = A

An input string is defined as u ∈ I∗, and an output string is defined as
s ∈ O∗. Symbol ε is defined as the empty string. Transitions and output
can be defined for strings in addition to single symbols:

δ(q, ε) = q
δ(q, ui) = δ(δ(q, u), i)
λ(q, ε) = ε
λ(q, ui) = λ(q, u)λ(δ(q, u), i)

When giving an input string to a Mealy machine, it simply uses all symbols
in that string as inputs one-by-one. It makes the corresponding transitions
and returns the string of all output symbols that were returned.

6

An observation is a tuple (u, s) ∈ I∗ × O∗ in which |u| = |s|. Every
Mealy machine M with starting state q0 has a set of observations obsM,
defined by
obsM = {(u, s) | λ(q0, u) = s}
This can be interpreted as that the observation (u, s) is made when u is
given as an input string when the machine is in state q0; s is returned by
the machine. Two Mealy machines M1 and M2 are observation equivalent
if they have the same input alphabet I, and if obsM1 = obsM2 .

For the Mealy machine in Figure 2, the input string u = ABAB would
return output string s = ABBA from the starting state q0. Therefore,
(ABAB,ABBA) ∈ obsMexample

3.2 The learner

In the L* algorithm of Angluin [3], a learner is described which can learn
deterministic finite automata. Niese [6] described how this can be used to
learn a Mealy machine. To learn such a machine, it needs an implementation
of that machine. An implementation ofM is a device that accepts inputs in
I, as well as a special reset input. It should also maintain a state, and have
a well defined start state. When it is in the start state, it should give the
same output sequence asM would on receiving an input sequence without a
reset. When receiving a reset, it should return to its start state. A graphical
model of the learner is given in Figure 3.

Figure 3: An overview of the learner and the SUT

The learner is connected to the implementation ofM so it can send input
to it and receive output from it. The learner will send output queries and
resets to the implementation, and observe the returning output. It will then
give a hypothesis H, which is the learned Mealy machine. H describes the
observed behaviour of the device. If this hyphothesis is correct, the learned
Mealy machine and the device are observation equivalent.

In the learner setting of Aarts et al. [2] an oracle for M is used to test
whether a hypothesis H is correct. The oracle accepts H, and will return yes
if the hyphothesis is correct. If it is incorrect, it will return a counterexample
which is an observation (u, s) made by the oracle, for which λH(q0, u) 6= s,
meaning that the hypothesis and the device are not observation equivalent.

When a counterexample is returned, the learner will use this counterex-
ample and send extra output queries to improve the hypothesis. The learner

7

will then generate a new hypothesis and the oracle will again test this new
hypothesis. This process will be repeated until the learner receives a yes.
When it does, the hypothesis is a model which describes the device.

The learner used in L* is implemented in a tool called LearnLib [8],
which is used for this thesis. The SUT which will be modelled will be a TCP
interface. LearnLib also contains an oracle which generates test sequences
of queries and checks whether the hypothesis and the device give the same
results. These test sequences are of fixed length and are generated by taking
random input symbols. For the hypotheses found for this thesis, they are
considered to be correct when 5000 test sequences of length 10 have been
tested without finding a counterexample.

3.3 Abstraction

The learner setting as described is able to learn Mealy machines of devices
if the number of input messages and states is not too large. Many protocols,
including TCP, make use of parameters in messages. These parameters may
be binary flags, strings or numbers in different domains, such as integers. If a
message has parameters p1, p2... from the domains D1, D2... respectively, the
symbols corresponding to that message will be in the domain D1×D2×

Network interfaces may also make use of state variables to store data.
These variables cannot be stored in a Mealy machine. If a device has a set of
states Q and state variables v1, v2... with domains D1, D2... respectively, an
observation equivalent Mealy machine without state variables can be made
by taking the set of states Q′ = Q×D1 ×D2 × These states contain all
possible combinations of device states and state variables.

In this way of handling parameters and state variables, the number of
different states and input symbols would become very large. With such an
approach, the Mealy machines would be too large to use algorithms like L*
or to be human-readable.

A solution to this problem proposed by Aarts et al. [2] is to map the
concrete values of every parameter to a small domain of abstract values.
This is done because the behaviour of the device may be the same for many
different concrete values. In TCP, the ack -parameter is called valid if it is
equal to the last seq that was received, plus one. Otherwise, it is invalid .
Therefore, there are many different concrete values for the ack which are all
invalid , and the device may return the same output for all these different
invalid inputs. The possible values can thus be reduced from the large inte-
ger domain to the small domain of {valid , invalid}. If multiple parameters
are used, one abstract input symbol exists for each combination of abstract
values of those parameters.

The mapping from concrete to abstract values can depend on the values
of the state variables of the device. In the example of the ack -parameter,
the validity of the parameter depends on the seq-value of the last received

8

message. If a concrete value for a ack -parameter is valid in one message,
it might be invalid in the next message as a new seq-value is received. To
handle this, the mapping should also depend on state variables that can be
updated with each input and output.

Such abstractions can reduce the number of input symbols from nearly
infinite to a small number, so that an abstract representation of the device
can be learned by L*, and can even be made human-readable. This abstrac-
tion is done by the mapper, which is placed between the learner and the
device. The learner uses abstract parameter values as output queries, and
sends them to the mapper. The mapper translates the abstract values into
concrete ones and sends them to the device. Any concrete output from the
device is translated back to abstract values, and is returned to the learner.
The mapper may use state variables to do the translations, and these state
variables can be updated when it receives input symbols from the learner
or responses from the device. A reset-input should set all state variables to
an initial value. A graphical overview of the learner and mapper is given in
Figure 4

Figure 4: An overview of the learner, the mapper and the SUT

3.4 The TCP-mapper

The mapper is a module which receives abstract output queries from the
learner, and translates them to concrete output queries which are then sent
to the SUT, and vice versa. This mapper has been based on the one used
by Aarts et al. [2]. In this case, all messages were TCP segments with three
parameters: The sequence number seq , the acknowledgement number ack ,
and the flags-parameter. The numbers seq and ack have concrete domains of
32 bit unsigned integers, and the corresponding abstract parameters seqabs

and ackabs can have the values valid or invalid . The abstract flags-parameter
can have the values ack, syn, fin, rst, or any combination of these flags
(such as syn+ack). The concrete flags-parameter is the bitfields of flags in
the TCP-frame, in which flags are set or unset with 1 or 0. Each element of
flags defines which flags have been set: all flags mentioned are set, all other
flags are not.

With these three parameters, an abstract input symbol is of the form
input(flags, seqabs , ackabs). However, due to time constraints and practical
constraints, only valid sequence and acknowledgement numbers have been

9

used as parameters of input symbols. The input alphabet used to gener-
ate the models in section 5 therefore consists of several combinations of
flags, with valid sequence and acknowledgement numbers. As sequence and
acknowledgement numbers do not vary in the abstract input alphabet, an
input symbol can be named only by its flags. The input alphabet can there-
fore be described by I = {ack, syn, syn+ack, fin, fin+ack}. Attempts
have been made to include invalid numbers as well, but these attempts have
not yielded complete models.

The abstract output alphabet contains all combinations of abstract se-
quence and acknowledgement numbers, and flags. All possible combinations
of flags are in this flags-parameter, including flags such as RST which are
not used in the input alphabet. In addition, an extra symbol timeout is used
to denote when the SUT does not give any response. Therefore, a message
from the SUT is of the form timeout or response(flags, seq , ack). The latter
will be abbreviated to flags(seq , ack).

To make the proper translation between abstract and concrete, the map-
per needs state variables to determine which concrete values of seq and ack
to use. The state variables lastSeqSent and lastAckSent are set to the last
values of the seq and ack parameters that were sent to the SUT in a valid re-
quest. The variables lastSeqReceived and lastAckReceived are set to the last
parameters that were received in a valid response from the SUT. The param-
eters remain unchanged when sending an invalid request or when receiving
an invalid response. The validity of requests or responses corresponds to the
specifications of TCP [7]. The mapping from abstract to concrete requests
is as follows:

• if seqabs = valid :
seq = lastAckReceived ,
lastSeqSent = lastAckReceived

• if seqabs = invalid :
seq = 0

• if ackabs = valid :
ack = lastSeqReceived + 1,
lastAckSent = lastSeqReceived + 1

• if ackabs = invalid :
ack = 0

Invalid sequence and acknowledgement numbers are not used to generate
the models in section 5, but they are mentioned for clarity.

The mapping from concrete to abstract responses is as follows:

• if seq = lastAckSent | lastSeqReceived = 0:
seqabs = valid ,
lastSeqReceived = seq

10

• otherwise:
seqabs = invalid

• if ack = lastSeqSent + 1:
ackabs = valid ,
lastAckReceived = ack

• otherwise:
ackabs = invalid

Furthermore, when the response is a timeout , all state variables remain
unchanged.

4 Experimental setup

To be able to let the learner learn a model of a SUT, it should be able to
send output queries to and receive responses from it. The pipeline from
learner to SUT needed multiple components to achieve this.

LearnLib is the library which contains the learning algorithm, written in
Java. The learner was connected to the mapper. The mapper was also writ-
ten in Java, so that the learner could directly call methods of the mapper.
A Java-program called Tomte [11] is used to call LearnLib-functionalities
and to connect the learner and the mapper.

The translated messages from the mapper then needed to be sent to the
SUT. This was done by a separate python-module, which was connected to
the mapper through a local socket connection. The concrete values of the
symbol parameters were sent through this socket connection. The python-
module made use of the scapy library [9], which allows network packets to
be customized and sent on the network. For building the fragments, the
parameters were directly used in their appropriate fields. For other fields,
default values were used if possible. Only the source port and destination
port needed to be manually set to ensure that the fragments reached the
right destination. This python module also sniffed the network for returning
packets, and extracted the concrete values of the symbol parameters from
them. Those where then sent back to the mapper. When no network packet
returned for a certain time, a timeout-message was returned.

The SUT was another computer on the local network. A TCP server-
port was opened by a java-application on this computer, so that connections
from the python-module could be accepted. This application does nothing
besides opening a server port. Computers with different operating systems
(OSes) have been used as SUT: Windows 7, Windows Vista, Ubuntu 12.10
and Ubuntu 10.4.

To run the experiment, several issues had to be addressed. One of those
was that the learner issues resets, to let the SUT return to its start state.

11

Figure 5: An overview of the experimental setup

This can be done by sending a fragment with a rst-flag. When a connection
is closed with a rst-message, the behaviour for a new connection may be
different than an entirely new connection. If that happens, a rst-message
is not a valid reset as assumed by the learner. As explained in section 2,
a connection is defined by the four-tuple (source-IP, destination-IP, source-
port, destination-port), so this problem could be solved by using a different
four-tuple after every reset. This was achieved by using a different port in
the python-module. A large domain of integers was chosen to choose from,
and the used port was incremented by one after every reset. This domain
could be chosen large enough to give each connection its own four-tuple.
By doing this, a totally new connection is used after each reset, and the
experiments showed that the server behaved consistently after resets.

Another issue that had to be solved, was that the operating system on
which the python module was running, responded automatically to TCP
fragments. The operating system is unaware of what network packets are
sent with scapy, and it will therefore receive responses over the network
that it does not recognise. As a TCP-connection is set up by the learner,
the operating system will notice a connection that it has not set up itself,
and it will respond with a rst-fragment to shut down the connection. This
problem could be solved by blocking outgoing packets with a firewall, so that
the rst-fragments are not sent. In Ubuntu, scapy allows sending packets
regardless of the firewall, so any packets sent for the sake of the experiment
will not be blocked. Obviously, the computer used as SUT should allow all

12

relevant TCP fragments.
Other issues mostly concerned getting the network packets to the desti-

nation: in addition to the IP-address of the remote device, a mac-address is
also needed when sending on a local network. When using the scapy library
to send packets, the mac-address is not automatically retrieved. This could
be solved by manually entering the right address in the python-module.

5 Results

On all OSes, a model was generated with only valid sequence numbers and
acknowledgement numbers used for output queries. In this section these
models will be compared to the theoretical model from section 2. The names
of the states in the generated models are based on the names used in the
theoretical model. A comparison between the theoretical model and the
generated models is made based on the transitions from every state, mainly
on the transitions following the normal path of opening and closing a con-
nection.

The resulting abstract Mealy machine found for the four different OSes
are presented in Figures 6, 7, 8 and 9. Some transitions have more than one
input symbol, seperated by vertical lines; this means that this transition
can be made for all of those input symbols. Additionaly, for each state,
any input which is not shown yields a transition to that same state, with a
timeout as output. These transitions have been left out for readability. v
and inv represent valid and invalid , respectively. The states and transitions
that are normally used when opening and closing a connection are green.
The states listen2 and unresponsive (as described in the next section)
are red.

13

Figure 6: A Mealy machine describing the behaviour of Ubuntu 12.10.

Figure 7: A Mealy machine describing the behaviour of Ubuntu 10.4.

14

Figure 8: A Mealy machine describing the behaviour of Windows 7.

Figure 9: A Mealy machine describing the behaviour of Windows Vista.

15

5.1 The normal path

The four generated models share some similarities. Obviously, the normal
way of opening and closing a connection works in the same way for all four
OSes. listen is certainly the starting state, as this is the state after the
server-application on the SUT has only opened the connection. In this state,
the SUT does not respond on any input except for a syn-fragment. The
response is always a syn+ack message, and the syn rcvd state is entered.
An ack-fragment can now be sent to enter the established state. The
connection can now be closed using a fin or fin+ack, and the close wait
state is entered.

5.2 Sending multiple syn-fragments

There is another similarity between the four models which is not in this
normal path. After a connection has been set up, a state can be entered
which will be referred to as listen2. The outputs of this state are the same
as the outputs of the first listen state. This state can be entered by sending
another syn after the first syn has been sent, which will be responded to
with a rst+ack. On all OSes except Windows 7, this second listen2 state
can also be reached with a syn+ack, which will be responded to with a
rst+ack on Windows Vista. Ubuntu does not send back a response, but
the transition to listen2 is made nonetheless.

listen2 gives the same output as listen; it only responds to a syn,
to which it responds with a syn+ack. Thus it seems to accept a new
connection. The previous connection that has been accepted with a syn
from listen, responded to with a syn+ack, seems to be aborted because
of the second syn (or syn+ack). In the case when a rst has been sent by
the SUT this seems logical, as a rst can imply the abortion of a connection.
However, Ubuntu can also reach this state without responding with a rst.

The normal path of setting up and aborting a connection cannot be made
from this listen2 state. When in the listen2 state, a syn will be responded
to with an ack, making a transition to another state. This state is not in
the standard model, and will be named unresponsive. In this state, a syn
can be sent again to abort the connection and return to listen2. This will
be responded to with a rst+ack. On Windows Vista, this can also be done
by sending a syn+ack. All other queries will not be responded to, and as
such this connection does not function properly: a fin or fin+ack should
be responded to with an ack.

The behaviour of the listen2 and unresponsive states could in rare
cases cause problems; a full three-way handshake can be done, after which
the client can conclude that a connection has been established properly.
However, if the client tries to close the connection with a fin, this fragment
is never responded to. This situation will not occur often, as the client

16

must first send two fragments with a syn-flag, which is not according to the
specifications.

5.3 Sequence and acknowledgement numbers

The sequence and acknowledgement number of the responses are always
valid when following the normal path of opening and closing a connection.
When multiple syn- or syn+ack-requests are made, the response on those
syn-requests never has both a valid sequence number and a valid acknowl-
edgement number. In the models of Windows 7 and Ubuntu 10.4, each
response is either a timeout or a fragment of the form flags(invalid , valid).
In the models of Windows Vista and Ubuntu 12.10, either the sequence
number, the acknowledgement number, or both are invalid.

A response with an invalid sequence number only occurs upon requests
with a syn-flag set. This can be explained by the normal use of a syn-flag;
if the server is in the listen-state, it will choose its own sequence number
upon receiving a syn-fragment. This number is randomly chosen for each
connection. When multiple syn-fragments are received, the server might
consider these as seperate connections, and choose a new sequence number
for each new connection.

A response with an invalid acknowledgement number, and with the rst-
flag set, can also be explained. For a rst-fragment, the acknowledgement
number does not necessarily need to be correct.

5.4 Ubuntu 12.10

The model of Ubuntu 12.10 has some major differences with the other mod-
els. One difference is that in the three other models, the listen2-state
can be reached by sending a syn or syn+ack when in established or
close wait. In the model of Ubuntu 12.10, listen2 cannot be reached
from these states. Instead, a syn or syn+ack leads to close wait, or to
another intermediate state (s1 in Figure 6) which is not in the theoretical
model. The response to those requests is an ack-fragment with an invalid
acknowledgement number. Further testing showed that this number was
not incremented by one properly after each request, and therefore the ac-
knowledgement number stayed constant during all further responses while
in close wait.

5.5 Comparision with ns-2

As mentioned, Aarts et al. [2] have done a similar experiment with the ns-2
network simulator, and generated a model for it. There are several differ-
ences between this model and the models found for this thesis. First of all,
the ns-2 model did not seem to respond to a fin, only to a fin+ack. This
is not the case with the real TCP-implementations; both fin and fin+ack

17

cause transitions and outputs. Furthermore, the general shape of the model
is very different. The model of ns-2 shows many states which are not in the
models of real implementations. It also lacks the listen2 and unrespon-
sive states that all four models of real implementations have.

5.6 Performance

For each input query, the python-module needed to wait for a certain time
before concluding a timeout. Choosing a too small time causes a risk of
missing a slow response. A small delay in the SUT would thus result in an
incorrect timeout. This incorrect timeout might contradict other responses,
leading to non-determinism, which let LearnLib crash. Over ethernet, a
waiting time of 12ms turned out to be long enough to generate the models
presented in this thesis, although the setup still crashed sometimes. This
waiting time is the bottleneck of the learning algorithm. Some statistics
about the learning process are found in Table 1.

OS time(h:m:s) learning queries testing queries hyphotheses

Ubuntu 12.10 7:07:44 216 10010 1

Ubuntu 10.4 2:11:08 223 5027 2

Windows 7 3:10:15 258 5027 3

Windows Vista 2:07:50 186 5000 1

Table 1: The amount of time, the number of queries and the number of
hyphotheses needed to generate the models.

5.7 Invalid parameters as inputs

Attempts of using invalid numbers in the input alphabet have also been
made. However, they led to abstract state machines that were too big to
let the learner terminate. The learning time was much longer than for valid
inputs only. A side-effect of this is that the chance of the learner missing a
slow response of the SUT increases as the learning time increases, making
it more difficult to correctly complete the learning and testing. Terminat-
ing the learner before a complete hyphothesis was found showed that the
model contained at least 200 states. This premature model was untested
and unfinished; it included many states which had no outgoing transitions,
so a correct hyphothesis might very well have many more states. It is not
yet clear whether a correct state machine would actually be finite and de-
terministic.

18

6 Conclusions

The experiments carried out for this thesis have shown that the framework
proposed by Aarts et al. [2] can be used to generate models of a real TCP-
server. It also shows that this is not a trivial task: for large input alphabets,
such as an input alphabet with invalid sequence and acknowledgement num-
bers as well as different flags, the model can become quite large, and possibly
infinite. The resulting models show that the TCP-implementations contain
states which are not in the standard model. Also, for the inputs which were
tested, implementations of different OSes differ in some details but show
large similarities in general shape. Not only the behaviour as described in
the standard model is equal among all OSes, but also the states listen2 and
unresponsive are found in all implementations. They also show that real
implementations differ greatly from the implementation of the ns-2 network
simulator.

7 Future work

There is much room for improvement of the generated models. This can
mainly be done by extending the input alphabet. Many useful additions to
the input alphabet can be done, such as

• invalid sequence and acknowledgement numbers,

• triggers from the application layer, as many transitions described in
the theoretical model have such triggers as inputs, and

• additional flags. The RST-flag and the PSH-flag can easily be added,
although the latter would only make sense if the TCP-fragment also
contains a data-payload.

Furthermore, the validity of parameters is still quite simple. A finer
abstraction may also be chosen. Numbers which are one lower than the
expected value might give different results than values which are higher
than the expected value. A finer abstraction is also needed when data-
transmission is added to the experiments, as the acknowledgement number
can then be incremented by more than one.

Also, connecting to a TCP-implementation over localhost can be at-
tempted. This has not been done for this thesis as the influence on the
results was not known, but it could significantly speed up the experiments.

Acknowledgement

I would like to thank my supervisors, Frits Vaandrager and Fides Aarts, for
all help, hints and discussions. Also I would like to thank Harco Kuppens,
for the technical support in using Tomte.

19

References

[1] F. Aarts, J. de Ruiter, and E. Poll. Formal models of bank cards for
free. In 4th International Workshop on Security Testing, Luxembourg,
March 22, Proceedings.

[2] F. Aarts, B. Jonsson, and J. Uijen. Generating models of infinite-state
communication protocols using regular inference with abstraction. In
A. Petrenko, J.C. Maldonado, and A. Simao, editors, 22nd IFIP Inter-
national Conference on Testing Software and Systems, Natal, Brazil,
November 8-10, Proceedings, volume 6435 of Lecture Notes in Com-
puter Science, pages 188–204. Springer, 2010.

[3] D. Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106, 1987.

[4] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, edi-
tors. Model-Based Testing of Reactive Systems, volume 3472 of Lecture
Notes in Computer Science. Springer Verlag, 2004.

[5] Chia Yuan Cho, Domagoj Babi ć, Eui Chul Richard Shin, and Dawn
Song. Inference and analysis of formal models of botnet command
and control protocols. In Proceedings of the 17th ACM conference on
Computer and communications security, CCS ’10, pages 426–439, New
York, NY, USA, 2010. ACM.

[6] A. Hagerer, H. Hungar, O. Niese, and B. Steffen. Model generation
by moderated regular extrapolation. In R.-D. Kutsche and H. Weber,
editors, Proc. FASE ’02, 5th Int. Conf. on Fundamental Approaches
to Software Engineering, volume 2306 of Lecture Notes in Computer
Science, pages 80–95. Springer Verlag, 2002.

[7] J. Postel (editor). Transmission Control Protocol - DARPA Internet
Program Protocol Specification (RFC 3261), September 1981. Available
via http://www.ietf.org/rfc/rfc793.txt.

[8] H. Raffelt, B. Steffen, T. Berg, and T. Margaria. LearnLib: a framework
for extrapolating behavioral models. STTT, 11(5):393–407, 2009.

[9] Scapy. http://www.secdev.org/projects/scapy/.

[10] W. Smeenk, F. Vaandrager, and D. Janssen. Applying automata learn-
ing to embedded control software, 2013.

[11] Tomte. http://www.italia.cs.ru.nl/tomte/.

20

A
M

o
d
e
l
o
f
T
C
P

in
n
s-
2

A
m

o
d

el
o
f

a
T

C
P

-s
er

ve
r,

im
p

le
m

en
te

d
in

th
e

n
s-

2
n

et
w

or
k

si
m

u
la

to
r,

as
fo

u
n

d
b
y

A
a
rt

s
et

a
l.

[2
]

21

