
Bachelor thesis
Computer Science

Radboud University

Cache Cookies: searching for
hidden browser storage

Author:
Patrick Verleg
s3049701

First supervisor/assessor:
Prof. dr. M.C.J.D van Eekelen

m.vakeekelen@cs.ru.nl

Second assessor:
Dr. ir. H.P.E. Vranken
Harald.Vranken@ou.nl

June 26, 2014

Abstract

Various ways are known to persistently store information in a browser to
achieve cookie-like behaviour. These methods are collectively known as ‘su-
per cookies’. This research looks into various super cookie methods. Atten-
tion is given to the means a user has to regulate data storage and what is
allowed by the cookiewet.

The main goal of this research is to determine whether a browser’s cache
can be used to store and retrieve a user’s unique identification. The results
show that this is the case, and these ‘cache cookies’ use a method so fun-
damentally entangled with the cache that there is no easy way to prevent
them.

Because of cache cookies and other methods, the only way to prevent all
tracking methods is to disable cache, history, cookies and plug-in storage.

Contents

1 Introduction 2

2 Cookies for maintaining browser state 5
2.1 Storing and retrieving cookies 5

2.1.1 Same-origin policy . 6
2.1.2 Third party cookies 6

2.2 Protection against cookies . 7
2.2.1 Technical means . 7
2.2.2 Regulation . 8

3 Super cookies 11
3.1 Plug-in cookies . 11
3.2 HTML 5 . 14
3.3 Misusing browser features . 15
3.4 Regulation . 18

4 Research: Cache Cookies 20
4.1 Method . 20

4.1.1 Storing cache cookies 20
4.1.2 Retrieving cache cookies 21

4.2 Validation . 22
4.3 Comparison with other techniques 23

4.3.1 Strong points . 23
4.3.2 Weak points . 24

4.4 Reflection . 24
4.5 Related work . 25

5 Conclusions 26
5.1 Further research . 26

A Code 32

1

Chapter 1

Introduction

The internet used to be a place where web site content was provided almost
exclusively by the web site owner. Over the last decade, this has changed
rapidly. Web sites are no longer isolated sites on the Internet, but form a
tangled web where third parties provide social integration, advertisements,
web analytics and more. It’s not uncommon for websites to embed a dozen
of third parties [6] and that number has grown over the last years [5].

As the web evolved, so did the techniques deployed by third parties
to accurately track users on different pages and between different web sites.
Roughly six business models can be distinguished that depend on embedding
third party content [6]:

• Advertising companies combine browsing data to create elaborate
user profiles used to serve ads.

• Analytical services aim to give the web site owner insight in visitor
behaviour. Most analytic tools depend on JavaScript informing the
third party on visitor’s actions.

• Social integration offer integration with social media sites. Exam-
ples include Facebook’s like button and Twitter’s tweet button. Even
users who are not logged in are tracked by some social buttons [21].

• Content providers host content that is embedded in the web site,
such as video, audio and news.

• Frontend services host Javascript libraries in order to provide con-
tent or speed up page loading.

• Hosting platforms such as Akamai help content providers with dis-
tribution of their content.

Furthermore, law enforcement and intelligence agencies might use web track-
ing to partially undo anonymization efforts [32]. For example, the United

2

States’ National Security Agency has shown interest in tracking cookies for
this purpose [26].

Although visitor tracking to some extent is possible in all business models
mentioned above, they are of vital importance to advertising networks. For
serving relevant ads, they depend on user profiling: the process of gathering
information specific to each visitor in order to customize web site content [3].

These profiles contain more than the user’s gender or socioeconomic
status. A publicly available segmentation of advertising network Epic Mar-
ketplace offered an interesting insight in to what extent users are being pro-
filed [34]. Segmentations included getting pregnant and fertility, menopause
and repairing bad credit.

With upcoming techniques like real time bidding, advertisement net-
works bid on available ad slots while a web page is loading. The amount
offered for an ad slot depends on the profile of that specific visitor. For
example, a higher bid can be made if the advertising network decides that
a user is a better match to the product being advertised. In other words,
advertisement networks that have more information can build better profiles
and place a better substantiated bid.

Since one of the keys to better profiling is collecting more data, advertis-
ing networks are looking for more ways to identify users. Three techniques
can be distinguished [6].

• Data storage depends on recognizing a user by storing uniquely iden-
tifiable data on their computer and retrieving it afterwards.

• Active fingerprinting depends on requesting properties from the
device that is used to visit the web page. These properties include in-
stalled fonts, plug ins and supported MIME-types. Also fingerprinting
based on a device’s accelerometer has been shown to work [28].

• Passive fingerprinting is a fingerprinting method where input con-
sists of properties that need not to be requested but are always pro-
vided by the visitor. These properties include IP-address, operating
system and user agent. Since these properties are always sent, there
is no way for a user to know whether he is fingerprinted.

In this research we will focus on ways to store data on the computer of
a web site visitor. This is the most reliable technique, since the data stored
is chosen by the web server and therefore uniqueness can be guaranteed. In
other words: it is not possible to mix-up users. Fingerprinting heuristics
lack this property, but they have shown remarkable accuracy in both test
and real world environments. For example, heuristics on web browsers using
both Flash and Java could uniquely identify of 94% the test cases and and
changes in fingerprint data (such as a changing IP address) can be matched
to the old fingerprint in 99% of the cases [2]. Similar methods have also been

3

tested on Hotmail and Bing, confirming their privacy risks: 80% of the hosts
could be identified by their user agent and IP address alone, yielding to a
similar effectiveness as obtained with cookie usage [11]. With at least 145
of the Internet’s top 10,000 sites using fingerprinting, it is more widespread
than previously thought [1].

In this research, we will try to answer our main research question:

What methods are known to persistently store identifiable infor-
mation in a browser and can cache contents be used to introduce
a new way of persistently storing such information?

To answer this question, we will first consider the conventional way of stor-
ing information: cookies (chapter 2). Since http is a stateless protocol [29],
cookies were invented as a way to maintain browser state between consec-
utive visits. Storing data on a computer with cookies are therefore the
most common way to store data on a visitor’s computer and thus track
visitors. Users, however, demand control over their online privacy. Stud-
ies on US citizens have shown that 65% of respondents found the idea of
targeted advertising invasive and 54% said they did not like the idea of ad
targeting [7][30]. Because tracking is such a controversial topic, we will be
focussing on means the user has to protect his or her privacy throughout
this research. Both technical means and legal aspects will be discussed.

We will continue our research to persistent storage with non-standard
storage methods. These non-standard methods are known as super cookies
(chapter 3). We will look into different types of super cookies and their
properties. Furthermore, we will investigate how people can regulate super
cookie placement and whether European regulation is also applicable to
super cookies.

After investigating cookies and super cookies, we will present the main
contribution of this research: a way to persistently store information in the
browser’s cache that can be used to uniquely identify a user (chapter 4). We
will show that cache cookies provide a reliable way of identifying visitors
in an advertising network scenario. Cache cookies’ strong and weak points
will be compared with other super cookie methods and performance and
consequences will be discussed. We have implemented cache cookies in a
proof of concept that works on all major browsers. The code for this proof
of concept can be found in appendix A.

4

Chapter 2

Cookies for maintaining
browser state

When browsing the web, all information sent and received by the browser
uses the http protocol [29]. Since http is a stateless protocol, an addition
is needed to maintain browser state (such as the user account logged in
with). Lou Montulli, working with what would later be known as Netscape
Communications, added support for retaining browser state by letting web
sites store small pieces of text on the visitor’s computer. These became
known as cookies and were added to every outgoing http request.

2.1 Storing and retrieving cookies

Both http request and response messages may contain headers. Request
headers can, amongst others, include preferred language, user agent and ac-
cepted encoding. Response headers typically contain properties like caching
directives, content type and language.

When the server needs to place a cookie, it sets the Set-Cookie header
with the cookie’s content. For example, Wikipedia places a cookie with your
estimated physical location.

Set-Cookie: GeoIP=NL:Nijmegen:51.8333:5.8667:v4;

Domain=.wikipedia.org

The Domain keyword specifies for which web location the cookie will be
attached to the request. Placement of cookies can not be guaranteed; client
policy may dictate to ignore it. If the client saved the cookie, it will send
the Cookie header on all subsequent requests in the request header.

Cookie: GeoIP=NL:Nijmegen:51.8333:5.8667:v4;

Cookies can also be stored and retrieved by the client with JavaScript.

5

document.cookie="GeoIP=NL:Nijmegen:51.8333:5.8667:v4;

Domain=.wikipedia.org";

At first sight, the possibility to store and retrieve cookies on client side
seem to greatly extend possibilities. This is only partially true. Storing and
retrieving cookies can easily be emulated by initializing http requests with
JavaScript. Saving cookies would be the same as making a request with
the preferred cookie data as request argument, with a web server using that
argument in the Set-Cookie header of the response and thus placing it in
the browser. Reading cookies would be the same as requesting a page which
returns the cookie data that was send in the request header. Furthermore,
when using JavaScript, the actual cookie storage is just as uncertain since
it also depends on the cookie policy of the client.

However, the same expression power can only be achieved if the server
implements this kind of emulation. In practise, saving and reading cookies
with JavaScript opens up new risks and possibilities. These risks involve
cookie theft, leading to session hijacking. If third party’s JavaScript is in-
cluded in a page, the direct access to cookies enables the attacker to transfer
cookies to his own domain.

2.1.1 Same-origin policy

Which cookies can be stored and retrieved for each domain is dictated by
the same-origin policy. This web design principle states that information
stored in the browser by one domain may later only be read or modified by
the same domain. By implementing such a policy, web sites can peacefully
coexist on a browser without interfering with each other. The same-origin
policy dates back to version 2 of the Netscape browser [31].

The same-origin policy effectively isolates cookies, making them only
accessible to the web site storing them. The Domain keyword we saw in
the Wikipedia cookie thus only affects whether the cookie data is shared
with its sub domains; it can never be shared with other domains. The same
principle holds when storing and retrieving cookies with JavaScript.

Although the same-origin policy has been around for some time, no
browser fully implements it for all browsing information. The failure to do
so is one of the reasons for web data leakage [4]. All browsers do, however,
enforce a same-origin policy for cookie data.

2.1.2 Third party cookies

One would suspect that tracking by a third party is not possible if a same-
origin policy is enforced, because it blocks transferring identifiers to a third
party. This was indeed the case for older cookie standards, which specified
that sharing of cookies between servers should be limited [23][24], but newer
standards relaxed this requirement [12]. Although cookies can still only

6

be stored and retrieved on their own domain, embedded external elements
such as images or iframes allow for cookie interaction on their (third party)
domain. The cookies that are set during the retrieval of external elements
are called third party cookies. When cookies are used to track a user, they
are frequently dubbed ‘tracking cookies’.

So how do third party cookies work? The web site owner embeds a piece
of external content on his web site in order display advertisements or enable
social networks or web analtyics. When a page is loaded, so are the third
party elements. The cookies set by these elements can only be read by their
own domain, but since the same third parties are included on numerous
web sites, each site contributes to the profile of the visitor. This profile
is extended with information that is available to the third party, like the
address of the web page it was embedded on.

Two common techniques make third party cookie tracking even more
effective. Firstly, some web page properties, such as page title, can be
requested by the third party’s iframe because their properties are shared.
These properties should therefore not contain identifiable information. Stud-
ies have shown that more than half of the web sites investigated directly
leaked private information, such as names and addresses and even more
leaked properties like user IDs [10][6]. Secondly, some third parties require
embedding scripts directly into the first party’s web site. The third party
then becomes a first party, enabling techniques like cookie synchronisation
between the first and the third party. Third party cookie policy can be
evaded because the third party acts as a first party.

2.2 Protection against cookies

Both first and third party cookies raise privacy concerns. We will therefore
look into ways to regulate cookie flow by considering the technical means
available and the protection the Dutch law provides.

2.2.1 Technical means

All major desktop browsers1 provide options to regulate cookie placement,
like blocking all cookies or cookies originating from third parties. Options
are available to remove cookies when the bowser is closed. Furthermore, all
browsers allow fine-tuning the cookie policy on a per-site basis. Browser
extensions are available to simplify this process. Mobile browsers2 have
significantly less options available and lack plug-in capabilities.

On Safari, third party cookies are blocked by default [16]. A third party
cookie is not blocked when at least one cookie on the target domain has

1Safari, Chrome, Firefox and Internet Explorer.
2Chrome for Android, Safari for iOS.

7

been stored before, thus effectively blocking third party cookies only when
the third party has never been visited as a first party. Mozilla thought about
blocking third party cookies by default, but postponed implementation be-
cause further research was needed [27]. The definition of ‘blocking’ differs
from browser to browser. For example, Internet Explorer only blocks the
storage of a third party cookie (while reading is allowed), whereas Firefox
blocks reading the cookie (while allowing storage). An ideal third party
blocking system would disallow both reading and writing [4].

2.2.2 Regulation

The first attempt to regulate cookie placement was made by the European
Union in the 2002 ePrivacy directive [19]. This directive mandates that
member states implement laws that force web site owners to give users an
opt-out possibility for cookie placement. Strictly necessary cookies that are
requested by the user were excluded from this opt-out (article 5.3 of [19]).
Because most member states did not enforce compliance the directive largely
missed its goal [6].

The 2009 amendment to the ePrivacy directive replaced the opt-out with
an explicit opt-in [20]. The directive was translated into Dutch law in the
Telecommunicatiewet (article 11.7a) in 2013 and is commonly referred to as
the ‘cookie law’. The directive allowed to widen the scope of the member
states’ implementation and the Dutch government did so on two aspects.
Firstly, the telecommunicatiewet requires explicit consent of the visitor, in
contrast to the implicit consent required in other countries like the United
Kingdom. Secondly, the burden of proof for collecting personal data is
reversed. The latter means that the supervising organisation (Autoriteit
Consument en Markt, formerly opta) does not have to prove that certain
cookies are used for the collection of personal data. It is up to the other
party to prove the contrary.

While privacy concerns regarding tracking cookies were the primary rea-
son for the privacy directive, its scope is not limited to third party cookies.
All cookies deemed not strictly necessary for a service require explicit per-
mission. Examples of strictly necessary cookies include shopping cart infor-
mation and language preferences, but in general do not include cookies set
by advertising networks and web analytic companies. The minister stated
that the classification of strictly necessary cookies is often a grey area, where
necessity should be judged on a per-case basis [25].

In practise the majority of web sites do not obey the cookie law, because
they either do not ask for consent or ask implicitly. An explicit consent
requires to ask for permission before cookies are set, so a notification while
browsing the web site will not suffice. Web site owners have to choose be-
tween potentially driving away users and risking a penalty from the supervi-
sor. Many choose the latter, strengthened by the knowledge that Autoriteit

8

Figure 2.1: A mockup of standardised icons

Consument en Markt runs short on resources for investigation.

Suggestion for improvements

The cookie law has outspoken supporters and opponents. Three arguments
can be put forward as of why the current law is not effective in protecting
privacy of Dutch users.

Firstly, nearly every web site on the Internet uses cookies which are not
strictly necessary. Therefore, they all have to ask for a users permission,
leading to habituation. Users will consent without considering the risks and
consequences.

Secondly, the law only recognizes two types of cookies: strictly necessary
cookies and non-strictly necessary cookies. It can be argued that there is
a huge difference between using cookies to track and profile users on the
one hand, and using cookies to anonymously perform web site analytics on
the other hand. Since the legislator did not make any difference, the same
consent request is shown no matter how invasive the technique.

Thirdly, because the cookie law is focussed on informing users rather
than protecting them, it leaves the possibility for web site owners to refuse
access to users that do not consent to cookie placement. Although focussing
on informing users is a legitimate political choice, it resulted in a very weak
position for the web site’s visitor.

A few suggestions can be made to improve the effectiveness of the current
implementation of the law. To inform users more effectively, a consent form
can be considered with standardized icons can be considered. These icons
will clarify cookie consequences, just like the KijkWijzer or PEGI icons do
for movies (figure 2.1).

Using these icons, web sites that use the most privacy invasive tech-
nologies are clearly recognised as such. This will likely help users to inform
themselves. However, if the goal is to not only inform about cookies but also
protect online privacy, more invasive legislation will have to be proposed.
Requiring web sites to provide an opt-out that degrades user experience as
little as possible will be a good first step. Denying access to users will then

9

belong to the past.
The cookie law has outspoken supporters and opponents and will likely

be subject of debate for some time to come. The first change has already
been proposed: a planned modification of the telecommunicatiewet will allow
web analytic services without requiring consent [38].

10

Chapter 3

Super cookies

While the standard technique to track users is to use http cookies, it is
by no means the only way to do this. In the fast-developing Internet land-
scape, other ways have emerged to persistently store data and thus enable
cookie-like behaviour. Some of them were invented to overcome cookie lim-
itations, others materialized as a by-product of other features. These non-
conventional ways of storing browser state are often collectively referred to
as super cookies.

Most super cookies carry no more harm than cookies potentially do:
they encode data for persistent storage. They differ in their storage space
availability, whether data is transmitted in all communication or available
on request, and whether their data is shared between browsers. But in a
tracking scenario, they essentially do the same thing as traditional cookies,
i.e. store a unique string so that a user can be recognised. The vast majority
of Internet users is unaware of the different techniques used by super cookies
and unaware of countermeasures that could be taken to protect online pri-
vacy. Advertising networks, whose business model depends on recognizing
returning users, are well aware of this knowledge gap and we will see later
on that they have deployed various types of super cookies.

Super cookie techniques can be combined to re-spawn deleted cookies,
making them harder to remove. These returning cookies are called zom-
bie cookies, and this questionable technique has been used by advertising
companies [14], including major players like Microsoft [33].

While all super cookies techniques have the power to store data persis-
tently in a browser, we can divide them in three major categories based on
their characteristics.

3.1 Plug-in cookies

Probably one of the most well known types of super cookies originate from
browser plug-ins. These plug-ins have their own methods available for per-

11

sistently storing data, while still being able to access http cookies.

3.1.1 Adobe Flash

The Flash plug-in is the most used browser plug-in on the market, its pub-
lisher claims over 99% of the desktops have it installed [13]. Many computer
vendors pre-install Flash on their devices and the Chrome browser even ships
with a build-in version of Adobe’s plug-in.

Using Flash, web site owners can use Local Shared Objects (LSOs) to
store up to 100KB of data, which is stored within the user’s operating system
profile. Using profile-based storage instead of browser-based storage gives
LSOs a major advantage over cookies from the perspective of a third party
since it enables third parties to track users when they switch browsers. Until
2010, the same LSOs storage was used when browsing in private mode1,
ignoring its intended effect. The usage of LSOs has also been seen with
major advertising networks, as well as their deployment to create zombie
cookies [8]. LSO usages decreased somewhat after their usage drew negative
attention from the media [15].

Protection

Over the last few years, Adobe made improvements when it comes to privacy.
By supporting the ClearSiteData API since version 10.3, LSOs are now
removed when http cookies are cleared. Before version 10.3 was released
in 2012, users had to go to Adobe’s web site to clear LSOs which, as might
be expected, the majority of the users never did. Alternatively, users could
remove LSOs from the file system directly, but since LSOs are stored in
hidden folders that option was not very popular either. Nowadays, Flash
cookies still fall behind in terms of transparency compared to http cookies
though, since there is no easy way to see which LSOs are currently stored
on a computer. Furthermore, fine-tuning of LSO permissions on a per-site
basis is not possible via the browser interface.

The usage of LSOs can be blocked altogether with the Flash Settings
Manager from version 10.3 onwards. The method of accessing the Settings
Manager depends on the operating system, but it can usually be found in
the system settings or control panel. Disabling LSOs will prevent tracking
using Flash, but it might also break some Flash applications.

3.1.2 Microsoft Silverlight

Microsoft introduced the Silverlight plug-in in 2007 as a competitor to
Adobe’s Flash. Persistent storage for Silverlight cookies can be obtained

1Private mode (sometimes called InPrivate mode or incognito mode) is a special
browser mode implemented by all browsers. History, cookies and other data is removed
upon leaving private mode.

12

by using Isolated Storage. It can contain 100KB per site and is saved in the
user’s profile, just like LSOs. Isolated Storage is disabled in private mode.
Microsoft does not release Silverlight penetration statistics but the penetra-
tion is estimated to be well over 50%, mainly due to automatic Windows
Update installations.

Microsoft announced the retirement of their latest version of Silverlight
in 2021 and future developments will probably be focussed on html 5. But
until it is phased out, Silverlight provides the same type of storage as Flash
does.

Protection

The efforts made by Adobe to increase privacy controls were not made by
Microsoft. Although Silverlight does support private mode, it does not im-
plement the ClearSiteData API. The only way to remove isolated storage
is to remove files from a hidden folder in the file system or right click an
Silverlight application and manage storage options. The latter being im-
possible when Silverlight is just used for storage and not displayed on the
screen. In the same menu options for disabling isolated storage on all web
sites can be found.

3.1.3 Java and other plug-ins

Java applets also provide mechanisms to persistently store data and interact
with http cookies. Because starting the Java Virtual Machine takes some
time and the user gets notified that Java is running, Java is not an ideal
candidate when it comes to super cookies. Its usage has not been observed
by a third party web site.

Other plug-ins exist (e.g. Google Gears, Adobe Air), but are either not
widely used or are deprecated (or both) and will therefore not be discussed.

3.1.4 Conclusion

Protection against plug-in cookies is hard. Plug-in cookies for Flash and Sil-
verlight can be disabled, but it can be safely assumed that the vast majority
of the users has no idea how to do that. Furthermore, using private mode
will protect online privacy, but highly impractical to use as default mode.

With the usage of special browser extensions, plug-in cookies can be
automatically deleted when closing the browser. The popular Ghostery2

extensions provides this option, although it is disabled by default.

2https://www.ghostery.com/

13

3.2 HTML 5

Native client applications once held an advantage over the web when it
comes easily access various data structures in persistent storage. Cookies
were available but could not contain more than 4KB of data. Rich web
applications were in need for more storage, which led to the proposal of
html 5 storage techniques.

Early versions of the html 5 draft introduced a storage mechanisms
known as global storage. If the draft were to be followed, it would have
been possible to store data for arbitrary domains using JavaScript [37].

globalStorage["domain.example"].key = "value";

Data could even be stored so that any web site could access it.

globalStorage[""].key = "value";

All browser vendors refused to implement global storage due to its major
violation of the same-origin policy. Later versions of the html 5 draft re-
moved global storage and introduced two new storage types: local storage
and session storage [39]. They both have a storage capacity of 5MB to store
key-value pairs and they both comply with same-origin policy. They differ
only in persistence and scope: session storage is deleted when the window
is closed and only available in the current window, whereas local storage is
kept after the window is closed and its contents can be shared between win-
dows. Local storage is supported by all browsers and its properties allow for
super cookie behaviour. As might be expected, its usage has already been
observed [40].

Other html 5 storage mechanisms exist (e.g. database storage). These
mechanisms operate under the same conditions as local storage does when
it comes to scope, persistency and data capacity. Since they only differ in
data structure, they pose the same threat to online privacy as local storage
and will not be individually discussed.

Another technique worth mentioning is Internet Explorer’s user data
storage. This proprietary technique was introduced in Internet Explorer 5.5
and never made the transition to other browsers. It allows for storage up
to 64KB in an xml format. It was declared obsolete with the introduc-
tion of Internet Explorer 7 but still works and can be combined with other
techniques.

3.2.1 Protection

Browsers handle html 5 local storage exactly the same way as cookies when
it comes to viewing, regulating and removing. Local storage will therefore
be blocked when cookies are blocked (via the cookie policy, as described in

14

chapter 2). If a user insists on blocking only html 5 local storage, it can
be achieved by blocking JavaScript. Extensions like NoScript3 or Ghostery
can help to define which scripts to block.

3.2.2 Conclusion

Local storage is well integrated in the browser. Since local storage is cleared
when cookie data is emptied and can be viewed and fine-tuned on a per site
basis, it does not pose and extra privacy threat over normal cookie usage.

3.3 Misusing browser features

One of the most interesting kinds of persistent storage techniques is storage
using features which were never intended to use for storage.

3.3.1 Etags

Etags (entity tags) are part of the http specification and provide a mecha-
nism for cache validation [29]. Their usage is optional and supported by all
major browsers. For every resource sent, the server adds a string which is
used to validate the cache on subsequent requests. A collision-resistant hash
function is often used due to its ability to create unique and reproducible
etags. The server places the etag in the ETag response header of the http
request.

ETag: "17757e02095ed78048af2cf5030b09e8"

The client sends this value when requesting the resource in consecutive re-
quests using the If-None-Match header.

If-None-Match: "17757e02095ed78048af2cf5030b09e8"

A 304 Not Modified status code is sent if the etag matches the resource
on the server. Otherwise the client’s cache data is deemed to be stale and
the new resource is sent.

The privacy problem resides in the fact that the method of etag genera-
tion cannot be known by the client. The client cannot verify whether the is
really used for cache validator or is just a unique number used for tracking
purposes. Since the the browser reveals the potentially unique etag on each
request, it can be used to enables cookie-like behaviour. These etags are
known as etags cookies an a number of web sites use them [9].

3http://noscript.net/

15

Protection

Etag headers can be stripped away using proxies that allow for header fil-
tering, like Privoxy4 or Proxomitron5. However, since header filtering does
not work on encrypted connections this solution is not very solid (third par-
ties could just switch to the https protocol to evade filtering). A browser
extension could be made that disables last modified and etag storage, but
no such extension seem to exist just yet.

3.3.2 Last modified

The last modified header provides another mechanism for cache validation.
When enabled, the server adds a Last Modified header to every http
response.

Last-Modified: Mon, 9 Jun 2014 12:04:16 GMT

The browser adds this date on subsequent requests.

If-Modified-Since: Mon, 9 Jun 2014 12:04:16 GMT

The server checks whether the local resource is modified since the provided
date and responds with either a 304 Not Modified status code or the up-
dated resource.

The format of these dates is provided in the http specifications [29].
One would therefore expect that these dates do not provide enough entropy
to allow for unique identifiers. However, in 2011 it was discovered that
these date strings are not validated by the client and could thus contain any
string [22]. This opens doors for the same usage as etag cookies, although
usage has not been observed yet.

Protection

Last modified headers can be stripped away using a proxy or a browser
extension, just like etags. No browser extension for last modified filtering
seems to exist. A durable solution would be to bring down the last mod-
ifier entropy by enforcing strict date format and limiting the amount of
information in the date string (e.g. remove seconds). Browsers have not
implemented this yet.

3.3.3 Browser redirection

A special http status code exists for resources that were permanently moved
to another location. When a browser encounters such a status code it saves

4http://www.privoxy.org/
5http://www.proxomitron.info/

16

both the old and the new location, so that consecutive requests can be send
directly to the new location. This property can be exploited to persistently
store information [22]. A third party can redirect the browser to a page (for
example: domain.example/cookie) that returns a redirection header to a
unique location.

HTTP/1.1 301 Moved Permanently

Location: http://domain.example/cookie?id=5ed78048af2cf50

This redirection can take place in an iframe, in which case it is invisible to
the user. When the third party requests domain.example/cookie after the
redirection, the browser will load the new, unique location. The identifier
is then known by both client and server and the user can be recognised. It
has been reported that redirection is not always cached in all browsers, but
it works in most configurations [18].

Protection

Protecting against tracking based on redirection is tricky. The header could
be stripped by using a proxy or browser extension, but that would break
parts of the Internet. Treating every permanent redirect as a non-permanent
redirect would work because those redirects are not cached by the browser,
but browser vendors would have to ignore the http specification to do so.
A plug-in could achieve the same result, but does not exist yet.

Header redirection will probably be noticed by the user if it cannot be
hidden by using JavaScript. Therefore, blocking the required scripts will
provide some protection.

3.3.4 Browser history

A super cookie technique that has been used by some major web sites was the
css history leak. A third party would let the browser visit a few web pages
from a collection of locations. The selection of these pages would encode
a unique identification. Upon a later visits, the third party could generate
all possible web pages from its collection and test whether the css visited
pseudo class (frequently used to apply different colours to visited links)
would change the layout of the elements. Since the css pseudo class revealed
web pages the user visited, it allowed for both finger printing techniques and
super cookie storage.

A few years ago, all browser vendors abandoned the css specification to
protect their users’ privacy. They made changes to the properties JavaScript
had access to and took measures to prevent other layout-based attacks and
some timing attacks [35]. Recently, new timing attacks were discovered by
measuring the redraw events [36]. Just like with a lot of timing attacks, the

17

results will not always be accurate. Still, a very reliable assumption can be
made. The new technique has not yet been observed in use by third parties.

Protection

As for the css history timing attacks, there are no third party means to
prevent this kind of tracking except from blocking JavaScript. A durable
solution can only be achieved if browser vendors implement countermea-
sures.

3.3.5 Techniques requiring user interaction

Some features can be misused to store data but require user interaction to
do so. Most notable are the misuse of html 5 protocol and content handlers
and http authentication. Although these techniques can be very effective
if the user is tricked into granting permission, they disqualify as silent super
cookies and will not be thoroughly discussed.

3.3.6 Conclusion

Protection against techniques misusing browser features is very hard. Counter
measures depend on the misused feature. Although all methods depending
on cache can be theoretically countered by browser extensions, such exten-
sions do not exist just yet. Protection of the history timing attack can only
be achieved when countermeasures are implemented by browsers.

Until protection can be achieved, the only way to protect your privacy is
to disable cache and history, or clear it frequently (this also happens when
using private mode).

3.4 Regulation

In chapter 2 we discussed the impact of the cookie law on http cookies.
What does it say about super cookies?

The term ‘cookie law’ is somewhat misleading. The scope of the law
is more extensive than just cookies. It includes anyone who wants to read
or save data on a device. Flash storage, Silverlight storage and html 5
local storage fall within its scope. Even the placement of html, css and
JavaScript has to be explicitly consented unless the files are strictly necessary
for the requested service. In most cases that will be easy to prove. Since
Flash and Silverlight storage is not strictly necessary when used for tracking,
it will require explicit permission.

When we look at the misusage of browser features to store information,
it becomes more complicated. A precaution is in place when discussing these

18

subjects. The Autoriteit Consument en Markt has not yet punished super
cookie behaviour and until it does, this subject is grey area.

Let us consider etag header tracking. When placing an etag on a http
response, a explicit request to save the etag is given. The situation is com-
parable with cookies, which are also just a response header that requests
persistent storage. Is an etag header strictly necessary? The answer to that
will depend on how they are used. When used for tracking purposes, the
answer is clearly ‘no’. Because the burden of proof is reversed in the Dutch
implementation, the web site owner has to prove that the unique string con-
tained in an etag is not used for tracking. The same goes for tracking based
on the last modified header.

When we look at redirect storage, the same reasoning applies. Since
the 301 status code is an explicit request to store it permanently, explicit
consent is clearly required.

Finally, let’s consider storing data in a browser’s history to be read with
timing attacks later on. The minister addressed reading device properties
in the Senate [25].

“Reading device properties with the sole aim of providing the re-
quested service falls under the exception of paragraph 3. Reading
this information to track the device’s user does not fall under this
exception and does require explicit consent.”

If ‘device properties’ were to be broadly interpreted, history reading will
also require explicit consent.

The precise rules that apply to super cookies will be unknown until the
Autoriteit Consument en Markt takes action and a case is brought to court.
For now, it seems that the legislator was very well aware of super cookies
and made their placement subject to the same conditions as cookies.

Nonetheless, from the perspective of a third party it is probably still
smart to set multiple types of cookies. If the user consents once, it will be
harder to remove all cookies when he changes his mind.

19

Chapter 4

Research: Cache Cookies

We have already seen super cookie techniques which depend on cached files,
but they were merely used for their headers (etags, redirection and last
modified). We will introduce a new way of persistently encoding data in
the cache. In order to implement this new method, we have successfully
circumvented browser’s precautions for cache scanning. This results in a
reliable super cookie technique that is nearly impossible to protect against
without degrading browsing experience.

4.1 Method

Web resources can be cached to improve loading speed and reduce traffic.
Caching can depend on client side policy, but in general the server’s caching
directions are strictly followed. The http response header could suggest
keeping cached items for many years. Items retrieved from cache can quickly
be retrieved, and this property can be exploited.

To implement cache cookies, we will store a number of images in the
cache. By checking which images are available, we can reconstruct the
unique identification assigned to the user, even if all cookies have been
deleted. Cache scanning behaviour will normally be prevented by browsers,
but we will shortly see that we can easily circumvent this protection.

We will walk through the implemented method by showing a graphi-
cal overview and some code snippets. The full source code is available in
appendix A.

4.1.1 Storing cache cookies

The client starts by checking if cached images are available. A special flag
image will be cached by the client if cache cookies have previously been
stored. The cache scanning function uses both the complete and the width

and height properties to ensure full browser compatibility.

20

Figure 4.1: Cache cookies are stored in the browser’s cache

function is_cached(img_url) {

var img = document.createElement("img");

img.src = img_url;

return (img.width + img.height) > 0 || img.complete;

}

if (!(is_cached("/imgs/known.png"))) {...}

If the flag image is not available, cache cookies have not yet been stored
on the device. The JavaScript code will request a unique identification from
the server and translates that code into a set of images to load. There is
a slight delay in the server’s response, we will shortly see why. Figure 4.1
provides a graphically overview of the storage process.

4.1.2 Retrieving cache cookies

If the flag image discussed above is available, we expect images that encode
the identifier to be cached as well. We scan for those images and retrieve
the user identification.

var newAdId = 0;

for (var i = 0; i < MAX_IMAGES; i++) {

if (is_cached("/imgs/" + i + ".png")) {

newAdId += Math.pow(2, i);

}

}

Browsers have incorporated precautions for cache scanning. If the source

property is set on an element, the resource is directly requested and placed
in the cache. This would normally be fatal for our super cookie since reading
the cache once would result in all images being cached. These automatic
requests cannot be cancelled by JavaScript. However, if we force a page
reload all requests will be cancelled by the browser itself, preserving the
integrity of our cache cookie. Since this reload is done in an iframe it will
not be visible to the user.

21

Figure 4.2: Cache cookies are stored in the browser’s cache

var y = MAX_IMAGES;

while (true) {

if (y<0)

break;

if (adId-Math.pow(2, y) >= 0) {

is_cached("/imgs/" + y + ".png");

adId -= Math.pow(2, y);

}

y--;

}

One final precaution should be taken to avoid pollution of the cache. It
should be guaranteed that a cache-scanned image cannot successfully load
before a page reload is initiated. Since an advertisement network controls
both the client side and the server side code, this can be implemented by
adding a short delay in the server’s response. Figure 4.2 provides an overview
of the retrieval process.

4.2 Validation

One could ask how many different images would be needed for unique iden-
tification. There are roughly 10 billion internet connected devices around
today. Because some have multiple, separated user accounts and others have
no browsing capabilities, we can only make a rough estimate, but thirty to
forty bits should be enough to assign a globally unique pseudonymous iden-
tifier. In the code example above, a MAX_IMAGES value of 40 would suffice
for large advertisement networks.

The time needed for scanning these images can be benchmarked. Fig-
ure 4.3 shows the time required on our test machine1. Random bits were
stored during these tests. A few conclusions can be drawn. Firstly, cache
cookies are not qualified to store large amounts of data. Secondly, when

1An average desktop machine using Firefox 30.

22

scanning for a unique identification (30 to 40 bits), the sever should delay
the response at least 200 milliseconds for reliable results. Since this timing
is known by the server and the client, measures could be taken to guarantee
that the cache will never be polluted. In order to do so, the JavaScript in the
browser of the client has to constantly measure time and force a refresh if
the 200 milliseconds are reached. The identification then fails, but the cache
integrity will be preserved. In more advanced implementations, the time-out
period can also be negotiated between client and server. The last conclusion
is that cache scanning should be evaded as much as possible. This can be
done by using cache cookies only to re-spawn http cookies. Scanning will
then only occur just after the http cookies have been removed.

We now know retrieval time for a cache cookie, but how long does it take
to store one? The answer depends on many factors. A request has to be
made for each image to load. On average, a 40 bit identification will result
in 20 http request. The content of the served files can be as little as a few
bytes, but http 1.1 adds overhead: on average 200 to 400 bytes are received
and transmitted per file. While the resulting traffic (around 8KB) is almost
negligible, the large number of requests does add some delay. This delay can
almost be completely eliminated by implementing the spdy protocol [17].
If the server enables spdy, all requests will be transferred over a single
connection and all http headers will be compressed.

We can conclude that cache cookies can be very reliable by taking counter
measures that guarantee that the cache integrity will be preserved. Retriev-
ing cookies takes some time and should therefore be avoided as much as
possible, while storing cookies is very fast when the server is configured
correctly.

4.3 Comparison with other techniques

In chapter 3 we already saw that storage techniques that misused browser
features were extremely hard to prevent. How can cache cookies be pre-
vented? And what are its strong and weak points from a advertising net-
working perspective?

4.3.1 Strong points

Unlike header-based cache methods (etags, last modified headers and redi-
rection headers), cache cookies cannot be prevented by stripping or modify-
ing headers. Cache cookies are not only harder to prevent than some other
techniques, they also outclass some techniques in terms of reliability. The
timing attacks used in the CSS history attack are based on an estimate and
can therefore be influenced by other factors, like other processes running
on the computer. Cache cookies also depend on timing, but the time differ-
ence in scanning and retrieving files can be kept high by delaying the server’s

23

Figure 4.3: number of images scanned (vertical) vs. time in ms (horizontal)

response leading to a reliable identification. Since redirection seems to some-
times not be cached by the browser, cache cookies also outclass redirection
cookies in terms of reliability [18].

We can conclude that cache cookies combine the reliability from header-
based cookies while they are harder to prevent because they do not depend
on headers that can be stripped or modified.

4.3.2 Weak points

Cache cookies can be prevented. Unlike storage based on etag and last
modified headers, cache cookies will not work when JavaScript is disabled or
blocked (with browser extensions like NoScript or Ghostery). Furthermore,
just like all header-based cookies, they will fail if cache would be disabled
(or frequently emptied), although that would leave a degraded browsing
experience.

4.4 Reflection

Since presence of cache content is measured (rather than just a header), they
touch the essence of caching. Finding a durable solution to prevent cache
cookies is therefore not likely happen in the near future.

A strict same-origin policy for cache could be implemented to prevent
cache cookies [4]. This is unlikely to happen though, not a single browser
is around which strictly implements the same-origin policy for cache. Do-
ing so would cripple some techniques frequently used nowadays, like multi

24

domain sign-in. Cache cookies would also fail if browsers would not cancel
their requests when moving away from a web page. This is unlikely to be
implemented because it would result in web pages continuing to load even
after they have been left. In other words, cache cookies are here to stay.

If cache cookies are both reliable and hard to prevent, are they likely to
be used? That depends. For a third party, a combination of super cookie
techniques is probably the best guarantee to uniquely identify a user on
subsequent visits. On the other hand, combining various cache-based super
cookie methods offers few extra advantages, as it is safe to assume that the
majority of the Internet users will not uses header modification via proxy or
browser extensions.

The real addition of cache cookies probably twofold. Firstly, we have
found a method that uses a technique so fundamentally entangled with the
cache that no easy way of preventing seems to exist. Secondly, by adding
another technique to the known methods, we have shown that persistent
storage can take even more forms than previously known.

4.5 Related work

Non-destructive cache scanning has been proposed as a method to extract
browsing history in 2011 [41]. The implementation of history scanning and
the implementation of cache cookies share some properties but also differ on
certain areas. They share iframe-reloading as their way to preserve cache
integrity, but purposes and results vary between the two. Because the re-
sponse speed of the third party cannot be controlled when scanning for
external web pages, mixed results have been produced leading to a 84% to
90% success rate. These figures might seem high, but controlling the con-
tacted web page is crucial for super cookies since a few incorrect cache hits
could yield totally different identifiers.

25

Chapter 5

Conclusions

Many methods are available to persistently store information in a browser.
Cookies are conventionally used for storage, but other techniques have emerged.
These techniques known as super cookies, and different methods have dif-
ferent strong and weak points.

Cache could already be used to persistently store unique identification
via super cookie methods based on headers. These methods could in theory
be easily circumvented by altering headers via proxy or browser extensions.
Due to the introduction of cache cookies, this is no longer the case. Cache
cookies use a technique so fundamentally entangled with the cache that no
easy solution seems to exist to prevent them.

Browsing the web without being tracked is hard because of cache cookies
and other methods. The only way to prevent all tracking methods based on
data storage is to disable cache, history, cookies and plug-in storage.

The cookiewet was introduced to inform users about all non-necessary
cookies. Its scope is very properly defined: both cookies and super cookies
seem to be affected by it. Because the cookie law only distinguishes two
types of cookies, it is hard to make difference between different levels of
privacy infringement. Standardised icons could be used to improve user’s
understanding. The law does not protect users from dubious tracking meth-
ods, if merely informs. New legislation has to be proposed if protection is
required.

5.1 Further research

Not much research has been done with regard to super cookies. A thorough
review of all browser aspects and their persistent storage probabilities can
introduce even more ways of persistently storing information in a browser.
This information should be kept in mind when drafting new web specifi-
cations, since browser vendors often have to balance between following the
web specifications and protecting their users’ privacy. This dilemma will be

26

evaded if privacy consequences were better thought of when creating web
specifications.

Secondly, I would recommend to look into benchmarking the combina-
tion of various super cookie methods. Testing them on a large and repre-
sentative web site should give insight in how often users clear their cookies
and how many of those users can still be identified using super cookies.

It will also be interesting to create a browser aimed at preventing all
known super cookie methods. We have already seen that some super cookie
properties touch the core of browsing principles. Research will have to show
what kind of browsing experience remains when some features are sacrificed
in order to improve online privacy.

27

Peer-reviewed journals

[1] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses,
Frank Piessens, and Bart Preneel. Fpdetective: Dusting the web for
fingerprinters. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, CCS ’13, pages 1129–1140, New
York, NY, USA, 2013. ACM.

[2] Peter Eckersley. How unique is your web browser? In Proceedings of
the 10th International Conference on Privacy Enhancing Technologies,
PETS’10, pages 1–18, Berlin, Heidelberg, 2010. Springer-Verlag.

[3] Magdalini Eirinaki and Michalis Vazirgiannis. Web mining for web per-
sonalization. ACM Trans. Internet Technol., 3(1):1–27, February 2003.

[4] Collin Jackson, Andrew Bortz, Dan Boneh, and John C. Mitchell. Pro-
tecting browser state from web privacy attacks. In Proceedings of the
15th International Conference on World Wide Web, WWW ’06, pages
737–744, New York, NY, USA, 2006. ACM.

[5] Balachander Krishnamurthy and Craig Wills. Privacy diffusion on the
web: A longitudinal perspective. In Proceedings of the 18th International
Conference on World Wide Web, WWW ’09, pages 541–550, New York,
NY, USA, 2009. ACM.

[6] Jonathan R. Mayer and John C. Mitchell. Third-party web tracking:
Policy and technology. In Proceedings of the 2012 IEEE Symposium on
Security and Privacy, SP ’12, pages 413–427, Washington, DC, USA,
2012. IEEE Computer Society.

[7] Aleecia M. McDonald and Lorrie Faith Cranor. Americans’ attitudes
about internet behavioral advertising practices. In Proceedings of the
9th Annual ACM Workshop on Privacy in the Electronic Society, WPES
’10, pages 63–72, New York, NY, USA, 2010. ACM.

28

Other references

[8] Flash Cookies and Privacy. Social Science Research Network Working
Paper Series, 2010.

[9] Flash Cookies and Privacy II: Now with HTML5 and ETag Respawning.
Social Science Research Network Working Paper Series, 2011.

[10] Privacy leakage vs. protection measures: the growing disconnect. In
Proceedings of the Web 2.0 Security & Privacy Workshop, May 2011.

[11] Host fingerprinting and tracking on the web: Privacy and security im-
plications. In Proceedings of the 19th Annual Network & Distributed
System Security Symposium. NDSS, February 2012.

[12] U.C. Berkeley A. Barth. Rfc 6265: Http state management mechanism.
https://tools.ietf.org/html/rfc6265, apr 2011.

[13] Adobe. Flash statistics: Pc penetration. https://www.adobe.com/nl/
products/flashplatformruntimes/statistics.html, 2011.

[14] Lorrie Faith Cranor Aleecia M. McDonald. A survey of the use of adobe
flash local shared objects to respawn http cookies. 2011.

[15] Lorrie Faith Cranor Aleecia M. McDonald. A survey of the use of adobe
flash local shared objects to respawn http cookies, January 2011.

[16] Apple. Apple safari. https://www.apple.com/safari/#privacy,
2013.

[17] Peon Belshe. Spdy protocol. https://mbelshe.github.io/

SPDY-Specification/draft-mbelshe-spdy-00.xml, feb 2012.

[18] Elie Bursztein. Tracking users that block cookies with
a http redirect. http://www.elie.im/blog/security/

tracking-users-that-block-cookies-with-a-http-redirect,
jul 2011.

[19] European Commission. Directive 2002/58/ec of the european parlia-
ment and of the council of 12 july 2002. http://eur-lex.europa.eu/
LexUriServ/LexUriServ.do?uri=CELEX:32002L0058:en:HTML, 2002.

29

[20] European Commission. Directive 2009/136/ec of the european par-
liament and of the council of 25 november 2009. http://eur-lex.

europa.eu/legal-content/EN/TXT/?uri=CELEX:32009L0136, 2009.

[21] Nik Cubrilovic. Logging out of facebook is not enough. http://nikcub.
appspot.com/posts/logging-out-of-facebook-is-not-enough,
sep 2011.

[22] Nik Cubrilovic. Persistent and unblockable cookies us-
ing http headers. https://www.nikcub.com/posts/

persistent-and-unblockable-cookies-using-http-headers-2/,
aug 2011.

[23] L. Montulli et al D. Kristol. Rfc 2109: Http state management mecha-
nism. https://tools.ietf.org/html/rfc2109, feb 1997.

[24] L. Montulli et al D. Kristol. Rfc 2965: Http state management mecha-
nism. https://tools.ietf.org/html/rfc2965, oct 2000.

[25] Eerste Kamer der Staten-Generaal. Wijziging van de telecommuni-
catiewet ter implementatie van de herziene telecommunicatierichtli-
jnen. https://zoek.officielebekendmakingen.nl/kst-32549-E.

pdf, 2011.

[26] The Guardian. Tor stinks presentation. http://

www.theguardian.com/world/interactive/2013/oct/04/

tor-stinks-nsa-presentation-document, oct 2013.

[27] Jonathan Mayer. Web policy: a blog about technol-
ogy, policy and law. http://webpolicy.org/2013/02/22/

the-new-firefox-cookie-policy/, 2013.

[28] Nancy Owano. Accelerometer in phone has track-
ing potential, researchers find. http://phys.org/news/

2013-10-accelerometer-tracking-potential.html, oct 2012.

[29] UC Irvine et al R. Fielding. Rfc 2616: Hypertext transfer protocol
– http/1.1. http://www.w3.org/Protocols/rfc2616/rfc2616.html,
jun 1999.

[30] TRUSTe Research. Privacy and online behav-
ioral advertising. https://www.eff.org/files/

TRUSTe-2011-Consumer-Behavioral-Advertising-Survey-Results.

pdf, 2011.

[31] Jesse Ruderman. The same origin policy. http://www-archive.

mozilla.org/projects/security/components/same-origin.html,
2001.

30

[32] Niklas Schmücker. Web tracking. 2011.

[33] Stanford Law School. Tracking the trackers: Microsoft ad-
vertising. http://cyberlaw.stanford.edu/blog/2011/08/

tracking-trackers-microsoft-advertising, aug 2011.

[34] Stanford Law School. Tracking the trackers: To catch a
history thief. http://cyberlaw.stanford.edu/blog/2011/07/

tracking-trackers-catch-history-thief, jul 2011.

[35] Sid Stamm. Mozilla security blog: Plugging the css his-
tory leak. https://blog.mozilla.org/security/2010/03/31/

plugging-the-css-history-leak/, mar 2010.

[36] Paul Stone. Pixel perfect timing attacks with html5. 2013.

[37] Alberto Trivero. Abusing html 5 structured client-
side storage. http://www.scribd.com/doc/4012693/

Abusing-HTML-5-Structured-Client-side-Storage, 2008.

[38] Volskrant. Kamp gaat toch de cookiewet wijzigen. http:

//www.volkskrant.nl/vk/nl/2694/Tech-Media/article/detail/

3401513/2013/02/28/Kamp-gaat-toch-de-cookiewet-wijzigen.

dhtml, feb 2013.

[39] W3C. Html5: W3c candidate recommendation 29 april 2014. http:

//www.w3.org/TR/2014/CR-html5-20140429/, 2014.

[40] Wired. Lawsuit targets mobile advertiser over sneaky html5 pseudo-
cookies. http://www.wired.com/2010/09/html5-safari-exploit/,
2010.

[41] M. Zalewski. Rapid history extraction through non-destructive cache
timing. http://lcamtuf.coredump.cx/cachetime/, 2011.

31

Appendix A

Code

The JavaScript code is based on the jQuery1 framework with jquery-cookie2

for cookie handling and purl3 for url parsing.

function is_cached(img_url) {

var imgEle = document.createElement("img");

imgEle.src = img_url;

return imgEle.complete || (imgEle.width+imgEle.height) > 0;

}

$(document).ready(function() {

var MAX_IMAGES = 40;

var origin = $.url().param("origin");

var adId = $.cookie("adId");

console.log("Adid: " + adId);

if (adId) {

console.log("Cookie available. adId is " + adId);

}

else {

console.log("I do not know your adId yet");

if (is_cached("/imgs/known.png")) {

console.log("Some images are cached.");

var start = new Date().getTime();

// Load the MAX_IMAGES images. If all images are

// gathered, reload the page.

1https://jquery.com/
2https://github.com/carhartl/jquery-cookie
3https://github.com/allmarkedup/purl

32

var newAdId = 0;

for (var i = 0; i < MAX_IMAGES; i++) {

if (is_cached("/imgs/" + i + ".png")) {

console.log("Image " + i + " was cached.");

newAdId += Math.pow(2, i);

}

// Timing measures to guarantee cache integrity is

// introduced here. In an advanced setup, timing

// negotiation between client and server can be

// implemented.

if (end-start) > 200) {

$.cookie(’adId’, ’failed - scanning to slow’);

location.reload();

}

}

console.log("Cache constructed AdId was " + newAdId);

// Set AdId cookie and reload before caching finishes.

$.cookie("adId", newAdId);

location.reload();

}

else {

console.log("Cache was emptied or has not been filled yet");

// Do normal ajax call to get new AdId

// and load images for that adId.

$.get("/getId/", function (adId) {

var y = MAX_IMAGES;

while (true) {

if (y<0)

break;

if (adId-Math.pow(2, y) >= 0) {

is_cached("/imgs/" + y + ".png");

adId -= Math.pow(2, y);

}

y--;

}

});

}

}

});

33

