
Radboud Universiteit

Bachelor Thesis Computer Sciences

Automatic modeling of SSH
implementations with state
machine learning algorithms

Author:
Max Tijssen

Supervisors:
Erik Poll

Joeri de Ruiter

June 24, 2014

Contents

1 Introduction 1

2 Background 3
2.1 SSH . 3

2.1.1 Usage . 3
2.1.2 The four layers . 4
2.1.3 SSH Packets . 5
2.1.4 Diffie Hellman key exchange 6

2.2 Automatic state machine learning 7
2.2.1 Mealy Machines . 7
2.2.2 L* . 7

3 Implementation 9
3.1 Learner Mapper Teacher . 9
3.2 Abstractions . 10
3.3 Implementing the mapper . 11

3.3.1 Difficulties . 11
3.3.2 Building the mapper . 12
3.3.3 The SSHJ client implementation 13

4 Results and Analysis 15
4.1 OpenSSH . 16

4.1.1 Standard input . 16
4.1.2 Non-standard input . 17
4.1.3 Strange behaviour . 17

4.2 Bitvise . 18
4.2.1 Standard input . 18
4.2.2 Non-standard input . 18
4.2.3 Strange behaviour . 18

4.3 freeSSHD . 19
4.3.1 Standard input . 19
4.3.2 Non-standard input . 19
4.3.3 Strange behaviour . 20

5 Related work 24
5.1 State machine learning . 24
5.2 Analysis of SSH . 24

i

6 Future Work 26

7 Conclusions 28

Appendices 32

A Message number translation 33

B Full OpenSSH model 34

C Full Bitvise model 35

ii

Acknowledgements

Firstly I would like to sincerely thank my two supervisors Erik Poll and Joeri
de Ruiter for their great support while writing this thesis. Both their feedback
on my writing and their technical help has been invaluable. I would also like to
thank Marc Smids for reading and providing feedback on this thesis. Lastly I
would like to thank Jelle de Gier for allowing me to use his server.

iii

Abstract

A protocol like SSH is specified in RFCs which state how it should behave
under different circumstances. Not only are these RFCs not complete or totally
unambiguous, but there is also no guarantee that a implementation actually
follows them. This research presents a way to automatically extract models
from the transport layer of different SSH server implementations by using a
learning algorithm. This learning algorithm will produce a model of a finite state
machine which shows how well the implementation follows the RFC standard
and possibly discover other unexpected behaviour. We modelled three different
server implementations in this way and found only one out of three following
the RFC standard. Besides this result we also uncovered some unique behaviour
for each server.

Chapter 1

Introduction

In our current information age we have become more and more reliant on secu-
rity protocols in order to protect our information and communications. Under-
standing these protocols is vital, because of the very sensitive data information
they often times handle. This way we can guarantee that our data really is safe.

History has shown that severe vulnerabilities turn up from time to time in
security protocols, also in the protocol this research focuses on: SSH. In SSH
1.5 for instance a vulnerability found in 1998 allowed attackers to insert con-
tent into an encrypted SSH stream [3]. A vulnerability found in 2008 allowed
recovery of up to 32 bits of plaintext from a block of ciphertext [4]. Important
to note is that these are weaknesses found in the formal specification of SSH,
while this research will look at real implementations. This means that this re-
search would not find these kinds of vulnerabilities. It should not be hard to
imagine that if the formal specification of SSH contain vulnerabilities that some
implementations of SSH will as well. One example of such a vulnerability in
an implementation was presented at the 30th IEE symposium on Security and
Privacy and showed a plaintext recovery attack against the OpenSSH imple-
mentation [9]. In theory this research could uncover similar vulnerabilities in
other server implementations.

In order to understand these protocols you can use either large books [1] or
structured RFCs [10, 11, 12, 13, 14], in which they are described extensively.

There are two problems that arise with these books and RFCs. The first is
that these documents are so long that it becomes difficult to keep perspective
on what it is you are actually reading. With hundreds of pages of text it is
often not easy to find just what it is you are looking for or keep the larger
picture in mind. For many protocols great strides have already been made in
order to better summarise the actual important contents of these descriptions.
An example exists of this being done for SSH [2], where three of the RFCs
[10, 13, 14] describing the transport layer of SSH were used to make a much
more readable paper and some much needed models. These greatly improve a
reader’s ability to understand the protocol.

The second problem is that these kinds of official specifications (such as the
RFCs) are just that, specifications of how a protocol should work. There is
no guarantee that an implementation of these specifications follows these rules.
Differences will always exist, whether accidental or not. These differences could
be a serious security flaw, since people only looking at the formal specifica-

1

tions will often overlook the fact that the implementation in reality could be
functioning differently.

This research will attempt to solve these problems by using the L* state
machine learning algorithm in order to automatically create formal models, in
the form of state machines, of the SSH protocol. This model is a finite state
machine which (at a certain level of abstraction) describes the implementation.

This thesis will first give some necessary background on both SSH and auto-
matic state machine learning before showing how we used these concepts on the
SSH protocol. After this we will discuss the produced models and show which
conclusions can be drawn from these. We will also discuss some possible future
work and other related academic work.

2

Chapter 2

Background

This chapter will give some necessary background information on SSH and state
machine learning, which are used in the research.

2.1 SSH

This section will describe SSH in general, by giving both a short overview of
how the protocol works and some common uses.

SSH is a way for two machines to communicate securely with each other over
an insecure channel. This has, as might you might be able to imagine, many
uses.

SSH does this by means of a server/client architecture. Some server some-
where is running an SSH server implementation which receives requests from
one or multiple SSH client implementations. In Figure 2.1 a graphical repre-
sentation from ”SSH The Secure Shell, The Definitive Guide” [1] is included.
These requests often are commands like downloading a certain file or executing
some command on the server. The server will then respond with some requested
information or confirmation that a command was executed, or it can respond
that a certain request was denied.

2.1.1 Usage

SSH can obviously be used for a great number of applications which require
some secure data being send between two machines. Here we will highlight
some of the more often used usages.

Probably the most common usage of SSH is remotely logging in to another
machine and using it. This can of course be useful in a wide variety of situations,
whether when working from home and using the company network or when you
are away from home but want to have a program do some work while you’re
gone.

Secure file transfer is another big feature of SSH, and is often used in conjunc-
tion with the secure remote log in feature described above in order to retrieve
some file you need from a remote machine. Big file sharing services like GIT
can often times also be run through SSH, which not only can help secure the

3

Figure 2.1: A graphical representation of the architecture of SSH [1].

transfer but when using keys also takes away the need to continuously type your
password.

According to ”SSH: the definitive guide”, Chapter 1.4.5, [1] SSH can also be
used for access control in order to allow users certain rights on your machine,
without have to explicitly grant them this right every time. This can for instance
be used to allow people you are working with to retrieve certain files you have
on your machine without them being able to access your personal files. It is a
bit unclear what is meant by this exactly, since remote log in seemingly already
has this feature(since a user has certain rights).

2.1.2 The four layers

SSH is build up of four different layers which all work together in order to make
the above described process possible [13]. These are: the transport layer [14],
the user authentication layer [11], the connection layer [12] and the SSHFP DNS
record [15].

The lowest layer is the transport layer [14] which handles the initial key
exchange and thus aides in the authentication of server and client but after
this also offers an interface for the other layers to send the different messages
between the client and server. The transport layer in essence creates the secure
channel which the other layers use to securely send their data. This research in
the end models this layer.

The commands (and the responses from the server) described above are
confidential so you wish to be sure with whom you are communicating when
using SSH. This is handled by the layer above the transport layer, the user
authentication layer [11]. This layer uses many common authentication methods
such as passwords or RSA key pairs in order to authenticate that a user is indeed
who he claims to be.

The connection layer [12], which is the highest layer, handles the channels
through which these commands and other communications between server and
client occurs. One SSH connection is compromised of a number of channels,
which are used for both the sending and receiving of data.

4

The SSHFP DNS record [15] is a simple layer which stores public host key
fingerprints so that the authenticating of hosts which are visited multiple times
can be established more easily and quickly.

These layers work on top of each other, with the higher layers needing the
functionality of the lower layers in order to function. SSHFP DNS is a bit of
a different case since this really only stores data, and is used by the transport
layer. A graphical representation can be found below.

Figure 2.2: A graphical representation of the layers of SSH.

2.1.3 SSH Packets

The server and client communicate with each other by sending packets back and
forth. A normal SSH packet has the following contents (in order)[17]:

• sequence number : Used to order the incoming packets.

• pktl : The length of the packet.

• pdl : Padding length, each packets is padded by a certain number of bits
in order to make sure it is the correct cipher block size(for the encryption
and decryption that follows).

• (compressed) Payload : The actual contents of the package. It is this part
of the packet we are interested in. It contains a number which is called
the message type, this determines the type of message being send. Later
on in Section 3.2 we will describe how this is used.

• Padding : The padding mentioned in pdl.

This packet is encrypted as a ciphertext, a MAC is added to verify the in-
tegrity upon arrival at the destination and sent to either the server or the client.
A graphical repesentation of such a packet taken from work of W. Stallings [17]
can be found in Figure 2.3.

5

Figure 2.3: A graphical representation of an SSH packet.[17]

2.1.4 Diffie Hellman key exchange

Diffie Hellman(DH) was the key exchange algorithm used to test our servers, so
it is important to quickly show how normal DH key exchange takes place. Note
that it is not important to understand the contents of the different packets, only
the order in which they are send and by whom (client or server).

Figure 2.4 shows how DH key exchange is supposed to take place according
to the RFCs as taken from [2] which describes the SSH transport layer. In this
figure ”C” is the client and ”S” the server. Two quick notes about this picture:
the order in which identical packets are send by either the server or client is
not specified, so either the server or client can send its version number first
according to the RFCs. Next is that the KEXDH REPLY in this picture and
KEXDH 31 which we will later show in our own output are the same package,
just different names.

6

Figure 2.4: Diffie Hellman key exchange in the SSH transport layer [2]

2.2 Automatic state machine learning

This section will give a brief explanation of what Mealy Machines and the L*
learning algorithm are.

2.2.1 Mealy Machines

Mealy machines are finite state machines where every transition has both an in-
put and a resulting output [6]. They are described by a tupleM = 〈I,O,Q, q0, δ, λ〉.
In this tuple:

• I = The list of input symbols.

• O = The list of output symbols.

• Q = The list of states.

• q0 = The initial state.

• δ = The transition function.

• λ = The output function.

At any given moment a Mealy Machine M is in a state q which has a number
of transitions, each of these transitions has both an input at an output symbol.
The Mealy Machines produced by L* are both complete and deterministic, so
in every state it there is exactly one transition for every input symbol.

An example such a Mealy machine can be found in Figure 3.1. The machine
has input and output alphabet {a,b} and three states {A,B,C}. Each transition
has a corresponding x/y where x is the input symbol and y the output symbol.

2.2.2 L*

The method we use to model the SSH implementations largely depends upon
the L* learning algorithm which is a learning algorithm first described by Dana
Angluin in 1987 [7] and later adapted in 2003 by Niese [8]. It is an active

7

Figure 2.5: A example of simple deterministic and complete Mealy Machine.

learning algorithm which puts query’s consisting of an input string to a certain
teacher and uses the returned output (and state change) to model a Mealy
Machine. This algorithm can learn models of enormous systems which would
result in a model consisting of thousands of states, but we are more interested
in using it to model a quite small model, so it stays readable. L* has a nice
Java implementation called LearnLib1 which we will be using in this research.

1http://learnlib.de/wordpress/

8

Chapter 3

Implementation

In this chapter we will show how we used the L* algorithm to model different
SSH server implementations.

3.1 Learner Mapper Teacher

Our method for modelling will work as follows: The L* algorithm(the Learner)
wishes to know what the generated output for a certain input symbol x is. It
asks the SSH server (the Teacher) what the output symbol y for this x is, the
Teacher responds with symbol y. The Learner processes this new data. At this
point the Learner can either decide its done, and asks the Teacher to evaluate
the model it has (by comparing its model to the one the teacher knows) or
decide it has more questions, and start the process again.

This leads to a few issues. First of all: the Learner and the Teacher can
not directly communicate with each other. L* will want to send a certain input
symbol x and receive a certain input symbol y but the SSH server doesn’t work
like that. The SSH server uses, both for input and output, concrete packets
which consist of many (dynamic) components.

This also leads in the next issue, we will want a certain level of abstraction
so the model can be understandable by humans. The concrete packets send
between an SSH server and client are completely unreadable for humans. For
our model we would rather have something more similar to what is used in the
formal description of SSH [2] which uses commands.

Lastly we can not easily check our end result with the Teacher, since the
resulting Mealy machine is an approximation with abstraction of how the SSH
server behaves.

For the first two problems we will have to build a so called mapper that will
implement the necessary abstraction and translate the Learner’s commands to
usable packets for the SSH server, and also translates the received output packets
back to for the Learner usable symbols. This mapper will be based upon a
existing implementation of a SSH client, since this it is only logical to have the
mapper behave like an SSH client in order to communicate with the server.A
graphical representation of this can be found in figure 3.1.

The last issue can also be overcome. L* can check if its model is correct by
sending the mapper certain requests and seeing if the server output it receives

9

Figure 3.1: A graphical representation of the Learner Mapper Teacher setup.

is the same as it has modelled. The model will be correct as long as the chosen
level of abstraction is correct and the mapper is implemented correctly, since
the L* algorithm has been shown to work correctly [6] [5] before.

The first two parts are quite easy to implement. The learner will have to be
our implementation of the L* algorithm, fortunately there is a very competent
Java implementation of this algorithm called LearnLib1 which has been shown
to work in earlier research [6] [5] so its a natural choice to use this.

The teacher is also rather straightforward, since this will be some SSH server.
For this research we will be using a couple of servers. We will test a few servers
running locally on a windows machine (FreeSSHD2 and Bitvise SSH3) as well
as a OpenSSH4 server running on a remote Linux server.

A quick note about the teacher. Who fulfils role can be interpreted in dif-
ferent ways. For clarity’s sake we chose the server for this role. Another inter-
pretation is calling the combination of the mapper and the server the teacher
but we found this to over complicate things.

3.2 Abstractions

As said before in Section 3.1 we will need a certain level of abstraction from the
concrete packets send between the client and server in order for our model to
be workable.

As stated in Section 2.1.3 , it is the payload of packets we are interested in,
the other fields are simply control fields used in order to make communications
possible, but the payload contains the message. This message will be a sequence
of bits which we will want to abstract from. Luckily the makeup of the messages
helps a great deal with choosing an abstraction level. Every message contains a
byte called the message number, which determines the type of the message [2].
Using these message types would thus be a good level of abstraction, since these
types are not only readable but also finite, so the L* knows what the input and
output alphabets are.

Since this message type is stored in a byte it can have values ranging from 0
to 255. Within these numbers certain numbers are reserved for certain layers of
the protocol. 1 to 49 are reserved for the transport layer, 50 to 79 for the user
authentication layer, 80 to 127 for the connection protocol and the remaining
numbers are used for either client protocols or local extensions [10].

1http://learnlib.de/wordpress/
2http://www.freesshd.com/
3http://www.bitvise.com/ssh-server-download
4http://www.openssh.com/

10

The table used to translate these message numbers to the corresponding
message types is described in RFC 4250 [10] and has also been added to the
appendix of this thesis. This will be used as the abstraction level. This means
that any data after the message number will be ignored by the L* algorithm,
since it will never get to see it. It’s the type of message we are interested in,
not what it says.

The following message types will be send to the server in order to see how
it responds to these at different moments. These messages are basically all the
message types belonging to the transport layer, when using Diffie Hellman key
exchange.

• SSH MSG DISCONNECT

• SSH MSG IGNORE

• SSH MSG UNIMPLEMENTED

• SSH MSG DEBUG

• SSH MSG SERVICE REQUEST

• SSH MSG SERVICE ACCEPT

• SSH MSG KEXINIT

• SSH MSG NEWKEYS

• SSH VERSION

• SSH MSG KEXDH INIT

• SSH MSG KEXDH 31

3.3 Implementing the mapper

As explained before in Section 3.1 we will need to have 3 separate parts that work
together in order to complete this research: the learner, mapper and teacher.
The first two parts were already discussed in the same section but since the
mapper is the only part that we had to build ourselves it will be discussed in
further detail here.

3.3.1 Difficulties

The difficulties with implementing the mapper stem from it involving a large
amount of writing code based upon a large and unfamiliar software project.

The mapper will be based upon a existing SSH client implementation, since
it will take on the role of a client when communicating with the server. The
difference between a regular client and the mapper that is to be created is that
this mapper has to take its input from LearnLib (instead of following the SSH
specifications) and send this to the server. Then is has to translate the response
from the server back to a for LearnLib useable format. The existing client the
mapper used in this research is based upon the upon source Java SSH client

11

SSHJ 5. Multiple SSH clients were considered but this one offered the most
clear structure which was believed to help in creating the mapper.

An example how this mapper will work is as follows. Learnlib wishes to
know what kind of output the input symbol ”SSH MSG KEXINIT” generates.
Learnlib send this input symbol to the mapper. The mapper will at this point
be connected to the SSH server and is seen as a normal client by the server.
The mapper then creates a packet for a KEXINIT message, this will among
other things include what kind of encryption and key exchange protocol the
mapper(so the client it uses) can use. It sends this packet to the server and
awaits its response. The server will respond with a packet which the mapper
will fully process. Although we only wish to send the message type back to
Learnlib we might still need to use the information send by the server for future
packets. Something to look out for is to stop the client from automaticly sending
follow up packets, since we only wish to sends packets when Learnlib prompts
us to. The mapper then sends the message type of the package the server send
him back to Learnlib. A picture describing this example can be found in Figure
3.2.

Figure 3.2: A graphical representation of the mapper example

3.3.2 Building the mapper

In this section we will give some helpful information that we learnt while build-
ing the mapper used for modelling our SSH implementations, which future re-
searchers seeking to duplicate results or model their own protocol might find
helpful.

The first step is finding a client on which to base your mapper. This first
choice will greatly influence how difficult the further steps will be so be sure
to choose carefully. The client will of course have to be open source and it
will be easier if it’s in the same programming language as your mapper. The
complexity of the client is the big thing to look out for, simpler clients are
better in most cases since these are easier to oversee and you will not need many
higher level functions. A decent measure for complexity is simply the number
of classes or files the project uses. Last but certainly not least is looking at
how clearly the code is written and entire project are structured. In order to
measure this take a look at how much documentation different functions/classes
have and how clearly different used packages are labelled. Try and find a client
implementation which maximises these criteria and the rest of the research will
go much smoother.

5https://github.com/shikhar/sshj

12

After finding a client implementation you will have to alter this to only
send the packets LearnLib asks you to, and send back the response. Doing this
will require understanding how the client implementation works, and finding the
right functions to use. Helpful tools to do this include looking at some examples
at how the client normally behaves, by following how a certain command that
you give it is translates into concrete packets. Another tool is the code search
included in many programming enviroments to search for certain key words, such
as ”send” or ”handle”. It might also be useful look for the names of specific type
of packets you wish to send. For example for the SSH MSG KEXINT you could
search for kexInt and the sendKexInt() method might turn up, which as you
can probably imagine is quite useful. Understanding a client implementation
such as this is no easy task, with many (for this research) redundant classes and
functions it is hard to find just which pieces of code you will want to use.

After you understand your client implementation remove all automatically
sent packets and make explicit methods to send these when requested. A thing
to look out for when doing this is that some packets might depend on ones
send or received earlier, so you will have to include some default initialisation
for these values. It is very important to document all changes you make to
the implementation, so that further on down the line during debugging you can
look back and see just what changes you made and what could cause current
behaviour.

3.3.3 The SSHJ client implementation

For this research the mapper we created used modified versions of the following
Java classes (and their dependencies) of the SSHJ client:

• TransportImpl:which implements the transport layer for sending and han-
dling packets.

• KeyExchanger: which handles packets used for keyexchange.

• Message: which enumerates the message types.

• SSH Packet: which implements a SSH packet

• AbstractDHG: which implements the DH keyexchange.

• Reader: which reads the inputstream and gives the received packets to
the TransportImpl to handle.

• SocketClient: which sets up the connection with the server.

Besides these modified classes we also needed some classes build from the
ground up. These classes were made into two different packages: Learner, which
handles Learnlib setup, input and output and Mapper which handles the client
and the translations between abstract and concrete. This setup was based on
code provided by Joeri de Ruiter which was used to make models of banking
cards [6] .

The learner package contains the following:

• Mapper: This class tells LearnLib the input and output alphabets.

13

• MembershipOracle: This class handles input and output to Learnlib

• SutWrapper: This class takes the input given from MembershipOracle and
sends it off to the other package to be processed, it then returns its reply.

• Main: This class handles the others.

The mapper package contains the following:

• SUT : This class takes on the role of the SSH client, it uses the modified
classes mentioned before in order to send packets to the server and read
its reply.

• InputReader: This class translates message types into their corresponding
command and the other way around.

• Main: This communicates with the other package, so it takes the input
send to it by the learner package and replies with responess. This class is
also responsible for resetting the connection to the server.

14

Chapter 4

Results and Analysis

This section presents the results and analyses these. For the research we mod-
elled three different servers: FreeSSHD1 and Bitvise SSH2 running on a local
Windows machine as well as a OpenSSH3 server running on a remote Linux
server.

The images consist of state and transitions, with the circles being the states
and arrows the transitions. Each transition has the form x/y where x is what
the mapper sends to the server and y is what the server responds with. A ”a +
b” output means that the server replied with both a message of type a and a
message of type b. Besides the standard SSH message types (which can be found
in Appendix A.) the images also include SOCKET CLOSED and TIMEOUT.
These are not actually responses from the server. SOCKET CLOSED means
that the server has closed the socket the mapper used to communicate, so no
more packets can be send. TIMEOUT simply means the server has not replied
to the message.

The figures shown in this section are modified versions of the ones produced
by the algorithm, these changes were made in order to make the result more
readable.

The changes that were made to the original images are the following:

• Clustering multiple edges together with terms like ”other” or ”any”. ”Other”
meaning any of the messages from Section 3.2 that are not yet mentioned
in the current state, ”any” meaning any message type.

• All edges where the input was either SSH MSG IGNORE , SSH MSG UNIMPLEMENTED
or SSH MSG DEBUG where omitted since these (as long as the socket was
open) always resulted in a time out.

• The prefix SSH MSG has been omitted from all messages, since it doesn’t
add any information and only serves to bloat the image further.

• Added state ”s-1” to the models. This is the state you are in before
connecting to the server. As soon as you connect to the server it will
send its SSH VERSION, so not as a response to any packet send by the

1http://www.freesshd.com/
2http://www.bitvise.com/ssh-server-download
3http://www.openssh.com/

15

mapper. In the original images ”s0” is the first state, since you will have
to connect before being able to send any packets. This transition can thus
been seen as implicit. It has been added for completeness.

The original models made by LearnLib can be found in the appendixes. One
thing to note here is that the original model for FreeSSHD is missing. This is
because we were unable to create one, a more detailed explanation can be found
at Section 4.3 where the picture is discussed. One more thing to note is that the
SSH MESSAGE SERVICE REQUEST needs some service to request, we chose
”ssh-userauth” for this purpose, which is the standard service that should take
place after key exchange.

For every model we will first look at how it handles standard Diffie Hellman
key exchange, followed by how it deals with non standard input and lastly
discussing the strange things we discovered about each server.

4.1 OpenSSH

Figure 4.1 on page 21 shows the output generated when testing an openSSH
server4 running on a remote Linux server.

4.1.1 Standard input

Here we will look at how the server responds during standard Diffie Hellman key
exchange as described in Section 2.1.4. In Figure 4.1 we can clearly see Diffie
Hellman key exchange taking place. In s0 the server first sends its KEXINIT
as soon as we send our version number since whatever we’re going to do we’ll
first need to exchange keys to encode our communications with. This KEXINIT
contains its preferences for things like encoding and key exchange algorithm. We
respond to this with our own KEXINIT in s1. After these two messages are sent
the client determines to use Diffie Helmman based on the two KEXINITs, which
makes sense since our client only supports this algorithm. This is a trend we’ll
see in all the different models. We do not receive a response to the KEXINIT sent
in s1 since the client should send the next message, which is the KEXDH INIT,
which is send in s3. This KEXDH INIT contains the information needed for the
key exchange. The server replies to this with a KEXDH 31 and quickly after
this sends a NEWKEYS package which signals the end to the keyexchange,
which we have to reply to with our own NEWKEYS package in s4 in order to
confirm this.

A thing to note here is that it is dependent on how long the server has to
wait before it receives a NEWKEYS package whether or not it will sends its
own first. If the client is quick enough it can send its NEWKEYS before the
server. It wil then receive only KEXDH 31 as a response to the KEXDH INIT
and the NEWKEYS as a response to its own NEWKEYS. For the protocol itself
this doesn’t really matter since they can be send in any order but it shows us
a bit about the implementation of the server. It seems to imply some kind of
timer waiting for the client to send its NEWKEYS and otherwise the server just
sends its own.

4http://www.openssh.com/

16

4.1.2 Non-standard input

We can see that any packets sent before the SSH VERSION are simply ignored
by the server, which makes sense since at this point there is no formal connection.
In s1 the server is expecting a KEXINIT and will close the socket for some other
packets it does not expect. This will cause the model to end up in s2, which
is the state where the server has closed the socket, so no more packets can be
send and the connection to the server has to be reset. But there are quite a few
packets it simply ignores which are very odd among these SERVICE REQUEST
and KEXDH INIT. This directly violates RFC 4253 [14] which states:

If the server rejects the service request, it SHOULD send an appro-
priate SSH MSG DISCONNECT message and MUST disconnect.

The server should reject these service requests since they are requested before
key exchange finished and according to the same RFC the description of a
SERVICE REQUEST is :

After the key exchange, the client requests a service.

The key exchange has not been completed, so this SERVICE REQUEST should
not be allowed. So not only does the server not send a DISCONNECT which
it should, but also doesn’t close the connection which it must according to the
RFC.

Even stranger is that the server simply ignores packets it should never re-
ceive from a client, the SERVICE ACCEPT and KEXDH 31 packets.The RFCs
actually do not describe what a server should do when it receives this kind of
input. A more defensive server would probably close the socket when it receives
this kind of input from a client. This behaviour gets rectified after the server
receives the KEXINIT, any wrong packets will cause the socket to close at this
point. This points to there being some strange ”waiting state” for the server
when its waiting for the KEXINIT. In this state it is simply reading packets
until it gets a KEXINIT and only looking for a few key unexpected ones to close
the socket, but ignores all others that do not fit this criteria. The OpenSSH
server also only starts sending SSH MSG DISCONNECTs, which tell the client
why the server is closing the socket, in s2 so after receiving the KEXINIT. This
is more evidence for some weird ”waiting state” while it has not yet received a
KEXINIT.

4.1.3 Strange behaviour

In s4 any packet sent will cause a time out, after which the socket closes. This
shows a problem we encountered with two of the servers(this one and Bitvise),
where after sending the NEWKEYS packet signalling the end of key exchange
the server replies with a very strange packet. This packet has a packet length of
some absurdly large positive or negative number, so has obviously been damaged
somehow. We have not been able to find what causes this to happen, but after
this packet is received we are unable to continue communication with the server
which explains why all the models end at the key exchange algorithm. But since
key exchange is the largest part of the transport layer protocol we still find this
research to give some very interesting and useful results.

17

4.2 Bitvise

Figure 4.2 on page 22 shows the model of a Bitvise5 SSH server implementation.
This server was running on a local Windows machine.

4.2.1 Standard input

There is little to say about this server other then it seems implement DH key
exchange the same way that the OpenSSH server did, as described in Section
4.1.1.

4.2.2 Non-standard input

If the server at any point in the algorithm receives some unexpected input it
will send a DISCONNECT packet which states why it is closing the socket
and then close it. This shows a big contrast with the previous server which
ignored some input, closed the server with reply for some others or send a
DISCONNECT for yet other packets. This server seems to be the only following
the RFCs, although it still has some strange behaviour. An example of the server
responding strangely to non-standard input is when you send a NEWKEYS
packet after the KEXINIT the server will start ignoring all your input. This is
similar to the problem that described in the previous section. So while it seems
that sending a NEWKEYS or KEXDH INIT while in s3 will lead to the same
result s4, this is not exactly true. From the clients perspective this is correct,
the server will start ignoring input but the server will be in a different state
if you first send the KEXDH INIT namely the state where key exchange has
happened. This is confirmed by the NEWKEYS packet the server sends.

4.2.3 Strange behaviour

Another interesting thing we found while testing is that the server would oc-
casionally send a IGNORE message. This message would not come as a reply
to anything being send (which is why it is not in the model) and seemed to
occur at random. Our best hypothesis is that this is the server testing if the
connection is still functional.

The last observation we made while modelling the server is that after the
testing had been going on for a while the server would sometimes take a very
long time(30 secs to a minute) to respond to a new version being sent, at the
start of the protocol. But when it did respond it did so normally and would
function like nothing happened.

5http://www.bitvise.com/ssh-server-download

18

4.3 freeSSHD

Figure 4.3 on page 23 is based upon a freeSSHD6 server running on a local
Windows machine.

Figure 4.3 was made by hand and not based upon a existing model as the
others were. The reason this picture was not automatically generated is because
after exactly 351 ”sessions” (SSH VERSION followed by some other packets)
the server would crash. It did not matter if the server was being reset in the
meantime. For instance if the server was reset after 200 sessions, it would simply
crash at the 151th session after this reset. Letting the server crash and resetting
it after this 351 sessions simply causes it to start crashing very frequently after
this, making testing impossible. We have not been able to find what causes this
behaviour to occur, it is a problem exclusive to this server implementation and
was not found anywhere else. The fact that resetting the server does not help
means that it is not simply a case of lingering sockets, since these are broken
when the server is shut off and it only occurs with this specific server. There
is some mysterious link between the server and a testing session that persists
even after the server shuts down which will inevitably crash the server. The
same result was found when running the server on a remote machine, effectively
making the program a way crash any freeSSHD server we can connect to.

This figure was made by making tests consisting of different orders of packets
being send and looking at how the server responded. This means that this
figure should be considered less trustworthy then the other two, since it was
made by hand instead of automatically which makes it a lot more error prone.
Nonetheless we believe this picture is largely correct, and are confident that
most of the weird behaviour of this server was captured.

4.3.1 Standard input

The server seems to largely function as expected, although this server waits with
sending its NEWKEYS until the client sends his. This causes the KEXDH 31
to come as a reply to KEXDH INIT and NEWKEYS as a reply to NEWKEYS.
This is different from the last two servers, who both send the two packets to-
gether.

4.3.2 Non-standard input

The server isn’t fully consistent with sending SSH DISCONNECTS but it’s
better at it then the first server and for the most part does not accept any
strange input. But where the first server ignored some input it shouldn’t this
server takes it a step further, it actively accepts service requests in the middle
of key exchange. This behaviour can be seen by the fact that in s1 and s2
SERVICE REQUESTs are answered with SERVICE ACCEPT. The RFC de-
scribing the transport protocol [14] which was cited in Section 4.1.2 as well even
explicitly states:

”Once a party has sent a SSH MSG KEXINIT message for key ex-
change or re-exchange, until it has sent a SSH MSG NEWKEYS
message (Section 7.3), it MUST NOT send any messages other than:

6http://www.freesshd.com/

19

Transport layer generic messages (1 to 19) (but SSH MSG SERVICE REQUEST
and SSH MSG SERVICE ACCEPT MUST NOT be sent);

Algorithm negotiation messages (20 to 29) (but further SSH MSG KEXINIT
messages MUST NOT be sent);

Specific key exchange method messages (30 to 49).”

So not only does the server not enforce the fact that it should not accept these
packets it even breaks this rule itself by sending a SERVICE ACCEPT.

Something else we can learn about the implementation of this server can be
seen in s3. Here you can either send a NEWKEYS packet which will cause you
to get a NEWKEYS packet in return and complete key exchange. Alternatively
you can send something else, and the server will still send you a NEWKEYS
packet anyway but close the server socket afterwards. This indicates that the
server probably will reply any packet it receives with NEWKEYS, before even
checking what this packet is. If this packet is not the NEWKEYS it was expect-
ing it will then close the socket. A nicer implementation would of course have
been to first check the received packet and then reply with either a NEWKEYS
if it was a NEWKEYS or a DISCONNECT if it was something else, before
closing the socket.

4.3.3 Strange behaviour

The strange behaviour of this server has already been discussed. In Section 4.3.2
the server was shown accepting services it should not and in the introduction
of this section we discussed the server crashing.

20

F
ig

u
re

4.
1:

A
n

in
fe

rr
ed

m
o
d

el
of

th
e

O
p

en
S

S
H

se
rv

er
im

p
le

m
en

ta
ti

o
n

.
A

t
ev

er
y

tr
a
n

si
ti

o
n

w
h

a
t’

s
le

ft
o
f

th
e

’/
’

is
w

h
a
t

th
e

m
a
p

p
er

se
n

d
,

to
th

e
ri

gh
t

is
th

e
se

rv
er

’s
re

p
ly

.

21

F
ig

u
re

4.
2:

A
n

in
fe

rr
ed

m
o
d

el
of

th
e

B
it

v
is

e
se

rv
er

im
p

le
m

en
ta

ti
o
n

.
A

t
ev

er
y

tr
a
n

si
ti

o
n

w
h

a
t’

s
le

ft
o
f

th
e

’/
’

is
w

h
a
t

th
e

m
a
p

p
er

se
n

d
,

to
th

e
ri

gh
t

is
th

e
se

rv
er

’s
re

p
ly

.

22

F
ig

u
re

4.
3:

A
n

in
fe

rr
ed

m
o
d

el
of

th
e

fr
ee

S
S

H
D

se
rv

er
im

p
le

m
en

ta
ti

o
n

.
A

t
ev

er
y

tr
a
n

si
ti

o
n

w
h

a
t’

s
le

ft
o
f

th
e

’/
’

is
w

h
a
t

th
e

m
a
p

p
er

se
n

d
,

to
th

e
ri

gh
t

is
th

e
se

rv
er

’s
re

p
ly

.

23

Chapter 5

Related work

In this section we will discuss some other academic work related to this research,
to give a better picture of where exactly this research fits in the larger academic
world.

Work related to this research comes in many forms and some of the ones
mentioned below have also been mentioned in other places in this thesis. We
will divide the related work in two different categories. The first category we
will discuss is work related to automatic model based learning/testing and the
other will be work more specific to the SSH protocol.

5.1 State machine learning

Two papers with a similar approach to the one used in this research that model
some other protocols are a bachelor thesis [5] which models TCP and a research
paper [6] which models different kinds of bank cards. Both of these papers
used a similar setup as this research, using the Learnlib implementation and
some mapper in order to model their respective protocols. These both serve
as evidence that the used techniques are correct and do in fact give a correct
model.

Another interesting article is the one about Athena, a way to efficiently and
automatically analyse security protocols [19]. This research shows a different
approach in order to achieve the same goals; to automatically check some be-
haviour of a security protocol. This research also uses a model based approach
but instead of Mealy machines relies on an extended version of the Strand Space
Model. It combines this with theorem proving to check this model for some be-
haviour.

5.2 Analysis of SSH

A very relevant piece of research by Erik Poll and Aleksy Schubert [2] was
already mentioned multiple times in this thesis. This research gives a formal
specification of the transport layer of the protocol based upon the three RFCs
describing this. They also present some handmade models, whereas this re-
search seeks to automatically generate these same kind of models for specific
implementations.

24

A bachelor thesis [18] shows how to use models of SSH implementations like
the ones we created with this research in order to test if an implementation
follows the official specifications. An important difference is that the models he
uses were created by hand, whereas this research shows to create these auto-
matically.

25

Chapter 6

Future Work

There is still much work that could be done to improve or extend this research,
in this section we will discuss some possibilities.

Firstly, as shown in Chapter 4 there are still some errors and mysteries
that a future research could take a look at. The most glaring one is trying to
fix the case where after key exchange both the openSSH and Bitvise servers
send a corrupted packet and afterwards close the server. If this was fixed you
could model the transport layer more completely, since you could take a look at
things such as refreshing the key by starting another key exchange after the first
one or try some service requests. Taking a look at why exactly the freeSSHD
server crashes could also be very interesting, since for the moment this is still
unexplainable.

Another possibility is looking at some different key exchange protocols or
SSH versions. By taking an older client that runs SSH1 as the basis for your
mapper you could model how servers behave when presented with an older SSH
version. A client which uses a key exchange other then Diffie Hellman could be
interesting in a similar way, since most servers will expect to simply use Diffie
Hellman. An example of such a algorithm is described in RFC 4432 [16] which
describes how to use RSA for key exchange.

SSH is of course a lot more complex then only the transport layer. Research
similar to this one could try to model another layer like the authentication
layer. You would first need to setup the transport layer but after this you could
model the authentication layer similarly to how we modelled the transport in
this research.

Using the models created by this research with a model checker, for instance
Uppaal, to check certain conditions which are necessary for the secure function-
ing of the implementation is another possibility. By checking these conditions
we can with more certainty guarantee the security of the implementation. If
one of these conditions fails it can be analysed why it failed, and hopefully find
and fix vulnerabilities in the implementation before they are exploited. Besides
using model checking tools to analyse the model it can also be greatly beneficial
to simply study the model in order to help understand just how a certain im-
plementation of SSH works, since analysing such a picture is much easier than a
large amount of text. An example of this kind of work is the thesis described in
Related Work [18]. This research and ours can in theory be combined, in order
to fully automatically test if a protocol implementation follows some standard.

26

This could be done by first using the techniques described in this research to
produce models, which can then be used by the work by Boss [18] to test if they
follow the standard.

Something else that could be done is to mess with the values of some of
the other fields of a packet. For instance you could look at how different im-
plementations handle packets with a MAC address or packet length that has
been altered. In the same vein you could also change the value of the pay-
load, by sending some non-existing key exchange preferences or encrypting your
messages with a wrong key.

Lastly, there are of course many other interesting network security protocols
that could be modelled using this technique. Some possible protocols that could
be used for this are SSL, HTTP or possibly FTP. You would need to write a
different mapper but other then that the setup would likely be largely the same.
There are also still many more SSH servers that could be modelled the same
way as the three used in this research.

27

Chapter 7

Conclusions

As shown in Chapter 4 our research has produced some very interesting results.
In short these are:

• The research gives further evidence this technique can be used to model
different kinds of security protocols.

• The research can be used to find out information about how a certain
unknown server is implemented.

• The research can be used to find possible flaws in your implementation
and fixing these before they get abused.

• This research can be used to test if a server follows the RFC standard.

• The research found a very strange flaw in the FreeSSHD server implemen-
tation which allowed us to crash it.

In more detail:

• This research provides further evidence how this technique can be used to
model different kinds of security protocols. After other examples such as
banking cards [6] and TCP [5] we show that SSH can also be modelled in
the same fashion.

• We discovered quite a lot about the way the different servers were imple-
mented based upon their responses. The possible ”waiting state” that the
openSSH server might have could be a thing for attackers to exploit, since
the server will only close the socket for only a few select packets while
ignoring the rest when it is in this state.

• The previous result show the kind of information that a attacker could be
interested in that this research produced. This information is of course
not only useful to a possible attacker. The developers of the server could
also look at the results and find places to improve their work.

• Another result is that both the freeSSHD and OpenSSH server do not
follow the RFC standard for the transport layer as specified in RFC 4253
[14]. FreeSSHD breaks this standard in two ways. Firstly by accepting a

28

SERVICE REQUEST that should be denied and secondly by sending the
SERVICE ACCEPT for this request during key exchange, which is not al-
lowed. OpenSSH breaks the RFC by not denying a SERVICE REQUEST
during key exchange, but instead ignoring it. We also found the OpenSSH
server to ignore packets it should never receive from a client. This isn’t
breaking the RFC since the appropriate response is not mentioned in them,
but this is probably not the safest solution.,

• The last result of this research was quite unexpected but interesting nonethe-
less. We found a way to crash any remote freeSSHD server as long as we
can connect to it. This shows some inherent flaw in the server implemen-
tation. It should be clear that a server should not crash this easily by one
machine sending packets to it. The fact that these crashes occur even if
the server is reset in the meantime is further cause for worry because this
means that on the server side there is very little you can do to prevent
this attack, except trying to block all communications from the machine
sending you the packets, but at this point the server does not.

29

Bibliography

[1] Barret, D. J., Silverman, R. E. & Byrnes, R. G.(2005) , SSH, the Secure
Shell The Definitive Guide 2nd edition. Sebastopol: O’Reilly Media, Inc.

[2] Poll, E. & Schubert, A. (2011). Rigorous specifications of the SSH Transport
Layer. Technical Report ICIS-R11004, Radboud University Nijmegen

[3] SSH insertion attack. Retrieved on March 15, 2014, from
http://www.coresecurity.com/content/ssh-insertion-attack

[4] Taschner, C. SSH CBC vulnerability. Retrieved on March 15, 2014, from
http://www.kb.cert.org/vuls/id/958563

[5] Janssen, R. (2013). Learning a State Diagram of TCP Using Abstraction.
Bachelor Thesis. Radboud Universiteit.

[6] Aarts, F., Ruiter, de J. & Poll, E(2013). Formal models of bank cards for free.
Paper presented at 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), Luxembourg. Re-
trieved on March 16, 2014, from IEEE Xplore. 10.1109/ICSTW.2013.60

[7] Angluin, D(1987). Learning regular sets from queries and counterexamples,
Inf. Comput., 1987 (vol. 75, no. 2), pp. 87–106

[8] Niese, O(2003). An integrated approach to testing complex systems, Dort-
mund University, Tech. Rep., doctoral thesis.

[9] Albrecht, M. R., Paterson, K. G. & Watson, G. J.(2009) Plaintext Recovery
Attacks Against SSH. 2009 30th IEEE Symposium on Security and Privacy.
Berkeley, CA.

[10] Lehtinen, S. The Secure Shell (SSH) Protocol Assigned Numbers. RFC
4250, The Internet Engineering Task Force, Network Working Group.

[11] Ylonen, T. (2006). The Secure Shell (SSH) Authentication Protocol. RFC
4252, The Internet Engineering Task Force, Network Working Group.

[12] Ylonen, T. (2006). The Secure Shell (SSH) Connection Protocol. RFC 4254,
The Internet Engineering Task Force, Network Working Group.

[13] Ylonen, T. (2006). The Secure Shell (SSH) Protocol Architecture. RFC
4251, The Internet Engineering Task Force, Network Working Group.

[14] Ylonen, T. (2006). The Secure Shell (SSH) Transport Layer Protocol. RFC
4253, The Internet Engineering Task Force, Network Working Group.

30

[15] Schlyter, J. & Griffin, W. (2006). Using DNS to Securely Publish Secure
Shell (SSH) Key Fingerprints. RFC 4255, The Internet Engineering Task
Force, Network Working Group.

[16] Harris, B. (2006). RSA Key Exchange for the Secure Shell (SSH). RFC
4432, The Internet Engineering Task Force, Network Working Group.

[17] Stallings, W. (2009). Protocol Basics: Secure Shell Protocol.
The Internet Protocol Journal, Volume 12, No.4. Retrieved from
http://www.cisco.com/web/about/ac123/ac147/archived issues/ipj 12-
4/124 ssh.html

[18] Boss, E. (2012). Evaluating implementations of SSH by means of model-
based testing. Bachelor Thesis. Radboud Universiteit.

[19] Song, D. X., Berezin, S. & Perrig, A.(2001) Athena: A novel approach to
efficient automatic security protocol analysisJournal of Computer Security,
2001 (Vol 9), pp. 47–74

31

Appendices

32

Appendix A

Message number translation

This table is based on the table found in RFC 4250 [10]. It describes the
correlation between message numbers and the command that is associated with
this number. All messages belonging to the transport layer (1 to 31 in the table)
are being send by our mapper. The other numbers are added since they could
potentially be received as ouput.

Message number Command Layer
1 SSH MSG DISCONNECT Transport
2 SSH MSG IGNORE Transport
3 SSH MSG UNIMPLEMENTED Transport
4 SSH MSG DEBUG Transport
5 SSH MSG SERVICE REQUEST Transport
6 SSH MSG SERVICE ACCEPT Transport
20 SSH MSG KEXINIT Transport
21 SSH MSG NEWKEYS Transport
30 SSH MSG KEXDH INIT Transport
31 SSH MSG KEXDH 31 Transport
50 SSH MSG USERAUTH REQUEST User Authentication
51 SSH MSG USERAUTH FAILURE User Authentication
52 SSH MSG USERAUTH SUCCESS User Authentication
53 SSH MSG USERAUTH BANNER User Authentication
80 SSH MSG GLOBAL REQUEST Connection
81 SSH MSG REQUEST SUCCESS Connection
82 SSH MSG REQUEST FAILURE Connection
90 SSH MSG CHANNEL OPEN Connection
91 SSH MSG CHANNEL OPEN CONFIRMATION Connection
92 SSH MSG CHANNEL OPEN FAILURE Connection
93 SSH MSG CHANNEL WINDOW ADJUST Connection
94 SSH MSG CHANNEL DATA Connection
95 SSH MSG CHANNEL EXTENDED DATA Connection
96 SSH MSG CHANNEL EOF Connection
97 SSH MSG CHANNEL CLOSE Connection
98 SSH MSG CHANNEL REQUEST Connection
99 SSH MSG CHANNEL SUCCESS Connection
100 SSH MSG CHANNEL FAILURE Connection

33

A
p

p
e
n

d
ix

B

F
u
ll

O
p

e
n
S
S
H

m
o
d
e
l

F
ig

u
re

B
.1

:
A

n
in

fe
rr

ed
m

o
d

el
of

th
e

O
p

en
S

S
H

se
rv

er
im

p
le

m
en

ta
ti

o
n

.
A

t
ev

er
y

tr
a
n

si
ti

o
n

w
h

a
t’

s
le

ft
o
f

th
e

’/
’

is
w

h
a
t

th
e

m
a
p

p
er

se
n

d
,

to
th

e
ri

gh
t

is
th

e
se

rv
er

’s
re

p
ly

.

34

A
p

p
e
n

d
ix

C

F
u
ll

B
it

v
is

e
m

o
d
e
l

F
ig

u
re

C
.1

:
A

n
in

fe
rr

ed
m

o
d

el
of

th
e

B
it

v
is

e
se

rv
er

im
p

le
m

en
ta

ti
o
n

.A
t

ev
er

y
tr

a
n

si
ti

o
n

w
h
a
t’

s
le

ft
o
f

th
e

’/
’

is
w

h
a
t

th
e

m
a
p
p

er
se

n
d

,
to

th
e

ri
gh

t
is

th
e

se
rv

er
’s

re
p

ly
.

35

