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Abstract

We find it frustrating that different passenger on the same flight in the
same flight class pay very different prices for their tickets while getting
the exact same service. This research proposes four statistical regression
models for airline ticket prices and compare the goodness of fit. With this
prediction model passengers can make a more informed decision whether to
buy the ticket or wait a little longer. We used a data set containing 126,412
observations of ticket prices of 2,271 different flights from San Francisco
Airport to John F. Kennedy Airport, these observations have been made on
a daily basis by Infare [2]. We find a model that fits the behavior of the
data fairly well many days before departure. Therefore this approach could
help future air travelers to decide whether to buy a ticket or not.
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Chapter 1

Introduction

Corporations with a ”standing inventory” often use complex and dynamic
policies to determine optimal prices for their products in order to maximize
revenue [11]. Airlines are one branch of these companies, having the available
seats on a plane as their standing inventory. They divide these seats into
several buckets, where each bucket has its own fare price. Airlines rearrange
these seats across the buckets to make more money out of them, this creates
changes in the prices which customers have to pay for the flight. Such that
different customers pay different prices for tickets of the same flight.

1.1 Motivation

Imagine yourself flying from airport A to airport B , you’re sitting on a seat
next to the aisle while having other travelers next to you near the window.
While on the flight you start a conversation with your neighbor about the
flight you’re on and the prices you paid for this trip, only to find out that
your conversation partner has paid $50,- less than you did for exactly the
same services, what a bummer.
We find it frustrating that consumers not only pay such a difference in price
while getting the exact same service, but also that they perhaps both could
have saved some money if they had some knowledge about the behavior of
the prices of these airline tickets. What’s even more frustrating is that as a
consumer there is just so little you can do to fill the knowledge gap, without
spending a significant amount of time in checking if the prices increase or
decrease. Even when customers compare and buy tickets for the cheapest
price trough the available comparing tools on the World Wide Web, it is
still possible that on that specific day prices are more expensive than usual
without you even noticing.
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1.2 Background

Since prices of airline tickets change over time it can be a very lucrative
business to predict when ticket prices are cheap. There have been several
papers about the topic of predicting ticket prices and/or buy-wait strate-
gies. In this section we will discuss the source of the problem (changing
prices) and the possible methods that are currently available to handle this
problem. Airlines manage their standing inventory with the use of yield
management, by changing prices up or down they try to increase their yield
based on for example historical demand and airplane capacity. Traditionally
this is done by hand, now largely taken over by Yield Management Systems
(YMS). An YMS basically tries to sell the right seat to the right customer
for the right price at the right time such as they can maximize yield, or
revenue. Although the airline industry is considered the birthplace of yield
management it is not only applicable to airlines [10], other types of fields
include but are not limited to hotel bookings, ship cruises and car rental.
Of course specific adjustments have to be made to fit these systems to the
specific field. For example in the airline industry: when traveling from air-
port A to airport B without a direct route available, you will have to travel
trough a hub called airport C but another customer would like to go from
A to B . An YMS will try to offer you both a competitive price while still
maximize yield taken into account the throughput of such a hub-and-spoke
network [4].
As an YMS tries to predict demand by using historical data and adjust prices
based on it, research has been done in trying to predict ticket prices by using
historical data, in [5] they applied a multi-strategy data mining technique
called HAMLET on web-crawled airfare data. This research showed that
it is possible to save costs for consumers by using data mining to crawled
data from the internet where key variables, such as the number of seats,
are missing. It uses time series analysis, reinforcement learning and as well
rule based learning and produces a wait/buy advice as its output. Based
on this paper, [12] has suggested another approach, regarding the theory of
(marked) point process [9] and the random tree forest algorithm [3], which
should have less computational difficulties than the HAMLETT approach.
Its results show that they perform almost as well as HAMLETT does but
does have a more useful prediction due to a given confidence and an possible
interpretation of the prediction.
While these papers use data mining classification techniques to predict
airline prices or to produce a buy/wait advice, there has also been re-
search about predicting ticket prices using a statistical regression model,
more specifically in [8] they propose a lag scheme model which shows that
there are possibilities to reduce costs for customers given sufficient publicly-
observable information. In this paper we suggest a novel approach for pre-
dicting airline prices using linear quantile mixed models. The idea behind
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this approach is that we are not interested in how the average ticket prices
behaves but are only interested in the lowest ticket prices, call them the real
bargains. These bargains are much more interesting for customers than the
average price behavior as they will deliver the highest cost reduction. We
give four possible models for the regression and compare the goodness of
fit.
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Chapter 2

Method

Airline companies indicate their flights with a combination of letters and
numbers such as ”DL1940”, which represents flight 1940 flying for Delta
Airlines (DL), or ”AS531” which is flight 531 flying for Alaska Airlines (AS)
these are called flight numbers and usually indicate flights flying on a specific
route on a specific time of the day. While this specific flight only flies
once, other flights with the same flight number fly almost daily throughout
the year. Tickets for these flight are available many days before the flight
departure date, such that consumers can buy tickets in advance. Luckily
for us this gives us also the possibility to observe the prices of each of these
flights throughout, for example, 60 days before the flight leaves. An example
plot of the price of these observations on the 60 days before departure is given
below in figure 2.1.

Figure 2.1: Observations of ticket prices of flight DL1940 departing
from SFO heading to JFK at 2012-03-27. With (in red) four quantiles:
25th, 50th, 75th and 100th.
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As we can see in this plot the price changes several times during the 60
before departure. If we look at figure 2.1 we think that the amount of days
till departure is an important factor in determining the prices because of
the YMS trying to fill an airplane many days before departure and reacting
on demand/supply during the period before departure. Other factors of
importance could be historical demand of previous flights, the day of the
week, holidays, seats available in the plane et cetera. Unfortunately airline
company’s do not share all of this information to the public, but rather keep
it for themselves. In figure 2.1 there are also four lines drawn, each line
indicates a quantile. From bottom to top respectively the 25th, 50th, 75th

and 100th quantile. All price observations which are below the 25th quantile
line belong to the cheapest 25% of prices. These prices are the one’s we
want to buy as they are cheap.

2.1 Data description

The data used in this research is collected by Infare Solutions [2], a Danish
company who collects pricing airline data. This data has been bought and
shared with us by Flyr [1] a company who specializes in the prediction of
prices of airline tickets in the United States. The first observation in this
dataset has been made on 2012-01-01 and from then on captures daily ob-
servations of each flight till 2013-05-31 . For the purpose of this research we
will restrict ourselves to economy class tickets on single trip non-stop flights
from San Francisco Airport (SFO) to John F. Kennedy airport (JFK). This
enables us to specifically look into the behavior of price fluctuation without
adding complexity of the influence of stops and business class demand.
Furthermore in this research we will be only looking at observations which
are within 60 days of departure. Since the observations made in this data
set are on a daily basis, we can have a maximum of 61 observations for every
departing flight (these are 60 days observations days and the day of depar-
ture). Unfortunately some observations are missing in this data set, to have
sufficient observations for each flight we chose to only include flights which
have more than 30 observations. The remaining data that fit these prereq-
uisites, consists of 126,412 observations of a total of 2,271 unique departing
flights from 6 different Airlines. In table 2.1 we show the flight numbers
which we will use throughout this paper, the number of flights we observed
which had this flight number, the total number of observations we have of
this flight and in the last column the percentage of missing observations. As
we observed 61 days we can have a maximum of 61∗No.flights observations,
say maxObs. The percentage is then calculated as: (1− No.Observations

maxObs )∗100
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Airline Flight Number Departing Flights No. Observations Missing obs.

American Airlines AA12 165 9,298 7.5%

United Airlines UA286 461 26,417 6.1%

Delta Airlines DL1940 314 18,121 5.4%

JetBlue B6648 498 28,843 5.1%

Virgin America VX22 517 30,830 2.2%

US airways US6634 316 12,903 33.1%

Sum 2,271 126,412 8.7%

Table 2.1: For every of the 6 airlines a specific flight number, the number of
departing flights, the number of observations for this flight number and the
percentage of missing observations.

For each of the observations made 27 different variables are stored. In
our research we are only interested in 4 variables: departure date, observa-
tion date, price (including tax) and flight number. From these variables we
derived 2 new variables, namely: is the flight departing in the weekend or is
it a weekday and the number of days left to departure. An example of such
a observation is shown in table 2.2.

Variable Value

Flight number DL1940

Departure Date 2012-05-05

Observation Date 2012-03-21

Price inc. $ 101.40

Days left 45

Day of Week Saturday

Is weekday weekend

Table 2.2: A observation of price (incl), flight no, departure date of a spe-
cific flight, derived variables: days left till departure, day of week and is it
weekend.

While looking into our data we’ve found several patterns that seems to
apply to every flight. These are 1) There is a big price difference between
the minimum and the maximum price you can pay for a ticket 2) Price
usually tend to go up when nearing the day of departure 3) The day of the
departure matters when looking at price.

1) When looking at the price behavior of a flight 60 days in advance as
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for example in figure 2.1 we find that prices fluctuate strongly till the period
before flight departure. Table 2.3 also shows two different flights having dif-
ferent flight numbers and the difference between the extreme prices (lowest
versus highest).

Flight Number Departure Date Min. Price Max. Price Difference

DL1940 2012-05-05 $ 119.8 $ 504.8 $ 385

AA16 2012-12-24 $ 188 $ 661 $ 473

Table 2.3: Table 2.3: Minimum price, maximum price,for two different flights
on the same route.

It are these fluctuations in price caused by the YMS of airlines that
creates the problem of different persons paying such a difference in price for
exact the same flight.
2) As also seen in figure 2.1 prices tend to increase when the days left till
departure decreases, in the appendix in figure A.1 we have plotted the mean
price (red) and the median price (blue) of flights onto the number of days
before departure. For all of these flights we can see that both increase
when nearing the date of departure. Suggesting that days left till departure
becomes more important when nearing the departure date. 3) We would
expect that there is a difference between a flight flying on a Wednesday and
on a Sunday, flying on a Wednesday should be a regular flight for ’normal’
price. While flying on a Sunday would be regarded as a more expensive
flight because it flies in the weekend.

2.2 Linear Quantile Mixed Model

Based on the data we have we could try to fit a linear model, to fit such a
model we could use in the simple case just a linear line trough the points
fitted by ordinary least squares regression as exampled in figure 2.2.
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Figure 2.2: Linear fit on flight DL1940 departing from SFO heading to JFK
at 2012-03-27

yi = α+ βxi + εi (2.1)

The mathematical description of this linear line is given in equation 2.1
where i indicates observation i. xi is the number of days left till departure, yi
is the predicted price in USD for this observation and α,β, ε are respectively
the estimated intercept, slope parameter and residuals. Assumed in this
model is that each xi is independent. The slope parameter β indicates how
the price behaves as the days left decreases. This simple model can therefor
give us information about the price of this flight based on the number of
days left before departure.
This ordinary least squares regression fits the model to the mean, such that
this model only tells us about how the mean of the price behaves as number
of days till departure decreases. This is not what we and the consumers are
interested in, what we would like to know is how the lowest prices behave
during, say the 60 days period before departure. So instead of a simple
linear regression on all the price observations, we would like to only use the
low prices for our regression. Therefor we will be using quantile regression
on a low quantile as exemplified in figure 2.3 as this would be more suitable
for the problem we are try to solve. Selecting a really low quantile τ would
give us a model about really low prices, but as we are lowering the τ less
price observations becomes relevant. While we would like to predict a really
low quantile, the selection of a τ is a trade off between modeling lower prices
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and the predictive power of the model as we get fewer data when selecting
a lower τ .

We would expect a linear line as in figure 2.2 not to fit the the data quite
well, as yi (the price) does not seem to move linear with a decrease in xi
(the number of days till departure). A logarithmic model could be a possible
better fit to the relationships between yi and xi as we would expect that
the number of days before departure would get more important nearing the
day of departure and such it would increase the price exponentially instead
of linear. Such a model is given in equation 3.1b

Another model that is interesting to try to fit on this data as well, is
a quadratic model as given in equation 2.2. Such a model does have a
minimum price, if β2 is a positive integer, due to its convex form. Then the
corresponding minimum price moment, the number of days before departure
when the price is at is lowest, can be calculated. Having such a ’optimal’
buying day in our model could be proven useful for air travelers wanting to
know when to buy the cheapest tickets.

yi = α+ β1log10(xi + 1) + β2log10(xi + 1)2 + εi (2.2)

Again yi is the predicted price in USD and xi the number of days before
departure for observation i. We add 1 to the xi’s such that log10(xi + 1) is
not undefined if xi = 0 and log10(xi + 1) is positive on the whole domain
(0 ≤ xi ≤ 60).

Figure 2.3: Second order polynomial fit on 20th quantile (red) and on the
50th quantile (blue) of flight DL1940 departing from SFO heading to JFK
at 2012-03-27
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We consider flights with the same flight number, with the difference that
it departs on another day, as an independent instance of the same flight.
While these flight instances have some same effects called fixed effects, ev-
ery flight instance has their own effects called random effects. For example,
we assume that the influence of the number of days left is fixed, are con-
stant across all flights. But we also assume that the intercepts of these flight
instances are random, such that the predictions for the tickets prices corre-
spond to parallel lines. Linear mixed models can capture both random and
fixed effects thus generate a model that fits the behavior of the ticket price
better (relative to using only fixed effects).
The combination of using linear mixed models while being interested in a
low price (read: low quantiles) explains the use of linear quantile mixed
models [7] in this research. We will be using the lqmm package in R which
is the R-implementation of Linear Quantile Mixed Models by Marco Geraci
[6]. We will not be making any modifications to this package, but just use
standard implementation as it is capable of fulfilling our needs. The lqmm
package fits linear quantile mixed models based on the asymmetric Laplace
distribution, as described in [7]. Lqmm requires several parameters as its
input, we will be mostly using default parameters but some we will define
ourselves, such as the: fixed effects, random effects, grouping factor and τ ,
which is the quantile to be estimated.
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Chapter 3

Results

To select a good model on this data we have to select good explanatory
variables which can describe our explained variable y . This model should
not have too many variables as it will over fit but also not too few as it will
not describe the data properly. From chapter 2.1 we selected the variables:
days left (0-60), as the numbers of days left till departure and is weekday,
which can be weekend or weekday. With these variables we have given
several suggestions in chapter 2.2 of how these models could explain y, below
these are summarized.

y = α+ β1days lefti + εi (3.1a)

y = α+ β1log10(days lefti + 1) + εi (3.1b)

y = α+ β1log10(days lefti + 1)

+ β2log10(days lefti + 1)2 + εi
(3.1c)

y = α+ β1log10(days lefti + 1)

+ β2log10(days lefti + 1)2

+ β3is weekdayi + εi

(3.1d)

We have fitted these models on our data for each specific flight from table
2.1 to see how these models fit the data and whether the variable is weekday
is significant. For the selection between the models we will use the Akaike
information criterion (AIC), which tells us which model is a relatively better
fit (lower is better). Below is given table 3.1 which summarizes the AIC of
the fit of each of the models given above for every flight in table 2.1, for
τ = 0.1.
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Airline Flight Number Model 3.1a Model 3.1b Model3.1c Model 3.1d

American Airlines AA12 108,038 106,358 106,031 106,027

United Airlines UA286 329,478 319,920 319,537 319,002

Delta Airlines DL1940 211,962 206,698 205,697 205,269

JetBlue B6648 327,252 322,698 320,437 320,498

Virgin America VX22 357,165 349,974 349,983 349,781

US Airways US6634 168,122 164,020 164,118 164,008

Table 3.1: The AIC for each of the models given above, for one specific flight
of each airline, τ = 0.1

Airline Flight Number Intercept β1 β2 β3

American Airlines AA12 499.325*** -200.551*** 41.603*** -60.836***

United Airlines UA286 615.669*** -391.746** 119.860* -92.104*

Delta Airlines DL1940 547.310*** -413.333*** 138.113*** -54.323*

JetBlue B6648 481.1708*** -334.3723*** 102.8611*** -53.0349***

Virgin America VX22 474.1582*** -194.7038*** 32.9968*** -46.3316***

US Airways US6634 598.871*** -314.523*** 78.046* -48.639

Table 3.2: The coefficients of the explanatory variables of model 3.1d for all
airlines, τ = 0.1, Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Since the AIC for model 3.1d is (mostly) lower than the AIC of model
3.1c such that it is a relatively better fit for our data we will further elaborate
on this model. The estimated coefficients of this model are given in table
3.2, from this table we would like to mention four things, firstly we see that
for these flights the explanatory variables used in model 3.1d are significant
(with exception of the β3 estimate for flight US6634). For all flights more
information about the models can be found in appendix A. Secondly, we see
that the intercepts of these flights are fairly high compared to regular ticket
prices, for example the estimated intercept of flight AA12 is 499.325 while
the mean ticket price for this flight is $331,- This high intercept explains us
that on the day of the departure of this flight, when the number of days left
till departure is equal to 0 and parameters β1, β2 drop out, the ticket prices
are fairly expensive. Thirdly, the estimated parameter β2 is negative for each
of these flights, meaning that model 3.1d is concave for these flights and such
have a minimum estimated ticket price. These minimum ticket prices are
given in table 3.3 together with the days before departure we expect these
prices, note these prices are for weekend tickets else we should have added
the estimates for the β3 coefficient. As last we would like to mention that
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all signs for the β3 are negative, indicating that weekday tickets are cheaper
than weekend tickets.

Airline Flight Number Minimum price Days before departure

American Airlines AA12 $ 257,63 257

United Airlines UA286 $ 295.58 43

Delta Airlines DL1940 $ 238.06 31

JetBlue B6648 $ 209.43 42

Virgin America VX22 $ 186.92 892

US Airways US6634 $ 281,99 104

Table 3.3: The expected minimum price for 6 weekend flights with the
expected days before departure this occurs. According to the prediction
of model 3.1d, τ = 0.1

While three of these best moments to buy airline tickets are outside of
our window ( ≤ 60 days before departure) three others are inside: 31,42
and 43 days before departure. As we can only say something about the
expected prices within our window we would expect that in general lowest
prices would arrive around 31-43 days before departure. Below is given two
series of observations with model 3.1d fitted for flight DL1940 (figure 3.1) ,
one departures at 2012-03-26 and the other one a day later on 2012-03-27.
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Figure 3.1: Linear quantile mixed model fit for flight DL1940, departure
date at 2012-03-26 and at 2012-03-27 ,τ = 0.1.

As we can see in this figure our model follows the movement of the lowest
prices for both flights fairly well. It is interesting to see that at the flight
leaving at 2012-03-27, 9-7 days before departure there is a price drop, which
our model takes into account. It is only in the last days before departure
that the predictions of our model starts to deviate from the observations.
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Chapter 4

Discussion

The novelty of this research includes the use of quantile regression in combi-
nation with mixed models on airline tickets. As there is currently no study
about the (low) quantiles of airline prices. Such that we relay the focus from
predicting mean ticket prices to predicting the really low prices. The pre-
dictors we introduced are good predictors for these 6 flights from different
Airlines. With this model more information, such as confidence intervals
and std. errors can be given than just a binary buy/wait advice that HAM-
LETT gives. While we suggested model 3.1d for these flights it is arguable
that 3.1c also has an equally good fit on these and other flights.
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Chapter 5

Conclusions

This research takes the first step into applying linear quantile mixed model
regression on airline tickets, we have shown a possible model for predicting
prices of airline tickets based on the number of days left till departure and
if the flight leaves in the weekend or on a weekday. Results show that this
model follows cheap tickets prices in many days before departure fairly well,
but tends not to be very effective several days before departure as it just
not quite capture the behavior.

5.1 Future Work

We think several steps can be taken to improve performance, therefor further
research is needed. Such as for example the inclusion of more predictors for
the price, such as the fuel prices, the distance between airports, holidays
and restrictions on a specific flight tickets. In the optimal case the number
of seats left would be available but if not, perhaps it is possible to estimate
this or derive the ticket demand.
More work can also be done on the applicability of the algorithm, as we
only applied it to certain flights from SFO to JFK. Whether to make this
algorithm commercially available it has to be converted into an algorithm
which can decreasing ticket costs also it has to be applicable to more flights
and on different routes. Also the data we used in this research are daily
observations of the flights between these two airports, by increasing the
number of observations more data becomes available which means more
data can be used by the lowest quantiles. More observations means also the
possibility to lower the quantile τ , as further research has to show which τ
’s are useful for decreasing consumer costs.
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Appendix A

Appendix

Below are given summaries of the regression, including AIC, Std. Error and
lower/upper bound. These regressions are all on the 10th quantile.

===========================Flight AA12===========================

Call: lqmm(fixed = price_inc ~ days_left, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 398.48113 8.13976 382.12367 414.8386 < 2.2e-16 ***

days_left -2.00000 0.39791 -2.79962 -1.2004 7.068e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 5726 (p = 0)

AIC:

[1] 108038 (df = 4)

---

Call: lqmm(fixed = price_inc ~ logDays, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 398.365 25.950 346.218 450.513 < 2.2e-16 ***

logDays -107.348 15.213 -137.919 -76.777 5.424e-09 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 7406 (p = 0)

AIC:

[1] 106358 (df = 4)
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Call: lqmm(fixed = price_inc ~ logDays + logDaysSqr, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 446.007 16.812 412.222 479.792 < 2.2e-16 ***

logDays -207.496 20.825 -249.346 -165.647 2.27e-13 ***

logDaysSqr 44.124 12.017 19.975 68.274 0.0005951 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 7735 (p = 0)

AIC:

[1] 106031 (df = 5)

Call: lqmm(fixed = price_inc ~ logDays + logDaysSqr + is_weekend, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 499.325 12.605 473.995 524.656 < 2.2e-16 ***

logDays -200.551 17.900 -236.523 -164.580 4.045e-15 ***

logDaysSqr 41.603 10.544 20.415 62.791 0.0002535 ***

is_weekendweekday -60.836 14.552 -90.080 -31.593 0.0001196 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 7742 (p = 0)

AIC:

[1] 106027 (df = 6)
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===========================Flight UA286===========================

Call: lqmm(fixed = price_inc ~ days_left, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 502.9345 59.1251 384.1181 621.7508 3.248e-11 ***

days_left -1.9850 0.3826 -2.7538 -1.2161 4.046e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 10358 (p = 0)

AIC:

[1] 329478 (df = 4)

---

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 396.2855 16.8011 362.5224 430.048 < 2.2e-16 ***

logDays -109.7643 9.9831 -129.8261 -89.702 7.868e-15 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 19915 (p = 0)

AIC:

[1] 319920 (df = 4)

Call: lqmm(fixed = price_inc ~ logDays + logDaysSqr, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 616.300 69.756 476.119 756.48 1.040e-11 ***

logDays -480.540 108.684 -698.949 -262.13 5.439e-05 ***

logDaysSqr 154.485 44.084 65.896 243.07 0.0009883 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 20300 (p = 0)

AIC:

[1] 319537 (df = 5)

Call: lqmm(fixed = price_inc ~ logDays + logDaysSqr + is_weekend, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 615.669 86.826 441.186 790.1517 4.798e-09 ***
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logDays -391.746 116.227 -625.313 -158.1802 0.00147 **

logDaysSqr 119.860 45.478 28.469 211.2505 0.01122 *

is_weekendweekday -92.104 40.929 -174.353 -9.8549 0.02895 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 20837 (p = 0)

AIC:

[1] 319002 (df = 6)
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===========================Flight DL1940===========================

Call: lqmm(fixed = price_inc ~ days_left, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 348.21051 35.76134 276.34540 420.0756 4.839e-13 ***

days_left -1.75099 0.46536 -2.68617 -0.8158 0.0004498 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 6934 (p = 0)

AIC:

[1] 211962 (df = 4)

---

Call: lqmm(fixed = price_inc ~ logDays, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 286.590 19.852 246.695 326.486 < 2.2e-16 ***

logDays -64.748 18.781 -102.490 -27.006 0.001171 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 12197 (p = 0)

AIC:

[1] 206698 (df = 4)

Call: lqmm(fixed = price_inc ~ logDays + logDaysSqr, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 539.208 25.773 487.416 591.00 < 2.2e-16 ***

logDays -442.240 29.050 -500.618 -383.86 < 2.2e-16 ***

logDaysSqr 147.466 12.520 122.306 172.63 6.691e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 13201 (p = 0)

AIC:

[1] 205697 (df = 5)

Call: lqmm(fixed = price_inc ~ logDays + logDaysSqr + is_weekend, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)
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Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 547.310 26.131 494.799 599.822 < 2e-16 ***

logDays -413.333 22.909 -459.370 -367.297 < 2e-16 ***

logDaysSqr 138.113 10.725 116.561 159.666 < 2e-16 ***

is_weekendweekday -54.323 20.465 -95.449 -13.197 0.01068 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 13630 (p = 0)

AIC:

[1] 205269 (df = 6)
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===========================Flight B6648===========================

Call: lqmm(fixed = price_inc ~ days_left, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 318.70680 39.13414 240.06380 397.3498 1.152e-10 ***

days_left -1.03613 0.45436 -1.94920 -0.1231 0.02697 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 12558 (p = 0)

AIC:

[1] 327252 (df = 4)

---

Call: lqmm(fixed = price_inc ~ logDays, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 323.235 20.340 282.361 364.109 < 2.2e-16 ***

logDays -95.656 10.676 -117.111 -74.202 6.767e-12 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 17112 (p = 0)

AIC:

[1] 322698 (df = 4)

Call: lqmm(fixed = price_inc ~ logDays + logDaysSqr, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 477.4814 7.9147 461.5762 493.39 < 2.2e-16 ***

logDays -330.7288 7.5282 -345.8573 -315.60 < 2.2e-16 ***

logDaysSqr 102.1448 4.4067 93.2891 111.00 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 19375 (p = 0)

AIC:

[1] 320437 (df = 5)

Call: lqmm(fixed = price_inc ~ logDays + logDaysSqr + is_weekend, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)
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Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 481.1708 6.6536 467.7999 494.542 < 2.2e-16 ***

logDays -334.3723 10.2843 -355.0394 -313.705 < 2.2e-16 ***

logDaysSqr 102.8611 6.1048 90.5930 115.129 < 2.2e-16 ***

is_weekendweekday -53.0349 8.5695 -70.2560 -35.814 1.197e-07 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 19316 (p = 0)

AIC:

[1] 320498 (df = 6)

27



===========================Flight VX22===========================

Call: lqmm(fixed = price_inc ~ days_left, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 416.34923 12.55158 391.12589 441.5726 < 2.2e-16 ***

days_left -2.62860 0.18633 -3.00304 -2.2542 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 26075 (p = 0)

AIC:

[1] 357165 (df = 4)

---

Call: lqmm(fixed = price_inc ~ logDays, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 424.5994 9.9058 404.6929 444.51 < 2.2e-16 ***

logDays -125.1194 6.5935 -138.3696 -111.87 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 33266 (p = 0)

AIC:

[1] 349974 (df = 4)

Call: lqmm(fixed = price_inc ~ logDays + logDaysSqr, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 450.8447 11.4357 427.8637 473.826 < 2.2e-16 ***

logDays -204.0612 10.8934 -225.9524 -182.170 < 2.2e-16 ***

logDaysSqr 33.7808 7.2485 19.2143 48.347 2.453e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 33259 (p = 0)

AIC:

[1] 349983 (df = 5)

Call: lqmm(fixed = price_inc ~ logDays + logDaysSqr + is_weekend, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)
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Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 474.1582 15.3645 443.2821 505.034 < 2.2e-16 ***

logDays -194.7038 9.9451 -214.6892 -174.718 < 2.2e-16 ***

logDaysSqr 32.9968 5.4520 22.0405 43.953 1.945e-07 ***

is_weekendweekday -46.3316 12.7229 -71.8993 -20.764 0.0006526 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 33463 (p = 0)

AIC:

[1] 349781 (df = 6)
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===========================Flight US6634===========================

Call: lqmm(fixed = price_inc ~ days_left, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 634.86722 43.81388 546.81993 722.9145 < 2.2e-16 ***

days_left -4.30002 0.42967 -5.16347 -3.4366 1.961e-13 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 2514 (p = 0)

AIC:

[1] 168122 (df = 4)

Call: lqmm(fixed = price_inc ~ logDays, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 519.2870 35.8029 447.3384 591.24 < 2.2e-16 ***

logDays -161.4610 6.4315 -174.3855 -148.54 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 6616 (p = 0)

AIC:

[1] 164020 (df = 4)

Call: lqmm(fixed = price_inc ~ logDays + logDaysSqr, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)

Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 593.914 54.730 483.930 703.90 1.245e-14 ***

logDays -320.212 101.076 -523.333 -117.09 0.002643 **

logDaysSqr 80.265 47.237 -14.662 175.19 0.095625 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 6520 (p = 0)

AIC:

[1] 164118 (df = 5)

Call: lqmm(fixed = price_inc ~ logDays + logDaysSqr + is_weekend, random = ~1,

group = outbound_departure_date, tau = taus, data = dd)
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Fixed effects:

Value Std. Error lower bound upper bound Pr(>|t|)

(Intercept) 598.871 62.922 472.424 725.318 1.012e-12 ***

logDays -314.523 59.220 -433.529 -195.516 2.640e-06 ***

logDaysSqr 78.046 29.669 18.423 137.669 0.01136 *

is_weekendweekday -48.639 51.024 -151.175 53.898 0.34514

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null model (likelihood ratio):

[1] 6632 (p = 0)

AIC:

[1] 164008 (df = 6)
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