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1 Introduction

Skolemisation is a way of transforming formulas such that they contain only
one quantifier. This makes it easier to prove them using an automated theorem
prover (ATP). However, when you prove the Skolemised formula using an ATP,
you will not get a proof for the original formula. The rewriting from the proof
of the Skolemised formula to a proof of the original formula is called deskolemi-
sation.
Similar to Skolemisation, we have Herbrandisation. These two concepts are
dual to each other. In this thesis we are going to focus on Herbrandisation. We
are going to look at the lengthy proof of this, together with some examples for
clarification.
The proof of Herbrand’s theorem is given in Shoenfield [1]. However, Shoenfield
is a complex book with a lot of information irrelevant to proving Herbrand’s
theorem. There are also almost no examples in the book. Thus the focus in
this thesis was finding all the relevant theorems and definitions to proving Her-
brand’s theorem, and giving some examples to make it easier to understand.
About Jacques Herbrand:

Jacques Herbrand (12 February 1908 – 27 July 1931) was a French mathe-
matician who worked in mathematical logic and class field theory. Herbrand’s
theorem refers to two completely different theorems. One is important in class
field theory, the other one will be the Herbrand’s theorem which this thesis is
about. Herbrand found these results in his doctoral thesis.
Herbrand died when he was 23 when he fell of the Massif des Écrins while hiking
with his friends. Even though his death at young age, he was he was already
considered one of “the greatest mathematicians of the younger generation” by
his professors Helmut Hasse and Richard Courant.
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2 Basic definitions and rules

In this chapter we will define the basics for first order languages. How is a first
order language constructed, what are the axioms and the rules that we use? It
also gives definitions of the basics like theories and theorems.

2.1 Formulas

Definition 2.1. A first order language L is a three-tuple of F,R,C:

1. A set of functions F = {f1, f2, ...}, each fi having an arity n ∈ N

2. A set of relations R = {r1, r2, ...}, each ri having an arity n ∈ N

3. A set of constants C = {c1, c2, ...}

Remark 2.1.1. One can also view constants as 0-ary functions, but in this case
we define them as constants. This is to distinguish them from functions more
easily.

Definition 2.2 (Terms). We inductively define the terms of a language L:

1. A variable x, y, ... is a term.

2. A constant is a term.

3. If a1, ..., an are terms and f is n-ary, then f(a1, ..., an) is a term.

Definition 2.3 (Atomic Formula). We call r(a1, ..., an) an atomic formula, in
which r is an n-ary relation and a1, ..., an are terms.

Definition 2.4 (Formula). We inductively define the formulas of the language
L:

1. If a1 and a2 are terms, then a1 = a2 is a formula.

2. An atomic formula is a formula.

3. If A is a formula, then ¬A is a formula.

4. If A and B are formulas, then A ∨B is a formula.

5. If A is a formula, then ∃xA is a formula.

Remark 2.4.1. We can add brackets around A and B when applying these
rules to increase readability. We have that ∃ and ¬ bind stronger than ∨, so
∃xA ∨ ¬B is to be read as (∃xA) ∨ (¬B)

2.2 Other logical symbols

Shoenfield only defines his rules for ∃,∨ and ¬. However, the other logical
symbols get used as well. That is why we introduce the following abbreviations,
such that one can interpret every formula as one using only ∃,∨ and ¬. We
introduce the following abbreviations:

• ∀xA is defined as ¬∃x¬A.
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• A ∧B is defined as ¬(¬A ∨ ¬B).

• A→ B is defined as ¬A ∨B.

• A↔ B is defined as (A→ B) ∧ (B → A).

We call ∀ and ∃ quantifiers.

2.3 More on formulas

Definition 2.5 (Free and bound variables). A variable x in a formula is called
free if there is no quantifier on that variable. If a variable is not free, it is bound.

Definition 2.6 (Closed formula). A formula is closed if no variable is free.

Definition 2.7 (Open formula). A formula is open if it contains no quantifiers.

Definition 2.8 (Elementary formula). A formula is called elementary if it
is either an atomic formula or of the form ∃xA. For example ¬A is not an
elementary formula.

Definition 2.9 (Variant). We get the variant of a part ∃xB by replacing
∃yB[x := y], where y is a variable not free in B.

Definition 2.10 (Prenex form). A formula A is in prenex form, if it has the
form Q1x1, ..., QnxnB in which every Qi is either ∀ or ∃, and in which B is
open. We call Q1x1, ..., Q1xn the prefix and B the matrix.

Remark 2.10.1 (Prenex operations). We can use the following prenex opera-
tions to get a formula A in prenex form:

1. Replace A by a variant

2. Replace ¬∀xB in A by ∃x¬B

3. Replace ¬∃xB in A by ∀x¬B

4. For a quantifier Q, replace QxB ∨C in A by Qx(B ∨C), provided that x
is not free in C

5. For a quantifier Q, replace B ∨QxC in A by Qx(B ∨C), provided that x
is not free in B

Definition 2.11 (Existential formula). A formula in prenex form is existential
if all of its quantifiers in its prefix are existential.

2.4 Basic rules

The following section lists the rules we can use when constructing our proofs.

Rule 2.12 (∃-introduction). If x is not free in B, A→ B implies ∃xA→ B.

Rule 2.13 (Expansion rule). A implies B ∨A.

Rule 2.14 (Contraction rule). A ∨A implies A.

Rule 2.15 (Associative rule). A ∨ (B ∨ C) implies (A ∨B) ∨ C.

Rule 2.16 (Cut rule). A ∨B and ¬A ∨ C implies B ∨ C.
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2.5 Axioms, theorems and theories

Axioms are fundamental laws which we accept without any proof. From axioms,
we can prove theorems using our rules.

The following four types of axioms are called logical axioms

Definition 2.17 (Identity axioms). Axioms of the form x = x.

Definition 2.18 (Equality axioms). Axioms of the form x1 = y1 → ...→ xn =
yn → f(x1, ..., xn) = f(y1, ..., yn).

Definition 2.19 (Propositional axiom). ¬A ∨A.

Definition 2.20 (Substitution axiom). A[x := a]→ ∃xA.

Definition 2.21 (Non-logical axiom). If a theory T (see below) has axioms
which are not of one of the four types as defined above, they will be called
non-logical axioms.

Definition 2.22 (Theory). A theory T is a three-tuple of a language, axioms
and rules:

1. The language of T , called L(T ), is a first order language.

2. The axioms of T are the logical axioms of L(T ) and certain further axioms,
called the non-logical axioms.

3. The rules of T are the expansion rule, the contraction rule, the associative
rule, the cut rule and the ∃-introduction rule.

Definition 2.23 (Open Theory). A theory T is open if all of its non-logical
axioms are open.

Definition 2.24 (Theorem). A theorem A of T is a formula which can be
proved by using the axioms and rules of a theory. We then write `T A. If it is
clear in which theory we are working, we simply write ` A.

2.6 Some examples

We will show some examples of proofs using our basic rules and axioms as
defined here:

Example 2.25. First we will prove that B ∨A implies A ∨B

B ∨A ¬B ∨B
Cut rule

A ∨B

Since we assume B ∨A and ¬B ∨B is an axiom, the proof is done.

Example 2.26. Next we will show that A implies ¬¬A. If we use something
we have proven before, we use a double line as abbreviation.

A
¬¬A ∨A

A ∨ ¬¬A
¬¬A ∨ ¬A
¬A ∨ ¬¬A

Cut¬¬A ∨ ¬¬A
Contraction¬¬A
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Example 2.27. Now let us prove ¬(A → B) → A. First we have to rewrite
this formula such that it only uses ∃,∨,¬, as seen in section 2.2. This will give
us the formula ¬¬(¬A ∨B) ∨A.

¬A ∨A

A ∨ ¬A
Contraction

B ∨ (A ∨ ¬A)
Associative

(B ∨A) ∨ ¬A
¬A ∨ (B ∨A)

Associative
(¬A ∨B) ∨A

¬¬(¬A ∨B) ∨ ¬(¬A ∨B)

¬(¬A ∨B) ∨ ¬¬(¬A ∨B)
Cut

A ∨ ¬¬(¬A ∨B)

¬¬(¬A ∨B) ∨A

2.7 Truth evaluations and tautologies

Definition 2.28 (Truth valuation). A truth valuation v is a mapping from
the set of elementary formulas in T to the truth values T and F such that for
formulas A, B in T.

• v(A ∨B) is true if and only if v(A) is true or v(B) is true.

• v(¬A) is true if and only if v(A) is false.

Definition 2.29 (Tautological consequence). A formula B is called a tautolog-
ical consequence of A1, ..., An if v(B) = T for every truth valuation such that
v(A1) = ... = v(An) = T.

Definition 2.30 (Instance). A′ is an instance of A if A′ is of the form A[x1 :=
a1, ..., xn := an].

Definition 2.31 (Tautology). A formula A is a tautology if v(A) = T for every
truth evaluation v. This means that A is a tautological consequence of the
empty set of formulas.

Definition 2.32 (Quasi-tautology). A quasi-tautology is a tautological conse-
quence of instances of identity axioms and equality axioms.

Example 2.33. A truth valuation can be seen as a line from a truth table, so
for example

A B A ∨B

0 0 0

0 1 1

1 0 1

1 1 1

Each row from this table represents possible truth evaluation.
A ∨B is a tautological consequence of A, because v(A ∨B) = T if v(A) = T.
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3 Provability

This chapter gives some basic theorems which are used in the proofs in later
chapters. The proofs themselves are not given and can be read in chapter 3 and
4.1 of Shoenfield [1]. The reason for this is that most of these proofs are very
straightforward and most of the theorems are very standard in mathematical
logic.

Assume in this chapter that we are working in a general theory T .

3.1 Definitions and rules

Theorem 3.1 (∀-introduction). If ` A → B and x is not free in A, then
` A→ ∀xB.

Definition 3.2 (Closure). Let x1, ..., xn be the free variables in a formula A.
Then ∀x1...∀xnA is called the closure of A.

Rule 3.3 (Substitution rule). If ` A and A′ is an instance of A, then ` A′.

Rule 3.4 (Distribution rule). If ` A → B, then ` ∃xA → ∃xB and ` ∀xA →
∀xB.

Rule 3.5 (Generalization rule). If ` A, then ` ∀xA.

Definition 3.6. The theory obtained from T by adding all of the formulas in
a set of formulas Γ as non-logical axioms is called T [Γ].

Definition 3.7 (Inconsistent). A theory T is called inconsistent if every formula
in L(T ) is a theorem in T . If this is not the case, T is called consistent.

3.2 Theorems

Theorem 3.8 (Modus Ponens). If ` A and ` A→ B, then ` B

Theorem 3.9 (Tautology theorem). If B is a tautological consequence of A1, ..An,
and ` A1, ...,` An, then ` B.

Corollary 3.10. Every tautology is a theorem.

Theorem 3.11 (Substitution Theorem).

1. ` A[x1 := a1, ..., xn := an]→ ∃x1 ... ∃xnA.

2. ` ∀x1 ... ∀xnA→ A[x1 := a1, ..., xn := an].

Theorem 3.12 (Closure theorem). If A′ is the closure of A, then ` A′ if and
only if ` A.

Theorem 3.13 (Deduction theorem). Let A be a closed formula in L(T ). For
every formula B of T , `T A→ B if and only if B is a theorem of T [A].

Theorem 3.14 (Theorem on constants). Let T ′ be obtained from T by adding
new constants. For every formula A of T and every sequence c1, ..., cn of new
constants, `T A iff `T ′ A[x1 := c1, ..., xn =: cn]
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Theorem 3.15 (Equivalence theorem). Let A′ be obtained from A by replacing
some occurrences of B1, ..., Bn by B′1, ..., B′n respectively. If ` B1 ↔ B′1 ...
Bn ↔ B′n, then ` A↔ A′.

Theorem 3.16 (Equality theorem). Let b′ be obtained from b by replacing some
of the occurrences of a1, ..., an not within quantifiers with a′1, ..., a′n respectively,
and let A′ be obtained from A by the same type of replacements. If ` a1 = a′1,
..., ` an = a′n, then ` b = b′ and ` A = A′

Theorem 3.17 (Variant Theorem). If A′ is a variant of A, then ` A↔ A′.

3.3 Induction on theorems

Definition 3.18 (Induction on theorems). We will use induction on theorems
to prove that every theorem in a theory T has a property P if

i) every substitution axiom, identity axiom, equality axiom and non-logical
axiom has property P .

ii) if A1, ...,An have property P and B is a tautological consequence of A1,
...,An, then B has property P .

iii) If A has a property P and B can be inferred from A by the ∃-introduction
rule, then B has property P

3.4 The reduction theorem

Theorem 3.19 (Reduction Theorem). Let Γ be a set of formulas in the lan-
guage L(T ) of a theory T , and let A be a formula in L(T ). Then A is a theorem
of T [Γ] if and only if there is a theorem of T of the form B1 → ...→ Bn → A,
where each Bi is the closure of a formula in Γ.

Theorem 3.20 (Reduction theorem for consistency). Let Γ be a nonempty set
of formulas in the language L(T ) of T . Then T [Γ] is inconsistent (3.7) if and
only if there is a theorem of T which is a disjunction of negation of closures of
distinct formulas in Γ.

Corollary 3.21. Let A′ be a closure of A. Then A is a theorem of T if and
only if T [¬A′] is inconsistent.

8



4 Consistency theorem

This chapter will prove the consistency theorem, also known as the Hilbert-
Ackermann theorem. This theorem is very important for proving Herbrand’s
theorem, because this will give us the quasi tautology which we have to find in
the ‘if’ side of the proof of Herbrand’s theorem.

4.1 Definitions

Definition 4.1 (Extension). A first order language L′ is an extension of the
first-order language L if every function, relation or constant of L is a function,
relation or constant of L′.

Definition 4.2 (Conservative extension). A conservative extension of a theory
T is a theory T ′ such that L(T ′) is an extension of L(T ) and every formula of
L(T ) which is a theorem of T ′ is also a theorem of T .

Definition 4.3 (Special constants and levels). Let L be a first order language.
We inductively define special constants of level n. For n > 0, suppose that
∃xA contains a special constant of level n − 1, and all other special constants
contained have a level of n − 1 or lower. Then the constant c∃xA is a special
constant of level n and is called the special constant for ∃xA. We get the
language Lc from L by adding all the special constants of all levels. The special
axiom for ∃xA will be ∃xA→ A[x := c∃xA].

Definition 4.4. Let T be a theory with language L. Then Tc is a theory for
Lc which we obtain by adding the special axioms as non-logical axioms.

Definition 4.5 (Belong to). Let c be the special constant for ∃xA. Then a
formula belongs to c if it is either the special axiom for c or a closed substitution
axiom (2.20) of the form A[x := a]→ ∃xA

Definition 4.6 (Rank). The rank of a special constant for ∃xA is the number
of occurrences of ∃ in ∃xA.

Definition 4.7. ∆(T ) is the set of formulas in Tc, which are either special
constants for some to some special axioms or are closed instances of identity
axioms, equality axioms or non-logical axioms of T . We get ∆n(T ) from ∆(T )
by only including formulas belonging to special constants with rank of at most
n and the closed instances of identity axioms, equality axioms or non-logical
axioms of T .

Definition 4.8 (Special Sequence). We call A1, ..., An a special sequence if
¬A1∨ ... ∨¬An is a tautology (2.31).

4.2 Examples

Example 4.9. Consider the formula ∃xA→ A[x := c∃xA]. The special constant
for this formula is c∃A→A[x:=c∃xA]. Then this constant has a level of 1, since
∃A → A[x := c∃xA] contains one constant of level 0. The special constant
c∃A→A[x:=c∃xA] has a rank of 1, since there is one occurrence of ∃ in its formula.
We don’t count the occurrences of ∃ in subscripts for ranks.
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4.3 Theorems and proofs

Lemma 4.10. Suppose that to each formula A we have associated a formula A∗

so that (¬A)∗ = ¬A∗ and (A∨B)∗ = A∗∨B∗. If B is a tautological consequence
(2.29) of A1, .., An, then B∗ is a tautological consequence of A∗1, ..., A∗n.

Proof. Suppose that v is a truth valuation (2.28). Define a new truth valuation
v′ by v′(A) = v(A∗) for A elementary. We then see that v′(A) = v(A∗) for all
A. Thus if v(A∗1) = ... = v(A∗n) = T , then v′(A1) = ... = v′(An) = T . So
v′(B) = T , and thus v(B∗) = T

Lemma 4.11. Tc (4.4) is a conservative extension of T .

Proof. Let T ′ be obtained from T by adding the special constants, but not the
special axioms. By the theorem on constants (3.14), T ′ is a conservative exten-
sion (4.2) of T . So it will suffice to show that every formula A of T which is
a theorem of Tc is a theorem of T ′. By the reduction theorem (3.19), we have
`T ′ B1 → ... → Bn → A with each Bi a distinct special axiom. We will do
induction on n. For n = 0 we have `T ′ A, so we are done.

Induction step n > 0. Suppose we have `T ′ B1 → ... → Bn → A. Now
suppose that the level of c, the special constant of which B1 is the special ax-
iom, is at least as great as the levels of the special constants for which B2, ...,
Bn are the special axioms. Then c does not occur in B2, ..., Bn, and it does
certainly not occur in A.
Then we know that B1 is of the form ∃xC → C[x := c]. So now we know that
`T ′ (∃xC → C[x := c])→ ...→ Bn → A.

By the ∃-introduction rule (2.12), we know that `T ′ ∃y(∃xC → C[x := y]) →
...→ Bn → A.
Now, `T ′ ∃xC → ∃yC[x := y] by the variant theorem (3.17), and `T ′ ∃y(∃xC →
C[x := y] by the prenex operations (2.10.1). Now with the modus ponens (3.8),
we know that `T ′ B2 → ... → Bn → A, and with the induction hypothesis we
know that `T ′ A.

Lemma 4.12. If `T A and A′ is a closed instance (2.30) of A in L(Tc), then
A′ is a tautological consequence (2.29) of formulas in ∆(T ) (4.7).

Proof. For this proof, we use induction on theorems (3.18).
If A is a substitution axiom (2.20), then A′ is a closed substitution axiom (4.5)
and thus in ∆(T ).
If A is an identity (2.17), equality (2.18), or a non-logical axiom (2.21), then A′

is a closed instance of one of those and thus in ∆(T ).
If A is a tautological consequence of B1, ..., Bn, then A′ is a tautological conse-
quence of B′1, ..., B′n, which are the closed instances of B1, ..., Bn respectively.
By the induction hypothesis, we know that each of the B′i are tautological con-
sequences of formulas in ∆(T ), and thus so is A′.
Our final case is that A is of the form ∃xB → C and is inferred from B → C
by using the ∃-introduction rule (2.12). Then A′ is ∃xB′ → C ′. Now, we know
that B′[x := c∃xB ]→ C ′ is a closed instance of B → C, and thus by the induc-
tion hypothesis a tautological consequence of formulas in ∆(T ). Now A′ is a
tautological consequence of ∃xB → B′[x := c∃xB ] and B′[x := c∃xB ]→ C ′, and
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thus A′ is a tautological consequence of formulas in ∆(T ).
Thus with induction we have completed this proof.

Lemma 4.13. If n > 0, and there is a special sequence (4.8) consisting of
formulas in ∆n(T ), then there is a special sequence consisting of formulas in
∆n−1(T ).

Intuition To get a special sequence in ∆n−1(T ) from a special sequence in
∆n(T ), we have to remove all the formulas which are in ∆n(T )−∆n−1(T ). What
are those formulas? These are the formulas which belong to special constants
with a rank of exactly n. We somehow have to get rid of these formulas. We do
this by removing them one by one. But, if there are more formulas belonging
to a constant of rank n, we have to decide on a order in which we are going to
remove said formulas. We will do this by removing the formulas belonging to
the constant with the highest level first. This is so we know that these formulas
can not be contained in some of the other formulas.

Proof. Suppose that there is a special sequence (4.8) consisting of formulas in
∆n(T ) (4.7). Then this special sequence consists of formulas in ∆n−1(T ) and
formulas which belong to a special constant (4.3) of rank n (4.6). We will do
this proof with induction on the number of formulas which belong to (4.5) a
special constant of rank n.
If there are none, then all the formulas of the special sequence are in ∆n−1(T ),
so there is nothing to prove.
If there is at least one, then suppose that c is a special constant with level m
and c1, ..., ck are the other constants, that have a level which is lower than or
equal to the level of c. We shall now create a special sequence consisting of for-
mulas in ∆n−1(T ) and the formulas belonging to the special constants c1, ..., ck.

Let now A1, ..., Ar be the formulas in the special sequence which are either
in ∆n−1(T ) or belong to the special constants c1, ..., ck.
Let the remaining formulas be the special axiom
∃xB → B[x := c] and B[x := ai]→ ∃xB; 1 ≤ i ≤ p

We will show that there is no occurrence of ∃xB in all the Ai. This is trivial if
Ai is an instance (2.30) of an identity, equality or non-logical axiom, for then Ai

is open. Suppose that Ai is of the form ∃yC → C[y := s] or C[y := a]→ ∃yC,
belonging to the special constant s. Since s has a level which is equal to or
lower than the level of c, ∃xB has as many occurrences of ∃ as ∃yC. So ∃xB
cannot exist in either formula.
We now make a new special sequence where we change ∃xB to B[x := c] in
all the formulas in our original special sequence. As proven in the above sec-
tion, this does not effect the Ai. So now ∃xB → B[x := c] is changed to
B[x := c] → B[x := c], which is a tautology and B[x := ai] → ∃xB will be
changed to B[x := ai] → B[x := c]. We know that this is a special sequence
with lemma 4.10. So now

A1, .., An, B[x := a1]→ B[x := c], ..., B[x := ap]→ B[x := c] (1)

We will now make a new special sequence where we will change c into ai
for each occurrence of c for a formula u, also in the subscripts of the special

11



constants. We note this as u(i) Since c does not appear in B, B[x := c](i) =
B[x := ai]. We then obtain the special sequence

A
(i)
1 , .., A(i)

n , B[x := a1](i) → B[x := ai], ..., B[x := ap](i) → B[x := ai] (2)

We will now claim that the sequence consisting of all the Ai and all the A
(j)
i

is a special sequence. Suppose that for a truth evaluation v (2.28), for which

v(Ai) = T and v(A
(j)
i ) = T for all i, j. Then v(B[x := aj ]

(i) → B[x := ai]) = F
for one of these formula, since at least one of the formulas in 2 should have False
assigned as truth value. So v(B[x := ai]) = F for all i, so B[x = ai]→ B[x = c]
will be true for all i. But then 1 is not a special sequence anymore.

What is left of the proof is showing that each A
(i)
j is either in ∆n−1(T ) or

is the special axiom to one of the c1, ..., ck. If Aj is an instance of a identity,

equality or non-logical axiom, then so is A
(i)
j . Now suppose that Aj is a sentence

∃yC → C[y := s] or C[y := a] → ∃yC with s as special constant. Then A
(i)
j is

either ∃yC(i) → C(i)[y := s(i)] or C(i)[y := a(i)]→ ∃yC(i). Since s is not c, it is
clear that s(i) is the special constant for ∃yC(i). It is clear that s and s(i) have

the same rank. So if Aj is in ∆n−1(T ), then so is A
(i)
j . Now suppose that s is

one of the c1, ..., ck. Then the level of c is greater than or equal to s, so c can
not appear in ∃yC and thus not in s. So s(i) = s. So A(i) has one of the c1, ...,
cn as special constant.

Theorem 4.14 (Consistency theorem (Hilbert-Ackermann)). An open theory
(2.23) T is inconsistent if and only if there is a quasi-tautology which is a
disjunction of negations of instances of non-logical axioms of T .

Proof.
⇐=
Suppose that ¬A1 ∨ ... ∨ ¬An is a quasi-tautology (2.32) of which the Ai are
instances of non-logical axioms of T . Then the Ai are theorems of T and so is
¬A1 ∨ ... ∨ ¬An. So by the tautology theorem (3.9), T is inconsistent.

=⇒
Suppose T is inconsistent. Now let c be a special constant (4.3) in Tc. Since
T is inconsistent, x 6= x is a theorem of T . Then c 6= c is an instance of
x 6= x and by lemma 4.12 there are formulas A1, ..., An in ∆(T ) (4.7) such
that A1 −→ ... −→ An −→ c 6= c. Since c = c is an instance of an equality
axiom, it is in ∆(T ) so we can assume that one of the Ai is equal to c = c.
Then ¬A1 ∨ ... ∨ ¬An is a tautology. So A1, ..., An is a special sequence. Now
there is a rank n (4.6) such that all Ai are in ∆n(T ). If we now use lemma 4.13
repeatedly, we know that there is a special sequence (4.8) in ∆0(T ), so there is
a special sequence existing of identity axioms, equality axioms and non-logical
axioms, and then we have a quasi tautology which is a disjunction of negations
of instances of non-logical axioms of T .

12



5 Herbrand’s proof

This chapter will show the proof of Herbrand’s theorem with the lemmas which
are the most important for this proof.

Lemma 5.1. Let T be a theory with no non-logical axioms. A closed existential
(2.11) formula A is a theorem of T if and only if there is a quasi-tautology
(2.32) which is a disjunction of instances (2.30) of the matrix (2.10) of A.

Proof. Suppose that A is ∃x1, ..., xnB with B open. By the corollary of the
reduction theorem (3.21), A is a theorem if and only if T [¬A] is inconsistent.
T [¬A] and T [¬B] are equivalent by the prenex operations and the closure the-
orem (3.12. So A is a theorem if and only if T [¬B] is inconsistent. With the
consistency theorem (4.14) we know that T [¬B] is inconsistent if and only if
there is a quasi tautology which is a disjunction of negation of closures of distinct
instances of ¬B. So this is the case if ¬¬B1, ..., ¬¬Bn is a quasi tautology where
each Bi is an instance of B. This only holds iff B1, ..., Bn is a quasi-tautology,
which completes the proof.

Definition 5.2. We introduce an extension T ′c of Tc by adding special equality
axioms which are ∀x(A ↔ B) → c∃xA = c∃xB if c∃xA and c∃xB are the special
constants for ∃xA and ∃xB.

Lemma 5.3. T ′c is a conservative extension of T .

Intuition: The idea of this proof is to take a formula A of T which is a
theorem of T ′c, and we will show that this is also a theorem of T . We will do
this by ordering all the special constants we have in T ′c on level. We shall show
that we can make a proof of A without the special constant of the highest level,
and thus we have to remove all the formulas belonging to this special constant
and all the special equality axioms containing this constant. By induction, it
then follows that we can rewrite the proof in T ′c to a proof in T .

Proof. We let T [c1, ..., cn] be the theory obtained from T by adding the con-
stants c1, ..., cn and the special and special equality axioms which only contain
these constants. As in the proof of lemma 4.11, this will be reduced to proving
the following: if level(ci) ≤ level(c) for 1 ≤ i ≤ n, then T [c1, ..., cn, c] is a
conservative extension of T [c1, ..., cn].
We will do this by showing that if a formula A of T [c1, ..., cn] has a proof in T [c1,
..., cn, c] then it has a proof which uses no special equality axioms containing c.

We note that for each special constant appearing on the left hand side of the
implication arrow of a special equality axiom ∀x(A ↔ B) → c∃xA = c∃xB , the
level will be lower than the constants on the right hand side of the special equal-
ity axiom. Thus in any given proof of A, we know that c can only appear on
the right hand side of the equation. Now we can assume that all the formulas
in the proof in which c appears are of the form ∀x(B ↔ C) → c = c∃xC . It is
easy to see that if a formula is of the form ∀x(C ↔ B) → c∃xC = c, it can be
rewritten to one of the former form. We also assume that c = c does not appear
on the right hand side of the equation, since that could also be derived with the
equality axioms.
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Let ∀x(B ↔ C) → c = c∃xC be one of the special equality axioms in the
given proof of A. Let T̂ be the theory obtained from T [c1, ..., cn] obtained by
adding the constant c and the two axioms c = c∃xC and ∀x(B ↔ C). We will
show that A is a theorem of T̂ . For this, it will suffice to prove all the non-logical
axioms in T̂ in the given proof of A which contain c.

Since ∀x(B ↔ C) is an axiom we know that `T̂ B ↔ C and thus B[x :=
c] ↔ C[x := c]. Since we know that c = c∃xC , we also know with the equality
theorem (3.16) that `T̂ B[x := c] ↔ C[x := c∃xC ]. Since c 6= c∃xC , we know
that `T̂ ∃xC → C[x := c∃xC ], and thus with the equivalence theorem (3.15)
and the fact that `T̂ B ↔ C and `T̂ B[x := c] ↔ C[x := c∃xC ], we know that

`T̂ ∃xB → B[x := c]. Thus the special axiom of c is provable in T̂ .

Now consider a special equality axiom ∀x(B ↔ D) → c = c∃xD occurring
in the proof of A. We know that ∀x(C ↔ D) → c∃xC = c∃xD and also
because of the level of c, we know that c does not occur in this formula.
Now since `T̂ B ↔ C, we know with the equivalence theorem (3.15) that
`T̂ ∀x(B ↔ D) → c∃xC = c∃xD. Because `T̂ c = c∃xC , we also know that
`T̂ ∀x(B ↔ D)→ c = c∃xD.

Since `T̂ A, we know with the deduction theorem (3.13) that `T c = c∃xC →
∀x(B ↔ C)→ A and with the theorem on constants (3.14) that `T [c1,...,cn] y =
c∃xC → ∀x(B ↔ C) → A. Now we substitute c∃xC for y and since ` c∃xC =
c∃xC with the identity axiom we know that `T [c1,...,cn] ∀x(B ↔ C)→ A.
Now by using ¬(∀x(B ↔ C) → c = c∃xC) → ∀x(B ↔ C) by example 2.27 and
the tautology theorem (3.9), we know that
`T [c1,...,cn,c] ¬(∀x(B ↔ C)→ c = c∃xC)→ A without using any nonlogical ax-
ioms containing c.
Now let D1, ..., Dk be the special equality axioms containing c which are used
in the given proof of A. By the deduction theorem (3.13) D1 → ...→ Dk → A
has a proof not using special equality axioms containing c. In the above we have
shown that each ¬Di → A also has a proof without c. Thus by the tautology
theorem (3.9) A has a proof without c.

Remark 5.3.1. Let c∃x¬A be a constant for ∃x¬A.
Then ∃x¬A→ ¬A[x := c∃x¬A] is an axiom of T ′c.
Thus we know that `T ′

c
∃x¬A→ ¬A[x := c∃x¬A], and using a→ b↔ ¬b→ ¬a

(proof by contradiction), we know that `T ′
c
¬¬A[x := c∃x¬A]→ ¬∃x¬A.

Now since we know that ¬¬A → A (by example (2.26) and ¬∃x¬A ↔ ∀A (by
subsection (2.2)), we know that `T ′

c
A[x := c∃x¬A]→ ∀xA.

Definition 5.4 (A∗ and AH). Let A be be a closed formula in prenex form. If
A is existential, then AH is equal to A.
If not, A is of the form ∃x1 ... ∃xn∀yB[x1, ..., xn, y]. Then let f be a new n-ary
function and be A∗ be ∃x1 ... ∃xnB[x1, ..., xn, y := f(x1, ..., xn)]. Now if A∗ is
existential, AH will be A∗. Otherwise, repeat this process of making A∗∗, A∗∗∗,
etc until the result is existential. The result will be AH .

Example 5.5. Let A be ∃x∀y∃z∀wB[x, y, z, w]. Then A∗ will be ∃x∃z∀wB[x, f(x), z, w]
and A∗∗ will be ∃x∃zB[x, f(x), z, g(x, z)]. This last formula is existential so AH

will be equal to A∗∗. The matrix of Ah will be B[x, f(x), z, g(x, z)].
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Theorem 5.6 (Herbrand’s Theorem). Let T be a theory with no non-logical
axioms, and let A be a closed formula in prenex form in T. Then A is a theorem
of T if and only if there is a quasi-tautology which is a disjunction of instances
of the matrix of AH .

Intuition: This proof is done as follows: The ‘if’ side of the proof follows
almost directly, so we do this side first.
The interesting part of this proof is the ‘and only if’ side, this is the process
which is called deherbrandisation. We first show that A can be proven from
an instance of the matrix of A, in which we use some terms a1, a2, ..., an
and some constants c1, c2, ..., cn We assume that we have a quasi tautology
which is a disjunction of instances of the matrix of AH . Then we know that
this is a tautological consequence of instances of identity and equality axioms,
which we will call C1, ...,Cr. We will now substitute in this quasi tautology all
instances of the functions f1, ..., fn gained by Herbrandisation applied on the
terms a1, ..., an by the constants c1, ..., cn, until all appearances of the fi are
gone, also where they appear in the ai. We will now repeat this process on the
axioms Ci, thus gaining the equality and identity axioms of which we found a
tautological consequence for the substituted quasi-tautology, which is thus also
a quasi-tautology. This will complete the proof.

Proof.
⇐=
Suppose there is a quasi-tautology which is a disjunction of instances of the ma-
trix of AH . Let T ′ be obtained by adding the new function symbols of AH . Sup-
pose A is of the form ∀yB, then we know that `T ′ ∀yB −→ B[y := f(x1, ..., xn)]
by the substitution theory (3.11). Since A∗ := B[y := f(x1, ..., xn)], we
know that `T ′ A −→ A∗. By repeating this process, we can deduce that
`T ′ A −→ AH . If `T A, then `T ′ A because T ′ is a conservative extension, so
then by modus ponens (3.8) we know that `T ′ AH .

=⇒
Suppose, to simplify the description, that A is of the form ∃x∀y∃z∀wB[x, y, z, w]
with B open. Then AH will be ∃x∃zB[x, f(x), z, g(x, z)]. Tc is a conservative
extension of T in the non-logical axioms are the non-logical axioms of T and the
special axioms ∃xA → A[x := c∃xA] for the special constants of L (4.3). Then
let a and b be variable free terms in T ′c, and define ca and ca,b as the special
constants respectively for ∃y¬∃z∀wB[a, y, z, w] and ∃w¬B[a, ca, b, w].

Then we know by the remark 5.3.1 and the substitution theorem (3.11) that
`T ′

c
B[a, ca, b, ca,b]→ ∀wB[a, ca, b, w]

`T ′
c
∀wB[a, ca, b, w]→ ∃z∀wB[a, ca, z, w]

`T ′
c
∃z∀wB[a, ca, b, w]→ ∀y∃z∀wB[a, y, z, w]

`T ′
c
∀x∃z∀wB[a, y, z, w]→ ∃x∀y∃z∀wB[x, y, z, w]

And thus ` B[a, ca, b, ca,b] → A. Using the special equality axiom from T ′c
which is ∀x(A↔ B)→ c∃xA = c∃xB , we know that if a = a′, b = b′ then
∀y(¬∃z∀wB[a, y, z, w]↔ ¬∃z∀wB[a′, y, z, w])→ ca = ca′ and
∀w(¬B[a, ca, b, w]↔ ¬B[a′, ca′ , b′, w])→ ca,b = ca′,b′ .
And thus ` a = a′ → ca = ca′ and ` a = a′ → b = b′ → ca,b = ca′,b′ .

15



Now assume that `T ′ AH . By lemma 5.1, there is a quasi tautology which
is a disjunction of instances of the matrix:

B[a1, f(a1), b1, g(a1, b1)] ∨ ... ∨B[an, f(an), bn, g(an, bn)] (3)

in which ai, bi are terms of L(T ′). Next we substitute all f(a) by ca and all
g(a, b) by ca,b, where f and g do not occur in a and b. We do this until there
are no occurrences of f and g. This will result in the following formula:

B[a′1, ca′
1
, b′1, ca′

1,b
′
1
] ∨ ... ∨B[a′n, ca′

n
, b′n, ca′

n,b
′
n
] (4)

We will now show that this is a theorem of T ′c.

The formula 3 is a tautological consequence (2.29) of instances C1, ..., Cr of
identity and equality axioms. Now, we can substitute f(a) and g(a, b) by ca
and ca,b like we did when transforming formula 3 to 4. This will result into for-
mulas C ′1 ,..., C ′r. By a lemma 4.10 it holds that 4 is a tautological consequence
of the C ′i. The C ′i will either be an equality or identity axiom, or from the form
x = x′ → f(x) = f(x′) or x = x′ → y = y′ → g(x, y) = g(x′, y′). But we have
proven that these are theorems. Then it will follow from ` B[a, ca, b, ca,b]→ A
and the tautology theorem that A is a theorem of T ′c, and by lemma 5.3 it will
also be a theorem of T .
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Example 5.7 (Proving the drinker’s paradox). We will now view the exam-
ple of the drinker’s paradox. Suppose the formula A := ∃x(D(x) → ∀yD(y))
in which D(x) is the relation ‘Person x is drinking’. Then this formula means
‘There is a person x in the pub, such that, when he or she is drinking, everybody
in the pub is drinking’. This seems counter intuitive, but consider the following
cases: Suppose that everybody in the pub is drinking. Then you can point at
a random person who is drinking, and he or she will be the person such that
when he or she is drinking, everybody is drinking. So the theorem will hold in
this case
Now suppose that not everybody is drinking. Then you can point at the person
who is not drinking. Since false → false = true, the theorem will still hold.

We will now prove the drinker’s paradox using Herbrand’s theorem. So again,
our theorem is ∃x(D(x)→ ∀yD(y)). First of all, we want to write this in prenex
form. This will give us the following formula: ∃x∀y(D(x) → D(y)). We will
now rewrite the part after the quantifiers using the rules in 2.2). This will give
us ∃x∀y(¬D(x) ∨D(y)).

Now, we will use Herbrand’s theorem to replace y by introducing a function f
of x, this will give us ∃x(¬D(x)∨D(f(x)). Now, using Herbrand’s theorem, we
know that we can prove this by proving a disjunction of instances of the matrix,
which is (¬D(x)∨D(f(x)). We will choose to substitute x once by x and once by
f(x), so this will give us (¬D(x)∨D(f(x)))∨(¬D(f(x))∨D(f(f(x)))). Now re-
arranging the brackets will give us ¬D(x)∨ (D(f(x)) ∨ ¬D(f(x)))∨D(f(f(x)))
, which is obviously true.

Example 5.8 (The drinker’s paradox: deherbrandisation). Now, we will show
an example of the other side of the proof. Suppose that we have a proof for

(¬D(x) ∨D(f(x))) ∨ (¬D(f(x)) ∨D(f(f(x))))

then we want to get a proof for

∃x(D(x)→ ∀yD(y))

without using f(x).

Let ca be the special constant belonging to ∃y¬(¬D(a) ∨ D(y)) and let cca
be the special constant belonging to ∃y¬(¬D(ca) ∨D(y)).
Assume that ¬D(x) ∨D(f(x)) holds.
We know that

∃y¬(¬D(a) ∨D(y))→ ¬(¬D(a) ∨D(ca))

because this is the special axiom for ca. By the fact that

(A→ B)↔ (¬B → ¬A)

we know that

¬¬(¬D(a) ∨D(ca))→ ¬∃y¬(¬D(a) ∨D(y))

Now by the operations in subsection 2.2 and the fact that ¬¬A ↔ A we know
that

(¬D(a) ∨D(ca))→ ∀y(¬D(a) ∨D(y))
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Now by the substitution theorem (3.11) we know that

∀y(¬D(a) ∨D(y))→ ∃x∀y(¬D(x) ∨D(y))

We also know that

∃x∀y(¬D(x) ∨D(y))→ ∃x(D(x)→ ∀yD(y)))

by subsection 2.2.
Now we know that

(¬D(a) ∨D(ca))→ ∃x(D(x)→ ∀yD(y))

Using the same method we also know that

(¬D(ca) ∨D(cca))→ ∃x(D(x)→ ∀yD(y))

Now we have a proof for

(¬D(x) ∨D(f(x)) ∨ (¬D(f(x)) ∨D(f(f(x))))

We can make a proof for

(¬D(a) ∨D(ca)) ∨ (¬D(ca) ∨D(cca))

in T ′c from this by substituting x by a, f(x) by ca and f(f(x)) by cca in the
entire proof. Now we know that T ′c is a conservative extension of T , so there
also exists a proof in T . So we know that if we have a proof for

(¬D(x) ∨D(f(x)) ∨ (¬D(f(x)) ∨D(f(f(x))))

we can transform this into a proof of ∃x(D(x)→ ∀yD(y)).
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6 Conclusion and further reading

In this thesis, we have given a proof of Herbrand’s theorem. With this, we know
that is is possible to deherbrandise a formula, when only equality and identity
axioms are used.

In this thesis, only the mathematical side of Herbrand’s theorem is discussed.
If the reader is interested in an actual implementation of deherbrandisation,
one can look at the bachelor thesis of Ramon van Sparrentak from 2014. He
discusses an implementation of deskolemisation, the dual of deherbrandisation.

If the reader wants to read more information on the proofs which were not
done in this thesis or further reading on this topic, then the reader should look
up Mathematical Logic by Joseph R. Shoenfield. This is the book which has
been primarily used for this thesis.
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