
BACHELOR THESIS

FORMAL CHARACTERISTICS OF THE
FUNCTIONAL STRATEGY

Rafael Alejandro Imamgiller

Supervisor/First assessor:
prof. dr. Erik Barendsen

Second assessor:
dr. Sjaak Smetsers

August 2014

Abstract

The functional method of evaluation, also known as the functional strategy,
is an algorithm to perform calculations in functional languages. It is effi-
cient and intuitively easy to understand, which makes it a great strategy
for functional language interpreters. But, because the algorithm deals with
priority rewriting, its semantics are complicated and difficult to formalize,
which makes it hard to use as a formal strategy for term rewriting systems.
In this paper we look at the formal characteristics of the functional strat-
egy by comparing two different formalization approaches, and determine its
normalizing behaviour.

Contents

1 Introduction 3
1.1 Term Rewriting . 4
1.2 Formal Definitions . 7

1.2.1 Term Rewriting Systems 7
1.2.2 Reduction Strategy . 7
1.2.3 Formalized rewriting 8
1.2.4 Normal Form and Head-Normal Form 9

2 The Functional Strategy 11
2.1 Solving TRSes . 11

2.1.1 Reaching NF through the Head-Normal Form 11
2.1.2 Lazy Evaluation . 14
2.1.3 Rule Order and Overlap 15
2.1.4 Describing the FS in natural language 17

2.2 Formalizing the FS as an algorithm 18
2.2.1 The FS defined in pseudo code (PC-FS) 18

3 Omega-Reduction 21
3.1 Omega-Reduction . 21

3.1.1 Omega-Terms . 22
3.1.2 Compatibility . 24
3.1.3 Omega-systems and Strong Head-Normal Form 25

3.2 Solving TRSes with Omega-Reduction 27
3.2.1 Indexes and Strong Sequentiality 27
3.2.2 Transitivity in term rewriting 27
3.2.3 Transitive directions 29
3.2.4 Left-Incompatibility 30

3.3 Formalizing the FS with Omega-Reduction 32
3.3.1 Marking subterms . 32
3.3.2 The FS defined with Omega-Reduction (OR-FS) . . . 33
3.3.3 Equivalence between PC-FS and OR-FS 34

1

4 Conclusion 37
4.1 Answers to the Research Questions 37

4.1.1 SQ1: How can we formalize the Functional Strategy? . 37
4.1.2 SQ2: How can we describe the normalizing behaviour

of the Functional Strategy? 37
4.1.3 RQ: What are the formal characteristics of the Func-

tional Strategy? . 38
4.2 Future Work . 38

2

Chapter 1

Introduction

Functional programming is a branch of programming that closely resem-
bles actual mathematics. It is based on the formal construct of the Term
Rewriting Systems or TRSes (as for instance described by J.W. Klop in
Term Rewriting Systems (1992) [1]), a way of defining mathematical opera-
tions by rewriting them to simpler forms until the simplest form, or normal
form, is reached. The normal form of an equation is the result of calculating
that equation.

A computer algorithm trying to perform calculations in a TRS therefore
constantly rewrites equations to simpler forms using these definitions, until
it reaches this normal form and finishes the calculation. One such algorithm
is the Functional Strategy. It approaches the normal form through simple
rewriting steps and a concept called lazy evaluation that circumvents certain
problems with undecidability.

The main problem of the Functional Strategy is that, while easy to
understand intuitively, its semantics are hard to formalize. Toyama et al.
did this in The Functional Strategy and Transitive Term Rewriting Systems
[3] by designing an algorithm based on index rewriting and proving it was
normalizing for the class of left-incompatible term rewriting systems.

The question we try to answer in this paper is as follows:

RQ: What are the formal characteristics of the Functional Strat-
egy?

We break this question down into two subquestions:

SQ1: How can we formalize the Functional Strategy?

SQ2: How can we describe the normalizing behaviour of the Func-
tional Strategy?

We answer the first subquestion in Chapter 2 and 3 by comparing a
refinement of the definition from [2] to the definition from [3]. We answer

3

the second subquestion in Chapter 3 by exploring the concept of transitive
term rewriting systems and left-incompatibility. Finally, we will show that
the algorithm suggested by Toyama et al. [3] is an actual implementation
of the Functional Strategy.

But before we can formalize the Functional Strategy, we need to do some
preliminary work. In this chapter we introduce the concepts of Term Rewrit-
ing Systems, Reduction Strategies, Normal Form and Head-Normal Form.
We also introduce a special type of tree diagram that we use extensively to
illustrate examples throughout this paper.

1.1 Term Rewriting

In term rewriting such as described in Term Rewriting Systems [1], functions
are defined recursively by distinguishing several different cases for different
patterns of arguments.

In the example below, s(x) indicates the successor of x: s(x) = x + 1.
So every number n ∈ N can be written as sn(0).

1.1 Example: Addition defined recursively:

1. Add(x, 0)→ x

2. Add(x, s(y))→ Add(s(x), y)

1.2 Example: Multiplication defined recursively:

1. Mult(x, 0)→ 0

2. Mult(x, s(y))→ Add(Mult(x, y), x)

Every single one of these cases is a rewrite rule. Together they define
how a given expression or term can be reduced or rewritten to a different
term. We use a right-headed arrow (→) instead of an equality symbol to
signify that a rewrite rule rewrites in only one direction. When no rewrite
rule can rewrite a term, that term is in normal form.

Terms have a tree-like structure: the arguments of a function symbol in
a term are terms of their own. We can express this in a tree diagram. We
will now show a few examples of this.

1.3 Example: The constant 0 without arguments or proper subterms.

0

1.4 Example: The term s(0), called with 0 as its first and only argument.
0 is a proper subterm of s(0) here.

4

s

0

1.5 Example: The term add(s(0), 0), function add called with arguments
s(0) and 0. Note that 0 here is a proper subterm of both s(0) and add(h(0), 0),
since 0 is in an argument space for both s and add. The term s(0) is only a
proper subterm of add(s(0), 0).

add

s

0

0

Note the use of dotted boxes in these diagrams. These express the ar-
gument spaces of a function symbol, the possible locations for another term
to be inserted into it. Terms inside dotted boxes are inserted into the cor-
responding argument spaces of other terms; they are proper subterms.

We can generalize by using generic function letters such as f to look at
a few interesting properties:

1.6 Example: Two generic functions defined recursively:

1. f(h(x), y)→ g(x)

2. h(x)→ j(x)

1.7 Example: The term f(h(0), 1) is similar to add(s(0), 0) in basic struc-
ture, but has different symbols in several places.

f

h

0

1

5

As long as a (sub)term matches the left-hand side of the rewrite rule,
that (sub)term can be reduced using that rule. The result is simply inserted
back at the same argument space.

Now say we want to know what we get if we rewrite f(h(0), 1) using Ex-
ample 1.6. To better illustrate what happens, we put colored boxes around
the (sub)terms that are important in our examples. If we use the first rewrite

rule, we get the following reduction: f(h(0), 1) → g(0) .

f

h

0

1

g

0

But if we apply the second rule on f(h(0), 1), instead this happens:

f(h(0) , 1)→ f(j(0) , 1).

f

h

0

1

f

j

0

1

Neither of these terms can be rewritten any further; they are both in
normal form. But both were obtained by rewriting f(h(0), 1), using different
rewrite rules. So the rewrite rule we choose to rewrite the term with is of
importance. We call a series of reductions a reduction path.

A function that takes a TRS and a term in that TRS as input, and gives
another term as output such that a reduction path exists between the input
and output terms, is called a reduction strategy.

If a strategy always yields normal forms for a certain set of TRSes, it is
said to be normalizing on that set.

As we have seen, s does not need its own rewrite rules; in fact our
definitions ofAdd andMult depend on every number being of the form sn(0).
We call a function symbol without rewrite rules (such as s) a constructor.

A Term Rewriting System or TRS R is a tuple of an alphabet Σ of func-
tion symbols, constants and variables, and a set of rewrite rules R consisting

6

of terms constructed from that alphabet. R = (Σ, R). So each TRS is a set
of rewrite rules over a set of terms. A TRS is defined by its alphabet and its
rewrite rules.

In Example 1.1, the alphabet consists of the functions Add and s, the
constant 0 and a countably infinite set of variables x, y, z, ... The set of
rewrite rules consists of the rules as listed in that example. By adding the
function Mult and the rewrite rules from Example 1.2 we get another TRS,
one capable of both addition and multiplication.

1.2 Formal Definitions

In the previous section we saw Term Rewriting Systems, a method to define
mathematical functions through simple rules, and then use those rules to
perform calculations (using a strategy to rewrite a term to NF). Now we
give very concise, formal definitions of TRSes and reduction strategies here:

1.2.1 Term Rewriting Systems

1.8 Definition (Term Rewriting System (TRS)): A TRS R is a pair (Σ, R)
of an alphabet/signature Σ and a set of rewrite rules R.

• The set T (Σ) is the set of terms over Σ, i.e. every term that is a
variable, a constant or a function of which every argument is also a
term.

• A closed term is a term that does not contain any variables.

• A rewrite rule r ∈ R is a pair (l, r) of terms l, r ∈ T (Σ) such that
l is not a variable, and all variables in r are contained in l. If rule
r = (l, r), it is written as r : l→ r.

• Let t, s ∈ T (Σ). Then t reduces to s (notation t � s) if t can rewrite
to s in zero or more reduction steps. Thus, � is the transitive reflexive
closure of →. (So t� s is true even if t = s.)

• t→+ s if t reduces to s in one or more reduction steps.

1.9 Example: Let R = (Σ, R) with Σ = ({f, g, 0, 1}, V) (where V is a
countably infinite set of variables) and R = {r1} with r1 = (f(x, y), g(x)).
Then f(0, 1) is a term of R.

1.2.2 Reduction Strategy

1.10 Definition (Reduction Strategy): Let R = (Σ, R) be a TRS and
t ∈ R a term.

7

1. A reduction strategy S for R is a map from T (Σ) to T (Σ). The result
of applying S to R and t is written as SR(t).

2. S is only a strategy if t� S(R, t) holds.

3. Repeated application of S on R and t is written as SR
i(t), where i is

the number of repeats, and defined as follows:

(a) SR
0(t) = t.

(b) SR
n(t) = SR(SR

n−1(t)).

4. For every t in R, iff t has a NF, there exists an i ∈ N such that
SR

i(t) = s with s in NF. If this holds, S is normalizing on R.

5. S is normalizing on a set of TRSes if it is normalizing on every TRS
in that set.

6. Let S and Q be two reduction strategies. If SR(t) ≡ QR(t) holds for
every TRS R = (Σ, R) and term t ∈ T (Σ) in a set, then S and Q are
equivalent for that set (notation: S ≡ Q).

1.2.3 Formalized rewriting

A hole � is a special constant that indicates an “open spot”in a term. A
context C[, . . . ,] = t lists all of these spots in t from left to right. If a spot
in the context is empty, the location in t it corresponds with contains �.
But by putting a term s at a spot in the context, it replaces that hole in t.

1.11 Example:
C[,] = f(�,�)

Then
C[, s] = f(�, s)

and
C[q, u] = f(q, u)

1.12 Definition (Holes, Contexts and Subterms): We introduce a new
constant � called a hole. Then C ∈ T (Σ ∪ {�}) is a context. We use the
notation C[, . . . ,] for a context with n ≥ 1 holes. If t1, . . . , tn ∈ T (Σ) then
C[t1, . . . , tn] is the result of placing those terms in the holes of C[, . . . ,]
from left to right.

The variable occurrence z in C[z] is fresh if z /∈ C[].
Now we can introduce a new definition for subterm: if t ≡ C[s] then s

is a subterm of t, written s ⊆ t. If also t 6≡ s then s is a proper subterm of
t, written s ⊂ t. Every term is a (non-proper) subterm of itself.

8

1.13 Definition (Substitution and Redex): A substitution σ is a map from
T (Σ) to T (Σ) satisfying:

σ(f(t1, ..., tn)) ≡ f(σ(t1), ..., σ(tn))

for every n-ary function symbol f . It is also possible to write tσ instead
of σ(t). Note that the substitution skips function symbols; substitutions in
term rewriting are determined entirely on variables.

Term t can be rewritten to term s (t→ s) if there exists a rule r : l→ r
and a substitution σ such that t = C[lσ] and s = C[rσ]. The term lσ is
called a redex.

1.14 Example: Rule r1 from Example 1.9. The green boxes show the
variable that is carried over during the reduction.

f

x y

g

x

Now if we want to use r1 to rewrite f(0, 1), we substitute 0 for x (as indicated
by the green boxes), and 1 for y.

f

0 1

g

0

Thus f(0, 1) rewrites to g(0) with r1.

1.2.4 Normal Form and Head-Normal Form

1.15 Definition (Root): The root of a (non-variable) term is the function
symbol at the head of the term. root(f(p1, ..., pn)) = f

1.16 Definition (Normal Form and Head-Normal Form): A term t in a
TRS T is said to be in Normal Form (NF) if it can not be rewritten any
further. In that case there exists no s ∈ T (Σ) such that t → s.. A term
t in a TRS T is said to be in Head-Normal Form (HNF) if there exists no

9

redex that it can be rewritten to. In that case there exists no s ∈ T (Σ)
such that t � s and s is a redex. This means that its root can no longer
be rewritten; proper subterms may still be able to be rewritten, making it
a weaker constraint than NF.

1.17 Example: A generic term t = froot(s1, s2, ..., sn−1, sn) such that t is
in HNF but s1, ..., sn are not.

froot

s1 s2 sn−1 sn...

The red box, containing the whole term, is in HNF and therefore no
rewrite rule will ever fit it again. The green boxes, containing the proper
subterms, do not have to be in HNF and may still be rewritten.

10

Chapter 2

The Functional Strategy

In this chapter we describe the Functional Strategy. We start by proving
a lemma that lets us reach NF step-by-step and use it to construct the
Naive Strategy. We expand on this through a concept called lazy evaluation
to obtain the Functional Strategy. Finally, we give a broad definition of
the FS in natural language and a more specific one in pseudo-code called
PC-FS.

2.1 Solving TRSes

2.1.1 Reaching NF through the Head-Normal Form

Head-Normal Form is an interesting property. We saw in Definition 1.13
that a redex is a term that matches the left-hand side of a rewrite rule (with
a substitution for the variables). This in conjunction with Definition 1.16
means that a term in HNF is not a redex, and its root will no longer change.
What if we know that every subterm is in Head-Normal Form?

2.1 Lemma: If every s ⊆ t is in HNF, t is in NF.

Proof. With induction to the depth of the subterms of t.
Base: If t is a constant, it has no proper subterms and t is its only

subterm. Because t is in HNF, none of its subterms are redexes.
Step: The proper subterms of t are in NF and therefore not redexes (IH),

and because t is in HNF it isn’t a redex either.
Conclusion: t is in NF.

By determining if (sub)terms are in HNF, we can work toward reaching
NF. Unfortunately, it’s not as simple as just trying all rewrite rules and
calling HNF when none fit. If we evaluate the proper subterms, it’s still
possible that the term rewrites to a redex, which means that it was not in
HNF. Look at Example 1.17 again. Say that, by rewriting s1 with a certain

11

rewrite rule, we get a s′1 such that the red box suddenly fits another rewrite
rule. That means the red box was never in HNF to begin with.

This means we cannot determine whether a term is in HNF until we
look at these problematic redexes that “obstruct”us. If a proper subterm
is a redex that has to be evaluated before we can determine if a term is in
(H)NF, we also call that subterm an index. We will look more in-depth at
this in Definition 3.11 of Chapter 3.

As such we force evaluation of the redex first until it reaches its NF.
The problem is determining what are the redexes. By forcing the evaluation
of every proper subterm we can solve this, but then we run into the same
problem again by having to evaluate the redexes of this proper subterm first.
That means we have to force evaluation of every proper subterm contained
in it, et cetera, until we reach terms without proper subterms. Thus we get
a recursive call of our strategy on every proper subterm.

We also have to pick an order in which to evaluate them since we are
designing a computer algorithm. For our strategy, we will choose leftmost-
outermost order: we start with the leftmost-outermost proper subterm, and
force its evaluation to NF. We call this strategy the leftmost-outermost strat-
egy or LOS.

2.2 Example: Recall the TRS from Example 1.1. It had the following
rewrite rules:

r1 : add(x, 0)→ x

r2 : add(x, s(y))→ add(s(x), y)

We want to rewrite the term add(0, add(0, s(0))) to its normal form.

We try to apply r1 on the red frame, which means we have to evaluate its
proper subterms first. 0 is already in NF and evaluation will just return 0
again, but add(0, s(0)), the green frame, is a redex. We again try to apply
r1, this time to the green frame. Both its subterms, 0 and s(0) are in NF,
but r1 does not fit, so we try r2 instead. This rewrite rule does fit, and
rewrites add(0, s(0)) to add(s(0), 0).

We start over, trying to apply r1 to the green frame. Again the subterms
are in NF and the rule fits this time, rewriting the term to s(0). The green
frame is now in NF, so we finish rewriting it. The reduction of the green
frame looks like this in a diagram:

12

add

0 add

0 s

0

add

0 add

s

0

0

add

0 s

0

Now we go back to the red frame. Unfortunately r1 does not fit it. This
means we have to try the next rewrite rule, r2. r2 does fit now and rewrites
the red frame to add(s(0), 0). Finally we apply r1 one last time to reach
s(0), the NF of the full term. The reduction of the red frame after reducing
the green frame looks like this in a diagram:

add

0 s

0

add

s

0

0

s

0

The only problem is that this assumes that the term has a (H)NF to
begin with. But it is possible for a TRS to have a reduction path that never
terminates, such as a cycle.

2.3 Example: Let R be a TRS with the rewrite rules r1 : f(x) → g and
rω : ω → ω. If we try to rewrite the term t = f(ω) in this TRS, we can only
use r1. But under our old system, this means we have to evaluate the redex
ω first. ω → ω and therefore f(ω)→ f(ω). Because ω is not in NF yet, we
have to evaluate it again and again, endlessly, resulting in non-termination,
even though we could have used the first rewrite rule to rewrite directly to
g.

This presents us with a challenge. It is clear that Lemma 2.1 could be
used to construct a reduction strategy that is normalizing on some TRSes.
However, due to the existence of non-terminating reduction paths, HNF is

13

undecidable. The only way to determine if a term is in HNF is by exhaust-
ing every possible rewrite rule, which involves evaluating the term and its
subterms, which in turn may get stuck in a non-terminating reduction path.
As a result LOS and any other strategy based on Lemma 2.1 would only an
approximation, and LOS is a rather poor one, being completely incapable
of dealing with non-termination.

Fortunately there is a solution to this problem that’ll let us avoid these
non-terminating subterms if they disappear from the term in a rewrite step.

2.1.2 Lazy Evaluation

In NS we always force the evaluation of subterms. We saw that this causes
some problems in Example 2.3, where LOS is not normalizing despite the
term having a normal form. The reason for this is that the subterm that
causes nontermination is not carried over in the rewrite step. It has to match
a variable that disappears in the right hand side of the rewrite rule.

We can solve this problem by not immediately forcing evaluation if a
subterm has to match a variable. We call this lazy evaluation. By performing
lazy evaluation in LOS we end up with the functional strategy or FS.

2.4 Example: We take another look at R from Example 2.3 with the
rewrite rules r1 : f(x) → g and rω : ω → ω. Again we try to rewrite
the term f(ω) in this TRS with r1. But because we use lazy evaluation this
time and ω has to match a variable, we can apply r1 directly. This rule
rewrites f(ω) to g, and g is in NF.

But we encounter a new problem. When a variable does appear in the
right-hand side of a rewrite rule, the subterm that we skipped evaluation on
will remain in the term after rewriting, without being evaluated. Thus we
may end up with a term that is not in NF.

2.5 Example: Let R be a TRS (Σ, R) with the rewrite rules r1 : f(x) →
g(x) and r2 : a → b. We want to rewrite f(a). Using lazy evaluation, we
use r1 to rewrite f(a) to g(a). Our strategy terminates here.

Of course, such a subterm may be a redex or contain redex. Solving the
problem is as simple as just repeating FS again on these subterms.

2.6 Example: We continue from Example 2.5 by applying our strategy on
the redex a. We use r2 to rewrite g(a) to g(b). Our strategy terminates
again, and this time the whole term is in NF.

Remember that, even after rewriting, the FS has to run all rewrite rules
on a term again before it can decide that term is in (H)NF. This means that,
even if a proper subterm had to match a variable and was ignored at first,
if it has to match a non-variable at any point during this evaluation it’ll
get evaluated regardless. This also means that, if the FS terminates now,
evaluating the proper subterms did not rewrite the term to a redex. Else
the term would have gotten rewritten further. When we skip evaluation of a

14

proper subterm in Lazy Evaluation and that proper subterm remains behind
in the term after FS terminates, evaluating that proper subterm will never
rewrite the term containing it to a redex.

2.7 Lemma: Let R be a TRS and t ∈ R. Say that FSR(t) = t′ such that
t′ = C[s1, ..., sn] with s1, ..., sn 6∈ NF . Then t′ ∈ HNF.

Proof. Say that t′ 6∈ HNF. Then there exists a reduction path such that
t′ � t′′ with t′′ a redex. This means evaluation of the proper subterms
s1, ..., sn of t′ rewrites it to a redex. But FS evaluated the proper subterms
when it tried to match t′ with the rewrite rules. Therefore, if this was the
case, FSR(t) = t′′. We know that FSR(t) = t′, so t′ = t′′. But we also know
that t′ is not a redex, so we have a contradiction. Conclusion: t′ ∈ HNF.

2.1.3 Rule Order and Overlap

As we saw in Definition 1.8, R is defined as a set of rewrite rules. A set has
many possible orders. However, a computer algorithm has to try the rewrite
rules one by one, so it will have to settle for one order. But does the chosen
order really matter?

2.8 Example: Let R be a TRS with the following rewrite rules:
r1 : min(x, 0)→ 0
r2 : min(0, y)→ 0
r3 : min(s(x), s(y))→ s(min(x, y))
rω : ω → ω
We want to rewrite t1 = min(ω, 0). We apply FS on the term, and start

by trying to match it with r1. The subterm ω has to match x, a variable, so
its evaluation is skipped. The subterm 0 has to match 0, a non-variable, so
its evaluation is forced. However, this evaluation quickly terminates, because
0 is already in NF. This concludes the match, and we use r1 to rewrite t1 to
0.

Now we want to rewrite t2 = min(0, ω). We apply FS on the term,
and start by trying to match it with r1. The subterm 0 has to match x, a
variable, so its evaluation is skipped. But ω has to match 0, a non-variable,
so we force its evaluation. However, ω always rewrites to ω, so we get stuck
in a non-terminating reduction path.

Let’s switch the order in which we try the rewrite rules and start with r2

instead. First 0 has to match 0. 0 is already in NF and it does match, so we
move on to the next subterm, ω. This time ω has to match y, a variable, so
we skip its evaluation. This concludes the matching, and we use the rewrite
rule to rewrite t2 to 0.

But what if we had tried to match t1 with r2? The first subterm, ω, has
to match the non-variable 0 and its evaluation is forced. Thus we get stuck
in a non-terminating reduction path again.

15

We saw two different terms in the same TRS in the above example. The
order in which the rewrite rules were listed determined on which one FS was
normalizing. But what exactly causes this problem? It’s because of overlap.

2.9 Definition (Overlap): Two terms t and s are overlapping if there exist
substitutions σ1 and σ2 such that tσ1 ≡ sσ2 .

In Example 2.8, r1 and r2 overlap, thus a term may fit both of them. Of
course, in the end min(ω, 0) and min(0, ω) will both only fit one of them, but
the algorithm cannot figure this out because ω is non-terminating. There
are two ways to circumvent this problem. One way is to completely avoid
overlap and assume that every TRS we work with is orthogonal :

2.10 Definition (Orthogonality): A term is linear if every variable in it
occurs only once. A TRS R is orthogonal if:

1. For all rewrite rules r : l→ r ∈ R, l is linear.

2. For any two rewrite rules r1 : l1 → r1 and r2 : l2 → r2 ∈ R:

(a) If r1 and r2 are different, then l1 and l2 are non-overlapping.

(b) For all s ⊂ l2 such that s is not a single variable, l1 and s are
non-overlapping.

Unfortunately, orthogonality is a very strict property and severely limits
the TRSes we can use.

2.11 Example: A generic function with overlap.
r1 : f(x, y)→ g
r2 : f(x, 0)→ h
rω : ω → ω
We want to solve f(ω, ω). When we apply FS and try r2 first, we get

stuck on the subterm ω, which is evaluated because it has to match 0. If we
try r1 first, ω has to match the variable y instead and evaluation is skipped,
reducing the term to its normal form h.

Again the order of the rewrite rules matters. But this time, by trying r1

first, we try to match all terms with variables before non-variables, unlike in
Example 2.8, where there is no order such that a subterm is always matched
with a variable before a non-variable. The TRS in Example 2.11 is not
orthogonal, but FS is normalizing on it if the rewrite rules are tried in the
right order.

2.12 Definition (Order): Let R = (Σ, R) be a TRS with R = {r1, ..., rn}.
Let R : 1, ..., n→ R be a bijection on R. Then R is an order of R, and R(i)
is the ith rule in that order.

But the left-hand side of the first rewrite rule is f(x, y). Two variables
mean that regardless of the subterms, terms will always fit this rewrite rule
before the next one, f(x, 0). This form of overlap makes the second rewrite

16

rule completely useless if the first rewrite rule is tried first, which means
that as far as FS is concerned, the second rule does not exist. This would
also eliminate the overlap issue. That’s why we will stick with orthogonal
TRSes for the scope of this paper.

Even in an orthogonal TRS rule order can be important. Look at this
TRS:

2.13 Example: An orthogonal TRS in which the rule order determines the
normalizing behaviour:

r1 : f(x, 0)→ g
r2 : f(1, 1)→ h
rω : ω → ω

If we want to solve f(ω, 0) and we try r2 first, we get stuck in a cycle.
But if we try r1 first, we immediately rewrite to the normal form of the
term, g. In Chapter 3 we show that this TRS is left-incompatible, and that
the FS is normalizing on the class of left-incompatible TRSes, a subclass of
the orthogonal TRSes. For now we will stick with just the assumption that
all our TRSes are orthogonal.

2.1.4 Describing the FS in natural language

How do we use the properties we have specified so far to design the Func-
tional Strategy? Let’s look at the description given in Functional Program-
ming and Parallel Graph Rewriting [2].

2.14 Definition (FS): The Functional Strategy defined intuitively in nat-
ural language:

1. If there are several rewrite rules for a particular function, the rules are
tried in textual order.

2. Patterns are tested from left to right.

3. Evaluation of an actual argument is always forced when this argu-
ment must match a non-variable in the corresponding pattern (even
in overlapping cases).

The FS as it is given here is an algorithm that tries to match a term with
rewrite rules by going over the subterms one by one, and force the evaluation
of those subterms when they have to match a non-variable. This ’forced
evaluation’ is actually a recursive call of the FS with this subterm. This
means that the end result of the forced evaluation should be a term in HNF.
We proved in Lemma 2.1 that, by repeating this until the FS cannot rewrite
this subterm any further, it is in NF. Thus the FS recursively rewrites the
term to NF. This definition also implements lazy evaluation to be able to
find the HNF if one exists.

17

In addition, every run of the FS is a multi-step strategy. As we have
seen before, the FS will rewrite orthogonal systems to HNF in a single run,
and therefore by Lemma 2.1 is normalizing if repeated on every subterm.

The problem with Definition 2.14 is that it is a bit too vague and concise
to be useful in formalization. A lot of the actual procedures are left to the
reader’s imagination. Therefore we will give a more precise definition in
pseudo-code that describes an actual algorithm and call it PC-FS.

2.2 Formalizing the FS as an algorithm

Definition 2.14 is a bit too vague to really be considered formal. We have to
expand this definition, clarifying what happens at each step and interpreting
some of the words used

2.2.1 The FS defined in pseudo code (PC-FS)

2.15 Definition (PC-FS): The Functional Strategy defined as an algo-
rithm in pseudo-code, taking a TRS R = (R,Σ) with textual order R and
a term t ∈ T (Σ) as input.

1. Make a subset R′ of all rules r : l → r of which the root of l matches
the root of t′.

2. For i ≥ 1 and i ≤ #R in leftmost-outermost order:

(a) If R(i) ∈ R′ take r : l → r = R(i) as our next rewrite rule. Else
skip to the next i.

(b) We know that root(t) = root(l). Let this root be f . Then t =
f(s1, ..., sn) and l = f(l1, ..., ln). For j ≥ 1 and j ≤ n:

i. If lj is a variable, let s′j = sj and skip to the next j.

ii. If lj is not a variable, let s′j = PC-FSR(sj) with order R.

iii. If root(s′j) = root(lj), recursively repeat (b) with s′j as t and
lj for l before continuing with the next j, and don’t go to (c)
if this run is succesful but instead continue here. This lets
us verify that all proper subterms also match in a depth-first
way. If at any point in these recursive calls the roots do not
match, completely stop the evaluation of the term with this
rule, go back to (a) and skip to the next rule.

iv. Go back to (i) for the next j. If there is no next j, take
t = f(s′1, ..., s

′
n) and go to (c).

(c) Only advance to this step if the run of (b) that just finished was
not a recursive call by (iii). Else go back to the iteration of (iii)
that caused this run of (b). Rewrite t with r and go back to (1).

18

3. If there are no rules left, terminate with ”t is in Head-Normal Form”.

But is this really a good definition? Remember that HNF is undecidable,
so we have to proof the following: if PC-FS returns a term, that term is
in HNF.

2.16 Lemma: If PC-FSR(t) = s, then s in HNF.

Proof. With induction to the size of t.

Base: Let t be in HNF. Recall Definition 1.16. If t is in HNF, there exists no
redex s such that t� s. No rewrite rule will ever match t, regardless
of what its proper subterms rewrite to. So (iii) will run into a pair of
subterms whose roots do not match for every rewrite rule. Thus t will
not be rewritten, and the output of PC-FS is t itself. Therefore, if
PC-FS(R, t) = s for t in HNF, then t = s and s in HNF.

Step: Let t not be in HNF. Say that ri is the rewrite rule that will (even-
tually) fit. Evaluating the subterms in (b) causes the reduction path
t � t′ (if all subterms had to match variables or there were no sub-
terms, this path has a length of 0 and t′ ≡ t). By assumption we can
now use ri to rewrite t′ to s. By our induction hypothesis, by now
taking s as t and repeating evaluation from (1) will result in a s that
is in HNF.

So PC-FS can rewrite a term to its HNF. According to Lemma 2.1, it
is now very easy to make a strategy PC-FS∗ that uses PC-FS to write a
term to NF. PC-FS must simply be repeated on the redexes left behind
by lazy evaluation and all subterms will be in HNF, which means the whole
term is in NF. But how do we go about finding these redexes? One way is to
modify the strategy such that, if a variable is carried over during reduction,
the subterm it had to match is evaluated anyway. But this means that,
if that subterm were to disappear in a later reduction step, we evaluated
a part of the term that did not have to be evaluated and we violated the
principle of lazy evaluation.

We don’t know whether the redexes that remained behind actually have
to be considered until we know that the term containing them is in HNF.
But because of the undecidable nature of HNF, we don’t know if the term
is in HNF until the algorithm terminates (which it may not if it encounters
a cycle). So the only time at which we can start considering these redexes
is after PC-FS terminates.

One way is to repeat the strategy in leftmost-outermost order on every
s ⊂ t after PC-FS terminates on t. Because t is already in HNF, the s
will not disappear after evaluating it and we can safely assume that it is
necessary to reduce it.

19

2.17 Lemma: Applying PC-FS in leftmost-outermost order on every sub-
term of t is normalizing.

Proof. We know that PC-FS(R, t) is in HNF. Thus if we repeat it on every
proper subterm, then by Lemma 2.1 we will achieve NF.

But we already have a recursive call of PC-FS in the algorithm itself,
so we may end up evaluating terms that we already know are in HNF. So
although this approach works, it is not very efficient.

In Chapter 3 we explore a better way to write a term to NF. We use
a decidable version of HNF to determine these important redexes while we
are still rewriting the term, so we can evaluate them as we encounter them,
without the need for the algorithm to terminate first and having to repeat
it on every subterm.

20

Chapter 3

Omega-Reduction

In The Functional Strategy and Transitive Term Rewriting Systems [3], the
Functional Strategy is defined through Omega-Reduction, or Ω-Reduction.
This is a special type of reduction, introduced in Sequentiality in Orthogonal
Term Rewriting Systems [4], that only reduces to a special constant called
Ω. As we will see, this allows Ω-Reduction to focus on how a term reduces,
rather than what it reduces to.

The main purpose of this chapter is to explain the concepts and variation
of the FS introduced in [3], and to see how they pertain to PC-FS. We start
by explaining Ω-reduction in depth and defining all the relevant aspects.
Then we give the definition of the Functional Strategy from [3], which we
call OR-FS. We conclude by proving that OR-FS really is a definition of
the Functional Strategy by proving equivalence between PC-FS and OR-
FS for the class of left-incompatible TRSes.

3.1 Omega-Reduction

In Chapter 2, we saw that, in order to make an algorithm that can solve
TRSes, we have to keep in mind that such an algorithm has to move through
a term step by step. We tried to use Lemma 2.1 to make such an algorithm,
but had to work around HNF being undecidable. We partially solved this
by performing lazy evaluation and not considering the entire term at once.
The algorithm could now at least find the HNF if it existed. Sadly, we had
no good way to formalize ”leaving part of the term out of consideration”,
having to resort to pseudocode to describe the way the algorithm moves
through a term.

Sequentiality in Orthogonal Term Rewriting Systems [4] introduced a
new constant: Ω. This constant represents the part of the term outside
consideration; it is an abstraction of every possible term that can exist
within the given TRS. This constant allows us to reason about a term while
leaving parts of it out of consideration.

21

3.1.1 Omega-Terms

We introduce a new constant Ω, and the new set TΩ of Ω-terms (T (Σ∪{Ω})).
Because Ω is so important for the definitions and examples in the chapter,
we use a special symbol for term nodes in our diagrams that contain Ω: a
dashed circle.

3.1 Example (Diagram with Ω): f(g(0,Ω),Ω)

f

g

0 Ω

Ω

These terms have a partial ordering � that tells us something about
their basic shape.

3.2 Definition (Ω-terms): We define Ω-terms as follows:

1. We introduce a new constant Ω and the new set TΩ = T (Σ∪{Ω}), the
set of Ω-terms. We also define the preordering � on TΩ as follows:

(a) ∀t∈TΩ
, t � Ω.

(b) f(t1, . . . , tn) � f(s1, . . . , sn) (n ≥ 0) if ti � si for i = 1, . . . , n.

(c) If t � s and t 6≡ s, then t � s.
(d) Let S ⊂ TΩ. If there exists an s ∈ S such that t � s, then t � S.

Otherwise, t � s.

If t � s, we left more of s out of consideration than of t. So by leaving
more of t out of consideration (by replacing certain subterms with Ω), we
can get s.

3.3 Example: Let t = f(g(Ω)) and s = f(Ω). Then t � s. But if we leave
g(Ω) out of consideration in t we end up with f(Ω), which is the same as s.

If neither t � s nor s � t, it is not possible to get one term by leaving
more of the other out of consideration. Then the two terms are not ordered
with respect to each other, hence why this ordering is only partial.

In Examples 3.4 and 3.5 we use coloured boxes to show the critical parts
of the terms that determine whether they can be ordered or not. Matching
colours indicate that two subterms can be ordered, conflicting colours that
they cannot.

3.4 Example: Respective ordering of Ω, f(Ω) and g(Ω).

22

(a) f(Ω) � Ω

f

Ω

Ω�

(b) g(Ω) � Ω

g

Ω

Ω�

(c) f(Ω) 6� g(Ω)

f

Ω

g

Ω

6�

(d) f(Ω) 6� g(Ω)

f

Ω

g

Ω

6�

In Example 3.5, pay extra attention to the framed terms at the left side,
and the Ωs in their place at the right side. If the colours of the frames are
the same on both sides, the right side has an Ω there. If they are not, the
right side has another term there. This ties into how, in order for the left
side to be of higher order than the right side, the left side has to be able to
turn into the right side by leaving more of it out of consideration. This is
not possible if the two sides have different terms at the same location.

3.5 Example: Respective ordering of h(f(Ω), g(Ω)) with h(Ω,Ω) and h(g(Ω),Ω)

(a) h(f(Ω) , g(Ω))�h(Ω , Ω)

23

h

f

Ω

g

Ω

h

Ω Ω

�

(b) h(f(Ω) , g(Ω)) 6� h(g(Ω) , Ω)

h

f

Ω

g

Ω

h

g

Ω

Ω

6�

(c) h(f(Ω) , g(Ω)) 6� h(g(Ω) , Ω)

h

f

Ω

g

Ω

h

g

Ω

Ω

6�

3.1.2 Compatibility

Compatibility expresses another kind of similarity. Let r be a term in a
TRS. By leaving certain subterms of r out of consideration you may end up
with a term t, and by leaving certain other subterms out of consideration
you get a term s: r � t and r � s. If there exists such a common ancestor
r for two terms t and s, they are compatible, written as t ↑ s. The inverse
is incompatibility, written t#s, in which such a common ancestor does not
exist.

3.6 Definition (Compatibility): 1. If there exists an r ∈ TΩ such that
r � t and r � s, then t ↑ s (t and s are compatible). Otherwise, t#s
(t and s are incompatible).

2. Let S ⊂ TΩ. If there exists an s ∈ S such that t ↑ s, then t ↑ S.
Otherwise, t#S.

3.7 Example: Compatibility of h(f(Ω),Ω) and h(Ω, g(Ω)).

24

(a) h(f(Ω), g(Ω)) � h(f(Ω), Ω))

(b) h(f(Ω) , g(Ω)) � h(Ω , g(Ω))

(c) h(Ω , g(Ω)) ↑ h(f(Ω) , Ω))

h

f

Ω

g

Ω

h

f

Ω

Ω

h

Ω g

Ω

� �

↑

Two terms are compatible if they leave different parts out of consider-
ation but are otherwise the same. Also, note these special cases: for all
Ω-terms t and s, t ↑ t and t � s =⇒ t ↑ s. Why? Because t � t is always
true, which means that every Ω-term can be its own ancestor.

3.1.3 Omega-systems and Strong Head-Normal Form

We have defined several relations for Ω-terms now, but how are they useful
for term rewriting? For this we introduce a new class of TRSes called Ω-
systems.

3.8 Definition (Ω-systems): Let R be a TRS.

1. Red = {lΩ|l→ r ∈ R} is the set of redex schemata of R.

2. Ω-reduction (→Ω) is defined on TΩ as C[s] →Ω C[Ω] where s ↑ Red
and s 6≡ Ω.

3. The Ω-system RΩ corresponding to R is defined as a reduction system
on TΩ with →Ω as reduction relation.

25

4. ω(t) denotes the normal form of t with respect to →Ω. NFΩ is the set
of Ω-normal forms.

We are not interested in what a term reduces to, but rather which parts
have the potential to reduce. Remember that Ω is a formalization of terms
left out of consideration. So by rewriting to Ω in Ω-reduction, we literally
take terms out of consideration by Ω-reducing them.

In addition, a term merely has to be compatible with any rewrite rule
to rewrite, in other words if the term shares a common ancestor with the
rewrite rule. In the rewrite rule, the Ωs took the place of variables and as
such it does not matter what the term had in those locations; in the term,
the Ωs represent the parts that we left out of consideration, and as such have
the potential to fit the rewrite rule. To find out if the rule would really fit
in actual rewriting, we’d have to take the Ωs in the term into consideration.
This offers us the following advantage: if a term doesn’t Ω-reduce, it will
NEVER rewrite regardless of what is in the locations that were left out of
consideration.

If we look at it more formally, Ω-reduction is extremely linear. It only
rewrites to Ω, and Ω cannot be rewritten any further. As a result it always
terminates. This means we can use it to define a decidable variant of the
Head-Normal Form property called Strong Head-Normal Form:

3.9 Definition (Strong Head-Normal Form): A term t is in Strong Head-
Normal Form (SHNF) if ω(t) 6≡ Ω.

We just explained that, if a term is not compatible with any rewrite
rule, we can be sure that no rewrite rule will ever fit it, regardless of what
subterms were in the locations we left out of consideration. Remember
that the biggest problem of HNF was that we could not decide it without
possibly ending up in a non-terminating reduction path. SHNF completely
circumvents this problem by being based on a form of reduction that only
acknowledges whether a part of the term has any chance at all of getting
rewritten.

Lemma 3.8 from The Functional Strategy and Transitive Term Rewriting
Systems [3] shows us why SHNF is useful. We only give the lemma here:

3.10 Lemma: If t is in SHNF then t is in HNF.

Proof. See Lemma 3.8 in Toyama et al. [3]

This in conjunction with Lemma 2.1 means that we can achieve NF by
rewriting every subterm to SHNF.

When deciding SHNF, we run into none of the non-termination issues
that plagued HNF. So we should be able to use SHNF to explore on which
TRSes the Functional Strategy is normalizing.

26

3.2 Solving TRSes with Omega-Reduction

3.2.1 Indexes and Strong Sequentiality

Now we have a form of rewriting that focuses solely on the rewriting, we
want to be able to identify the redexes that remain unaffected through lazy
evaluation. If a redex remains behind in a term after it is written to its
HNF, we call such a redex an index. We say the same for an Ω that remains
behind:

3.11 Definition (Index): Let C[] be a context such that z ∈ ω(C[z])
where z is a fresh variable. Then the displayed occurence of Ω in C[Ω] is
called an index and we write C[ΩI]. Let C[ΩI] and ∆ be a redex occurrence
in C[∆]. This redex occurrence is also called an index and we write C[∆I].

The benefit of holes and contexts here is that they allow us to talk about
(fresh) variables even though all variables in the system itself are replaced
with Ω.

3.12 Definition (Strong Sequentiality): Let R be a TRS.

1. R is strongly sequential if for each term t that is not in NF, t has an
index.

2. If ∆ is an index of t then t
∆−→ s is the index reduction.

By searching for indexes in terms from a strongly sequential TRS and
rewriting them, those terms will eventually reach NF. This is shown in
Proposition 3.11 from The Functional Strategy and Transitive Term Rewrit-
ing Systems [3], who in turn refer to the proof from Call by need compu-
tations in non-ambiguous linear term rewriting systems [5]. We give the
proposition here:

3.13 Proposition: Let R be strongly sequential. Then index reduction is
normalizing.

Proof. Proven by Huet and Levy in Call by need computations in non-
ambiguous linear term rewriting systems (1979) [5].

3.2.2 Transitivity in term rewriting

There is a problem with searching for these indexes. Remember that, accord-
ing to lazy evaluation, if a term has to match a variable, it is not evaluated,
even if that variable carries over in the rewrite step. This is because we don’t
know if that term has to match another variable in another rewrite step that
does not carry over until we are sure the term is in HNF. Deciding whether
a term is an index depends on deciding whether the term that contains it is
in HNF.

Let C1[ΩI] and C2[ΩI] be two contexts. We cannot assume that also
C1[C2[ΩI]] until we know that C1 is in HNF because it is possible that the

27

combination of C1 and C2 created a term that did match a pattern, such
that z 6∈ ω(C1[C2[z]]) (whatever is in the hole will not carry over). In this
case the ΩI in C2[ΩI] is no longer an index if C2 is inserted at the index
in C1. Even if C1[C2[z]] doesn’t immediately rewrite, it is possible that the
HNF of C2 is a C ′2 such that C1[C ′2[z]] does rewrite. In this case too an Ω
or redex at the location of z is not an index.

Because this can happen after every index reduction, every time we find
an index and rewrite it, we have to reconsider the entire term when searching
for the next index. This is similar to lazy evaluation: we never evaluate a
subterm that has to match a variable because it is entirely possible that
the subterm doesn’t disappear after only a single rewrite step but it does
after a few more. If the subterm had to match a variable every time, lazy
evaluation ensure that it is never evaluated and will disappear from the term
without having ever been considered. But if the subterm didn’t disappear
it remained behind in the term even after PC-FS terminated, which meant
that it could only write to HNF.

If we can determine which indexes do remain behind, we would know
exactly which subterms we have to repeat the strategy on while we are still
executing the strategy and we could continue searching for the next index at
the point we left off. We could even base our entire strategy on just searching
these points and rewriting them. Not only would it be much more efficient
than rewriting to HNF and then repeating the strategy, it also means our
strategy rewrites to NF instead.

If an index stays an index even if it’s behind another index we call it a
transitive index :

3.14 Definition (Transitive Index): The displayed index in C1[ΩI] is tran-
sitive if for any Ω-term C2[ΩI], C2[C1[ΩI]]. We indicate the transitive index
with C1[ΩTI]. We also call the redex occurrence ∆ in C1[∆] a transitive
index and indicate it with C1[∆TI].

3.15 Definition (Transitive Term Rewriting Systems): Let R be a TRS.
R is transitive if for each term t that is not in SHNF, t has a transitive
index.

But this only tells us something about SHNF and transitive TRSes. In
order to actually use it, we need a connection between transitive and strongly
sequential TRSes. For that we use the following proposition, based on
Proposition 4.6 from The Functional Strategy and Transitive Term Rewriting
Systems [3]. We only give the proposition:

3.16 Proposition: Let R be a TRS. If R is transitive then R is strongly
sequential.

Proof. See Proposition 4.6 in Toyama et al. [3]

Combining Proposition 3.13 and Proposition 3.16 shows that index re-

28

duction is normalizing for transitive TRSes.

3.2.3 Transitive directions

Now we know that index reduction is normalizing for a transitive TRS, we
have to actually find them. For this we must identify parts of the term that
will never fit a rewrite rule regardless of the shape of the term above them.
We call these directions.

3.17 Definition (Direction): 1. Let Q ⊆ TΩ. The displayed Ω in C[Ω]
is a direction for Q if C[z]#Q. We indicate a direction for Q with
C[ΩQ].

2. Let Red∗ = {p|Ω ≺ p ⊆ r for some r ∈ Red}. A transitive direction is
defined as a direction for Red∗. We denote a transitive direction with
C[ΩTD].

A transitive direction of a term is a subterm in SHNF. Thus, if it con-
tains a redex, that redex is an index (SHNF implies the direction cannot
be rewritten, therefore no terms it contains can get lost during rewriting).
With transitive directions, we can track down indexes step by step as shown
by this lemma, based on Lemma 4.9 from The Functional Strategy and Tran-
sitive Term Rewriting Systems [3]:

3.18 Lemma: Let C[ΩTD] and C[z] in NFΩ. Then the displayed Ω is an
index.

Proof. See Lemma 4.9 in Toyama et al. [3]

We also have to show that transitive directions are actually a good way to
find these indexes. In The Functional Strategy and Transitive Term Rewrit-
ing Systems [3], Toyama et al. use 3 lemmas to proof this. We only give the
final and most important lemma here, but first we need a new definition:

3.19 Definition (Red≺): Red≺ = {p | Ω ≺ p ≺ r for some r ∈ Red}
This set contains all possible terms that can be created by leaving more

of the elements of Red out of consideration. Now say that t ∈ Red≺ was
made by leaving more of element s ∈ Red out of consideration. Then t ≺ s.
Then also t � s. Then s can act as common ancestor, and t ↑ s. This means
that t ↑ Red, which means Ω-reduction can rewrite any element from Red≺

to Ω. So ω(t) ≡ Ω.
This makes Red≺ the terms that are relevant when determining the next

index, because these are the terms that have the potential to fit a rewrite
rule, and therefore determine which of their subterms are indexes (as it is
here where subterms may disappear after a rewrite step). So these are the
terms that we want to look at to find the next direction.

3.20 Lemma: A TRS R is transitive iff every t ∈ Red≺ has a transitive
direction.

29

Proof. See Lemma 4.13 in Toyama et al. [3]

If our TRS is transitive, we can always find a transitive direction, and
thus we can always locate a transitive index. In addition we can use this
lemma to check if a TRS is transitive.

3.2.4 Left-Incompatibility

In Example 2.13 we saw an orthogonal TRS that the FS was only normal-
izing on if the rules were tried in the right order. This order appeared to
be related to the order in which the FS tries to match patterns and forces
evaluation. This seems to make sense, since if we try the rewrite rules that
leave a subterm out of consideration before the rules that don’t, we won’t
consider subterms until we are sure that they have to be considered to find
the right rewrite rule.

Using Ω-reduction and compatibility, we can define this property as left-
incompatibility. If two terms are left-incompatible, they are only similar in
structure from left to right, up to a certain subterm, the left-incompatible
point. All subterms left of this point are ordered in a certain way, the point
itself is incompatible, and the terms on the right side can be anything.

3.21 Definition (Left-Incompatibility): Terms s, t ∈ TΩ are left-incompatible
(t#<s) iff:

1. t 6≡ s, t 6≡ Ω, s 6≡ Ω, and

2. Let t ≡ f(t1, ..., tn) and s ≡ g(s1, ..., sm). Then:

(a) If f = g, then ∃i[(∀j < i, tj � sj) ∧ ti#<si].

(b) If f 6= g the terms are left-incompatible regardless of the argu-
ments.

The above i is called the left-incompatible point.

3.22 Example: Let t = k(f(Ω) , f(0) , 0) and s = k(f(g(0)) , g(0) , 0).

Then t#<s, because for the first arguments property (a) holds(f(Ω) �

f(g(0))) and the 2nd argument of k, f(0) , can be picked as the left-

incompatible point. But not s#<t because property (a) does not hold when

the first arguments are swapped around: f(g(0)) 6� f(Ω) .

30

k

f

Ω

f

0

0

k

f

g

0

g

0

0

#<

Left-incompatibility allows us to define a special type of order, the left-
incompatible order :

3.23 Definition (Left-Incompatible Order): Let R = (Σ, R) be a TRS
with R = r1, ..., rn and let R be an order of this TRS. If i < j =⇒
R(i)Ω #< R(j)Ω, then R is a left-incompatible order.

We can also define a special class of TRSes, the left-incompatible TRSes:

3.24 Definition (Left-Incompatible Term Rewriting System): An orthog-
onal TRS is left-incompatible if it satisfies the following two conditions:

(i) Red can be expressed as a list [p1, ..., pn] with pi #< pj if i < j.

(ii) ∀pi ∈ Red, q ∈ Red+[pi #<q], where Red+ = Red∗ −Red.

(iii) If, for every pi in Red = [p1, ..., pn], R(i) = ri : pi → ri then R is the
left-incompatible order that belongs with this Red.

Note that (i) merely requires Red to be able to be expressed as such a
list. Usually, there are several ways to make this list, so we need (iii) to
specify that a left-incompatible order belongs to a specific list of Red. This
allows us to use the position of an element in the list to determine the rule
we need to rewrite the index we find in our strategy.

So far we can construct a normalizing strategy for transitive TRSes by
searching for transitive directions and rewriting transitive indexes. But Ex-
ample 2.13 and the left-incompatibility property suggest that the Functional
Strategy is normalizing on specifically the class of left-incompatible TRSes.
If we look at Lemma 6.5 from The Functional Strategy and Transitive Term
Rewriting Systems [3], we see an interesting property:

3.25 Lemma: Let R be a left-incompatible TRS with Red = [p1, ..., pn]. Let
C[] be a context such that C[Ω] ↑ pd, C[Ω]#pi(1 ≤ i < d) and let C[Ω{pd}]
display the leftmost direction for {pd}. Then C[ΩTD].

Proof. See Lemma 6.5 in Toyama et al. [3]

31

This lemma shows that the leftmost direction for a rewrite rule is a
transitive direction if the context it is in is compatible with that rule, but
incompatible with every rule before it (so every rule #< that rule). Remem-
ber that, in Ω-reduction, a term rewrites if it is compatible with a rewrite
rule. Because our algorithm has to try the rewrite rules in order, if a term is
compatible with this rule, it already has been matched with all rules before
this one, and was found incompatible with them. We know that the context
is incompatible with every rule prior to this one because we have to match
it to this rule in the first place. So as soon as we find the leftmost direction
we also know it is a transitive direction.

Lemma 3.20 tells us that, iff every t ∈ Red≺ has a transitive direction,
the TRS is transitive. If we can prove that every t ∈ Red≺ also has a
transitive direction in a left-incompatible TRS, we have therefore shown
that left-incompatible TRSes are transitive. Then all our earlier lemmas
will also hold for left-incompatible TRSes.

The following corollary is based on Corollary 6.6 in The Functional Strat-
egy and Transitive Term Rewriting Systems [3]. Because of its importance,
we will include the proof this time:

3.26 Corollary: Every left-incompatible TRS is transitive.

Proof. According to Lemma 3.20 it is sufficient to prove that each t ∈ Red≺
has a transitive direction. Let t ∈ Red≺. Then there exists some pd ∈ Red
such that t # pi (i < d) and t ↑ pd. Since t 6� pd, t must have a direction
for {pd}. By Lemma 3.25 (Lemma 6.5 in Toyama et al. [3]), the leftmost
direction of t for {pd} is a transitive direction.

3.3 Formalizing the FS with Omega-Reduction

3.3.1 Marking subterms

If we want to achieve NF by rewriting all subterms to SHNF, there is one
final thing we need: a way to keep track of which subterms are already in
SHNF. For this we introduce the concept of marking.

3.27 Definition (Marking): Let (Σ, R) be a TRS.

1. Let D = {root(l)|l → r ∈ R} be the set of defined funcion symbols.
D∗ = {f∗|f ∈ D} is the set of marked function symbols assumed that
D∗ ∩Σ = ∅ and f∗ has the arity of f . It is clear that f∗ ∈ D∗ is not a
defined function symbol. T ∗ = T (Σ ∩D∗) is the set of marked terms.

2. Let t be a marked term. e(t) denotes the term obtained from t by eras-
ing all marks. δ(t) denotes the Ω-term obtained from t by replacing all
the maximal subterms with defined function symbols (Definition 3.27)
at the roots with Ω. δ̄(f(t1, ..., tn)) ≡ f(δ(t1), ..., δ(tn)) for f ∈ Σ∩D∗.

32

3.28 Definition: t ∈ T ∗ is well-marked if ∀s ⊆ t[root(s) ∈ D∗ =⇒
e(δ(s)) ∈ NFΩ].

A term is well-marked if the marks clearly show which part of that term
will never rewrite again. The following lemma, based on Lemma 5.5 from
The Functional Strategy and Transitive Term Rewriting Systems [3], shows
us how we can use this concept in our strategy:

3.29 Lemma: Let t be well-marked and let e(δ̄(t)) = C[ΩTD]. Then C[z] ∈
NFΩ.

Proof. See Lemma 5.5 in Toyama et al. [3]

So if a term is well-marked up and has a transitive direction, the context
around that transitive direction is in SHNF.

There is one more thing we need: a way to refer to whatever subterm is
at that transitive direction.

3.30 Definition: Let

t ≡ C[t1, ..., tp, ..., tn] ∈ T ∗

and

t′ ≡ e(C)[Ω, ...,ΩTD, ...,Ω].

Then we say that tp is a directed subterm of t with respect to t’.

A directed subterm is the subterm in a transitive direction. Combined
with everything we established about marks and well-marked terms, this
allows us to use marks to establish the next subterm to look at in our
strategy.

3.3.2 The FS defined with Omega-Reduction (OR-FS)

The Functional Strategy and Transitive Term Rewriting Systems [3] defines
the Functional Strategy as an algorithm that only returns an index. We
expand on this algorithm by including our notion of order and rewriting the
index the moment it is found. Thus the output should be the normal form
of the term we want to rewrite.

3.31 Definition: (OR-FS) The Functional Strategy defined with Ω-reduct-
ion, taking a left-incompatible TRS R = (R,Σ) with left-incompatible order
R belonging with Red = [p1, ..., pn] and a term t ∈ T (Σ) as input.

1. If t has no defined function symbol, return e(t) as the normal form.

2. Take the leftmost-outermost subterm of t having a defined function at
the root as s.

33

3. Find the first compatible element pd to e(δ̄(s)) in the list Red if it
exists; otherwise, mark the root of s and go to (1).

4. If e(δ̄(s)) � pd, e(s) is our next index. Let t = C[e(s)]. Use R(d) to
rewrite e(s) to s′, take t = C[s′] (to make the rewritten subterm part
of the term) and go back to (1).

5. Take as s the leftmost directed subterm of s with respect to e(δ̄(s))
and pd, and go to (3).

Does this strategy really return the normal form?

3.32 Lemma: If OR-FS(R, t) = s, then s is the normal form of t.

Proof. We distinguish two cases: either t is already in NF, or t is not in NF.

t ∈ NF: No subterms of t will ever be compatible with Red. So regardless of
what else the algorithm does, (3) will never find a compatible element
and always mark the root and go to (1). Eventually there will be
no defined function symbols left and OR-FS terminates by returning
e(t), the original term without markings. Because we already know t
was in NF, it therefore returns the NF of t.

t 6∈ NF: If e(t) is not in normal form, the algorithm will find a subterm s for
which (4) holds. If s is really an index, e(t) ≡ e(C)[e(s)I]. If this s was
obtained from (2), it’s the leftmost-outermost subterm of t and C[Ω] is
in SHNF, meaning that this Ω (and therefore this s) is an index. If this
s was obtained from (5), it’s the leftmost directed subterm of an s′ ≺ pd
with respect to e(¯δ(s′)) and pd in which case it’s a transitive index.
In both cases, s is really an index, which we immediately rewrite. By
Proposition 3.13 and Corollary 3.26, index rewriting is normalizing,
so as long as we keep rewriting indexes we will reach a point where
e(t) is in normal form. We have already proven that, once this is the
case, the algorithm will just iterate until there are no defined function
symbols left and terminates with e(t).

3.3.3 Equivalence between PC-FS and OR-FS

We have to show that OR-FS is actually a definition of the Functional
Strategy. We introduced the concept of marking to help us keep track of
which part of the term was already in SHNF, and used directions to deter-
mine the next transitive index we had to rewrite. This is similar to how
PC-FS attempts to rewrite a term to its HNF and has to be repeated on
the redexes that remained behind to find the actual NF.

34

According to Definition 1.10, two reduction strategies are equivalent if
their output is always the same. We cannot apply this here directly be-
cause PC-FS returns the HNF rather than the NF. But remember that we
called the strategy that uses PC-FS to find the NF of a term PC-FS∗.
Lemma 2.17 even showed us one way to make this PC-FS∗. Then PC-FS∗

≡ FS.
The goal of Toyama et al. [3] was to find a more efficient implementation

of the FS than this approach, and the paper provided an algorithm to locate
indexes. We based OR-FS on this algorithm, extending it by not returning
the index but rewriting that index. This means that, if OR-FS really is
an implementation of the FS, OR-FS ≡ FS for any left-incompatible TRS.
For this to be true, OR-FS ≡ PC-FS∗ has to hold for the class of left-
incompatible TRSes.

First we have to proof that what we just established about normalizing
behaviour also holds for PC-FS∗:

3.33 Lemma: If R is a left-incompatible TRS with left-incompatible order
R, PC-FS∗R is normalizing on R.

Proof. Say that we want to evaluate t = C[s] with PC-FS∗. The strategy
won’t evaluate s unless s has to match a non-variable, or PC-FS already
terminated on C. In the first case, s has to be considered to determine NF,
so it is an index. In the second case, z ∈ ω(C[z]) so s is an index too. In
both cases, s is only evaluated if it is an index.

From Corollary 3.26, Proposition 3.16 and Proposition 3.13 we know that
index reduction is normalizing on left-incompatible TRSes. Since we just
showed that PC-FS∗ only rewrites indexes, we have proven it is normalizing
on left-incompatible TRSes (and in fact on all strongly sequential TRSes).

Now that we know that both strategies are normalizing on left-incompa-
tible TRSes, the equivalence proof is simple.

3.34 Corollary: OR-FS ≡ PC-FS∗ for left-incompatible TRSes.

Proof. By Definition 1.10, two strategies are equivalent for a class of TRSes if
they have the same output for every TRS in that class. By Lemma 3.33 and
Lemma 3.32 we have proven that both PC-FS∗ and OR-FS are normalizing
for the class of left-incompatible TRSes. Then from the orthogonality of left-
incompatible TRSes and the confluence of orthogonal TRSes, if a term in
a left-incompatible TRS normalizes it has only one normal form. Therefore
OR-FS ≡ PC-FS∗ for left-incompatible TRSes.

From this we can conclude that, for left-incompatible TRSes, OR-FS
is indeed an implementation of FS, and that the Functional Strategy is

35

normalizing on left-incompatible TRSes. However, we also found that PC-
FS and therefore the Functional Strategy is normalizing on all strongly
sequential TRSes, which we cannot say about OR-FS.

36

Chapter 4

Conclusion

4.1 Answers to the Research Questions

4.1.1 SQ1: How can we formalize the Functional Strategy?

The Functional Strategy can broadly be characterized as a rewriting algo-
rithm with the following features:

1. The Functional Strategy rewrites all subterms to HNF. By Lemma 2.1
this rewrites the term to NF.

2. Rule Order: Rewrite rules are tried in a given order.

3. Pattern Order: Patterns are matched in leftmost-outermost order.

4. Lazy Evaluation: Subterms are only evaluated if they have to be con-
sidered to determine if a term is in NF.

We saw in Lemma 3.33 that lazy evaluation is the same as index reduc-
tion. Therefore, the Functional Strategy is essentially just an algorithm for
finding and rewriting indexes.

4.1.2 SQ2: How can we describe the normalizing behaviour
of the Functional Strategy?

Because the Functional Strategy performs leftmost-outermost pattern match-
ing, the order in which it tries the rewrite rules, determines whether
a subterm will be matched with a variable before a non-variable.
When tried in the wrong order, this means the strategy may get stuck in
a non-terminating reduction path that it would have avoided when trying
the rules in a different order. The property that determines in which
order rewrite rules have to be listed to ensure that subterms are
matched with variables before non-variables is called left-incom-
patibility, and we found that the Functional Strategy is normalizing on

37

the class of left-incompatible TRSes. Furthermore, we also proved that
the Functional Strategy is normalizing on the entire class of strongly
sequential TRSes.

4.1.3 RQ: What are the formal characteristics of the Func-
tional Strategy?

The Functional Strategy is a reduction strategy that tries rewrite rules in
a given order, performs leftmost-outermost pattern matching with
those rewrite rules, and only evaluates those subterms that absolutely
have to be considered to determine whether a term is in normal form.
This rewrites every subterm to HNF, which rewrites the term to NF. The
Functional Strategy is normalizing on the class of strongly sequential
TRSes, of which the left-incompatible TRSes are a subclass.

4.2 Future Work

At the end of The Functional Strategy and Transitive Term Rewriting Sys-
tems [3], Toyama et al. mention two major problems that have to be solved:

1. The Functional Strategy was initially intended as a strategy for Pri-
ority Term Rewriting Systems (PTRS). The adequacy of OR-FS for
PTRSes therefore has to be investigated.

2. Additional, implementations of (lazy) functional languages that use
the Functional Strategy appear to be efficient. Whether this efficiency
can be founded theoretically has to be investigated.

In addition, there have been other approaches to formalizing the Func-
tional Strategy that can be compared with the characteristics and normal-
izing behaviour that we specified here.

For example, in Graph Rewriting Aspects of Functional Programming [6],
Barendsen et al. use the Functional Strategy to evaluate Graph Rewriting
Systems (GRSes) and use special rewrite rules to rewrite TRSes (and GRSes)
to another functional language that leaves no doubt about the way rewrite
rules and patterns should be matched. It would be interesting to explore if
this is the same as index rewriting, and therefore normalizing on strongly
sequential and/or left-incompatible TRSes.

38

Bibliography

[1] Jan Willen Klop, Term Rewriting Systems, 1992.

[2] Rinus Plasmeijer, Marko van Eekelen, Functional Programming and Par-
allel Graph Rewriting, Addison-Wesley Publishers Ltd., 1993.

[3] Yoshihito Toyama, Sjaak Smetsers, Marko van Eekelen, Rinus Plasmei-
jer, The Functional Strategy and Transitive Term Rewriting Systems,
Term Graph Rewriting: Theory and Practice, Pages 61 - 75, John Wiley
and Sons Ltd. Chichester, Uk, 1993.

[4] Jan Willem Klop, Aart Middeldorp, Sequentiality in Orthogonal Term
Rewriting Systems, Academic Press Limited, 1991.

[5] Grard Huet, Jean-Jacques Lvy, Call by need computations in
non-ambiguous linear term rewriting systems, Institut de recherche
d’informatique et d’automatique, 1979.

[6] Erik Barendsen, Sjaak Smetsers, Graph Rewriting Aspects of Functional
Programming, Handbook of Graph Grammars and Computing by Graph
Transformation, Pages 63 - 102, World Scientific Publishing Co. Pte.
Ltd. River Edge, NJ, 1999.

39

	Introduction
	Term Rewriting
	Formal Definitions
	Term Rewriting Systems
	Reduction Strategy
	Formalized rewriting
	Normal Form and Head-Normal Form

	The Functional Strategy
	Solving TRSes
	Reaching NF through the Head-Normal Form
	Lazy Evaluation
	Rule Order and Overlap
	Describing the FS in natural language

	Formalizing the FS as an algorithm
	The FS defined in pseudo code (PC-FS)

	Omega-Reduction
	Omega-Reduction
	Omega-Terms
	Compatibility
	Omega-systems and Strong Head-Normal Form

	Solving TRSes with Omega-Reduction
	Indexes and Strong Sequentiality
	Transitivity in term rewriting
	Transitive directions
	Left-Incompatibility

	Formalizing the FS with Omega-Reduction
	Marking subterms
	The FS defined with Omega-Reduction (OR-FS)
	Equivalence between PC-FS and OR-FS

	Conclusion
	Answers to the Research Questions
	SQ1: How can we formalize the Functional Strategy?
	SQ2: How can we describe the normalizing behaviour of the Functional Strategy?
	RQ: What are the formal characteristics of the Functional Strategy?

	Future Work

