
Bachelo hei
Compe Science

Radbod Uniei

Digitizing an interactive collaborative teaing
methodology using web tenologies

Author:
Aaron van Geffen


First supervisor/assessor:
prof. dr. Erik Barendsen
e.barendsen@cs.ru.nl

Second assessor:
dr. Peter Achten

p.achten@cs.ru.nl

August , 

Abstract

In the Netherlands, several schools have adopted a pilot programme in which every student in a class
owns a tablet. While publishers have been adapting their learning methodologies into e.g. ebooks,
there is little focus on adapting existing topic-specific teaching methodologies to digital platforms.
We aim to change this by doing a case study on the digitisation process of a methodology that is used
to teach history classes: Active Historical inking.

We will show how we have adapted the teaching methodology as directly as possible, outlining
the design choices we have had to make. Moreover, we will discuss and preview how we extended
the methodology to include a supportive interactive whiteboard application, which can be used by
teachers to illustrate and settle disputes in classroom discussions after each round.

To achieve this, wewill show how tomake use ofmodernweb technologies, includingWebSockets
and JSON, to make real-time communication possible.

Anowledgments

I would like to thank the following people for their direct or indirect involvement in my thesis:

• Erik Barendsen, who pitched the idea to me and acted as supervisor throughout the process.
While the project ended up taking more time than we both had anticipated, he has patiently
seen the journey through with me to the end.

• Harry Havekes and Arnoud Aardema of the Radboud Docenten Academie, for their involvement
in the development process of the application. Their dedication and enthusiasm have really
helped my resolve in wanting to bring the project to a successful end.

• My parents, Joop and Loes van Geffen, who I have made more than a little worried about me,
when fretting my work would not be good enough.

• My friends Tim Steenvoorden and Judith van Stegeren, whose support has meant the world to
me, especially during the summer months I spent finishing this thesis.

Contents

 Introduction 
. Aim of the study . 
. Reading guide . 

 Active Historical inking 
. Motivation . 
. Methodology . 
. Example session . 
. Design principles . 
. Computer Supported Collaborative Learning . 

 Requirements 
. Students’ tablet client . 

.. Set-up . 
.. Canvas behaviour . 

. Interactive whiteboard software . 
.. Aggregation system . 
.. Management system . 

. Software stack . 
. Schematic overview . 

 Baground information 
. Platform: native or web-based application . 
. Transmission . 

.. Bluetooth: direct pairing . 
.. WiFi: intranet or internet . 

. Network layer . 
.. Connection-based: TCP . 
.. Stateless: UDP . 

. Communication . 
.. Polling . 
.. WebSockets . 

. Protocol design . 
.. JSON . 
.. XML . 

. Synchronisation problems . 
.. Preventive measures . 
.. Linear message parsing . 
.. Message pre-conditions . 

. Asynchronous programming . 



 Design oices 
. Platform: web-based . 
. Network: TCP . 
. Transmission: WiFi . 
. Communication: WebSockets . 
. Protocol design: JSON . 
. Synchronisation: preconditions . 

 Implementation 
. Entity identification . 
. Database design . 
. Server design . 
. Protocol design . 
. Programming languages . 
. WebSocket abstraction layer . 

.. Client-side: JavaScript . 
.. Server-side: PHP and Ratchet . 

. User Interface design . 
.. Student collaboration canvas . 
.. Aggregation system . 

 Conclusion and discussion 
. Future work . 

Bibliography 

A Original teaing methodology 
A. Chronology cards for ‘Nederland in de de eeuw’ . 
A. Timeline for ‘Nederland in de de eeuw’ . 

B Design sketes 

C Additional screenshots 
C. Logging in . 
C. Choosing a session and group . 
C. Module management . 

D Source code header listings 
D. Implementation: PHP model classes . 
D. Implementation: PHP controller classes . 
D. Implementation: PHP template classes . 
D. Implementation: JavaScript function prototypes . 



Chapter 

Introduction

Since the end of the s, there has been a continuous increase in the use of digital media in classrooms,
sparked by affordable hardware and the rise of the Internet.

Recently, personal devices have been on the rise. Most notably, the introduction of the iPad in April
 changed how we interact with digital surfaces. Previously, tablets worked with special styli to
move the pointer to a different position – the software itself was still the classic desktop software.
The iPad changed this with its capacitive touch screen, allowing the use of fingers, and an operating
system fully tailored to tablet needs.

The technology has been lauded by many sectors, one of which is the education sector. In the
Netherlands, several schools have adopted a pilot programme in which every student in a class owns
one of these tablets. As a direct result, publishers have reacted to this by adapting existing text and
workbooks into either educational apps or ebooks, making use of the ecosystem that modern tablets
provide, and relieving the need for students to carry heavy books in their backpacks.

Application listings show educational apps are mostly limited to such digitisations of text and
workbooks, aswell as apps that focus on playfully communicating knowledge through games. (Eduapp,
)

Unfortunately, there is little focus on adapting existing topic-specific teaching methodologies to
digital platforms. We aim to change this by doing a case study on the digitisation process of a method-
ology that is used to teach history classes:Active Historicalinking, which has been used in secondary
education in the Netherlands since .

. Aim of the study

Through this, we hope to both directly and indirectly contribute to the education process, as the
techniques we use may potentially be applied to other teaching methodologies as well.

In this thesis, we aim to answer the research question ‘How can we digitise the teaching methodol-
ogy Active Historical inking?’. To answer this question, we have formulated the following subques-
tions:

. What are the original goals of the teaching methodology, and how can we ensure they are met
by the digitised system?

. What are the requirements for the digitised system?

. How can we facilitate the collaboration process do we synchronise canvases between students,
keep canvases in sync?

. What choices need to be made with respect to techniques that come into play?



. Reading guide

First, we will look at how the original teaching methodology works in chapter . From its principles
and stakes, we will do a brief requirements analysis in chapter .

To meet these requirements, we will be making several technical design choices. In chapter , we
will look at a variety of options, before making the choices in chapter .

Finally, in chapter  we will go into detail on several aspects of the implementation, before briefly
discussing our findings in chapter .

Original teaching
methodology!

Requirements
analysis! Design choices! Implementation!



Chapter 

Active Historical inking

In this chapter, we will look at a methodology that can be used to support teaching history classes in
high school: Active Historical Thinking.

. Motivation

In order to reason about history, it is imperative to have background knowledge about the time period
in question. When we speak of learning history, we usually mean the process of looking at a certain
period of time, while focussing on a certain place – a country or continent, in order to get a better un-
derstanding of the changes that occured during this time. Of course, this involves thoroughly looking
at events that transpired, and (political) movements and ideologies that bridge these.

While learning the facts involved may be relatively straightforward, this process is more involved
than one might initially think. Often, there is no such thing as the truth when re-constructing a
historical context. This becomes apparent when we consider the facts given may be selective, or even
untrue. Moreover, there are many angles to look at the same problem – change does not happen
overnight and is the result of many events transpiring before it.

The process of historical contextualisation is therefore a hard process; there is not just one ‘right’
answer. In addition, students have difficulty connecting apparently discrete events into a continous,
chronological overview. Havekes et al. acknowledge this (, p. ):

“Constructing a historical context is so complex that guidance through a well-structured
learning sequence is not enough. […] Guidance by a teacher is needed to stimulate stu-
dents to challenge their construction and stimulate their thinking. The teacher must ask
questions to further assess and challenge the (initial) answers and arguments by the stu-
dents. To do this, students’ thinking needs to be visible to the teacher (brains-on-the-
table). Working in groups and classroom discussions are useful tools to make the thinking
of the students visible.”

. Methodology

At the end of a series of classes, teachers can use the Active Historical inking teaching methodology
to give such an overview of historical events and movements. The idea here is to give students insight
into how history develops: not just as a discrete series of events, but rather as a continuous process.
(Havekes et al., ) This process is called historical contextualisation.

Students are placed in groups of two or three students, each sharing an A paper with a copy of
a timeline printed on it, containing several placeholders, as well as persons of interest. The students
are tasked with filling out this timeline using cards. This is done in several rounds.

At the start of each round, every group gets an envelope containing the next set of cards. During a
limited amount of time, students then have to place the cards from this set on the timeline, in addition



to the cards already on the canvas. Disputes may arise here, and with all students having had the same
lessons prior to filling out the timeline, this can lead to interesting discussions. This stimulates critical
thinking about how events relate to one another.

When students are out of time, the round is evaluated. This discussion is led by the teacher, who
assumes a guiding and overseeing role in this methodology: why were certain cards placed at cer-
tain points in time? How do they relate to upcoming and active movements? How did the people
mentioned on the cards play a role in them? Et cetera.

. Example session

Figure .: Scan of the canvas for Active Historical Thinking’s ‘e Netherlands in the th century’.

To illustrate the method, we will take a look at the chronology ‘Nederland in de de eeuw’ (The
Netherlands in the th century), which consists of four rounds. Figure . shows the canvas for it.

In the first round, students to place historical events and descriptions of key figures in the timeline.
Each of the corresponding cards should be placed in one of the placeholders, mapping directly onto
parts covered in lectures. Students are expected to have placed the cards in the right slots within 
minutes. Afterwards, the round is briefly evaluated: where did the groups place certain cards, and
why? Especially in case of dissonance: this creates a cognitive incongruity. (Havekes et al., , p.
)

The second round, also consisting of  minutes, has the students identifying the beginnings of
movements and ideologies and place their cards above the years on the timeline. In order to do this,
students will have to look closely at the cards on the canvas and link them together. During the
evaluation, the teacher can incite discussions about where cards were placed. For instance, the card
for socialism is linked to the rise of the radio.

Building on the ideologies placed in the second round, the third round has students connecting
keywords to these political or societal movements. This process takes slightly longer than the first
two rounds: a total of  minutes is allotted. Again, there is an evaluation afterwards, where students
debate why certain keywords are associated with certain ideologies.



Finally, the fourth round sees students work with slightly bigger cards, that have a quoted source
on them. After placing them in the right time, they also need to connect it to at least one keyword
from the previous round. Students get approximately  minutes to do this, after which discussion
follows, where the entire canvas can be taken into account.

See appendix A. for the cards and appendix A. for the timeline for ‘e Netherlands in the th
century’.

. Design principles

One of the main stakes in the method is collaboration between students. Through deliberation and
discussion, they create their own contextualisation of the historical events. As we mentioned earlier,
this is harder than it may seem: while they may know the facts, students may not always have the
required background knowledge readily available.

We may abstract from the historical background altogether and focus solely on the canvas the
students are working on. In this thesis, we design the system such that teachers can create their own
modules, including timeline and cards, thereby delegating the responsibility for the content to the
teacher.

In the process of students collaborating on their canvases, the teacher has an overseeing, guiding
role. He or she does not necessarily correct students, as much as stimulate their thought process: why
are cards put where they are? How do events relate to one another? Making students question their
own knowledge is not an easy process, but needed to get students to progress in their epistemic beliefs.
(Havekes et al., , pp. –)

Havekes et al. summarize their work with the following design principles (, pp. –):

. Challenge historical knowledge: create a cognitive incongruity

• Create a historical tension (the past as being different) by providing the students with
information that conflicts with their prior knowledge and/or is conflicting in itself.

• Challenge their knowledge and skills (knowing and doing history).
• Challenge their epistemic beliefs.

. Stimulate substantiated considerations

• Ask the students an (evaluative) question so several reasonable answers are possible.
• Focus the (evaluative) question on historical contextualisation through explicit attention
for time/duration, cause/change and location.

• Nudge the development of their epistemic beliefs by asking them to formulate alternative
answers.

• Nudge their development of their epistemic stance by assessing their answers on how
knowing and doing history are combined.

• Stimulate the use of prior knowledge through challenging questions.
• Stimulate thinking about the relationships between facts and concepts by using colligatory
concepts.

. Scaffold students’ learning

• Structure the question through
– providing students with factual information and an evaluative question at the start
of the learning sequence;



– providing students with relevant colligatory concepts;
• Structure the learning sequence through the learning activities by

– a clear introduction and giving clear instructions
– alternating the learning activities (working in pairs or triads, whole classroom dis-
cussions and individual tasks);

– varying the pace of the learning activities;
– a clear debriefing of the learning sequence, focussing on content, process, historical
thinking and goal of the learning sequence.

• Foster the learning of the students through constant guidance:
– observe and ask questions for justification during their work in groups;
– react through both responsive questioning and assessing answers during classroom
discussion;

• Make the historical thinking of the students visible (brains-on-the table) through debrief-
ing of the whole learning sequence, explicitly addressing knowing and doing history and
their epistemic beliefs.

• Give special attention to the second-order concepts of time/duration, space/location and
change/cause.

. Computer Supported Collaborative Learning

Computer Supported Collaborative Learning (CSCL) is the term used to refer to knowledge building
in classrooms. (Resta & Laferrière, ) In a CSCL process, computers are used to facilitate in the
collaboration process.This can be either a synchronous or asynchronous process – that is, both parties
can collaborate simultanously (while in the same room, or through e.g. Skype) or ‘take turns’ if they
are remote.

In past research, Lipponen, Rahikainen, Lallimo, andHakkarainen () have found that the qual-
ity of discussion decreased when moving discussion into a CSCL environment, noting that “students
do not participate very intensively” and “there is often a lack of sustained and connected discussion”
in CSCL environments. Conversely, Fjermestad () found CMC (Computer Mediated Communi-
cation) to improve performance in tasks requiring decision-making, attributing it to the lack of social
presence.

Even though students work on separate devices, thereby opening up the possibility for moving
discussion to a digital platform, we have decided not to, with the above studies in mind. Furthermore,
the aims ofActive Historicalinking actively promote classroom discussions. Given that students will
be sitting next to each other in class, verbal communication is therefore likely to be a more efficient
choice, too.



Chapter 

Requirements

Having looked at how the method works as a teaching methodology, we will now attempt to break it
down into smaller components, from a technical point of view.

As we discussed, in the original method students collaborate by filling out a timeline on an shared
A-sized sheet of paper, using paper cards to fill in the blank space of the canvas. During this process,
they verbally discuss the historical context to determine where to place cards.

In the transition to a digital system, we will be moving the canvas to tablet clients, making use
of the rise of interactive personal devices in the classroom. However, the communication between
students will still be done verbally.

Three aspects of our design are in need of requirements analysis:

. The tablet client that students will be using on their devices;

. The whiteboard client that teachers will be using on an interactive whiteboard;

. The server that is used to exchange information;

We will go into detail for each of these in the following sections.

. Students’ tablet client

The students will use their own tablets to fill in a digitised version of the timeline canvas. The model
of tablets will vary between schools, but will either be an iPad or Android device, so the software
should be compatible with both the iOS and Android operating systems.

.. Set-up

When a student opens the application, the first step will be a login process to authenticate themselves
as a member of a class. This should be done through a straightforward combination of email address
and password, linked to a class in the storage back-end. What class they are in influences which
sessions they can see – as such, it acts as an access level.

After a successful login, the user is taken to the list of current and past sessions they can access.
Each of these sessions is a link between a teaching module and class. The same module may be taught
in several classes, but as students need to be physically present for the classroom discussions, there
is need for such instantiation.

Selecting one of these sessions will take the user to the group selection screen. Here, they can pair
their device with other groups present. Most modules will specify working in pairs or groups of three
students. Any user can join any group, provided the quotum has not yet been met. If none of their
group members has created a group yet, one of them should click the ‘Add new group’ button. This
will open a new group, with the creator as the only member. The other student(s) can then join the
newly created group.



.. Canvas behaviour

Each of the groups shares a canvas instance. This canvas instance is the collection of cards the students
need to position — the variable part that is group-dependent. Every such a card instance can be either
positioned on the canvas, or be on the stack of cards. As each of the group members shares a canvas,
resultingly, changes by one user should be seen by the other group member(s). We will look into
facilitating this on a technical level in the next chapter.

Card instances that have not yet been positioned on the timeline, will be stored on a stack. This
will be a collapsible overlay on the side of the screen. Students can drag a card off this stack onto the
canvas. When this dragging stops, the change should be visible on all tablets involved.

This manner of collaboration raises interesting synchronisation issues. We will be discussing these
in the next chapter.

We should also note that cards can continue to be dragged after their initial placing. The sys-
tem does not automatically check whether cards are in ‘correct’ positions. Through discussion and
collaboration, students should eventually find the ‘right’ positions themselves.

As mentioned in the previous chapter, each teaching module consists of several rounds. Students
will only be able to see the cards involved in the consecutive rounds thus far, and depend on the
teacher distributing new cards onto the group’s stack once the teacher is satisfied with the results
of the current round. As such, the teacher should be able to add cards to the canvas instances of the
groups in his or her classes. We will cover this in the next section.

. Interactive whiteboard soware

Like the students’ client, when a teacher opens the application, the first step will be a login process
to authenticate themselves as a teacher. Again, this should be done through a straightforward com-
bination of email address and password, linking these credentials to teacher privileges in the storage
back-end.

.. Aggregation system

Paramount for the teacher’s whiteboard software is an aggregation systemwith which the teacher can
get an illustrative overview of the canvasses of all the groups. This may be used not just to identify
gaps in students’ knowledge, but also for demonstration purposes: why have some students decided
to place a certain person in a particular time, whereas others place them several years later?

This system does not require many features, but should work intuitively. The idea is that, after
opening the module in question, the teacher can select a few cards from the stack to study. These are
then assigned a unique colour. For each of the groups, the cards in question will then be represented
by a coloured dot in the positions the groups have placed it. If more than one group has placed the
same card in the same place, the dot will be bigger and get the amount of groups involved as a caption.

.. Management system

Aside from an instrument to be used in the classroom, the teacher’s client software should also func-
tion as a management tool. Teachers should be able to create accounts for their students and add them
into classes. Furthermore, they should have the ability to create, import and export modules, including
adding cards and timeline labels. Finally, they should be able to start and manage the aforementioned
sessions, as well as advance them to the next round.

. Soware sta

As the original system was developed by a not-for-profit organisation, it is the wish of the original
authors that we design the new system to be freely available as well. For this reason, we will design



our approach with open source technologies in mind. This means we will be using tools, frameworks
and programming languages that are freely available – that is, they do not require a licence fee to use.

While limiting the choice to not include software that is only available commercially, we are
hopeful this means the resulting software will be easy to deploy in schools as well.

. Sematic overview

Figure . shows a schematic overview of the distribution of clients in the system. In general, two
clients are grouped together, but still function and communicate autonomously.

As shown, the teacher is not grouped directly to any of the students, but gets their information
directly from the server. As the groups will share the state of their canvasses with this server, the
teacher will be able to see their progress this way.

Group A

Student 1

Student 2

Group B

Student 3

Student 4

Group C

Student 5

Student 6

Group D

Student 7

Student 8

Group E

Student 9

Student
10

Server

Teacher

Figure .: Schematic overview of client-server communication. Grouped clients are contained in boxes.





Chapter 

Baground information

This chapter presents the options we have considered to make the choices that facilitate the prototype
implementation we present in chapter  on page .

. Platform: native or web-based application

One of the core decisions in the translation process, is whether we want to build a native application,
or a web-based application. Whichever we choose influences e.g. what communication technologies
will be available to us. For example, a web application does not have direct access to Bluetooth or
WiFi technologies, so all communication will have to go through a hypertext protocol.

Charland and Leroux () briefly discuss themain advantages and drawbacks of either approach.
They note that web-based applications are significantly cheaper to produce due to all platforms shar-
ing the same code.Their biggest drawback is not sharing the performance of their native counterparts,
which is notable when doing, for example, D image manipulation.

A notable disadvantage of building a native application is that it is constrained to a single plat-
form. While it is possible to share logic code to some extent, each platform has their own UI toolkits.
Therefore, the code for the user interface, which typically takes up a vast portion of the code, will
need to be written specifically for the platforms in question. Regrettably, this typically results in a lot
of similar, but ultimately different, code.

There has been effort in abstracting the individual UI toolkits into platform independent code (cf.
Qt, Xamarin), but at the time of writing this is mostly in an experimental phase.

A notable cause for slower responsiveness of web apps, is JavaScript performance and DOM (Doc-
ument Object Model) construction. As such, optimising it is subject to much research (Martinsen et
al., ; Ahn et al., ). Fortunately, since , this performance has increased dramatically. Ef-
forts by major browser producers, including Microsoft, Google, Mozilla and Apple, have sped up the
interpretation and execution process greatly.

Considering their differences, it is no surprise the choice between native and web-based appli-
cation has great influence over the software stack we will end up using. In terms of programming
languages, native apps are generally built using strongly typed programming languages (e.g. C++,
Java, Objective-C), while web-based apps are often built using weakly typed scripting languages (e.g.
JavaScript, PHP, Python) on top of a webserver.

In the case of web-based apps, developers may also choose to build their application in a strictly
typed language that is then served through a webserver. Examples of these are Java on TomCat, or
any compiled language through the use of CGI (Common Gateway Interface) to interface with the
webserver.



. Transmission

Depending on whether we build a native app, we will need to assess which hardware capabilities of
the tablets we will be using to transmit and exchange data. All tablets involved have two means of
short-range wireless communication: a Bluetooth stack and a WiFi stack. We will briefly discuss both
stacks in this section.

.. Bluetooth: direct pairing

Bluetooth communication works by pairing devices with each other: one master device initiates and
manages connections with up to seven ‘slave’ devices. The pairing process is done with explicit con-
sent on both ends through the exchange of a key: the initiating device will provide it, after which the
receiving party needs to enter it to confirm the pairing. After this, the devices can then communicate
through a continuous, encrypted connection.

A notable advantage of the Bluetooth protocols is that devices are easy discover, as they advertise
themselves by name as needed. For our purposes, these could contain the names of the students
involved (e.g. ‘John Smith’s iPad’).

As mentioned, there is a hierarchy of devices: at any one time, only one of the devices can be the
master device. Only the master device can send messages; the others are only on the receiving end.
Through a protocol, the devices can switch roles – i.e. a different device in the network becomes the
master. At any time, only one device in the network can be the master device – all others are assigned
a ‘slave’ role.

While all tablets are outfitted with a Bluetooth stack by default, the same might not the case for
the teacher’s whiteboard — these are often desktop computers outfitted with a specialised projector.
This is not a big hurdle to overcome: there are USB peripherals available (‘dongles’) that can provide
the required functionality.

.. WiFi: intranet or internet

The WiFi stack is an access point based network solution. This means that, to establish a network,
one of the devices involved must take the role of the routing device, or router. While this may seem
somewhat cumbersome, it has one major advantage: the network is full-duplex: it allows for constant
communication in both directions.

Typically, using a wireless connection we will have access to not just one other device, but an
entire network consisting: either a local network (LAN), or the entire Internet. This is advantageous
in that it allows us to easily set up a connection with a central server from all clients.

UsingWiFi in the classroom has another advantage: we can use the existing infrastructure. Class-
rooms have been outfitted with WiFi routers to provide students with an internet connection. Simi-
larly, it means the teacher’s computer does not necessarily need to be on the same wireless network:
their computer can be on a wired connection on the same subnet.

. Network layer

If we choose to build a native application, we will have to decide on what network protocol to use to
communicate with the server. There are two common protocols used in conjunction with the Internet
Protocol (IP): the Transmission Control Protocol (TCP) and the UDP (User Datagram Protocol). Both
can be used to transmit the same sets of data, but come with different properties and guarantees. We
will briefly explain both protocols in this section.



.. Connection-based: TCP

TCP is a connection-based protocol, which means that there is a handshake before every payload.
A connection is opened by sending a SYN (synchronise) packet, which the receiver can then accept
through a SYNACK (synchronise-acknowledge) packet. After this, the connection is established: the
sender sends their messages in order, and delivery of each message is acknowledged by the receiver
using an ACK packet before the next message is sent. Figure . illustrates this with a sequence dia-
gram.

One of the important takeaways for our purposes, is that the TCP protocol guarantees the payload
(data) transferred remains completely intact, as well as in the right order. This may seem trivial, but if
this is handled in the network layer using TCP, we may abstract from it altogether in the application
layer.

Because of these advantages, TCP has some overhead: it requires setting up a connection before
any data can be sent. While this comes with several guarantees that are nice to have, some purposes
might not require guaranteed delivery and would instead benefit from the speed gains of a stateless
protocol instead.

Sender Receiver

1 : SYN

2 : SYNACK

3 : Message 1

4 : ACK

5 : Message 2

6 : ACK

Figure .: Sequence diagram showing message passing using TCP. Note the first two messages establish a
connection through a handshake.

.. Stateless: UDP

Unlike TCP, UDP is a stateless protocol, which means packets are sent directly to their destination
without setting up a connection beforehand. Like TCP, every packet contains a checksum for packet
integrity validation. However, there is no acknowledgement of receipt from the receiving end. While
this makes for a lightweight protocol, it also limits options after receiving a corrupted message. Fig-
ure . on the following page illustrates this with a sequence diagram.

The stateless nature of UDP makes it ideal and fast, however. It is therefore used for protocols
that deem speed to be of the essence, like the Domain Name System (DNS) and DHCP (Dynamic Host
Configuration Protocol) used for network lookup and regulation.

Another common use of UDP is found in multiplayer games. Here, a game state is sent several
times per second. Especially in games where low-latency is paramount (e.g. games requiring fast
responses), the advantages of sending a state in a timely manner outweigh the disadvantages – errors
can be handled by the game through succeeding packets.



Here, we come to the essence: UDP is fast, but defers the responsibility of handling errors to the
application layer. For our intents, we will need to decide whether this is most beneficial.

Sender Receiver

1 : Message 1

2 : Message 2

Figure .: Sequence diagram showing message passing using UDP. Note there is no connection between mes-
sages, nor confirmation of receipt.

. Communication

.. Polling

An naïve way to approach the communication, is by having the clients involved poll for changes
periodically. To give the impression of a real-time system, we would need to poll frequently – at least
once every second. This is relatively easy to implement, but quite inefficient: most of the time, there
are no changes to send to the polling client (‘push’), hence most of the traffic is overhead.

Thematter is complicated further by traffic congestion: polling too oftenwill result inmany packets
needing to be exchanged through the routing device and, as we are using wireless technologies, the
air. Each of these packets will not be going directly to the intended receiver either: all devices in the
direct vicinity will pick up the packets. Of course, all devices except the routing device and recipient
will disregard packets not intended for them. However, by its nature this solution is difficult to scale.

For our purposes within a classroom, polling is still an option. However, depending on the imple-
mentation, it may cause problems in practice if several neighbouring classrooms use similar software
at the same time.

.. WebSoets

To achieve real-time communication, WebSockets may be used. This is a relatively new technique:
the IETF standardised it per RFC (Fette & Melnikov, ), and in September  it received a
candidate recommendation from the WC. It has since been implemented by all major browsers.

Results in previous academicworkwithWebSockets has been encouraging (Swamy&Mahadevan,
; Wessels et al., ; Qveflander, ), with browser implementations maturing nicely.

Setting up a connection

A WebSocket connection finds its inception in an HTTP (HyperText Transfer Protocol) handshake.
The request contains headers that a supporting server understands as an upgrade request. After this
initial handshake, the connection resumes through the WS (WebSocket) protocol. What follows is an
example of such an HTTP request from RFC:
 GET /chat HTTP/1.1
 Host: server.example.com
 Upgrade: websocket



 Connection: Upgrade
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 Origin: http://example.com
 Sec-WebSocket-Protocol: chat, superchat
 Sec-WebSocket-Version: 13

As with a normal HTTP connection, it is possible (and indeed recommended) to secure the con-
nection through the use of TLS (Transport Layer Security). For HTTP, the resulting protocol is called
HTTPS. Correspondingly, for WS the protocol is called WSS.

It is interesting to note that, for security reasons, it is possible to use WSS from an HTTP con-
nection, thereby upgrading security. Conversely, from an HTTPS connection, we cannot use an un-
secured WS connection.

Invocation in JavaScript

A simple WebSocket can be opened in JavaScript by invoking the WebSocket constructor over a URL
address, for example:
 var socket = new WebSocket("https://websocket.url");

Like most constructs in JavaScript, we can assign functions to a websocket to be invoked when an
event triggers — again, ameans of asynchronous programming. According to available documentation
in the Mozilla Developer Network (MDN) , the WebSocket object has the following event-related
attributes:

onopen An event listener to be calledwhen theWebSocket connection’s readyState changes toOPEN;
this indicates that the connection is ready to send and receive data.

onmessage An event listener to be called when a message is received from the server.

onclose An event listener to be called when the WebSocket connection’s readyState changes to
CLOSED.

onerror An event listener to be called when an error occurs.

The following example illustrates how we can hook up to these events, logging each of them to
the console, along with their messages:
 var socket = new WebSocket("https://websocket.url");
 socket.onopen = function() {
 console.log("WebSocket has been opened.");
 };
 socket.onmessage = function(message) {
 console.log("New message received: " + message);
 };
 socket.onerror = function(message) {
 console.log("An error occurred: " + message);
 };
 socket.onclose = function() {
 console.log("WebSocket was closed.");
 };

https://developer.mozilla.org/en-US/docs/Web/API/WebSocket



https://developer.mozilla.org/en-US/docs/Web/API/WebSocket

. Protocol design

As our environment will includes many strings, we will have to make use of serialisation to format
messages. This section aims to briefly explain two common human readable serialisation techniques:
JSON and XML. Both handle international text well: they fully support Unicode encodings.

We will not be taking binary serialisation techniques into consideration, as their use is limited to
native applications.

.. JSON

JSON (JavaScript Object Notation) is a common serialisation technique, originating in JavaScript.
Because of its origins in a scripting language, a major advantage of JSON is its human-readable syntax,
while still keeping overhead to a minimum. Its standardisation by RFC (Bray, ) has led to
many implementations in both loosely and strictly typed languages.

Even though JavaScript is a loosely-typed language, JSON supports strict typing. Types include
integers, floats, strings (encapsulated between double quotes), booleans (literals true and false), ar-
rays and objects. A notable advantage of this is that JSON documents do not require a complex data
structure for their representation in a programming language.This in contrast toDOM structures that
SGML derivatives utilise (e.g. XML, HTML).

While originally a strict subset of JavaScript, JSON has been extended upon since to allow full
encoding in Unicode, allowing JSON documents to be encoded in UTF-, UTF- or UTF-.

In JSON, arrays are a sequence of elements delimited by commas and encapsulated between brack-
ets [and], with an implicit zero-based index:
 ["apples", "oranges", "bananas"]

Objects, on the other hand, are keyword-basedmappings. Colons : separate keywords from their
values, and commas delimit the key-value pairs. Objects are encapsulated between braces { and }.
Note that, while JavaScript does not require it, keywords are mandatorily encoded as strings in JSON:
 {"name": "Douglas Crockford", "achievement": "First specified JSON"}

Note that objects and arrays can be nested, in both ways. To illustrate this, please see the example
below for an encoded object, strings, integers and array.
 {
 "name": "Radboud University",
 "location": "Nijmegen",
 "age": 91,
 "num_students": 19200,
 "studies": [
 "Biology",
 "Chemistry",
 "Computer science",
 "Information science",
 "Mathematics",
 "Physics"
]
 }

.. XML

Another common serialisation technique is the Extensible Markup Language (XML), most notable for
its use in the exchange of data over the internet. Like HTML, the mainmarkup language for the web, it
has its roots in the Standard Generalized Markup Language (SGML). XML was designed to be a subset
of SGML, using similar syntax, but less features to ease implementation of a compliant parser.



XML represents data as a tree of nodes, each containing either a textual body or another tree. Each
node is encapsulated between a start tag and end tag, both encapsulated between <and >. Furthermore,
start tags may contain aributes. For example:
 <province name="Gelderland">
 <city>Arnhem</city>
 <city>Nijmegen</city>
 </province>

Here, Arnhem and Nijmegen are understood to be instances of type city belonging to a parent
province named Gelderland.

Like JSON, XML is fully Unicode compliant. Much like SGML, its parser is unforgiving for vi-
olations of its syntax rules: the document will not continue to be parsed if an error occurs. This is
in contrast to HTML, which has been designed to be lenient in this regard and has well-defined
specifications for such edge cases.

Serialising a node tree, similar to the object used in the JSON example, results in the markup code
below. Note that an XML document does not explicit contain information on typing; this is done in
a separate XML Scheme Document, if needed. Such an XSD file can define a document scheme from
 primitive data types, including integers, strings, dates and URLs, but discussing these is outside of
the scope of this thesis.

Unlike JSON, there is no primitive for arrays. Rather, array-like structures can be represented by
making all of them children of the same parent element. In the example below this is done by adding
study elements to the studies node.

Finally, elements without a body may be used to represent optional boolean expressions. Rather
than using a closing tag, the start tag is closed with an extra forward slash: />. The is_public node
in the example below is an instance of such an empty tag.
 <?xml version="1.0" encoding="UTF-8"?>
 <university>
 <name>Radboud University</name>
 <location>location</location>
 <age>91</age>
 <num_students>19200</num_students>
 <studies faculty="science">
 <study>Biology</study>
 <study>Chemistry</study>
 <study>Computer science</study>
 <study>Information science</study>
 <study>Mathematics</study>
 <study>Physics</study>
 </studies>
 <is_public />
 </university>

When working with XML documents, it is common practice to work with a Document Object
Model (DOM) to represent the node tree and its elements, ensuring validity of the resulting document.
Of course, an XML document may be created by writing strings directly to file, too. However, as
the language is not regular, for processing a document the use of a DOM parser in some form is
unavoidable.

. Synronisation problems

As we are dealing with an interactive canvas that involves several users, we anticipate concurrency
issues may arise when communicating with the server. Fortunately, canvas user interaction will be
limited to dragging cards from one position to another, which reduces the synchronisation problem
to that of finding out which is the actual reality.



There are several ways to deal with the issue. We will briefly discuss three of them.

.. Preventive measures

One way to deal with synchronisation issues, is to try to prevent them from ever occurring. For
example, for our purposes, we might implement an exclusivity lock that locks a card as soon as the
first user interaction takes place, preventing another user to interact with it. This lock would then
be lifted once the other user stops interacting with it, i.e. when they lift their finger from the screen.
Figure . illustrates this.

While this will solve the symptom of a user seeing their changes overridden by a concurrent
action, it may cause another problem: a race conditionmay be triggered. If two students interact with
the same card at once, who will get the exclusivity lock? Technically, one of them will always be
first by a few milliseconds, but ideally we will not have to wait for a server to give a verdict before
interaction can begin.

Student 1 Student 2 Server

1 : Request lock for card 1

2 : Lock granted for card 1

3 : Request lock for card 1

4 : Lock denied for card 1

5 : Update card 1, lifting lock

6 : Lifting lock for card 1

7 : New position for card 1

Figure .: Sequence diagram showing a possible protocol for two clients trying to obtain an exclusivity lock.

.. Linear message parsing

Another way to deal with concurrent messages, is to look at them linearly: whatever message comes
first, is processed first. This is fairly easy to implement: messages are queued in a first-in, first-out
(FIFO) queue. After processing the message at the top of the queue, the results are sent to other clients.
If another client had interacted with the same element on the canvas, their result will be overridden.
Of course, this means that succeeding messages in the queue will override this result again, however.

Key here is how the user expects the mechanism to work. If we process messages linearly, de-
pending on how many concurrent changes there are, elements may be re-positioned several times on
a user’s canvas.

Ideally, students first discuss where cards should be located before they move a card. However,
it is likely students will move cards around for illustrative purposes: consider a student explaining
the context of a particular historical event, for example. As such, it is likely two clients will both be
dragging the same card from its original position to a different position on the canvas.

As soon as the first student lets go of the card they are dragging, the change will be pushed to
the server and thereby to the other student – overriding the position of their local instance of the
card. However, as they are still interacting with it, the change event may be queued, depending on



the implementation. Then, after the second student lets go, the change done by the first student will,
perhaps unintentionally, be overridden. Figure . illustrates this.

Student 1 Student 2 Server

1 : Move card 1 to position B

2 : Move card 1 to position C

3 : Card 1 has moved to position B

4 : Card 1 has moved to position B

5 : Card 1 has moved to position C
6 : Card 1 has moved to position C

Figure .: Sequence diagram showing a possible protocol for two clients moving the same card.

.. Message pre-conditions

The third method we are considering, is the assignment of a pre-condition to every card update mes-
sage. In our case, this pre-condition will be the position the card was in when the user started inter-
acting with it. Effectively, this means the first change to be submitted will be considered the actual
reality — a concurrent change will have an outdated pre-condition and will therefore be discarded.

Consider the situation we looked at in section ... If this occurs when using pre-conditions, the
user who first submitted a change will not see the card jump to another position shortly after. Rather,
the second user to change the card will see their change ignored, as the pre-condition to their change
is no longer valid. Figure . illustrates this.

Student 1 Student 2 Server

1 : Move card 1 from A to B

2 : Move card 1 from A to C

3 : Successfully moved card 1
4 : Card 1 has moved to position B

5 : Moving card 1 to C failed, not at A

Figure .: Sequence diagram showing a possible protocol for two clients trying to move the same card.

. Asynronous programming

Traditionally, statements in an imperative programming language are typically executed one-by-one:
only after a statement has finished executing, is the next one executed.The net result is a program that
is always ‘in sync’ with what the programmer dictated. Hence, it is called synchronous programming.

Consider the following synchronous program, retrieving a record set from a database:



 function getDataSynchronously(dbconn) {
 console.log("Querying itemset");
 var set = dbconn.query("SELECT * FROM items");
 while (var row = set.fetchRow()) {
 appendResult(row.title, row.value);
 console.log("Result #" + row.id + " appended");
 }
 console.log("End of function");
 }

Its statements are executed sequentially, hence the console output after invoking the getData-
Synchronously function will be:
 Querying itemset
 Result #1 appended
 Result #2 appended
 ...
 End of function

Synchronous programs are relatively easy to understand, because their execution flow is fairly
straightforward: the program does not continue until the previous statement has been fully executed.
A downside to this is that the program effectively blocks if a statement takes longer to execute: there
is no concurrency. Traditionally, such bottlenecks have been disk I/O, and communication with other
systems for specific services, e.g. a database server. As a direct result, such operations could render
the user interface (UI) for the program unresponsive for noticeable time.

When faced with these problems, programmers often make use of threading, a concurrency tech-
nique used to split the program’s execution flow. Typically, a computationally intensive program will
run its user interface in a separate thread from the main program.

Threading is not always an option. For this thesis, we are using a web-based environment, which
typically run single-threaded, supervised by a browser. As a result, any synchronous client-server
communication will delay or block any interaction the user tries to invoke on the canvas. In real-time
systems, such communication may take place several times a second, noticeably hindering the user.

Fortunately, we can mitigate such blocking by making use of a concurrency technique applicable
to web browsers: callback functions. We pass an extra argument to blocking functions: a pointer to
another function, to be executed after finishing the blocking function.
 function getDataAsynchronously(dbconn) {
 console.log("Querying itemset");
 dbconn.query("SELECT * FROM items", callback);
 console.log("End of function");
 }

 function callback(set) {
 while (var row = set.fetchRow()) {
 appendResult(row.title, row.value);
 console.log("Result #" + row.id + " appended");
 }
 }

In our example, the database query function now calls the processing function only when it has
fully retrieved the requested recordset from the database. Effectively, this schedules the processing of
the resulting payload for a time when it is available. In the mean time, the program will resume its
normal flow — here, this will likely be awaiting user input. This is called asynchronous programming.

Because communication is now no longer blocking the program’s execution flow, our console
output will change:
 Querying itemset
 End of function



 Result #1 appended
 Result #2 appended
 ...

Some programming languages allow the programmer to pass an anonymous (lambda) function
as the callback argument, typically leading to fewer code. A drawback of this is that it may obfuscate
the execution flow of a program: at first glance, the code may appear to be executed sequentially,
whereas it is in fact still executed as a callback. Example . illustrates this: while it syntactically
mostly resembles example ., it is semantically equivalent to example ..
 function getDataAsynchronously(dbconn) {
 console.log("Querying itemset");
 dbconn.query("SELECT * FROM items", function (set) {
 while (var row = set.fetchRow()) {
 appendResult(row.title, row.value);
 console.log("Result #" + row.id + " appended");
 }
 });
 console.log("End of function");
 }





Chapter 

Design oices

This chapter details on the choices we have made to come to an implementation, given the options
we considered in the previous chapter.

Please note that the choices in this chapter are not outlined in any particular order. As one might
expect, any particular choice my have consequences for another – as such, they are intertwined.

. Platform: web-based

Decisive in our decision to go for a web-based approach, is the intention to share it across three
platforms: tablets running either iOS or Android, as well as a teacher system to run on an interactive
whiteboard (‘digiboard’). While, in principle, the latter is a system running Windows, it is subject to
several restrictions. In practice, this means most of its applications run in a web browser. For us, this
means we would be building a web framework regardless. As such, it makes sense to re-use this code
base to build the tablet client for iOS and Android.

In the previous chapter, we discussed some disadvantages of web-based applications, notably the
performance of JavaScript execution. As we mentioned, this area has been subject to much research,
and as such performance has increased considerably since . In , this led us to conclude per-
formance in a D canvas environment is sufficient for our needs. The performance issues mentioned
by Charland and Leroux were found to be no longer an issue per Android . and iOS .

. Network: TCP

As mentioned in the previous chapter, TCP comes with notable advantages. Firstly, because it is a
connection-based protocol, every connection has a state.This means wewill only need to authenticate
the channel once, at the start of the connection. Assuming we secure the connection properly using
TLS, this means we not only have a safe connection, but also prevent certain overhead that would
come with providing an authenticated connection on a stateless protocol (e.g. security tokens on
UDP).

Furthermore, the order and integrity guarantees TCP comeswithwill be paramount to ourmethod
of providing real-time communication to the software. As we will see later in this chapter, techniques
like WebSockets rely on working with a sole connection per client, which furthers our need for a
state-based protocol.

. Transmission: WiFi

Given the choice between Bluetooth and WiFi, we initially leaned towards the former, as it generally
consumes fewer energy. However, as the Bluetooth stack only provides communication between one
master and one slave device, is not really viable as a means of real-time communication between more



than one device. Even if we only account for two devices (i.e. students), they will still need to alternate
the role of master (sender) and slave (listener). This, of course, leads to much overhead, as the stack
was not really intended for this purpose.

An alternative proposal would be to set up the teacher’s whiteboard computer as a local server,
connecting every tablet to this computer, making the tablets master devices (senders) and the server
the slave (receiver). Unfortunately, this is not a feasible solution for several reasons. Any network
may only consist of up to only eight devices, one of which is a master.

This is complicated further by the need for a teacher’s computer to send new cards to the students’
tablets after each round, necessitating it to be inmaster mode aswell. Furthermore, the Bluetooth stack
does not allow a device to be paired with more than one master at a time. We could probably work
around this by implementing some form of time slicing, but all in all, a WiFi-based approach looks to
be the better, much more scalable solution.

. Communication: WebSoets

To facilitate the collaboration process, it is crucial that collaborating clients see each other’s changes
as they happen: we want the canvases to be updated in real time. Thus, it is imperative that clients
continuously exchange information. While most groups will consist of two individuals, there will be
at least three clients involved in every group’s session: two students and one teacher, as we showed
in figure . on page .

As we have decided to build a web-based application, application data is essentially retrieved over
the HTTP protocol. However, HTTP in and of itself does not provide for real-time communication:
after the payload has been delivered, the TCP connection is closed.

So how can we do better? Ideally, we set up a communication channel to the server for every
client, such that it is both persistent and full-duplex. This means the connection will remain open after
the initial payload has been transferred, and that communication on it works both ways.

Effectively, this delegates the polling process to the hardware: when a new message arrives on
this open channel, it will trigger an interrupt in the operating system. In turn, the operating system
will then delegate the message to the application. This means, however, that the application does not
have to actively poll for messages: it can handle the calls asynchronously.

Considering the bulk of the clients will be tablet computers, we have to take energy consumption
into consideration. Obviously, if the device has to handle more traffic, it will consume more energy.
This is another vote for the passive, persistent connection.

This is where WebSockets come into play. As we mentioned in the previous chapter, this is a
relatively new, but fully supported technique that can upgrade a regular HTTP connection to a WS
connection. Not only does this achieve our needs, it also does this in such a way that it plays nicely
with firewalls, as communication will continue over HTTP’s port, , or the HTTPS port, .

As such, we will design our application such that it communicates its basic pages over HTTPS,
and once we enter the interactive component, we will initiate a WebSocket connection to exchange
data real-time.

. Protocol design: JSON

Both JSON and XML are excellent techniques for data serialization and are well supported in all
modern browsers. When working with JavaScript, however, JSON has a major advantage in that it
does not require a Document Object Model (DOM). This means it has fewer overhead: objects can
be accessed directly, instead of through function calls on the DOM. As JavaScript is a (generally) an
interpreted language, this has some nice speed gains over XML.

Seeing as we will be developing a web-based application, the user front-end will be working with
JavaScript. As such, we have chosen to implement our protocol using JSON serialisation as well.



We intend for the protocol to follow amessage passing pattern.Thismeans a client may request the
server to, for example, look up the list of active sessions, leaving the server to do the actual querying.
Similarly, a server may send a set of new cards to the client, leaving the lay out process to the client.
Most notably, however, is the simple passing of deltas between server and clients: the moving of cards
from position A to B. Again, only the position, i.e. container and coordinates, are transferred. The
actual moving on the client side will be computed on the client side.

. Synronisation: preconditions

Asmore than one client can simultaneously edit the same item on the canvas, concurrency issues may
occur when communicating with the server. We could argue that, considering the limited amount of
concurrent clients working on the same canvas, the worst thing to happen is a race condition – a slight
inconvenience for one of the users involved. However, without a protocol these may lead to the kind
of unexpected behaviour that causes confusion, such that it distracts or even removes the user from
the mindset that they are currently in, losing immersion.

We expect that, while discussing, both students may be dragging the same card around, if only
for illustrative purposes, but should not cancel each other out accidentally.

In the previous chapter, we have seen various methods of dealing with potential concurrency
issues. When we look at how students collaborate, we believe assigning pre-conditions to messages
has the most desirable results. Applying this method will reject succeeding messages if their starting
conditions are no longer met – for instance if another student has already moved the same card.
Recall, we illustrated a similar process in figure . on page .





Chapter 

Implementation

This chapter goes into detail on several aspects of the implementation process, notably the storage
design and user interface principles. We will not show source code in this chapter. For reference, we
have included listings of source code headers in Appendix D.

. Entity identification

Before starting work on the implementation, we must first assess what entities we will be dealing
with: we must make a model of the entities and their relations.

We identify the following entities in Active Historical inking:

Users are the teachers and students using the system. They each have an e-mail address to uniquely
identify them with, as well as a name with which they can be identified by fellow classmates
or collegues.

Modules are the overarching entities for the individual lessons: aside from a title and description,
they have an entity relation to sessions, labels, types, cards, and card instances.

Module sessions are the instantiations of modules, linking a module to a class of students.

Groups are the entities with which students are linked in a module session. For identification, each
of the groups have an automatically generated name, using the first names of the students, e.g.
“John and Mary”.

Group membership is the entity relationship between a user and a group.

Cards are the canvas items: rectangular objects with a caption or image, varying in size. Cards belong
to a particular round; those belonging to round  are positioned by the teacher, while the others
are mutable by the students instead.

Instances are the instantiations of cards, linking a card to a particular group. Hence, they also specify
the position a card has on the canvas or stack for a certain group.

Labels are captions positioned above the canvas by the teacher, to indicate a year or time period.
Examples are ‘’, ‘Early Middle Ages’, ‘Queen Regent Emma’.

Types specify the kinds of cards. They are defined by module and define e.g. the size and colour of
cards.

Type behaviour specifies what can be done with a type of card. Depending on the round, a card type
can have different behaviour, e.g. a card may be draggable in round , but round  may extend
the reach of the card to the label area.



. Database design

To store all the data involved, we have chosen to make use of a relational database. Each of the entities
described in section section . on the preceding page will be mapped to their own table, as shown in
figure ..

Aside from the entities mentioned, we include two artificial tables: one used for error logging
(log_errors) and one for storing client-server sessions, storing e.g. authentication (user_sessions).
Both are included in figure ..

We have chosen to implement the database in MariaDB, an open source database system based on
MySQL. To make re-using existing database servers possible, we will use a database abstraction layer
that also facilitates the use of other popular open source relational database servers, e.g. PostgreSQL
and SQLite.

cards

id_card INT(11)

id_module INT(11)

id_type INT(11)

round TINYINT(3)

dimensions_x TINYINT(3)

dimensions_y TINYINT(3)

position_x SMALLINT(6)

position_y SMALLINT(6)

image_file VARCHAR(255)

forecolor CHAR(6)

backcolor CHAR(6)

text TEXT

Indexes

group_members

id_group INT(11)

id_user INT(11)

join_date DATETIME

Indexes

groups

id_group INT(11)

id_session INT(11)

creation_time DATETIME

name VARCHAR(255)

Indexes

instances

id_instance INT(11)

id_card INT(10)

id_group INT(11)

container VARCHAR(10)

position_x INT(11)

position_y INT(11)

Indexes

labels

id_label INT(11)

id_module INT(10)

container VARCHAR(10)

position_x INT(11)

caption VARCHAR(255)

Indexes

log_errors

id_item INT(11)

id_user INT(10)

message TEXT

file TINYTEXT

line SMALLINT(6)

time INT(11)

ipaddress VARCHAR(15)

url VARCHAR(255)

Indexes

modules

id_module INT(11)

title VARCHAR(255)

description TEXT

num_rounds SMALLINT(2)

canvas_x INT(11)

canvas_y INT(11)

is_active TINYINT(1)

Indexes

modules_sessions

id_session INT(11)

id_module INT(11)

start_time DATETIME

current_round INT(10)

Indexes

user_sessions

session_id VARCHAR(32)

last_update INT(10)

data TEXT

Indexes

type_behaviour

id_behaviour INT(11)

id_type INT(11)

round INT(11)

fits_on VARCHAR(255)

Indexes

types

id_type INT(11)

id_module INT(11)

name VARCHAR(255)

dimensions_x TINYINT(3)

dimensions_y TINYINT(3)

Indexes

users

id_user INT(11)

first_name VARCHAR(30)

surname VARCHAR(60)

slug VARCHAR(90)

emailaddress VARCHAR(255)

password_pbkdf2 VARCHAR(128)

creation_time INT(10)

last_action_time INT(10)

ip_address VARCHAR(15)

is_admin TINYINT(1)

Indexes

Figure .: Schematic displaying the database design. Primary keys are identified using a yellow key; foreign
keys use a red diamond.

. Server design

To facilitate communication between clients, we will use a centralised system, as opposed to a dis-
tributed (decentralised) system. While both have their merits, a centralised approach makes most



sense for our purposes. As all communication will go through a central server, this makes pairing
devices to groups easier and more persistent. Furthermore, a teacher will be able to easily aggregate
the data without interrupting the individual devices.

Using the database as its storage back-end, the server keeps track of the states of canvases of all
groups involved. Hence, if a group is formed, the server can quickly send the entire state (including
cards, labels, stack, etc.) to each of the users involved. Similarly, if a device accidentally disconnects,
they can resume where they left off after a handshake with the server.

These states may be manipulated by users: students can modify the card instances for their own
groups, and teachers can make more cards available. As we mentioned in previous chapters, this
will be done throughmessages: simple JSON-encoded objects detailing the modifications made. All of
these messages will pass through the server. After the server has applied the messages to the state as
needed, they will send the results to all parties involved.

For instance, if user A changes position of a card from position P to Q, their client will send
a message detailing this change to the server. Assuming the card has not yet been moved from its
position P, the server then applies this change, and subsequently distributes the change to the device
for both user A and B. This has the added benefit of notifying A their change was successful.

. Protocol design

In order to make use of the message passing pattern in an effective manner, we need to define a
protocol for all client-server communication. As the messages passed are limited in scope, we can
suffice with making an exhaustive list of all possible messages, leaving us with specifying how they
are formatted.

As per the format, every message will be an object serialised in JSON encoding, exchanged over
the TCP/IP stack. Request messages pass a ‘call’ parameter to identify how the other attributes of the
message object should be handled. Response messages do not contain such a parameter; the server
handles messages synchronously, hence responses are guaranteed to be in the same order as the
requests are sent.

Below is a list of all request messages exchanged through the protocol. For each of the calls, an
example request (=>) and response (<=) message is included. To improve legibility, the messages are
indented here. In the actual application, this is not the case.

authenticate { cookie }
Authenticates the socket connection based on the session-id in a user’s cookie.

Client to server
=> {"call":"authenticate", "cookie":"PHPSESSID=1234...ABCD"}
Server acknowledges to client (empty = success)
<= {}

announcement { msg }
Server broadcasts an announcement to be displayed to the user by the clients.

Client sends announcement message to server
=> {"call":"announcement", "msg":"Hello world!"}
Server acknowledges to client if they are a teacher.
<= {}
Server broadcasts announcement to all other clients.
<= {"call":"announcement", "msg":"Hello world!"}



error { msg }
Server reports error in response to an action issued by a client. This error is only sent to the
client in question.

Client to server
=> {"call":"authenticate", "cookie":"PHPSESSID=1234...ABCD"}
If the client's session is not authenticated, an error message is

sent back:
<= {"call":"error", "msg":"Session is not authenticated."}

list_sessions { }
Server returns all sessions open on the server.

Client sends enquiry to the server.
=> {"call":"list_sessions"}
Server returns list of sessions.
<= {"sessions": {"1": {

"title": "Session title goes here",
"description": "The description for the module goes here."

} } }

reload_sessions { }
Forces a server to reload its session from database, disconnecting all clients. Can only be initi-
ated by a teacher.

Client sends reload command to server
=> {"call":"reload_sessions"}
Server acknowledges to client if they are a teacher.
<= {}

register_session { id }
Registers a client’s connection to a particular session.

Client expresses intent to join session 1
=> {"call":"register_session","id":"1"}
Server acknowledges
<= {}

unregister_session { }
De-registers a client’s connection from a session.

Client expresses intent to leave session 1
=> {"call":"unregister_session","id":"1"}
Server acknowledges
<= {}

list_groups { }
Returns all available groups for the current session as an array.

User Alice calls 'list_groups'
=> {"call":"list_groups"}
Server responds with the list of groups, noting she's a member of

group with id=1.
<= {"groups": {

"0": {"id": 1, "name": "Alice and Bob", "is_member": true},
"1": {"id": 2, "name": "Charlie and David", "is_member": false}

} }



create_group { }
Creates a new group for the current session. Current connection automatically joins the group
and lends its user’s name to the group. This call is typically followed by a get_canvas request.

User Alice calls "create_group"
=> {"call":"create_group"}
Server creates new group for Alice and adds her to it.
<= {}

join_group { id }
Current connection joins the requested group. If the user’s name is not present in the group’s
name, it is appended to it. This call is typically followed by a get_canvas request.

User Bob joins the group session he shares with Alice.
=> {"call":"join_group", "id":"1"}
Server adds Bob to the current session.
<= {}

get_canvas { }
Retrieves a serialised version of canvas data for the currently joined group session.This includes
not only the cards laid out on the canvas, but also timeline labels and cards on the stack.

Client requests a full listing of the current session.
=> {"call":"get_canvas"}
Server responds with a full serialisation of the session.
<= {

"moduletitle": "Example module's title",
"dimensions": {"width": "106", "height": "55"},
"labels": {

"year": {
"0": {"id_label": "1", "id_module": "1",

"container": "year", "position_x": "15",
"caption": "1800"},

[...]
},
"context": {

"0": {"id_label": "4", "id_module": "1",
"container": "context", "position_x": "15",
"caption": "French occupation"},

[...]
}

},
"cards": {

"0": {
"id_card": "10", "id_module": "1", "id_type": "2",
"round": "0", "dimensions_x": "12", "dimensions_y": "2",
"position_x": "4", "position_y": "2", "image_file": "",
"forecolor": "000000", "backcolor": "ffffff",
"text": "Willem I
First king of The Netherlands"

},
[...]

},
"instances": {

"0": {
"id_instance": "1", "id_card": "5", "id_module": "1",
"id_type": "1", "round": "1",
"container": "stack", "dimensions_x": "12",
"dimensions_y": "2", "image_file": "",



"forecolor": "000000", "backcolor": "ffffff",
"text": "First constitution"

},
[...]

}
}

update_instance { id, old_position, new_position }
Updates the state for a particular instance of a card in the current group session. Both the old
position and new position are sent: in case conflicts arise, the old position acts as a precondition.

A client moves a card from the stack to the grid...
=> {"call":"update_instance",

"old_position": {
"container":"stack", "position_x":"0", "position_y":"0"

},
"new_position": {

"container":"grid", "position_x":"58", "position_y":"28"
} }

Server acknowledges the change ...
<= {}
... and passes it on to other clients in the same group.
<= {"call":"update_instance",

"old_position": {
"container":"stack", "position_x":"0", "position_y":"0"

},
"new_position": {

"container":"grid", "position_x":"58", "position_y":"28"
} }

Student 1 Student 2 ServerStudent 3

1 : update_instance[]

2 : {}

3 : update_instance[]

4 : update_instance[]

Figure .: Schematic representation of message passing for the update_instance call.

advance_round { new_round }
Advances a session to the next round. The new_round parameter is passed to prevent acciden-
tally advancing by several rounds due to user interaction.

Teacher tells server to advance to the second round.
=> {"call":"advance_round","new_round":"2"}
Server sends every client a list of card instances to be added to the
stack. Note that each group has their own set of card instances.
<= {

"instances": {
"0": {

"id_instance": "25", "id_card": "14", "id_module": "1",
"id_type": "1", "round": "2",
"container": "stack", "dimensions_x": "12",



"dimensions_y": "2", "image_file": "",
"forecolor": "000000", "backcolor": "ffffff",
"text": "Socialism"

},
[...]

}
}

Teacher Student 2Server Student 1

1 : advance_round

2 : {}

3 : append_cards[]

4 : append_cards[]

Figure .: Schematic representation of message passing for the advance_round call.

. Programming languages

Our prototype has been implemented using PHP on the server side and JavaScript on the client side.
In accordance with the requirements, we chose an open source language for the server software. PHP
is freely distributable and available cross-platform, so the server software may be deployed to schools
without issue. As PHP is an interpreted language, the software does not require any platform-specific
re-compilation.

The choice for JavaScript on the client side is inherent to developing a web-based application.
While our PHP back-end generates some HTML, the majority of the interface is generated through
JavaScript and DOM manipulation.

. WebSoet abstraction layer

As we have seen in section .. on page , the WebSocket protocol by itself is rather crude. For
our purposes, we would therefore like to abstract from the basic WebSocket events by adding an
abstraction layer on top. We will do this by implementing our message passing calls on top of the
onmessage event, using the JSON encoded protocol we described earlier.

Per the protocol, every incoming message will be a serialised object containing a call attribute.
These messages will be parsed by our abstraction layer, delegating the message object to the relevant
function based on the call attribute. By centralising this delegation, we simplify the calls to our indi-
vidual call functions: instead of having all functions ‘listen’ to all messages, only relevant messages
will be delegated from a central dispatcher.

.. Client-side: JavaScript

WebSockets saw their inception in JavaScript, so we will not be requiring an extra framework to work
with them. To illustrate the client-side implementation of our abstraction layer, its function headers
are printed below:
 function Socket(address, open, debug)
 Socket.prototype.send = function (event, params, callback)
 Socket.prototype.on = function (event, listener)



 Socket.prototype.unbind = function (listener)
 Socket.prototype.unbindAll = function ()
 Socket.prototype.close = function ()

After a Socket object is constructed, other functions may add an event listener to it by invoking
the on method. Typically, such a call consists of two arguments: the expected call and a function the
message needs to be passed to. If no listener is added for a particular message event, the message will
be dropped when it arrives.

To illustrate this, the following snippet will listen to two event messages: the first line invokes ap-
pending cards after receiving them, and the second one invokes updating cards when a deltamessage
is sent:
 socket.on('append_cards', this.drawer.push_cards);
 socket.on('update_card', this.canvas.update_card);

Similarly, sending a message can be done through the sendmethod, which uses three arguments:
the call, its parameters, and an optional callback function to be executed after receiving a reply. For
example, this may be used to show a list of active sessions to the user after requesting the list.

Internally, sending a message will serialise the first two arguments (both the call and its param-
eters) into a message object serialised using JSON. We will also add a callback to the ‘waiters’ queue
— if the programmer has not provided one, an empty one will be passed.

By convention, every message the client sends will be replied to by the server. This may simply
be an acknowledgement, or a list of objects requested by the previous message — for example, the list
of available cards on the canvas.

.. Server-side: PHP and Ratet

To achieve WebSocket communication in our PHP server back-end, we have opted to use the Ratchet
framework (http://socketo.me/). Its modular approach means we can readily build our own server
on top of the foundations laid by Ratchet. This means our server classes only have to deal with the
actual incoming and outgoing JSON payloads, while the actual connections with clients are handled
and abstracted by Ratchet.

Discussing the class structure of the server is outside the scope of this thesis, but the relevant
headers are attached for reference in Appendix D..

As the server keeps a state of all canvases through a database, we have outfitted it with model
classes thatmap directly to tables in the database.Their headers are attached for reference in Appendix
D..

. User Interface design

The user interface has been designed to be analogue to the original teaching methodology.The canvas
lay-out uses a square-based grid to position cards, but the initial set of cards (round ) are positioned
manually by the teacher upon module creation to ensure they are placed in a relevant position.

We designed the user interface in collaboration with the authors of the original methodology. The
design sketches that preceed the implementation have been enclosed in Appendix B.

We will briefly go into detail on two central aspects of the design in the subsections below. Addi-
tional screenshots are enclosed for reference in Appendix C.



http://socketo.me/

.. Student collaboration canvas

Central in our user interface design is the canvas on which the students are exchanging their ideas:
the historical timeline.

We have attempted to closely recreate the original canvas elements, while making use of the
advantages the digitisation process brings:

• Cards are now fully displayed in colour;
• Cards automatically align to a grid when positioning them;
• The canvas can be zoomed in and out;
• Changes are briefly highlighted as they happen through a brief ‘pulse’ effect;

Compare figure . on the following page to figure . on the next page. We have followed iOS
user interface conventions, as the pilot classes all use iPads. For Android devices, a different style sheet
may be adopted to give the application a native looking lay-out.

.. Aggregation system

As we have discussed, the aggregation system allows a teacher to get an overview of the knowledge
in the classroom. We achieve this by allowing the teacher to select relevant cards from the drawer
on the right-hand side of the screen. Upon selection, each of the cards is then assigned a unique and
visibly distinct colour. For each of the cards in question, the server then clusters the positions students
have placed the cards.

In these positions, each of the cards is displayed as a circular blob in the assigned colour. Cards
of the same face in close vicinity are grouped together, showing their cardinality as a number on top
of the blob. Figure . shows this process for four cards.

Figure .: Teacher aggregation system. Cards selected in the drawer will see their positions plotted on the
canvas on the left.



Figure .: Student collaboration canvas for Active Historical Thinking’s ‘e Netherlands in the th century’.

Figure .: Original paper canvas for Active Historical Thinking’s ‘e Netherlands in the th century’.



Chapter 

Conclusion and discussion

As we have seen, adapting an existing, established teaching methodology involves many design de-
cisions to either directly map existing principles to a digital system, or adjust them slightly so they
can be adapted.

We decided to adapt the teachingmethodology as directly as possible, involving the tablets only as
instruments with which to position cards on a canvas. From a computer science perspective, wemight
have elected to move the discussion to a chat function, but as studies suggest this may negatively
impact discussion quality, we have chosen not to do this.

To implement the application, we have chosen not to use a native toolkit. Instead, we chose to use
web technologies to make the software cross-platform, allowing the application to be used on tablets
of both major operating systems, iOS and Android. Using style sheets, we mimic the appearance of
native applications, making the application more intuitive.

We have made use of WebSockets and JSON technologies to make real-time communication pos-
sible in an energy efficient manner. This has also allowed to make an extension on the methodology
in a supportive interactive whiteboard application, which can be used by teachers to illustrate and
settle disputes in classroom discussions after each round.

. Future work

Due to time constraints, we have not been able to do a pilot in classrooms to see how well the system
performs. In future research, we would therefore like to see an analysis of how well the system works
in practice.

The choices we have made in developing this application are relevant to future work as well. We
have shown that web technologies allow the creation of real-time collaborative software, and how to
we can deal with concurrency issues that may arise. It will be interesting to see what can be done
using these technologies in other educational fields.

After finishing our implementation, another possible choice for implementation was brought to
our attention. The iTask system (Achten, Koopman, & Plasmeijer, ), utilising the Task Oriented
Programming paradigm, generates web-based applications using an embedded domain specific lan-
guage. A similar canvas-based application may be developed as iTask software, expressing the re-
quirements in iTask’s EDSL, removing the need to develop separate server software.

As noted in the requirements, we will be releasing the software we produced as open source soft-
ware. We hope this will not only mean the software will be adopted by schools, but also that it will
see others extend upon it to make use of it for other collaborative methodologies.





Bibliography

Achten, P., Koopman, P., & Plasmeijer, R. (). An introduction to task oriented programming. In
V. Zsók, Z. Horváth, & L. Csató (Eds.),Central european functional programming school (Vol. ,
p. -). Springer International Publishing. Retrieved from http://dx.doi.org/10.1007/
978-3-319-15940-9_5 doi: ./----_

Ahn, W., Choi, J., Shull, T., Garzarán, M. J., & Torrellas, J. (). Improving javascript performance
by deconstructing the type system. In Proceedings of the th acm sigplan conference on program-
ming language design and implementation (pp. –). New York, NY, USA: ACM. Retrieved
from http://doi.acm.org/10.1145/2594291.2594332 doi: ./.

Bray, T. (, March). e JavaScript Object Notation (JSON) Data Interchange Format (RFC No. ).
RFC Editor. Internet Requests for Comments. Retrieved from http://www.rfc-editor.org/
rfc/rfc7159.txt

Charland, A., & Leroux, B. (). Mobile application development: Web vs. native. Communications
of the ACM , (),  - .

Eduapp. (). Retrieved --, from http://eduapp.nl/zoeken/apps
Fette, I., & Melnikov, A. (, December). ewebsocket protocol (RFC No. ). RFC Editor. Internet

Requests for Comments. Retrieved from http://www.rfc-editor.org/rfc/rfc6455.txt
Fjermestad, J. (). An analysis of communicationmode in group support systems research.Decision

Support Systems, , –.
Havekes, H., Coppen, P. A., & Luttenberg, J. (). Knowing and doing history: A conceptual frame-

work and pedagogy for teaching historical contextualisation. International Journal of Historical
Learning, Teaching and Research, ., -.

Lipponen, L., Rahikainen, M., Lallimo, J., & Hakkarainen, K. (). Patterns of participation and
discourse in elementary students’ computer- supported collaborative learning. Learning and
Instruction, , –.

Martinsen, J. K., Grahn, H., & Isberg, A. (, March). Using speculation to enhance javascript
performance in web applications. Internet Computing, IEEE, (), -. doi: ./MIC.
.

Qveflander, N. (). Pushing real time data using HTMLWeb Sockets (Unpublished master’s thesis).
Umeå University.

Resta, P., & Laferrière, T. (). Technology in support of collaborative learning. Educational Psy-
chology Review, (), -. Retrieved from http://dx.doi.org/10.1007/s10648-007-9042-7
doi: ./s---

Swamy, R., & Mahadevan, G. (). Event Driven Architecture using HTML Web Sockets for
Wireless Sensor Networks. White Papers, Planetary Scientific Research Center.

Wessels, A., Purvis, M., Jackson, J., & Rahman, S. (). Remote data visualization through web-
sockets. In Information technology: New generations (itng),  eighth international conference
on (pp. –).



http://dx.doi.org/10.1007/978-3-319-15940-9_5
http://dx.doi.org/10.1007/978-3-319-15940-9_5
http://doi.acm.org/10.1145/2594291.2594332
http://www.rfc-editor.org/rfc/rfc7159.txt
http://www.rfc-editor.org/rfc/rfc7159.txt
http://eduapp.nl/zoeken/apps
http://www.rfc-editor.org/rfc/rfc6455.txt
http://dx.doi.org/10.1007/s10648-007-9042-7



Appendix A

Original teaing methodology

A. Chronology cards for ‘Nederland in de de eeuw’

Events (to be printed on green paper)
Bijlage 1 Gebeurtenissen (kopiëren op een groen vel)

Eerste trein rijdt in

Nederland van Haarlem naar
Amsterdam.

Eerste vrouw die
afstudeert aan een

universiteit.

Oprichter van de eerste
Nederlandse politieke

partij, de ARP.

Maakt een herziening van de
grondwet. De macht ligt

voortaan bij het parlement.

Eerste grondwet in
Nederland.

Oprichter van de Sociaal
Democratische

Arbeiderspartij (SDAP).

Kinderwet van Van Houten
Invoering van de eerste

sociale wet die arbeid voor
kinderen jonger dan 12 jaar

in de industrie verbiedt.

Arbeidswet
Na uitvoerig onderzoek
van het parlement wordt

de arbeid van kinderen en
vrouwen aan strengere

regels gebonden.

De Zuidelijke
Nederlanden scheiden

zich af. België wordt een
onafhankelijke staat.

Movements (to be printed on blue paper)
Bijlage 2 Politiek-maatschappelijke stromingen (kopiëren op blauw papier)

Socialisme Liberalisme Confessionalisme

Feminisme Nationalisme



Keywords (to be printed on yellow paper)

Bijlage 3. Kenmerken van politiek-maatschappelijke stromingen.

Kopieer dit blad op geel papier.

eenheidsstaat nachtwakersstaat Vrijheid van het
individu

gelijkheid Sociale wetten Algemeen kiesrecht

Harmonie tussen
werkgevers en

werknemers

Gezin is hoeksteen
van de samenleving

Overheidsfinanciering
bijzondere scholen

vaderlandsliefde Scheiding kerk en
staat

Gemeenschappelijk
verleden



Sources (to be printed on white paper)

1. Uit het programma van een
Nederlandse politieke partij:
(...) steunt elke politieke of economische
beweging van de arbeiders die er op
gericht is hun levensvoorwaarden te
verbeteren. Zolang de arbeiders de
staatsmacht nog niet in handen hebben,
zal de (...) proberen, alle politieke rechten
te veroveren en die te gebruiken (…).

2. Alleen dat deel van de vaderlandse
geschiedenis, dat de leerling een
overzicht schenkt van de wording van de
Nederlandse staat en hem de grote daden
leert kennen van het voorgeslacht,
verdient brede ontwikkeling. Door dit
voorgeslacht werd onder leiding van
Oranje ons onafhankelijk bestaan
gegrondvest.

3. ‘Wil dit zeggen dat de staat voor alles
moet zorgen, alle kwalen en gebreken van
de maatschappij moet genezen?
Integendeel. Een eerste wet is
onthouding; onthouding van datgene wat
buiten de rechterlijke macht van de staat
ligt. (...) regeren vereist dat de staat
datgene wat niet tot het recht behoort,
overlaat aan anderen.’

4. Doel is het verkrijgen van
overheidsfinanciering van het christelijk
onderwijs, omdat de liberale overheid zich
slechts verantwoordelijk voelde voor het
openbaar onderwijs, dat godsdienstig
strikt neutraal was.

5. Wien Neêrlandsch bloed in de aders
vloeit,
Van vreemde smetten vrij,
Wiens hart voor land en koning gloeit,
Verheff' den zang als wij:
Hij stell' met ons, vereend van zin,
Met onbeklemde borst,
Het godgevallig feestlied in
Voor vaderland en vorst.

6. Kan van den fabrieksarbeid van
vrouwen en meisjes in het algemeen niet
veel goeds gezegd worden, in het -
bijzonder is die arbeid, waar hij door
gehuwde vrouwen verricht wordt, dikwijls
noodlottig voor de gezinnen.

7. In eerste plaats zijn onze waarden
bijzonder geschikt om patroons en
arbeiders met elkaar te verzoenen en tot
samenwerking te brengen, namelijk door
beide klassen te herinneren aan hun
wederzijdse plichten.

8. Art. 28. Er zal een wetboek gemaakt
worden zowel van burgerlijke als van
lijfstraffelijke wetten (…) algemeen voor
de hele republiek.

9.

 10. ‘Ik eisch dezelfde rechten als gij’



A. Timeline for ‘Nederland in de de eeuw’

1800 1850 1900
Franse bezetting Willem I Willem II Willem III Emma (regentes) Wilhelmina

Willem I
Eerste Koning

der
Nederlanden

1848 Revolutiejaar.
In bijna alle Europese

hoofdsteden eisen burgers
meer invloed op het bestuur.

K. Marx
schrijft het

Communistisch
Manifest

R. Thorbecke

1874

1798

1830

A. Jacobs

A. Kuyper

1889

P. Troelstra

1839

1877
De telefoon doet

zijn intrede in
Nederland.

1851
292 stoommachines
in Nederland, 2000

in België.

1865-1876
Aanleg van het

Noordzeekanaal
.

Schoolwet 1878
Hogere eisen, maar

nog steeds geen geld
voor bijzondere

scholen.

Schoolwet 1857
Het staat ouders vrij
om eigen, bijzondere
scholen op te richten.



Appendix B

Design sketes

















Appendix C

Additional screenshots

C. Logging in

Figure C.:The log in screen. Student and teachers can log in with their school email address and password.



C. Choosing a session and group

Figure C.: The session screen. In this example, there are two active sessions a student can choose to join.
Teachers can use this screen to navigate to their management interface using the buttons in the top-right
corner of the screen. These are not visible for students.



Figure C.:After choosing a session, a student can join a group.Their name will be appended to the group name.
If a group has already been joined, it will be placed at the top and highlighted in yellow.



C. Module management

Figure C.: Administrative interface for managing modules. New cards can be added by clicking the [+] button
in the lower-left corner of the canvas. ‘Fixed’ cards on the canvas may be dragged into the desired position
while in this editor mode.



Figure C.: The cards that are to be positioned by students are shown in a collapsible drawer on the right side
of the screen. Cards for a particular round may be edited after clicking the relevant round number in the top
toolbar.



Figure C.:The card editor screen. This is shown after double-clicking an existing card, or when creating a new
card. Note that caption, size, colours and type may be set using this interface.



Figure C.: The module settings screen. This allows a teacher to set the title and description of the module, as
well as the width and height of the canvas. Furthermore, card type behaviour can be defined from this window.





Appendix D

Source code header listings

D. Implementation: PHP model classes

Authentication.php

Authentication class, containing various static functions used for account verification and session
management.

PBKDF implementation by havoc@defuse.ca (https://defuse.ca/php-pbkdf2.htm)
 class Authentication
 // Checks whether a user exists in the database.
 public static function checkExists($id_user)

 // Finds the user id belonging to a certain emailaddress.
 public static function getUserId($emailaddress)

 // Verifies whether the user is currently logged in.
 public static function isLoggedIn()

 // Checks a password for a given username against the database.
 public static function checkPassword($emailaddress, $password)

 // Resets a password for a certain user.
 public static function updatePassword($id_user, $hash)

 public static function create_hash($password)

 public static function slow_equals($a, $b)

 /*
 * PBKDF2 key derivation function as defined by RSA's PKCS #5: https://www.ietf

.org/rfc/rfc2898.txt
 * $algorithm - The hash algorithm to use. Recommended: SHA256
 * $password - The password.
 * $salt - A salt that is unique to the password.
 * $count - Iteration count. Higher is better, but slower. Recommended: At

least 1000.
 * $key_length - The length of the derived key in bytes.
 * $raw_output - If true, the key is returned in raw binary format. Hex encoded

otherwise.
 * Returns: A $key_length-byte key derived from the password and salt.
 *
 * Test vectors can be found here: https://www.ietf.org/rfc/rfc6070.txt
 *



https://defuse.ca/php-pbkdf2.htm

 * This implementation of PBKDF2 was originally created by https://defuse.ca
 * With improvements by http://www.variations-of-shadow.com
 */
 public static function pbkdf2($algorithm, $password, $salt, $count, $key_length

, $raw_output = false)

Card.php

 class Card
 public $id_card;
 public $id_module;
 public $id_type;
 public $round;
 public $dimensions_x;
 public $dimensions_y;
 public $position_x;
 public $position_y;
 public $image_file;
 public $forecolor;
 public $backcolor;
 public $text;
 private function __construct(array $data)
 public static function fromId($id_card, $return_format = 'object')
 public static function getByModule($id_module, $round = 'all', $return_format =

'object')
 public static function createNew(array $data, $return_format = 'object')
 public function save()
 public function delete()

CardBehaviour.php

 class CardBehaviour
 public $id_behaviour;
 public $id_type;
 public $round;
 public $fits_on;
 private function __construct(array $data)
 public static function fromId($id_behaviour, $return_format = 'array')
 public static function getByType($id_type, $return_format = 'array')
 public static function getByTypes(array $id_types, $return_format = 'array')
 public static function createNew(array $data, $return_format = 'object')
 public function save()
 public function delete()

CardType.php

 class CardType
 public $id_type;
 public $id_module;
 public $name;
 public $dimensions_x;
 public $dimensions_y;
 private function __construct(array $data)
 public static function fromId($id_type, $return_format = 'array')
 public static function getByModule($id_module, $return_format = 'array')
 public static function createNew(array $data, $return_format = 'object')
 public function save()
 public function delete()



Database.php

The database model used to communicate with the MySQL server. Based on SMF .’s database ab-
straction layer, (C)  Simple Machines NPO. Used under BSD licence.
 class Database
 private $connection;
 private $query_count = 0;

 /**
 * Initialises a new database connection.
 * @param server: server to connect to.
 * @param user: username to use for authentication.
 * @param password: password to use for authentication.
 * @param name: database to select.
 */
 public function __construct($server, $user, $password, $name)

 // Fetches a row from a given recordset, using field names as keys.
 public function fetch_assoc($resource)

 // Fetches a row from a given recordset, using numeric keys.
 public function fetch_row($resource)

 // Destroys a given recordset.
 public function free_result($resource)

 // Moves internal pointer in given recordset.
 public function data_seek($result, $row_num)

 // Returns the amount of rows in a given recordset.
 public function num_rows($resource)

 // Returns the amount of fields in a given recordset.
 public function num_fields($resource)

 // Escapes a string.
 public function escape_string($string)

 // Unescapes a string.
 public function unescape_string($string)

 // Returns the last MySQL error.
 public function error()

 // Returns server info.
 public function server_info()

 // Selects a database on a given connection.
 public function select_db($database)

 // Returns the amount of rows affected by the previous query.
 public function affected_rows()

 // Returns the id of the row created by a previous query.
 public function insert_id()

 // Do a MySQL transaction.



 public function transaction($operation = 'commit')

 // Function used as a callback for the preg_match function that parses

variables into database queries.
 private function replacement_callback($matches)

 // Escapes and quotes a string using values passed, and executes the query.
 public function query($db_string, $db_values = array())

 /**
 * Escapes and quotes a string just like db_query, but does not execute the

query.
 * Useful for debugging purposes.
 */
 public function quote($db_string, $db_values = array())

 // Executes a query, returning an array of all the rows it returns.
 public function queryRow($db_string, $db_values = array())

 // Executes a query, returning an array of all the rows it returns.
 public function queryRows($db_string, $db_values = array())

 // Executes a query, returning an array of all the rows it returns.
 public function queryPair($db_string, $db_values = array())

 // Executes a query, returning an array of all the rows it returns.
 public function queryPairs($db_string, $db_values = array())

 // Executes a query, returning an associative array of all the rows it returns.
 public function queryAssoc($db_string, $db_values = array())

 // Executes a query, returning an associative array of all the rows it returns.
 public function queryAssocs($db_string, $db_values = array(), $connection =

null)

 // Executes a query, returning the first value of the first row.
 public function queryValue($db_string, $db_values = array())

 // Executes a query, returning an array of the first value of each row.
 public function queryValues($db_string, $db_values = array())

 // This function can be used to insert data into the database in a secure way.
 public function insert($method = 'replace', $table, $columns, $data)

 // This function tries to work out additional error information from a back

trace.
 private function error_backtrace($error_message, $log_message = '', $error_type

= false, $file = null, $line = null)

Dispater.php

 class Dispatcher
 public static function dispatch()

Error.php

 class Error



 public $id_entry;
 public $message;
 public $file;
 public $line;
 public $time;
 public $ipaddress;
 public $url;
 public $id_user;
 private function __construct($data)
 public static function fromId($id_entry)
 public static function log(array $data, $return_format = 'bool')
 public static function flushLog()
 public static function getCount()

ErrorHandler.php

ErrorHandling class, contains the static triggerFatalError function used to trigger fatal errors, halting
all other processes.
 class ErrorHandler
 private static $error_count = 0;

 // Triggers a fatal error, presenting the message in $text to the user, unless

it contains debug info.
 public static function triggerFatalError($text, $contains_debug_info = false,

$needs_logging = true, $format = 'html')
 public static function trigger400()
 public static function trigger403()
 public static function trigger404()

 // Kicks a guest to a login form, redirecting them back to this page upon login

.
 public static function kickGuest($message, $url = '')
 private static function logError($error_message = '', $file = '', $line = 0)
 public static function handleError($error_level, $error_string, $file, $line)

Form.php

 class Form
 public $request_method;
 public $request_url;
 public $content_above;
 public $content_below;
 private $fields;
 private $data;
 private $missing;
 // NOTE: this class does not verify the completeness of form options.
 public function __construct($options)
 public function verify($post)
 public function setData($data)
 public function getFields()
 public function getData()
 public function getMissing()

GenericTable.php

 class GenericTable extends PageIndex
 protected $header = [];



 protected $body = [];
 protected $page_index = [];
 protected $title;
 protected $title_class;
 protected $tableIsSortable = false;
 protected $recordCount;
 protected $needsPageIndex = false;
 protected $current_page;
 protected $num_pages;
 public $form_above;
 public $form_below;
 public function __construct($options)
 private function generateColumnHeaders($options)
 private function parseAllRows($rows, $options)
 protected function getLink($start = null, $order = null, $dir = null)
 public function getOffset()
 public function getArray()
 public function getHeader()
 public function getBody()
 public function getTitle()
 public function getTitleClass()

Group.php

 class Group
 public $id_group;
 public $id_session;
 public $creation_time;
 public $name;
 private function __construct(array $data)
 public static function fromId($id_group, $return_format = 'object')
 public static function getAll($return_format = 'object')
 public static function createNew(array $data, $return_format = 'object')

GroupMembership.php

 class GroupMembership
 public $id_group;
 public $id_user;
 public $join_date;
 private function __construct(array $data)
 public static function getMembershipBySession()
 public static function joinGroup($id_user, $id_group, $new_name = '')

Guest.php

Guest model; sets typical guest settings to the common attributes.
 class Guest extends User
 public function __construct()
 public function updateAccessTime()

Instance.php

 class Instance
 public $id_instance;
 public $id_card;
 public $id_group;
 public $container;



 public $position_x;
 public $position_y;
 private function __construct(array $data)
 public static function fromId($id_instance, $return_format = 'object')
 public static function getByGroup($id_group, $container = 'all', $return_format

= 'array')
 public static function getByGroups($container = 'all', $return_format = 'array'

)
 public static function createNew($id_group, $return_format = 'array',

$from_round = 1, $to_round = 1)
 public function save()
 public static function update($data)
 public function delete()

Label.php

 class Label
 public $id_label;
 public $id_module;
 public $container;
 public $position_x;
 public $caption;
 private function __construct(array $data)
 public static function fromId($id_label, $return_format = 'array')
 public static function getByModule($id_module, $container = 'all',

$return_format = 'array')
 public static function createNew(array $data, $return_format = 'object')
 public function save()
 public function delete()

Member.php

 class Member extends User
 private function __construct($data)
 public static function fromId($id_user)
 public static function fromSlug($slug)

 // Creates a new member from the data provided.
 public static function createNew(array $data)

 // Updates the member using the data provided.
 public function update(array $new_data)

 // Deletes the member.
 public function delete()

 /**
 * Checks whether an email address is already linked to an account.
 * @param emailaddress to check
 * @return false if account does not exist
 * @return user id if user does exist
 */
 public static function exists($emailaddress)
 public function updateAccessTime()
 public static function getCount()
 public function getProps()

Module.php



 class Module
 public $id_module;
 public $title;
 public $description;
 public $num_rounds;
 public $canvas_x;
 public $canvas_y;
 public $is_active;
 private function __construct(array $data)
 public static function fromId($id_module, $return_format = 'object')
 public static function getAll($return_format = 'object')
 public static function getPairs()
 public static function createNew(array $data, $return_format = 'object')
 public function save()
 public function delete()
 public function getCards($round = 'all', $return_format = 'array')
 public function getTypes($return_format = 'array')
 public function getLabels($container = 'all', $return_format = 'array')

ModuleSession.php

 class ModuleSession
 public $id_session;
 public $id_module;
 public $current_round;
 private function __construct(array $data)
 public static function fromId($id_session, $return_format = 'object')
 public static function getAll($return_format = 'object')
 public static function createNew(array $data, $return_format = 'object')
 public function delete()

NotAllowedException.php

 class NotAllowedException extends Exception

NotFoundException.php

 class NotFoundException extends Exception

PageIndex.php

 class PageIndex
 protected $page_index = [];
 protected $current_page = 0;
 protected $items_per_page = 0;
 protected $needsPageIndex = false;
 protected $num_pages = 0;
 protected $recordCount = 0;
 protected $start = 0;
 protected $sort_order = null;
 protected $sort_direction = null;
 protected $base_url;
 protected $index_class = 'pagination';
 protected $page_slug = '%AMP%page=%PAGE%';
 public function __construct($options)
 protected function generatePageIndex()
 protected function getLink($start = null, $order = null, $dir = null)
 public function getArray()
 public function getPageIndex()



 public function getPageIndexClass()
 public function getCurrentPage()
 public function getNumberOfPages()
 public function getRecordCount()

Registry.php

 class Registry
 public static $storage = [];
 public static function set($key, $value)
 public static function has($key)
 public static function get($key)
 public static function remove($key)

Session.php

 class Session implements SessionHandlerInterface
 public static function start()
 public static function resetSessionToken()
 public static function validateSession($method = 'post')
 public static function getSessionToken()
 public static function getSessionTokenKey()
 public function read($session_id)
 public function write($session_id, $session_data)
 public function destroy($session_id)
 public function gc($maxlifetime)
 public function open($save_path, $name)
 public function close()

User.php

User model; contains attributes and methods shared by both members and guests.
 abstract class User
 protected $id_user;
 protected $first_name;
 protected $surname;
 protected $emailaddress;
 protected $creation_time;
 protected $last_action_time;
 protected $ip_address;
 protected $is_admin;
 protected $is_logged;
 protected $is_guest;

 // Returns user id.
 public function getUserId()

 // Returns first name.
 public function getFirstName()

 // Returns surname.
 public function getSurname()

 // Returns full name.
 public function getFullName()

 // Returns email address.
 public function getEmailAddress()




 // Have a guess!
 public function getIPAddress()

 // Returns whether user is logged in.
 public function isLoggedIn()

 // Returns whether user is a guest.
 public function isGuest()

 // Returns whether user is an administrator.
 public function isAdmin()

D. Implementation: PHP controller classes

EditCard.php

 class EditCard extends HTMLController
 public function __construct()

EditCardType.php

 class EditCardType extends HTMLController
 public function __construct()

EditLabel.php

 class EditLabel extends HTMLController
 public function __construct()

EditModule.php

 class EditModule extends HTMLController
 public function __construct()

EditUser.php

 class EditUser extends HTMLController
 public function __construct()

GetCards.php

Contains the module grid controller.
 class GetCards extends JSONController
 public function __construct()

HTMLController.php

The abstract class that allows easy creation of html pages.
 abstract class HTMLController
 protected $page;
 public function __construct($title)
 public function showContent()



InstanceServer.php

Implements our instance server on top of the WebsocketServer class.
 class InstanceServer extends WebsocketServer
 private $sessions;
 private $members;
 protected static $allowedMethods;
 public function __construct()
 public function reloadSessions($forced = false)
 public function authenticate($params)
 public function sendAnnouncement($params)
 public function listSessions($params)
 public function registerForSession($params)
 public function unregisterForSession($params)
 public function showGroups($params)
 public function createGroup($params)
 public function joinGroup($params)
 public function getCanvas($params)
 public function updateInstance($params)
 public function advanceRound($params)

JSONController.php

The abstract class that allows easy creation of JSON replies.
 class JSONController
 protected $payload;
 public function showContent()

ListModules.php

Lists all available modules.
 class ListModules extends HTMLController
 public function __construct()

ListSessions.php

Lists all available module sessions.
 class ListSessions extends HTMLController
 public function __construct()

Login.php

Thecontroller class that allows users to log in. Passes user input to theAuthenticationmodel. Redirects
user after logging in.
 class Login extends HTMLController
 public function __construct()

Logout.php

 class Logout extends HTMLController
 public function __construct()



ManageUsers.php

 class ManageUsers extends HTMLController
 public function __construct()

NewCard.php

 class NewCard extends JSONController
 public function __construct()

NewLabel.php

 class NewLabel extends HTMLController
 public function __construct()

NewSession.php

 class NewSession extends HTMLController
 public function __construct()

SignUp.php

 class SignUp extends HTMLController
 public function __construct()

ViewLandingPage.php

Contains the controller that creates the user landing page.
 class ViewLandingPage extends HTMLController
 public function __construct()

ViewModule.php

Loads and displays the grid page.
 class ViewModule extends HTMLController
 public function __construct()

WebsoetServer.php

Creates a websocket server based on Ratchet’s MessageComponentInterface.
 class WebsocketServer implements MessageComponentInterface
 protected $clients;
 protected $client;
 protected static $allowedMethods = [];
 public function __construct()
 public function onOpen(ConnectionInterface $conn)
 public function onMessage(ConnectionInterface $from, $msg)
 public function onClose(ConnectionInterface $conn)
 public function onError(ConnectionInterface $conn, \Exception $e)
 public function send(ConnectionInterface $client, $event, array $data)
 private function sendData(ConnectionInterface $conn, array $data)
 private function sendError(ConnectionInterface $conn, $msg)
 protected function println($msg, $conn = -1)



D. Implementation: PHP template classes

Dialog.php

Contains the dialog template, used for jQuery dialogs.
 class Dialog extends SubTemplate
 private $_title;
 private $_data;
 protected $_forms;
 public function __construct($title, $data)
 protected function html_content()
 public function addForm($id, $form)

DialogForm.php

Contains the dialog form template, used in jQuery dialogs.
 class DialogForm extends SubTemplate
 public function __construct($form)
 protected function html_content($exclude = [], $include = [])
 protected function renderField($field_id, $field)

DummyBox.php

 class DummyBox extends SubTemplate
 public function __construct($title = '', $content = '', $class = '')
 protected function html_content()

EditCardDialog.php

Contains the edit card dialog template, used for jQuery dialogs.
 class EditCardDialog extends Dialog
 public function __construct($title, $card)
 protected function html_content()

EditCardTypeDialog.php

Contains the edit card type dialog template, used for jQuery dialogs.
 class EditCardTypeDialog extends Dialog
 public function __construct($title, $type)
 protected function html_content()

EditModuleDialog.php

Contains the edit model dialog template, used for jQuery dialogs.
 class EditModuleDialog extends Dialog
 public function __construct($title, $module)
 protected function html_content()



FormView.php

Contains the form template.
 class FormView extends SubTemplate
 public function __construct(Form $form, $title = '')
 protected function html_content($exclude = [], $include = [])
 protected function renderField($field_id, $field)

GridView.php

Contains the timeline grid template.
 class GridView extends SubTemplate
 public function __construct($title, $module)
 protected function html_content()

LandingPage.php

 class LandingPage extends SubTemplate
 protected function html_content()

LogInForm.php

 class LogInForm extends SubTemplate
 private $error_message = '';
 private $redirect_url = '';
 private $emailaddress = '';
 public function setErrorMessage($message)
 public function setRedirectUrl($url)
 public function setEmail($addr)
 protected function html_content()

MainTemplate.php

 class MainTemplate extends Template
 private $title = '';
 private $page_id;
 private $classes = [];
 public function __construct($title = '')
 public function html_main()
 public function setArea($id)
 public function setPageId($id)
 public function addClass($class)
 public function removeClass($class)

ModulesList.php

Template that lists all available modules.
 class ModulesList extends SubTemplate
 public function __construct(array $modules)
 protected function html_content()

NewSessionForm.php

 class NewSessionForm extends SubTemplate
 public function __construct(array $modules)
 protected function html_content()



Pagination.php

 class Pagination extends SubTemplate
 private $index;
 public function __construct(PageIndex $index)
 protected function html_content()

SignUpForm.php

 class SignUpForm extends SubTemplate
 private $error_msg;
 private $full_name;
 private $affiliation;
 private $emailaddress;
 private $emailaddress2;
 protected function html_content()
 public function setFormData($data = array())
 public function setErrorMessage($err_msg)

SubTemplate.php

 abstract class SubTemplate extends Template
 public function __construct($title = '')
 public function html_main()
 abstract protected function html_content();

TabularData.php

Contains the template that displays tabular data.
 class TabularData extends Pagination
 public function __construct(GenericTable $table)
 protected function html_content()
 protected function showForm($form)

Template.php

 abstract class Template
 protected $_subtemplates = array();
 abstract public function html_main();
 public function adopt(Template $template, $position = 'end')
 public function clear()
 public function pass($id, $data)

D. Implementation: JavaScript function prototypes

AppView

 function AppView(options)
 AppView.prototype.setTitle = function (title)
 AppView.prototype.setBody = function (html)
 AppView.prototype.clearToolbar = function (bar)
 AppView.prototype.addButton = function (bar, caption, click)

GridView

 function GridView(options)
 GridView.prototype.setDimensions = function(dim)
 GridView.prototype.appendCards = function(cards)



 GridView.prototype.reloadCard = function(cardId, data)
 GridView.prototype.addCardEvents = function(card)
 GridView.prototype.openSettings = function()
 GridView.prototype.createNewCard = function()
 GridView.prototype.deleteCard = function(id)

LabelBar

 function LabelBar(options)
 LabelBar.prototype.appendLabel = function(data)
 LabelBar.prototype.addBarEvents = function()
 LabelBar.prototype.addLabelEvents = function(label)

Card

 function Card(card, doPositions)

EditSettingsDialog

 function EditSettingsDialog(id, grid)

EditCardDialog

 function EditCardDialog(id, grid, module)

Sidebar

 function Sidebar(options)
 Sidebar.prototype.show = function(callback)
 Sidebar.prototype.hide = function(callback)
 Sidebar.prototype.toggle = function()
 Sidebar.prototype.initializeRound = function(round)
 Sidebar.prototype.switchRound = function(round)
 Sidebar.prototype.fetchCards = function()
 Sidebar.prototype.appendCards = function(cards)
 Sidebar.prototype.flush = function(callback)
 Sidebar.prototype.addCardEvents = function(card)
 Sidebar.prototype.reloadCard = function(cardId, data)
 Sidebar.prototype.createNewCard = function()
 Sidebar.prototype.deleteCard = function(id)

RoundPier

 function RoundPicker(options)
 RoundPicker.prototype.getDOM = function()
 RoundPicker.prototype.markActive = function(round)

LabelBar

 function LabelBar(options)

Card

 function Card(card, doPositions)

Sidebar

 function Sidebar(options)
 Sidebar.prototype.setCabinetSize = function()
 Sidebar.prototype.show = function(callback)



 Sidebar.prototype.hide = function(callback)
 Sidebar.prototype.toggle = function()
 Sidebar.prototype.destroy = function()
 Sidebar.prototype.appendInstances = function(cards)
 Sidebar.prototype.addCardEvents = function(card)
 Sidebar.prototype.toGrid = function(card, gridPos)

GroupCanvas

 function GroupCanvas(app, options, socket)
 GroupCanvas.prototype.reset = function()
 GroupCanvas.prototype.setDimensions = function(dim)
 GroupCanvas.prototype.appendCards = function(cards)
 GroupCanvas.prototype.appendInstance = function(card, atPos)
 GroupCanvas.prototype.sendUpdate = function(card)
 GroupCanvas.prototype.snapToGrid = function(pos)
 GroupCanvas.prototype.appendInstances = function(cards)
 GroupCanvas.prototype.reloadCard = function(cardId, data)
 GroupCanvas.prototype.addCardEvents = function(card)

GroupPier

 function GroupPicker(app, groups)
 GroupPicker.prototype.reset = function()

SessionPier

 function SessionPicker(app, sessions)

Soet

 function Socket(address, open, debug)
 Socket.prototype.send = function (event, params, callback)
 Socket.prototype.on = function (event, listener)
 Socket.prototype.unbind = function (listener)
 Socket.prototype.unbindAll = function ()
 Socket.prototype.close = function ()



	Introduction
	Aim of the study
	Reading guide

	Active Historical Thinking
	Motivation
	Methodology
	Example session
	Design principles
	Computer Supported Collaborative Learning

	Requirements
	Students' tablet client
	Set-up
	Canvas behaviour

	Interactive whiteboard software
	Aggregation system
	Management system

	Software stack
	Schematic overview

	Background information
	Platform: native or web-based application
	Transmission
	Bluetooth: direct pairing
	WiFi: intranet or internet

	Network layer
	Connection-based: TCP
	Stateless: UDP

	Communication
	Polling
	WebSockets

	Protocol design
	JSON
	XML

	Synchronisation problems
	Preventive measures
	Linear message parsing
	Message pre-conditions

	Asynchronous programming

	Design choices
	Platform: web-based
	Network: TCP
	Transmission: WiFi
	Communication: WebSockets
	Protocol design: JSON
	Synchronisation: preconditions

	Implementation
	Entity identification
	Database design
	Server design
	Protocol design
	Programming languages
	WebSocket abstraction layer
	Client-side: JavaScript
	Server-side: PHP and Ratchet

	User Interface design
	Student collaboration canvas
	Aggregation system

	Conclusion and discussion
	Future work

	Bibliography
	Original teaching methodology
	Chronology cards for `Nederland in de 19de eeuw'
	Timeline for `Nederland in de 19de eeuw'

	Design sketches
	Additional screenshots
	Logging in
	Choosing a session and group
	Module management

	Source code header listings
	Implementation: PHP model classes
	Implementation: PHP controller classes
	Implementation: PHP template classes
	Implementation: JavaScript function prototypes

