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1 Introduction

Birman & Ullman [1] have shown that the class of deterministic context-free
languages can be parsed in linear time complexity on a random access machine.
In fact, the time complexity extends to an even larger class of languages. The
limitations to computing power and memory in their time, however, did not
allow for the algorithm to be put into practice. In formal language theory, we
are used to generative grammars such as regular expressions and context-free
grammars. However, generative grammars are often non-deterministic by nature
and certain constructions may cause major headaches to software engineers who
have to implement a parsing algorithm which correctly and efficiently parses
the language. Extensive parsing libraries have been written to help mitigate
these headaches. Ford [4] has used Birman & Ullman’s paper [1] to create a
recognition-based grammar he calls parsing expression grammars. The main
difference between generative and recognition-based grammars is that there is
not much of a gap between the theory of recognition-based grammars and its
practical applications. Parsing expression grammars are similar to context-
free grammars in terms of syntax. The biggest differences being that parsing
expression grammars are deterministic, and they have some form of context-
sensitivity through syntactic predicates, which allows them to even parse (some)
context-sensitive languages.

In this thesis, we provide some basic concepts of formal language theory
relevant to computer science and relate them to the parsing expression grammar
formalism. We introduce the parsing expression grammar formalism by Ford
[4] and discuss some of its properties. We introduce an algorithm by Medeiros,
Mascarenhas & Ierusalimschy [6] (Medeiros et al.) which transforms regular
expressions to parsing expression grammars.
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2 Formal languages

In the field of computer science, a language is seen as a set of strings, as opposed
to natural languages most people are familiar with. Certain restrictions on a
language can define the language’s class, as defined by Chomsky [2]. We describe
formal languages with formal constructs such as regular expressions, context-
free grammars and set notation. Throughout this thesis, we will mostly use
set notation to describe languages as it is arguably the most readable way of
describing a formal language. Before we start defining formal languages, we
define the atomic building blocks.

Definition 2.1. Symbol.
A character without any particular meaning. Unless specified otherwise, arbi-
trary symbols will be denoted by a, b or ai, bi for some i ∈ N.

Computer scientists like to put elements in sets. Therefore we formally define
the alphabet as a set of symbols in definition 2.2.

Definition 2.2. Alphabet.
An alphabet is a non-empty, finite set of symbols. Arbitrary alphabets will be
denoted by Σ or Σi for some i ∈ N.

Example 2.3. An alphabet.
Any of the following sets is a valid alphabet :

1. {a}

2. {a, b}

3. {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}

4. {a,b,v,g,d,e,�,�,z,i,ĭ,k,l,m,n,o,p,r,s,t,u,f,h,c,q,x,w,�,y,~,�,�}

5. {n ∈ N | l ≤ n ≤ u} a set of numbers between some lower- and upper-
bound, l and u respectively.

Even though we just declared symbols to be characters without any particular
meaning, there is one exception which we will be using in our definition of
strings. The Greek letter λ is used to denote an empty sequence of symbols. We
formally define strings in definition 2.4.

Definition 2.4. String.
A string is a finite sequence of symbols. A string over an alphabet Σ is defined
inductively, where a ∈ Σ is an arbitary symbol:

1. λ is an empty string

2. if s is a string, then as is also a string

Arbitrary strings will be denoted with s, s′ or si for some i ∈ N. Since λ is the
empty string, we say the concatenation λλ = λ.

Example 2.5. A string.
Using the alphabets as defined in example 2.3, we can define example strings
over these alphabets.
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1. λ, a, aa, aaa

2. a, b, ab

3. a, b, ..., y, z, string, hello

4. a, b, ..., �, �, stroka, privet

5. Suppose l = 0 and u = 1, then this language consists of binary strings
such as 0, 1, 01 and 10

It is important to note that the empty string λ is a string in any alphabet Σ∗.
If the alphabet itself includes λ as a symbol, we would need to use a different
symbol to denote the empty string.

Definition 2.6. Language.
A language over the alphabet Σ is defined as a set of strings using symbols from
that alphabet. Languages are often bound by a set of constraints. Arbitrary
languages will be denoted L or Li for some i ∈ N. For every language L over
an alphabet Σ we have L ⊆ Σ∗, where Σ∗ is as defined in definition 2.15.

2.1 Operations on strings

Using our definition of strings, we can define operations on strings. Interesting
properties of a string, such as the length of a string or the number of occurrences
of an arbitrary symbol a in a string, can be defined inductively.

Definition 2.7. The length of string s, given by |s| : Σ∗ → N,
Given a string s over an alphabet Σ, we define the length of s inductively, where
a is a symbol in Σ:

|λ| = 0
|as| = 1 + |s|

Definition 2.8. The number of occurences of a in s, given by |s|a : Σ∗ → N.
Given a string s over an alphabet Σ, we define the number of occurrences of a
in s inductively, where a and b are symbols in Σ such that a 6= b:

|λ|a = 0
|bs|a = 0 + |s|a
|as|a = 1 + |s|a

Apart from counting symbols in a string, we can also define some more interest-
ing operations, such as the reverse operation. We define the reverse of a string
in definition 2.9.

Definition 2.9. The reverse of s, given by sR : Σ∗ → Σ∗.
Given a string s over an alphabet Σ, we define the reverse of s inductively, where
a is a symbol in Σ:

λR = λ
(as)R = sRa

The operation of reversing a string can be used to define palindromes, as in
example 2.10.
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Example 2.10. Palindromes.
A palindrome is a string s such that s is equal to the reverse of s.
We can define a language L over Σ as L = {s ∈ Σ∗ | s = sR}. L then contains
all palindromes which can be made using the symbols in Σ. So if we have
Σ = {a, b} we then get L = {λ, a, b, aa, bb, aaa, aba, bbb, bab, ...}.

2.2 Operations on languages

Since we defined languages as sets of strings, there are a couple of interesting
operations which we will define explicitly:

Definition 2.11. Language concatenation.
A language L can be formed by concatenating two languages L1L2 such that
each string s ∈ L is the concatenation of a string in L1 and a string in L2. To
put it more formally: L1L2 = {s1s2 | s1 ∈ L1 and s2 ∈ L2}.

Example 2.12. Suppose L1 = {aa, bb} and L2 = {ab, ba}.
Then L1L2 = {aaab, aaba, bbab, bbba}.

Definition 2.13. Let L0 = {λ}, we define Li to be the concatenation L0L1 · · ·Li−1Li

for any i ∈ N where each Lj is equal to L.

Example 2.14. Suppose L = {aa, bb, ab}.
Then L2 = LL = {aaaa, aabb, aaab, bbaa, bbbb, bbab, abaa, abbb, abab}.

Definition 2.15. Kleene star : L∗ =
⋃∞

i=0 L
i

This means that when L 6= ∅ and L is at most countable, L∗ will be a countably
infinite set containing all combinations of elements of L.

Example 2.16. Kleene star.
Suppose L = Σ = {a, b}.
Then L∗ = {λ, a, b, aa, bb, ab, ba, aaa, bbb, ...}

Example 2.17. A language.
Suppose Σ = {a, b}. We can define a language L over the alphabet Σ of words
which start with symbol a as follows, with any of the following:

1. set notation: {aw | w ∈ Σ∗}

2. context-free grammar : S → Sb | Sa | a

3. regular expression: a(a+ b)∗
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3 Regular expressions

A regular expression is a formal way of describing the class of languages called
regular languages [2]. They serve a practical purpose in many tasks, such as
input validation, text editing, text searching and more.
Many programming languages (Java, Python, ...) have their own implementa-
tion of regular expressions called regex engines, they are mainly used to parse
input and quickly scan documents. The implementation of such regex engines
may vary in different programming languages, which makes it hard to reason
about the complexity of program subroutines.

3.1 Syntax

Given an alphabet Σ, a symbol a ∈ Σ, we define the set of regular expressions
over Σ inductively, where e, e1, e2 are also regular expressions.

Definition 3.1. Regular expressions.
We define the syntax of a regular expression inductively, and provide the infor-
mal meaning of each construction.

syntax informal meaning

λ empty string
a symbol
e1e2 concatenation of two regular expressions
e1 + e2 non-deterministic choice
e∗ zero-or-more repetitions
(e) to allow unambiguous syntax
∅ to denote the empty language

3.2 Semantics

Regular expressions are used to describe a class of languages called regular
languages (REG). We call the set of all regular expressions RegExp, such
that every regular expression is an element of this set. We define the function
L inductively, where e, e1, e2 are regular expressions and P(Σ∗) is the set of all
subsets of Σ∗, therefore the set of all languages.

Definition 3.2. The function L : RegExp→ P(Σ∗).

1. L(λ) = {λ}

2. L(a) = {a}

3. L(e1e2) = L(e1)L(e2)

4. L(e1 + e2) = L(e1) ∪ L(e2)

5. L(e∗) = L(e)∗

6. L(∅) = ∅
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Example 3.3. L(a∗a).
We show the language described by the regular expression (a∗a), using definition
3.2.

L(a∗a) = L(a∗)L(a)

= (L(a))∗{a}

=

∞⋃
i=0

(L(a))i{a}

= {a, aa, aaa, · · · }

3.3 Properties

Regular languages have interesting properties. For instance, every finite lan-
guage is regular.

Lemma 3.4. Every finite language is regular.
Suppose we have a finite language L. We know there is a finite number of strings
s ∈ L that is in this language. We prove L is regular by constructing a regular
expression which describes L. Take the regular expression s0 + ...+ si for every
sn ∈ L. This regular expression describes exactly L.

Regular languages are not restricted to just finite languages. There are
infinitely many regular languages, and for each of these regular languages, there
exist infinitely many regular expressions to describe the same regular language.

Example 3.5. Regular languages.
Given an alphabet Σ = {a, b}. The following are all regular languages:

1. L1 = {w ∈ Σ∗ | w begins with a and ends with b}
This language is described by the regular expressions:

(a) a(a+ b)∗b

(b) a(a∗b∗)∗b

(c) a(a+ b)∗(b+ a)∗b

and infinitely many more variations.

2. L2 = {w ∈ Σ∗ | w contains aaa as a substring}
This language is described by the regular expressions:

(a) (a+ b)∗aaa(a+ b)∗

(b) (a+ b)∗aaa+ aaa(a+ b)∗ + (a+ b)∗aaa(a+ b)∗

and infinitely many more variations.

In this example we have shown some regular languages, and that a regular
language can be described by multiple regular expressions.

Since there are multiple regular expressions possible to describe the same
language, one might wonder if some regular expressions could be considered
better than others when describing a language.
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3.4 Equivalence

Regular expressions can have many forms as shown earlier. In order to rea-
son about regular expressions we will define equalities in regular expressions as
axioms. We say regular expressions are equivalent if they describe the same
regular language. So for any regular expression e and e′, e ≡ e′ if and only if
L(e) = L(e′).

Definition 3.6. (Defined in section 3 in [7]). Regular expression equivalence.

e1 + (e2 + e3) ≡ (e1 + e2) + e3 (1)

e1(e2e3) ≡ (e1e2)e3 (2)

e1 + e2 ≡ e2 + e1 (3)

e1(e2 + e3) ≡ e1e2 + e1e3 (4)

(e1 + e2)e3 ≡ e1e3 + e2e3 (5)

e+ e ≡ e (6)

λe ≡ e (7)

∅e ≡ ∅ (8)

e+ ∅ ≡ e (9)

e∗ ≡ λ+ e∗e (10)

e∗ ≡ (λ+ e)∗ (11)

These properties were introduced by Salomaa [7] where he used ∅∗ to indicate
an empty regular expression λ.

Lemma 3.7. For each pair of regular expressions e ≡ e′ in definition 3.6 we
show that L(e) = L(e′).

Proof:

L(e1 + (e2 + e3)) = L(e1) ∪ L(e2 + e3)

= L(e1) ∪ L(e2) ∪ L(e3)

= L(e1 + e2) ∪ L(e3)

= L((e1 + e2) + e3) (1)

L(e1(e2e3)) = L(e1)L(e2e3)

= L(e1)L(e2)L(e3)

= L(e1e2)L(e3)

= L((e1e2)e3) (2)

L(e1 + e2) = L(e1) ∪ L(e2)

= L(e2) ∪ L(e1)

= L(e2 + e1) (3)
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L(e1(e2 + e3)) = L(e1)L(e2 + e3)

= L(e1)(L(e2) ∪ L(e3))

= L(e1)L(e2) ∪ L(e1)L(e3)

= L(e1e2) ∪ L(e1e3)

= L(e1e2 + e1e3) (4)

L((e1 + e2)e3) = (L(e1) ∪ L(e2))L(e3)

= L(e1)L(e3) ∪ L(e2)L(e3)

= L(e1e3) ∪ L(e2e3)

= L(e1e3 + e2e3) (5)

L(e+ e) = L(e) ∪ L(e)

= L(e) (6)

L(λe) = L(λ)L(e)

= L(e) (7)

L(∅e) = L(∅)L(e)

= ∅L(e)

= ∅
= L(∅) (8)

L(e+ ∅) = L(e) ∪ L(∅)
= L(e) ∪ ∅
= L(e) (9)

L(e∗) = (L(e))∗

=

∞⋃
i=0

(L(e))i

= {λ} ∪
∞⋃
i=1

(L(e))i

= {λ} ∪ L(e∗e)

= L(λ+ e∗e) (10)

L(e∗) = (L(e))∗

=

∞⋃
i=0

(L(e))i

=

∞⋃
i=0

(L(λ) ∪ L(e))i

=

∞⋃
i=0

(L(λ+ e))i

= L((λ+ e)∗) (11)

We have proven all cases, which concludes this lemma.
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4 Parsing expression grammars

The Parsing Expression Grammar (PEG) is a relatively new concept by Ford
[4]. It is a formalism to describe languages which a packrat parser [3] can
recognize/parse in linear time complexity. Ford based this formalism on earlier
work by Birman & Ullman [1]. At first sight, the syntax of parsing expression
grammars is similar to that of regular expressions and context-free grammars.
However, there are subtle differences in the semantics.

4.1 Syntax

We provide a formal definition of Ford’s parsing expression grammars [4], where
Σ is the alphabet and N is a set of non-terminal symbols such that Σ ∩N = ∅.
The non-terminal symbols will be used as tokens in production rules.

Definition 4.1. (Definition in 3.1 in [4]). Given an alphabet Σ, a symbol a ∈ Σ,
a set of non-terminals N and a non-terminal symbol A ∈ N , we define the set
of parsing expressions over Σ inductively, where p, p1 and p2 are also parsing
expressions, a is a symbol in Σ and A is a non-terminal symbol in N .

syntax informal meaning

ε parse nothing
a parse a
A non-terminal symbol
p1p2 concatenation of two parsing expressions
p1/p2 prioritized choice
p∗ more-or-zero repetitions
!p not-predicate
(p) to allow for unambiguous syntax

Some important aspects which are also part of the syntax:

1. concatenation is right-associative: the parsing expression p1p2p3 is inter-
preted as p1(p2p3)

2. prioritized choice is right-associative: the parsing expression p1/p2/p3 is
interpreted as p1/(p2/p3)

3. the precedence of the repetition operator is higher than the precedence of
the not-predicate: the parsing expression !p∗ is interpreted as !(p∗)

4. the precedence of the not-predicate is higher than the precedence of con-
catenation: the parsing expression !p1p2 is interpreted as !(p1)p2

5. the precedence of concatenation is higher than the precedence of priori-
tized choice: the parsing expression p1p2/p3 is interpreted as (p1p2)/p3

Let P be the set of parsing expressions, then we define production rules as
follows:

Definition 4.2. We define a set of production rules R as a set of tuples of the
form (A, p), where each non-terminal A ∈ N has exactly one production rule
such that (A, p) ∈ R for some parsing expression p ∈ P . Rules are also written
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A→ p.
We also define a function R : N → P such that for any tuple (A, p) ∈ R, we
have R(A) = p.

Using the previous definitions, we complete the definition of Parsing Expression
Grammars as:

Definition 4.3. A Parsing Expression Grammar (PEG) is a 4-tuple (N,Σ, R, ps)
where:

1. N is a finite set of non-terminal symbols;

2. Σ is an alphabet;

3. R is a finite set of production rules;

4. ps is a parsing expression.

4.2 Semantics

We define a relation  which, given a parsing expression p and a string s,
returns a result x, where x ∈ Σ∗ ∪{failure} is either a string (suffix) s, s′ or s′′

which is not (yet) parsed or a token which indicates the failure of parsing. Our
semantics (definition 4.4) are defined similar to Koprowski & Binsztok [5], the
differences being that we omit their step count and directly apparent syntactic
sugar.

Definition 4.4. (Figure 2 in [5]). The relation (p, s) x.

εs
(ε, s) s

λf
(a, λ) failure

af
(a, bs) failure

as
(a, as) s

(R(A), s) x
Ar

(A, s) x

(p1, s) failure ·f
(p1p2, s) failure

(p1, s) s′ (p2, s
′) x ·s

(p1p2, s) x

(p1, s) failure (p2, s) x
/f

(p1/p2, s) x

(p1, s) s′
/s

(p1/p2, s) s′

(p, s) failure ∗f
(p∗, s) s

(p, s) s′ (p∗, s′) s′′ ∗s
(p∗, s) s′′

(p, s) failure
!s

(!p, s) s

(p, s) s′
!f

(!p, s) failure
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We present the rules along with their intuitive meaning, where λ, a, b, s ∈ Σ∗

and ε, a, p, p1, p2 ∈ P .

εs Base: (ε, s) s.
Nothing is parsed.

λf Base: (a, λ) failure.
Parsing fails due to lack of input.

af Base: (a, bs) failure.
Parsing fails due to a non-matching symbol.

as Base: (a, as) s.
Parsing succeeds, symbol a is consumed.

Ar If p = R(A) and (p, s) x then (A, s) x.
A non-terminal symbol is replaced by its respective parsing expression.

·f If (p1, s) failure then (p1p2, s) failure.
Parsing fails because p1 fails.

·s If (p1, s) s′ and (p2, s
′) x then (p1p2, s) x.

Parsing expression p1 does not fail and might have consumed input, p2
will continue with the remaining input.

/f If (p1, s) failure and (p2, s) x then (p1/p2, s) x.
Parsing expression p1 fails, parsing will continue with p2 and the input.

/s If (p1, s) s′ then (p1/p2, s) s′ (parsing expression p2 is not consid-
ered when p1 does not result in a failure).
Parsing expression p1 does not fail and might have consumed input, p2
is discarded.

∗f If (p, s) failure then (p∗, s) s (input is not consumed).
Parsing expression p fails, the input is returned as a result (of p∗).

∗s If (p, s) s′ and (p∗, s′) s′′ then (p∗, s) s′′.
Parsing expression p does not fail and might have consumed input, p∗

will continue with the remaining input.
!s If (p, s) failure then (!p, s) s (input is not consumed).

Parsing expression p fails, the input is returned as a result (of !p).
!f If (p, s) s′ then (!p, s) failure.

Parsing expression p does not fail and might have consumed input, a
failure is returned as a result (of !p).

Definition 4.5. The language L parsed by a parsing expression grammar G =
(N,Σ, R, ps) is denoted P(G), its formal definition is:

P(G) = {s | s ∈ Σ∗ and (ps, s) λ}

Example 4.6. P(G) with G = (∅, {a, b, c}, ∅, (a/ab)c).
We will show the subtle difference in the prioritized choice by trying to parse
the string abc using parsing expression grammar G, with parsing expression
(a/ab)c.

as
(a, abc) bc

/s
((a/ab), abc) bc

af
(c, bc) failure ·s

((a/ab)c, abc) failure

The result of parsing expression (a/ab)c will depend on the result of parsing
expression (a/ab), a branch is created in the proof tree to derive that result.
That is, the result ((a/ab), abc)  r. Since the branch does not result in a
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failure, result r will be used in another branch to derive (c, r)  r′. We
observe that, in ((a/ab), abc) r, the second option ab in the prioritized choice
will not be considered since a is successfully parsed and consumed, thus /s is
applied. Then we fill in r = bc in (c, r) and have (c, bc)  r′ in the right
branch. We observe that r′ is a failure since c does not match b. As a result,
the language parsed by G is P(G) = {ac}.

Example 4.7. P(G) with G = (∅, {a}, ∅, a∗a).
We will show the subtle difference in the repetition by trying to parse the string
aa using parsing expression grammar G, with parsing expression a∗a.

as
(a, a) λ

λf
(a, λ) failure ∗f

(a∗, λ) λ ∗s
(a∗, a) λ

λf
(a, λ) failure ·s

(a∗a, a) failure

First, the parsing expression a∗a is split in two branches, the left branch will
derive the result (a∗, a)  r, which will then be used in the right branch in
(a, r)  r′. We observe that, in (a∗, a)  r, the input string a is entirely
consumed, such that r = λ. Then we fill in r = λ in (a, r) and have (a, λ) r′

in which r′ is a failure since the input string is empty. We therefore have that
the language parsed by G is P(G) = ∅. Compared to example 3.3, this is a
subtle difference.

Examples 4.6 and 4.7 show subtle differences in semantics when compared
to context-free grammars or regular expressions. These subtle differences make
it non-trivial to transform regular expressions to parsing expression grammars
which recognize the same language, as we will discuss later.

Theorem 4.8. Given a parsing expression p and a string s ∈ Σ∗, if (p, s) x
and (p, s) y then x = y. In other words, the relation  is a function.

Proof:
Suppose there is a parsing expression p and a string s ∈ Σ∗ such that (p, s) x
and (p, s) y with x 6= y, then there is at least one rule for which the semantics
are ambiguous, meaning multiple proof trees are possible for the same parsing
expression. We show that there is no ambiguity in proof trees for any pair (p, s),
by induction on the parsing expression p.

p = ε εs This rule is applicable if p = ε. Thus there is exactly one proof
tree with x = s = y.

p = a λf This rule is applicable if p = a and s = λ. Thus there is exactly
one proof tree with x = failure = y.

p = a af This rule is applicable if p = a and s = bs′. Thus there is
exactly one proof tree with x = failure = y.

p = a as This rule is applicable if p = a and s = as′. Thus there is
exactly one proof tree with x = s′ = y.

As induction hypothesis we assume: if (p, s) x and (p, s) y then x = y.

Note that concatenation is right-associative, such that p1p2p3 is interpreted as
p1(p2(p3)).
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In the case of concatenation we have:

p = p1p2 ·f This rule is applicable if (p1, s)  failure. Since concate-
nation is right-associative, there is exactly one proof tree for
(p1p2, s) x, (p1p2, s) y with x = failure = y.

p = p1p2 ·s This rule is applicable if (p1, s)  s′. By application of
the induction hypothesis we know that if (p1, s)  x and
(p2, s)  y then x = s′ = y. Another application of
the induction hypothesis tells us that if (p2, s

′)  x′ and
(p2, s

′)  y′, then x′ = y′. Since concatenation is right-
associative, there is exactly one proof tree for (p1p2, s) x′′,
(p1p2, s) y′′ with x′′ = x′ = y′ = y′′.

Note that prioritized choice is right-associative, such that p1/p2/p3 is interpreted
as p1/(p2/p3).
In the case of prioritized choice we have:

p = p1/p2 /f This rule is applicable if (p1, s) failure. Since prioritized
choice is right-associative, we apply the induction hypoth-
esis on (p2, s)  z and there is exactly one proof tree for
(p1/p2, s) x, (p1/p2, s) y with x = z = y.

p = p1/p2 /s This rule is applicable if (p1, s)  s′. By applying the
induction hypothesis we know that if (p1, s)  x and
(p1, s)  y then x = y, thus there is exactly one proof tree
for (p1/p2, s) x′, (p1/p2, s) y′ with x′ = x = y = y′.

In the case of a non-terminal we have:

p = A Ar This rule is applicable if (p, s)  z with p = R(A). We apply
the induction hypothesis on (p, s)  z and have exactly one
proof tree for (A, s) x, (A, s) y with x = z = y.

Note that the precedence of not-predicates is higher than the precedence of con-
catenation, such that !p1p2 is interpreted as !(p1)p2. In the case of a not-
predicate we have:

p = !p′ !s This rule is applicable if (p′, s)  failure. By application
of the induction hypothesis we know that if (p′, s)  x and
(p′, s)  y then x = y. Therefore we have exactly one proof
tree for (!p′, s) x′ and (!p′, s) y′ with x′ = s = y′.

p = !p′ !f This rule is applicable if (p′, s)  s′. By application of the
induction hypothesis we know that if (p′, s) x and (p′, s) y
then x = s′ = y. Therefore we have exactly one proof tree for
(!p′, s) x′ and (!p′, s) y′ with x′ = failure = y′.

All rules have been shown to contain no ambiguity, thus there is no parsing
expression p for which we have (p, s) x and (p, s) y with x 6= y.
Thus, if (p, s) x and (p, s) y then x = y.

Note that the proof did not include a case for parsing expressions of the
form p∗ because we prove in lemma 4.9 that the semantics of p∗ can be derived
by introducing a non-terminal A with production rule A → pA/ε. So having
proved p = A implies proving p = p′∗.

13



4.3 Syntactic sugar

There are numerous ways to extend the syntax of parsing expressions, we call
such extensions syntactic sugar. They are essentially shorter ways to write
expressions which were already covered by the base semantics. You might have
noticed that the construction p∗ is just syntactic sugar for A→ pA / ε, thus the
∗ and the rules ∗s and ∗f are redundant. However, Ford’s definition of parsing
expression grammars contains semantics for p∗ constructions, so we have left it
in. Subsequent proofs on parsing expression grammars will not consider the ∗

construction because of this.

sugar desugared informal meaning

p∗ A with A→ pA / ε introduce a new non-terminal A
&p !!p continue if the input matches p, does

not consume input
p+ pp∗ more-or-one, see example 4.7
p? p/ε one-or-none (also known as optional)
. (a1/ · · · /an) parse any character ak ∈ Σ

Lemma 4.9. Any parsing expression of the form p∗ can be written as a non-
terminal A with the production rule A → pA/ε such that for all s ∈ Σ∗, there
exists an s′ ∈ Σ∗ for which we have (p∗, s) s′ if and only if (A, s) s′.

Proof: Given any parsing expression p, we show that (p∗, s)  s′ if and only
if (A, s) s′ using the production rule A→ pA/ε.
Suppose (p, s) s′, we then have the following proof tree for the rule ∗s:

(p, s) s′ (p∗, s′) s′′ ∗s
(p∗, s) s′′

The same conclusion is achieved by the derivation of (A, s):

(p, s) s′ (A, s′) s′′ ·s
(pA, s) s′′

/s
(pA / ε, s) s′′

Ar
(A, s) s′′

Suppose (p, s) failure, we then have the following proof tree for the rule ∗f :

(p, s) failure ∗f
(p∗, s) s

The same conclusion is achieved by the derivation of (A, s):

(p, s) failure ·f
(pA, s) failure

εs
(ε, s) s

/f
(pA / ε, s) s

Ar
(A, s) s

Which concludes the proof for this lemma.
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4.4 Properties

Parsing expression grammars were conceptualized as a result of Ford’s paper
[3] on linear-time parsing. The formalism has a subclass Ford refers to as well-
formed parsing expression grammars[4], which ensures the totality (complete-
ness) of the parsing expression grammar semantics. We show in example 4.10
that the semantics for parsing expression ε∗ are not defined.

Example 4.10. A badly formed parsing expression.

εs
(ε, s) s (ε∗, s) · · · ∗s

(ε∗, s) · · ·

The application of the rule ∗s followed by the application of εs on its left branch
will result in the reproduction of the ε∗ expression in its right branch, without
consuming any input. Thus there is no x ∈ Σ∗ ∪{failure} such that (ε, s) x.

Not only parsing expressions of the form ε∗ have undefined semantics, pars-
ing expression grammars do not allow for left-recursive production rules either,
as demonstrated in example 4.11.

Example 4.11. A left-recursive production rule.
Suppose we have a non-terminal A and a production rule A → Ap, we show
that the semantics of the parsing expression A are undefined.

(Ap, s) · · ·
Ar

(A, s) · · ·

Rewriting the non-terminal A to Ap using Ar should be followed by either
·s or ·f , depending on the success in deriving (A, s). Since there is no x ∈
Σ∗ ∪{failure} such that (A, s) x, the semantics for parsing expression A are
undefined.

We have shown two examples of parsing expressions where the semantics are
undefined.

Definition 4.12. A parsing expression grammar G = (N,Σ, R, ps) is complete
if and only if for every string s ∈ Σ∗ we have (ps, s)  x for some x ∈ Σ∗ ∪
{failure}.

Following this definition, we observe that the parsing expression grammars in
examples 4.10 and 4.11 are not complete.

Example 4.13. A complete parsing expression grammar.
Let G = (N = {A},Σ = {a}, R = {A→ aA/ε}, ps = A).
We show that G is complete and P(G) = {an | n ∈ N}.
By induction on the structure of s ∈ Σ∗.
Suppose s = λ, we then have the following proof tree:

λf
(a, λ) failure ·f

(aA, λ) failure
εs

(ε, λ) λ
/f

(aA/ε, λ) λ
Ar

(A, λ) λ
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We assume (A, s) λ as induction hypothesis.
Suppose s = as′, we then have the following proof tree:

as
(a, as′) s′

IH
(A, s′) λ ·s

(aA, as′) λ
/s

(aA/ε, as′) λ
Ar

(A, as′) λ

Thus for any s ∈ Σ∗ we have (A, s)  λ, which implies we have a complete
grammar G with P(G) = {an | n ∈ N}.

4.5 Well-formedness

We introduce Ford’s concept of well-formed parsing expression grammars [4],
which will guarantee the completeness of parsing expression grammars, which
is shown in theorem 4.15. As shown in examples 4.10 and 4.11 parsing expres-
sion grammars are not necessarily complete. A well-formed parsing expression
grammar contains no direct left-recursive rules (as in 4.11).

Definition 4.14. (Defined in 3.6 in [4]). We define the set of well-formed
parsing expressions PWF by induction. We writeWF (p) to indicate that parsing
expression p is well-formed with respect to its parsing expression grammar G.

1. WF (ε)

2. WF (a)

3. WF (p1p2) if WF (p1) and (p1, s) s implies WF (p2)

4. WF (p1/p2) if WF (p1) and WF (p2)

5. WF (A) if WF (R(A))

6. WF (!p) if WF (p)

A parsing expression grammar G = (N,Σ, R, ps) is well-formed if ps and all
parsing expressions in

⋃
A∈N R(A) are well-formed.

Notice there is no definition for WF (p∗), it is omitted since we have shown
that p∗ can be derived (lemma 4.9). Using the definition of well-formedness,
one can verify whether parsing expression grammars are complete.

Theorem 4.15. If a parsing expression grammar G = (N,Σ, R, ps) is well-
formed, then for any input string s ∈ Σ∗ we have an x ∈ Σ∗ ∪ {failure} such
that (ps, s) x, which implies that G is also complete.

Proof:
We prove this by induction on the structure of parsing expression ps.
The base cases are:
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ε We have (ε, s) s for any s ∈ Σ∗ by definition of rule εs.
a We have three subcases:

1. Suppose s = λ, then (a, s) failure by definition of rule λf .

2. Suppose s starts with a, then (a, s) s′ for some s′ ∈ Σ∗ by definition
of rule as.

3. Suppose s does not start with a, then (a, s)  failure by definition of
rule af .

As induction hypothesis we assume that for any parsing expression p that is well-
formed with respect to its parsing expression grammar G and any s ∈ Σ∗ we
have (p, s) x for some x ∈ Σ∗ ∪ {failure}.
The inductive step cases are:

A We have R(A) = p′, which is a well-formed parsing expression, by the in-
duction hypothesis we know that (p′, s) x for some x ∈ Σ∗∪{failure}.

p1p2 We have well-formed parsing expression p1 such that (p1, s)  x for
some x ∈ Σ∗ ∪ {failure}. We have three cases:

1. Suppose (p1, s)  failure, then we have (p1p2, s)  failure by
definition of rule ·f .

2. Suppose (p1, s)  s, then we have (p2, s) by definition of rule ·s,
by the induction hypothesis we know (p2, s)  x for some x ∈
Σ∗ ∪ {failure}.

3. Suppose (p1, s)  s′, then we have (p2, s
′) by definition of rule ·s,

by the induction hypothesis we know (p2, s
′)  x for some x ∈

Σ∗ ∪ {failure}.

p1/p2 We have WF (p1) and WF (p2) by definition, application of the induction
hypothesis gives us three cases:

1. Suppose (p1, s) failure, then we have (p2, s) by definition of rule
/f and by the induction hypothesis we know that (p2, s)  x for
some x ∈ Σ∗ ∪ {failure}.

2. Suppose (p1, s) s, then by definition of rule /s we have (p1/p2) 
s.

3. Suppose (p1, s)  s′, then by definition of rule /s we have
(p1/p2) s′.

!p We have WF (p), by the induction hypothesis we know that (p, s)  x
for some x ∈ Σ∗ ∪ {failure}, we have two cases:

1. Suppose (p, s) failure, then (!p, s) s by definition of rule !s.

2. Suppose (p, s) s′, then (!p, s) failure by definition of !f .

We have shown all cases, concluding the proof that if parsing expression gram-
mar G is well-formed then G is complete.
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5 Chomsky hierarchy

Chomsky defined a distinction in classes of languages [2]. The hierarchy of
languages can be summarized as

REG ⊂ CF ⊂ CS ⊂ RE

Here we have

0. RE, the set of recursively enumerable languages

1. CS, the set of context-sensitive languages

2. CF, the set of context-free languages

3. REG, the set of regular languages

Parsing expression grammars are similar to context-free grammars in terms
of syntax and semantics. The main differences being that parsing expression
grammars are deterministic (by the prioritized choice construction p1/p2) and
have some form of context-sensitivity (by using the construction !p). Context-
free grammars do not enforce any order in which a non-terminal should be
replaced by some production, and there is no context-sensitivity. We show,
by transforming regular expressions to parsing expression grammars, that any
regular language can be described using a parsing expression grammar.

5.1 Transforming regular expressions to parsing expres-
sion grammars

Medeiros et al. [6] have constructed an algorithm which transforms a regular
expression e to a parsing expression grammar which parses the regular language
L(e). Their transformation algorithm essentially splits the regular expression
interpreted left-associatively and (repeatedly) transforms the right-most part
of the regular expression until it has processed the entire regular expression to
construct a parsing expression grammar.

To start the construction of a parsing expression grammar given a regular
expression over an alphabet Σ, we initialize a parsing expression grammar G =
(N,Σ, R, ps) with N = ∅, R = ∅ and ps = ε. We then transform the regular
expression using the following rules[6]:

Definition 5.1. (Figure 3 in [6]). Function Π, where G = (N,Σ, R, ps).

Π(λ,G) := G
Π(a,G) := (N,Σ, R, aps)

Π(e1e2, G) :=
if Π(e2, G) = G′

then Π(e1e2, G) = Π(e1, G
′)

Π(e1 + e2, G) :=
if Π(e1, G) = (N ′,Σ, R′, p′s)

and Π(e2, (N
′,Σ, R′, ps)) = (N ′′,Σ, R′′, p′′s )

then Π(e1 + e2, G) = (N ′′,Σ, R′′, p′s/p
′′
s )

Π(e∗, G) :=
if A /∈ N

and Π(e, (N ∪ {A},Σ, R,A)) = (N ′,Σ, R′, p′s)
then Π(e∗, G) = (N ′,Σ, R′ ∪ {A→ p′s/ps}, A)

18



To transform a regular expression e to a parsing expression grammar G =
(N,Σ, R, ps), we can use the equivalence of regular expressions (definition 3.6)
to our advantage. For instance, the regular expression a∗a describes the lan-
guage L(a∗a) = {a, aa, aaa, ..}. The parsing expression grammar with parsing
expression a∗a, however, describes ∅, as shown in example 4.7. Through the
equivalence of e∗ (rule 10 in definition 3.6) we observe that a∗ is equal to λ+aa∗.
This equality is used in the function Π, as we transform any regular expression
e∗ to a non-terminal A with A→ p′s/ps where p′s is the transformation of e and
ps is the transformation of the regular expression appended to the right of e∗,
if applicable. The formal semantics are described in definition 5.1.

We now transform the regular expression used in example 4.7 to show that
the transformation of regular expression a∗a indeed forms a parsing expression
grammar G with P(G) = L(a∗a).

Example 5.2. The transformation of regular expression e = a∗a to a parsing
expression grammar G such that L(e) = P(G).
First, we construct a new parsing expression grammar G0 = (N,Σ, R, ps) with
N = ∅,Σ = {a}, R = ∅ and ps = ε. We now use the function Π to transform
the regular expression as follows.

Π(a∗a,G0) = if Π(a,G0) = G1 then Π(a∗a,G0) = Π(a∗, G1)

We first construct G1 as an intermediate step:

G1 = Π(a,G0)

= Π(a, (∅,Σ, ∅, ε))
= (∅,Σ, ∅, a)

We then construct G3 = Π(a∗, G1):

if G2 = Π(a, ({A},Σ, ∅, A))

= ({A},Σ, ∅, aA)

then G3 = Π(a∗, G1)

= ({A},Σ, {A→ aA/a}, A)

And indeed, P(G3) = L(a∗a).

Suppose we want to transform a regular expression like (a + ab)c, which
describes the language L((a + ab)c) = {ac, abc}. Example 4.6 shows that the
parsing expression grammar with parsing expression (a/ab)c does not parse the
string abc. Therefore, we use the equivalence of (e1 + e2)e3 (rule 5 in definition
3.6) to show that the regular expression (a+ ab)c is equivalent to ac+ abc. The
parsing expression grammar with parsing expression ac/abc correctly parses the
strings in L((a + ab)c). This equivalence is also used in the function Π, where
any regular expression with a non-deterministic choice will be converted in a
deterministic parsing expression.

Example 5.3. The transformation of regular expression e = (a + ab)c to a
parsing expression grammar G such that L(e) = P(G).
First, we construct a new parsing expression grammar G0 = (N,Σ, R, ps) with
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N = ∅, Σ = {a, b, c}, R = ∅ and ps = ε. We now use the function Π to transform
the regular expression as follows.

Π((a+ ab)c,G0) = if Π(c,G0) = G1 then Π((a+ ab)c,G0) = Π((a+ ab), G1)

We first construct G1 as an intermediate step:

G1 = Π(c,G0)

= Π(c, (∅,Σ, ∅, ε))
= (∅,Σ, ∅, c)

We then construct G4 = Π((a+ ab), G1) :

if G2 = Π(a,G1)

= Π(a, (∅,Σ, ∅, c)
= (∅,Σ, ∅, ac)
= (N ′,Σ, R′, p′s)

and G3 = Π(ab, (N ′,Σ, R′, ps))

= Π(ab, (∅,Σ, ∅, c)
= Π(∅,Σ, ∅, abc)
= Π(N ′′,Σ, R′′, p′′s )

then G4 = Π((a+ ab), G1)

= (N ′′,Σ, R′′, p′s/p
′′
s )

= (∅,Σ, ∅, ac/abc)

And indeed, P(G4) = L((a+ ab)c).

In general, Medeiros et al. [6] have shown the transformation of regular
expressions to parsing expression grammars to be correct for what they refer to
as well-formed regular expressions. That is, for any well-formed regular expres-
sion e a parsing expression grammar G can be constructed using Π such that
P(G) = L(e). They have expanded their work by providing a general algorithm
which transforms any regular expression to a well-formed regular expression,
such that parsing expression languages is a strictly larger set of languages than
the set of regular languages.

5.2 Class of languages

Parsing expression grammars resemble the syntax and semantics of context-free
grammars, and they are able to parse any regular expression (by transforming
the regular expression to an equivalent parsing expression grammar). The pars-
ing expression grammar formalism is not limited to regular languages, however.
We show (lemma 5.4) that parsing expression grammars are able to describe
context-free languages.1

Since parsing expression grammars also posess some kind of context-sensitivity
by the !s and !f semantics, we also show (lemma 5.5) that the parsing expression
grammar formalism is able to describe some context-sensitive languages.

1not necessarily all, this is an open problem.
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Lemma 5.4. Parsing expression grammars are able to describe some non-
regular languages.

Proof:
We define a parsing expression grammar G such that P(G) = {anbn | n ∈ N} to
show parsing expression grammars are not limited to regular languages. Since
we know that L = {anbn | n ∈ N} is not a regular language.
Let G = (N = {S},Σ = {a, b}, R = {S → aSb/ε}, ps = S).
By induction on the structure of s ∈ L.
Suppose s = λ, we then have the following proof tree:

λf
(a, λ) failure ·f

(aSb, λ) failure
εs

(ε, λ) λ
/f

(aSb/ε, λ) λ
Ar

(S, λ) λ

We assume (S, s) λ as induction hypothesis.
Suppose s = as′b, we then have the following proof tree:

as
(a, as′b) s′b

IH
(S, s′b) b

as
(b, b) λ ·s

(Sb, s′b) λ ·s
(aSb, as′b) λ

/s
(aSb / ε, as′b) λ

Ar
(S, as′b) λ

We have shown that the language L = {anbn | n ∈ N}, which is typically used
as an example of a non-regular language, can be parsed by a parsing expression
grammar.

Intuitively, the parsing expression grammar simply uses a production rule
similar to what one could use to define the language with a context-free gram-
mar. Since they are not left-recursive, the same production rules can be used.

Lemma 5.5. Parsing expression grammars are able to describe some context-
sensitive languages.

Proof:
We define a parsing expression grammar G such that P(G) = {anbncn | n ∈ N}.
Since we know that L = {anbncn | n ∈ N} is not a context-free language.
Let G = (N,Σ, R, ps) where

N = {A,X, Y, S}

Σ = {a, b, c}

R = {A→ aA/ε,X → aXb/ε, Y → bY c/ε, S →!!(X!b)AY }

ps = S

Suppose s = anbncn with n ∈ N, we then have the following proof tree:
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(analogue to lemma 5.4)

(X, anbncn) cn

af
(b, cn) failure

!s
(!b, cn) cn ·s

(X!b), anbncn) cn
!f

(!(X!b), anbncn) failure
!s

(!!(X!b), anbncn) anbncn

(analogue to example 4.13)

(A, anbncn) bncn
(analogue to lemma 5.4)

(Y, bncn) λ ·s
(AY, anbncn) λ ·s

(!!(X!b)AY, anbncn) λ
Ar

(S, anbncn) λ

We have shown that the language L = {anbncn | n ∈ N}, which is typically
used as an example of a non-context-free language, can be parsed by a parsing
expression grammar.

6 Discussion

In this thesis, we have introduced the concept of parsing expression grammars
by Ford [4] and explored the semantics of this formalism in a proof-tree style by
Koprowski & Binsztok [5]. We have shown that the class of languages of parsing
expression grammars is non-trivial. Medeiros et al. [6] have shown that all
regular expression can be transformed to parsing expression grammars, which
implies that any regular language can be parsed in linear-time by a packrat
parser [3]. Whether parsing expression grammars are able to parse all context-
free languages is still an open question.
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