
Bachelor thesis
Computer Science

Radboud University

Proving a folk theorem using
Kleene Algebra with Tests

Author:
Rodin Aarssen
aarssen@science.ru.nl

Supervisor/first assessor:
prof. dr. J.H. Geuvers

herman@cs.ru.nl

Second assessor:
dr. A. Silva

alexandra@cs.ru.nl

July 8, 2014

Abstract

In this thesis, Kleene Algebra with Tests will be used to reason about program equiva-
lence, as proposed by Kozen. We will go in-depth on the program transformations and
will propose a way to handle the assignment rule.

Contents

1 Introduction 2

2 Kleene Algebra with Tests 3
2.1 Kleene Algebra . 3
2.2 Examples of Kleene algebras . 4
2.3 Kleene algebra with tests . 5

3 The WHILE language 7
3.1 Hoare logic . 8
3.2 Assignment rule . 11
3.3 Composition rule . 11
3.4 Conditional rule . 12
3.5 While rule . 13
3.6 Weakening rule . 13

4 A Folk Theorem 14
4.1 Normalizing While programs . 14
4.2 Conditional program . 14
4.3 Program with nested while loops . 15
4.4 Getting rid of postcomputations . 16
4.5 Composition of programs . 17

5 Conclusion 18

1

Chapter 1

Introduction

A Kleene algebra is an algebraic structure that has many diverse applications, ranging
from dynamic logic to language theory. A KA has the operators +, ·, ∗, 0 and 1 that
satisfy a set of axioms.

In [6] and [7], Kozen introduces Kleene Algebra with Tests (KAT), an extended
version of Kleene Algebra, and a transformation from the imperative programming lan-
guage While to KAT. By doing this, he is able to reason about program equivalence.
In particular, he wants to prove the equivalence of two While programs by proving that
their translations to KAT are equal, reasoning in KAT.

In this thesis, we want to clarify what’s been said by Kozen about program tran-
formations and equivalence. Furthermore, since KAT is purely propositional, it can not
deal with assignment. Whereas Kozen does not consider the assignment rule for his
system, we propose to use new KAT constants in order to be able to use assignment.

In the last Chapter of this thesis, a folk theorem on While programs will be covered.
The theorem says that each While program is equivalent to another While program
that contains at most one while-loop. By recursively applying program transformations
(which are proven correct), this theorem will be proven.

2

Chapter 2

Kleene Algebra with Tests

2.1 Kleene Algebra

The notion of Kleene algebra ocurs in the literature at various places (e.g. [1], [7], [9]),
where it is defined in non-equivalent formulations. In this thesis, Kozen’s definition from
[7] is used:

Definition 2.1 A Kleene Algebra is an algebraic structure (K,+, ·, ∗, 0, 1), which is
a semiring with idempotent addition that also satisfies

1 + pp∗ = p∗ (2.1)

1 + p∗p = p∗ (2.2)

q + pr ≤ r → p∗q ≤ r (2.3)

q + rp ≤ r → qp∗ ≤ r (2.4)

where ≤ refers to the natural partial order on K:

p ≤ q ↔ p+ q = q (2.5)

Definition 2.2 A semiring is an algebraic structure that satisfies

p+ (q + r) = (p+ q) + r (2.6)

p+ q = q + p (2.7)

p+ 0 = p (2.8)

p(qr) = (pq)r (2.9)

1p = p (2.10)

p1 = p (2.11)

p(q + r) = pq + pr (2.12)

(p+ q)r = pq + qr (2.13)

0p = 0 (2.14)

p0 = 0 (2.15)

3

CHAPTER 2. KLEENE ALGEBRA WITH TESTS 4

Definition 2.3 A semiring with idempotent addition is a semiring that also satisfies

p+ p = p (2.16)

2.2 Examples of Kleene algebras

Kleene algebra generalizes the familiar notions from regular expressions. We will now
give two examples of applicability of Kleene algebra.

Example 2.4 We can raise the theory of regular expressions to the level of Kleene
algebra. Let e be a regular expression over the alphabet Σ. Then L(e) ⊆ Σ∗, L(0) = ∅
(the empty language), and L(1) = {λ} (the language with only the empty word). We
translate the Equations 2.1-2.16, and the following equations all hold:

L(1 + pp∗) = L(p∗) (2.17)

L(1 + p∗p) = L(p∗) (2.18)

L(q + pr) ≤ L(r)→ L(p∗q) ≤ L(r) (2.19)

L(q + rp) ≤ L(r)→ L(qp∗) ≤ L(r) (2.20)

L(p) ≤ L(q)↔ L(p+ q) = L(q) (2.21)

L(p+ (q + r)) = L((p+ q) + r) (2.22)

L(p+ q) = L(q + p) (2.23)

L(p+ 0) = L(p) (2.24)

L(p(qr)) = L((pq)r) (2.25)

L(1p) = L(p) (2.26)

L(p1) = L(p) (2.27)

L(p(q + r)) = L(pq + pr) (2.28)

L((p+ q)r) = L(pq + qr) (2.29)

L(0p) = L(0) (2.30)

L(p0) = L(0) (2.31)

L(p+ p) = L(p) (2.32)

Example 2.5 Another example of Kleene algebra is the theory of relational algebra.
We look at P,Q,R as subsets of A×A, 1 as the identity relation, 0 as the empty relation,
P +Q as the union P ∪Q, and aPQb as ∃c(aPc∧ cQb), and aR∗b as aRnb for a certain
n ≥ 0, where R0 = 1 and aRnb = aRRn−1b for n > 1. We translate the Equations 2.1-
2.16 to the domain of relational algebra, and the following equations all hold in relational

CHAPTER 2. KLEENE ALGEBRA WITH TESTS 5

algebra:

1 + PP ∗ = P ∗ (2.33)

1 + P ∗P = P ∗ (2.34)

Q+ PR ≤ R→ P ∗Q ≤ R (2.35)

Q+RP ≤ R→ QP ∗ ≤ R (2.36)

P ≤ Q↔ P +Q = Q (2.37)

P + (Q+R) = (P +Q) +R (2.38)

P +Q = Q+ P (2.39)

P + 0 = P (2.40)

P (QR) = (PQ)R (2.41)

1P = P (2.42)

P1 = P (2.43)

P (Q+R) = PQ+ PR (2.44)

(P +Q)R = PQ+QR (2.45)

0P = 0 (2.46)

P0 = 0 (2.47)

P + P = P (2.48)

2.3 Kleene algebra with tests

To give a precise definition of Kleene algebra with tests, we first need to define Boolean
algebra in a few steps. The following definitions are adapted from [2].

Definition 2.6 A lattice is an algebraic structure (P,∨,∧). P is a non-empty set.
x ∨ y is also referred to as x join y and is defined as the supremum (or least upper
bound) of {x, y}. x∧ y is also referred to as x meet y and is defined as the infinum (or
greatest lower bound) of {x, y}. It holds that for all x, y ∈ P , x ∨ y and x ∧ y exist.

Theorem 2.7 If L is a lattice, then ∧ and ∨ satisfy, for all a, b, c ∈ L:

(a ∨ b) ∨ c = a ∨ (b ∨ c) associativity (2.49)

(a ∧ b) ∧ c = a ∧ (b ∧ c) (2.50)

a ∨ b = b ∨ a commutativity (2.51)

a ∧ b = b ∧ a (2.52)

a ∨ a = a idempotency (2.53)

a ∧ a = a (2.54)

a ∨ (a ∧ b) = a absorbtion (2.55)

a ∧ (a ∨ b) = a (2.56)

Proof. For a proof of this theorem, see [2].

CHAPTER 2. KLEENE ALGEBRA WITH TESTS 6

Definition 2.8 A lattice L is said to have a unit or identity if there exists an
element 1 ∈ L, so that a∧ 1 = a for all a ∈ L. A lattice L is said to have a zero element
if it has an element 0 ∈ L, so that a ∨ 0 = a for all a ∈ L.

Definition 2.9 A distributive lattice is a lattice L that satisfies the distributive law:

∀a, b, c ∈ L, (a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)) (2.57)

Definition 2.10 A Boolean lattice is a distributive lattice L that also satisfies:

• L has 0, satisfying 0 ∨ a = a

• L has 1, satisfying 1 ∧ a = a

• for each a ∈ L, there exists a unique complement a ∈ L.

• a ∨ a = 1

• a ∧ a = 0

Lemma 2.11 Let L be a boolean lattice. Then, the following equations hold:

• 0 = 1 and 1 = 0

• 0 = a for all a ∈ L

• for all a, b ∈ L, (a ∨ b) = a ∧ b

• for all a, b ∈ L, (a ∧ b) = a ∨ b

• for all a, b ∈ L, a ∧ b = (a ∨ b)

Proof. For a proof of this theorem, see [2].

Definition 2.12 A Boolean algebra is a special kind of boolean lattice for which the
algebraic properties of ∧, ∨ and the complementary operator are regarded as an integral
part of the structure, with their properties being embodied in axioms. A Boolean algebra
is then defined as an algebraic structure (B,∨,∧,̄ , 0, 1), so that

• (B,∨,∧) is a boolean lattice

• a ∨ 0 = a and a ∧ 1 = a for all a ∈ B

• a ∨ a = 1 and a ∧ a = 0 for all a ∈ B

From [7], we take the definition of a Kleene algebra with tests:

Definition 2.13 A Kleene algebra with tests is an algebraic structure (K,B,+, ·, ∗, ,̄ 0, 1),
where (K,+, ·, ∗, 0, 1) is a Kleene algebra and (B,+, ·, ,̄ 0, 1) a Boolean algebra. Further-
more, B ⊆ K.

Elements of B are called tests. In this thesis, p, q, r, s represent elements of K, whereas
a, b, c, d represent elements of B.

Chapter 3

The WHILE language

In [8], Nielson and Nielson give a definition of a simple imperative programming lan-
guage called WHILE.

Definition 3.1 The structure of while-constructs is:
a ::= n | x | a1 + a2 | a1 ? a2 | a1 − a2
b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2
S ::= x := a | skip | S1;S2 | if b then p else q | while b do p

where a are the arithmetic expressions (Num), b the boolean expressions (BExp), S
the statements (Stm), n the numerals (Num), and x the variables (Var).

For the rest of the theory, it’s required that a boolean truth value (true or false)
can be assigned to a variable. Therefore, we introduce yet another meta-variable β, that
ranges over boolean variables (BVar). To deal with semantics, we change the State-
function to s := (sa, sb), where sa : Var→ Z is the state function as defined in [8], and
sb : BVar → {true, false} is a function that adds true or false to an element β of
BVar according to value of β in state s.

In [6], Kozen defines the normal form of a while program:

Definition 3.2 A while program is in normal form if it is in the form
p ; while b do q

where p and q do not contain a while-loop.
Since KAT is purely propositional, there is no domain of computation, analoguous

to Propositional Dynamic Logic (PDL) ([4]). In [3], it is said that “Assignment is
a non-propositional inference rule that deals with the internal structure of states. It is
therefore disregarded in the embedding.” We do want to be able to reason about program
correctness (and thus about assignment) and therefore, we see statements involving state-
dependent values as constants or KAT. This will be made more clear in the following.

We now introduce the transformation function [] : while → KAT, a function that
transforms a while-statement to its equivalent in KAT, based on [6].

Definition 3.3 The function [] : while→ KAT transforms a while-statement to a

7

CHAPTER 3. THE WHILE LANGUAGE 8

KAT-expression. The boolean expressions are defined as

[true] = 1 (3.1)

[false] = 0 (3.2)

[a1 = a2] = eq(a1, a2) (3.3)

[a1 ≤ a2] = leq(a1, a2) (3.4)

[¬b] = b (3.5)

[b1 ∧ b2] = b1b2 (3.6)

The statements are defined as

[x := a] = a(x, a) (3.7)

[skip] = 1 (3.8)

[S1;S2] = S1S2 (3.9)

[if b then p else q] = bp+ bq (3.10)

[while b do p] = (bp)∗b (3.11)

Here, the constant eq(x, y) is a constant representing x = y, leq(x, y) is a constant
representing x ≤ y and a(x, a) is a constant for the assignment x := a. For readability,
we will sometimes write these KAT-constants as [x = y], [x ≤ y] and [x := a]. Note
that there exists no translation for the arithmetic expressions, since these values appear
only in the KAT constants as indices. Furthermore, although the reader knows that,
for instance, the constant eq((x+ 1) + 1, N) and eq(x+ 2, N) might represent the same
truth value, this can not be inferred in KAT and they are in fact different constants.

3.1 Hoare logic

Hoare logic (introduced in 1969 by Hoare in [5]) is a formal system that can be used to
reason about program correctness. A partial correctness assumption (PCA) is the basic
notion of reasoning with Hoare logic. It is of the form {b}p{c}.

Definition 3.4 A PCA is a statement of the form

{b}p{c} (3.12)

where p is a program and b and c are formulas.
Statement 3.12 intends to express that if b holds before p is executed and if p termi-

nates, then c holds after termination. eq:leqbla The PCA in Statement 3.12 is encoded
in KAT by either of the following equations:

bpc = 0 (3.13)

bp = bpc (3.14)

Theorem 3.5 Statements 3.13 and 3.14 are equivalent in KAT.

CHAPTER 3. THE WHILE LANGUAGE 9

Proof. From [7]: assuming 3.13, it’s easily seen that

bp = bp(c+ c)

= bpc+ bpc

= bpc

Assuming 3.14,

bpc = bpcc

= bp0

= 0

We also define the translation function from Definition 3.3 for Hoare triples. We do
that as follows:

[{b}p{c}] = (bp = bpc) (3.15)

CHAPTER 3. THE WHILE LANGUAGE 10

E
x
a
m

p
le

3
.6

C
on

si
d

er
th

e
fo

ll
ow

in
g

p
ro

gr
am

:
x
:=

x
+

1;
x
:=

x
+

2
T

h
e

d
es

ir
ed

b
eh

av
io

r
o
f

th
is

p
ro

gr
am

is
th

at
th

e
va

lu
e

of
x

is
in

cr
em

en
te

d
b
y

3.
T

h
er

ef
or

e,
w

e
ca

n
w

ri
te

th
e

H
oa

re
tr

ip
le

{x
=
N
}x

:=
x

+
1;
x

:=
x

+
2
{x

=
N

+
3
}

(3
.1

6)

N
ow

,
w

e
m

ak
e

a
d

er
iv

at
io

n
tr

ee
in

H
o
a
re

lo
gi

c:

x
=

N
→

x
+

1
=

N
+

1
[a
ss
]

{x
+

1
=

N
+

1
}x

:=
x
+

1
{x

=
N

+
1
}

[w
e
a
k
]

{x
=

N
}x

:=
x
+

1
{x

=
N

+
1
}

x
=

N
+

1
→

x
+

2
=

N
+

3
[a
ss
]

{x
+

2
=

N
+

3
}x

:=
x
+

2
{x

=
N

+
3
}

[w
e
a
k
]

{x
=

N
+

1
}x

:=
x
+

2
{x

=
N

+
3
}

[c
o
m
p
]

{x
=

N
}x

:=
x
+

1
;
x

:=
x
+

2
{x

=
N

+
3
}

(3
.1

7)

N
ow

,
w

e
ca

n
sa

y
th

a
t

fr
om

a
ll

th
e

as
si

gn
m

en
ts

at
th

e
to

p
an

d
al

l
im

p
li

ca
ti

on
s

in
tr

o
d

u
ce

d
b
y

th
e

w
ea

ke
n

in
g

ru
le

,
it

h
ol

d
s

in
H

oa
re

lo
gi

c
th

at
`
{x

=
N
}x

:=
x

+
1
;x

:=
x

+
2
{x

=
N

+
3
}.

CHAPTER 3. THE WHILE LANGUAGE 11

Specifically:

{x+ 1 = N + 1}x := x+ 1{x = N + 1}∧
{x+ 2 = N + 3}x := x+ 2{x = N + 3}∧

(x = N → x+ 1 = N + 1)∧
(x = N + 1→ x+ 2 = N + 3)→

{x = N}x := x+ 1;x := x+ 2{x = N + 3}

We now translate this to KAT (renaming all the constants for readability) and see that
this holds in KAT:

(e1a1 = a1a1e2)∧ (3.18)

(e2a2 = e2a2e4)∧ (3.19)

(e5 ≤ e1)∧ (3.20)

(e2 ≤ e3)→ (3.21)

e5a1a2 = e5a1a2e4 (3.22)

In general, a deduction tree of {b}p{c} in Hoare logic yields a number of assignments
at the top (which are axioms in Hoare logic), say Ass1 to Assn, and a number of
implications introduced by the weakening rule (which are all logically inductable), say
φ1 to φn. Then, it holds in KAT that

[Ass1], · · · , [Assn], [φ1], · · · , [φn] ` [{b}p{c}] (3.23)

Note that [p→ q] = p ≤ q.
In the following sections, the Hoare inference rules will be covered, along with their

encoding in KAT and proof that the encodings are theorems in KAT (from [7]).

3.2 Assignment rule

Definition 3.7 The assignment rule of Hoare logic is

{b[x/e]}x := e{b} (3.24)

As mentioned before, since KAT is purely propositional, there is no domain of compu-
tation and this rule is not considered in KAT.

3.3 Composition rule

The composition rule of Hoare logic is

Definition 3.8
{b}p{c} {c}q{d}

{b}p ; q{d}
(3.25)

CHAPTER 3. THE WHILE LANGUAGE 12

Lemma 3.9 The translation of 3.25 in KAT is also a theorem in KAT:

bp = bpc ∧ cq = cqd→ bpq = bpqd (3.26)

Proof. Assuming the premises

bp = bpc (3.27)

cq = cqd (3.28)

we derive

bpq = bpcq by 3.27

= bpcqd by 3.28

= bpqd by 3.27

3.4 Conditional rule

The conditional rule of Hoare logic is

Definition 3.10
{b ∧ c}p{d} {¬b ∧ c}q{d}
{c}if b then p else q{d}

(3.29)

Lemma 3.11 The translation of 3.29 in KAT is also a theorem in KAT:

bcp = bcpd ∧ bcq = bcqd→ c(bp+ bq) = c(bp+ bq)d (3.30)

Proof. Assuming the premises

bcp = bcpd (3.31)

bcq = bcqd (3.32)

we derive

c(bp+ bq) = cpb+ cbq distributivity

= bcp+ bcq commutivity of tests

= bcpd+ bcqd 3.31 and 3.32

= cbpd+ cbqd commutivity of tests

= c(bp+ bq)d distributivity

CHAPTER 3. THE WHILE LANGUAGE 13

3.5 While rule

The while rule of Hoare logic is

Definition 3.12
{b ∧ c}p{c}

{c}while b do p{¬b ∧ c}
(3.33)

Lemma 3.13 The translation of 3.33 in KAT is also a theorem in KAT:

bcp = bcpc→ c(bp)∗b = c(bp)∗bbc (3.34)

Proof. Because all tests commute, and = implies ≤, it suffices to prove

cbp ≤ cbpc→ c(bp)∗ ≤ c(bp)∗c (3.35)

Assuming the premise
cbp ≤ cbpc (3.36)

we get, using equation 2.4, that it suffices to show that

c+ c(bp)∗ ≤ c(bp)∗c (3.37)

We can now finish the proof:

c+ c(bp)∗ ≤ c(bp)∗c (3.38)

≤ c1c+ c(bp)∗cbpc (3.39)

≤ c(1 + (bp)∗cbp)c (3.40)

≤ c(+(bp)∗bp)c (3.41)

≤ c(bp)∗c (3.42)

3.6 Weakening rule

The weakening rule of Hoare logic is

Definition 3.14
b′ → b {b}p{c} c→ c′

{b′}p{c′}
(3.43)

Lemma 3.15 The translation of 3.43 in KAT is also a theorem in KAT:

b′ ≤ b ∧ bp = bpc ∧ c ≤ c′ → b′p = b′pc′ (3.44)

Proof. First, we use Theorem 3.1 to rewrite Equation 3.44 to:

b′ ≤ b ∧ bpc = 0 ∧ c ≤ c′ → b′pc′ = 0 (3.45)

which follows from the monotonicity of multiplication.

Chapter 4

A Folk Theorem

In [6], Kozen defines a folk theorem on while programs as follows:

Theorem 4.1 Every program in while with boolean variables, as defined in Chap-
ter 3, can be simulated by a while program with at most one while loop.

Furthermore, he proves the following theorem:

Theorem 4.2 Every while program, suitably augmented with finitely many new
subprograms of the form s; bc + bc, is equivalent to a while program in normal form,
reasoning in Kleene algebra with tests under certain commutativity assumptions.

The remark about certain commutativity assumptions might seem vague, but this will
be specified when relevant. He also gives code transformations for the while-constructions
that produce equivalent programs in normal form. We will define a function N on while,
which normalizes while programs. In the following, we will define the more trivial while
statements, and in the remainder of this section, Kozens program transformations will
be explained and proven correct in detail.

4.1 Normalizing While programs

Definition 4.3 Let N be a function on while-programs that takes a program and brings
it to its normal form. We have:

N(x := a) = x := a; while false do skip (4.1)

N(skip) = skip; while false do skip (4.2)

N(S) = S if S in normal form (4.3)

The composition, conditional and while statements’ transformations will be covered in
the next sections.

4.2 Conditional program

For the conditional program

14

CHAPTER 4. A FOLK THEOREM 15

if b then begin p1 ; while d1 do q1 end
else begin p2 ; while d2 do q2 end

he introduces a new test c that gets the value of b, assumes that c commutes with p1,
p2, q1 and q2 (which we can assume since c is new), and transforms the new program

c := b
if b then begin p1 ; while d1 do q1 end

else begin p2 ; while d2 do q2 end
to

c := b
if c then p1 else p2 ;
while cd1 + cd2 do

if c then q1 else q2
It’s important to note that if both programs in the conditional (p1 ; while d1 do q1
and p2 ; while d2 do q2) are in normal form, then the resulting program will also be in
normal form.

We can now define N(if b then S1 else S2) as the piece of code above, assuming S1
and S2 are in normal form.

4.3 Program with nested while loops

For a program containing nested while loops, he shows that the program
while b do begin

p ;
while c do q

end
is, without the need of additional commutivity assumptions, equivalent to

if b then begin
p ;
while b+ c do

if c then q else p
end

which now contains only one while loop inside a conditional. This program is not in the
right format for the transformation from Section 4.3, so we add a dummy else clause. We
also need a commutivity assumption for b and therefore introduce a new test d, resulting
in:

d := c
if b then begin

p ;
while b+ c do

if c then q else p
end

else begin 1 ; while 0 do 1 end
This program can be transformed into:

d := c
if d then p else 1 ;

CHAPTER 4. A FOLK THEOREM 16

while d(b+ c) + d1 do
if d then begin

while b+ c do
if c then q else p

end
else while 0 do 1

This means that the latter is also equivalent with the first program from this section,
preceeded by d := c.

Again, it is important to notice that if the inner while loop is in normal form, then
the resulting program will be as well.

We can now define N(while b do (p ; while c do q)) as the piece of code above.

4.4 Getting rid of postcomputations

For a program that contains a postcomputation after a while loop
while b do p ; q

he shows that, assuming b and p commute, it is equivalent to
if b then q

else while b do begin
p ;

if b then q
end

We may assume that b and q commute; if they do not commute, we can introduce a new
test c and atomic program s that sets the value of c to b, and insert s before the loop
and after the body of the loop. It is proven in [6] that the program is now equivalent to
a program where c is tested in the while loop.

We can once more transform the program above using the transformation from Sec-
tion 4.2 (note that b commutes with c now) into:

b := c
if c then q else 1 ;
while c0 + cb do

if c then 1 else p ; if b then q
which reduces by Boolean logic and removal of the useless else-clause to:

b := c
if c then q
while bc do

if c then
p ;

if b then q
Yet again, it’s important to note that if p and q do not contain a while loop, that the
resulting program is in normal form and is the definition of N(while b do p ; q).

CHAPTER 4. A FOLK THEOREM 17

4.5 Composition of programs

Finally, he shows that the composition of two programs in normal form
p1 ;
while b1 do q1 ;
p2 ;
while b2 do q2 ;

can be transformed into one program in normal form. In order to do that, he states that
p2 can be sucked into the first while loop with the transformation of Section 4.4:

p1 ;

c := b1 ;
if c then q1
while b1c do

if c then
p2 ;

if b1 then q1
while b2 do q2 ;

For readability, the body of the first while loop is abbreviated to r and the precompu-
tation, consisting of the first three lines, to p0:

p0 ;
while b1c do r
while b2 do q2 ;

Using Kozen’s transformation, we get
p0 ;

if b1 then while b2 do q2
else while b1 do begin

r ;

if b1 then while b2 do q2
end

If we substitute p0 and r out, we get:
p1 ;

c := b1 ;
if c then q1
if b1 then while b2 do q2

else while b1 do begin
if c then
p2 ;

if b1 then q1
if b1 then while b2 do q2

end
Using the transformations described in the earlier sections, a program in normal form

will result from repeated transformations.

Chapter 5

Conclusion

In the previous sections, a number of transformations have appeared; Figure 5.1 intends
to vizualize the relation between the different statements. The “basic” statement S can
be seen in the top left corner. The horizontal arrow at the top is the []-function from
Definition 3 that translates a while-program to KAT. The vertical arrow on the left
represents the normalization function N from Definition 4.1. The horizontal arrow at
the bottom is again the []-function, now applied on a normalized program. The big
equals sign on the right represents the equality between the programs KAT-term and
the normalized programs KAT-term, which is indeed proven.

In his work, Kozen ignores the assignment rule, since his reasoning system (Kleene
Algebra with Tests) is purely propositional. While that is correct, we do feel that it
is missing in the big picture, since it makes it impossible to prove the equality of the
code and the normalized code of any significant while-program. To overcome this, we
introduced the KAT-constants from Definition 3, and showed that it is now possible to
reason and make (or translate) deductions, be it that there is now a number of constants
in the assumptions.

Future research could be done in order to come up with a more elegant way to deal
with the assignment problem.

18

CHAPTER 5. CONCLUSION 19

Figure 5.1: Schema of the transformations

Bibliography

[1] Conway, J. H. Regular Algebra and Finite Machines. MATHEMATICS SERIES
Series. John Wiley & Sons, Incorporated, 1973.

[2] Davey, B. A., and Priestly, H. A. Introduction to Lattices and Order. Cambridge
University Press, 1990.

[3] Desharnais, J., Möller, B., and Struth, G. Kleene algebra with domain. ACM
Trans. Comput. Log. 7, 4 (2006), 798–833.

[4] Harel, D., Kozen, D., and Tiuryn, J. Dynamic logic. FOUNDATIONS OF COM-
PUTING SERIES. Mit Press, 2000.

[5] Hoare, C. A. R. An axiomatic basis for computer programming. Commun. ACM
12, 10 (Oct. 1969), 576–580.

[6] Kozen, D. Kleene algebra with tests. Transactions on Programming Languages and
Systems 19, 3 (May 1997), 427–443.

[7] Kozen, D. On Hoare logic and Kleene algebra with tests. Trans. Computational
Logic 1, 1 (July 2000), 60–76.

[8] Nielson, H. R., and Nielson, F. Semantics with applications: a formal introduction.
John Wiley & Sons, Inc., New York, NY, USA, 1992.

[9] Pratt, V. Dynamic algebras as a well-behaved fragment of relation algebras. In Al-
gebraic Logic and Universal Algebra in Computer Science, C. Bergman, R. Maddux,
and D. Pigozzi, Eds., vol. 425 of Lecture Notes in Computer Science. Springer New
York, 1990, pp. 77–110.

20

	Introduction
	Kleene Algebra with Tests
	Kleene Algebra
	Examples of Kleene algebras
	Kleene algebra with tests

	The WHILE language
	Hoare logic
	Assignment rule
	Composition rule
	Conditional rule
	While rule
	Weakening rule

	A Folk Theorem
	Normalizing While programs
	Conditional program
	Program with nested while loops
	Getting rid of postcomputations
	Composition of programs

	Conclusion

