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Abstract

In this thesis we try to find out if unsupervised feature learning can be
used to find white matter lesions in brain-MRI scans. Results show that
unsupervised feature learning algorithm performs similar to classification
using regular features. In some cases it performs even better. Downside is
that unsupervised feature learning is computationally more expensive.
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Chapter 1

Introduction

In this thesis we are trying to solve the problem of detecting hyperintensities
in Magnetic Resonance Imaging (MRI) images of the brain. MRI is one of
the techniques by which an image of the internals of an organism can be
made. This is used by clinicians to determine the healthiness of the organs
from a patient. In this thesis, we are using FLAIR weighted MRI1 scans
of the brain. In an MRI FLAIR scan, white matter lesions (WML) emerge
with a higher signal and thus brighter areas; that is why they are also called
white matter hyper-intensitiies (WMH)”. WMHs is one of the symptoms
which is used to diagnose people with cerebral small vessel disease (SVD).
Improvement of isolating WMHs helps the diagnosis of SVD.

Up to now the identification and annotation of white matter hyper-intensities
is done by an analysis of a neurology expert. This handwork by the doctor
can be automated by using image analysis and machine learning techniques.
The manual annotation has several drawbacks: they are usually very time
consuming, subjective and error prone. Thus this automation can be very
useful. The usual method for this automation is to use conventional machine
learning techniques that make use of hand-crafted features to train the clas-
sifier. In this learning scheme, the overall performance strictly depends on
careful domain-dependent choice of features. Instead we attempt to use an
algorithm called ’unsupervised feature learning’, which, as the name says,
independently learns specific features of the object it is trying to detect.
Another reason we chose this algorithm is because recently some very good
results were achieved on well-known datasets [9]. The goal is to create a
WMH detection system without any hand crafted-feature that has similar
or better results than a regular classifier.

1MRI scans can be transformed/weighted in several ways, FLAIR weight nulls the
cerebrospinal fluids. E.a. this makes the cerebrospinal fluids appear black in the MRI-
scan.
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Chapter 2

Preliminaries

2.1 Small vessel disease

In this research we develop and evaluate a computer-aided detection al-
gorithm to detect WMHs related to patients diagnosed with small vessel
disease (SVD). These lesions appear in the cerebral cortex and are com-
mon for elderly people. SVD is linked to cognitive decline and loss of other
functionality such as problems with gait and speech [13, 1]. Hyperintesities,
together with lacunar infarcts and brain microbleeds are symptoms of SVD
and are used to diagnose people with this disease. Figure 1 shows a healthy
brain on the left side, and a brain with WMHs on the right side.

Figure 1: Healthy vs. non-healthy brain.

2.2 Unsupervised feature learning

Unsupervised Feature Learning (USFL) is a technique to learn some dis-
criminative features from the input data and to then use those features to
classify a given image. This means that the created features differ from
dataset to dataset. In the following section we explain in more detail which
steps are involved.
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2.2.1 Input

A possible input for the unsupervised learning algorithm is images. In this
thesis these are patches of FLAIR MRI-scans from the RUN DMC study
[12]. Images are often pre-processed before they are used. A common way
to do this is by subtracting the mean and dividing by the standard deviation
for each pixel. After the normalization it is possible to whiten the image
but it is not required. Our dataset is normalized but not whitened.

2.2.2 Algorithm

There are many variations in USFL and there are some parameters that
need to be chosen manually. The one described here is a commonly used
one [4, 5]. At some points we deviate from the common method to accom-
modate for specifics of our dataset.

In general there are two steps in USFL: 1. generating the feature mapping
and 2. creating the training dataset. The first step, generating the feature
mapping consists of three steps as also described in [4].

• Getting patches from all the images

• Pre-processing the patches (optional)

• Learning a feature mapping

Learning the feature mapping can be done in multiple ways. For example
using sparse auto-encoders [3], sparse restricted Boltzmann machines [8],
K-means clustering [7] and Gaussian mixtures [10]. We use K-Means clus-
tering which is easy to implement and gives good results [4].

The second step, creating the training dataset, also consists of 3 sub-steps:

• Extracting patches from the training images and map them to features

• Pooling features from certain areas together so the dimensionality is
reduced.

• Assigning labels to the patch feature vector based on the ground truth.

Once the dataset is created one can choose an arbitrary supervised machine
learning algorithm to train and test the data. An algorithm with low com-
plexity is advised because: 1. the created features are usually discriminating
enough not to demand complex classifiers and 2. the data has so many vari-
ables and data points (in our case 1200 variables and 64958 data points)
that it is computationally infeasible to train non-linear algorithms on it.
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Chapter 3

Research

3.1 Generating dataset

We want to determine for each candidate-lesion whether or not this is a real
lesion (or a false positive). This can be achieved by approaching this as
a binary classification problem, we chose using the label 1 for true lesions
and label 0 for false-positives. Research conducted by Ghafoorian et al [6].
resulted in a probability maps for each patient in the earlier mentioned RUN
DMC study. The probability map gives for each position in the MRI-scan
the probability that that part of the brain is WML tissue. Thresholding
his probability maps for each patient on an eighty or higher percent chance
resulted in 64958 candidate lesions/regions. Pre-selecting this way gives
us a high probability of having a WMHs in each region. Another option
would have been to slide a window over each slice of the MRI scan and
each patient, but this would have created an excessive amount of negative
sampless. Pre-selecting regions prevents this. Since most methods for USFL
in the literature classify images in their entirety, e.g. classifying if there is a
cat or no cat in the picture the algorithm required a slight modificatio since
we want to classify parts of the image to see if there is a WML in it or not.
We chose a size of this sub-image -from now on called intermediate patch- of
16×24 pixels. The chosen window size of 16×24 is based on a lesion x,y-size
graph, a heatmap of lesion size and a lesion distance histogram. General
idea is to have a window size, such that the average lesion fits exactly. We
chose 16 pixels width because this covers most lesions as can be seen in the
lesion frequency versus size image. This is also small enough to make sure
that there will not be two or more lesions within one window as can be
seen in the lesion distance histogram. The reason we chose a larger height
than width is because WMLs tend to appear more elongated in the vertical
direction. This is clearly visible in the heatmap.
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Figure 2: Width and height histogram for 64958 candidate lesions generated
based on the probability map by Ghafoorian et al [6].

Figure 3: Heatmap of lesion size for 64958 candidate lesions generated based
on the probability map by Ghafoorian et al [6].
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Figure 4: Histogram of lesion distance for 64958 candidate lesions generated
based on the probability map by Ghafoorian et al [6].

3.2 Creating feature mapping

Normal machine learning approaches would collect information about the
intensities of each patch e.g. min intensity, max intensity average intensity.
We will be doing something different: use the USFL algorithm. This al-
gorithm takes the intensities into account, but it can also learn shapes. If
WMHs always have a certain shape this should be picked up by the algo-
rithm and improve the classification performance. USFL algorithm starts
by learning the feature mapping. To create features from the data we must
choose a patch size of n-by-n which will be used to create the feature maps,
note that this is not the intermediate patch size. Usual values for this pa-
rameter are 5× 5 or 6× 6. In this case we chose patches of 5× 5. To create
the feature map, the MRI-images need to be cut into patches of the chosen
size. It is also possible to consider a parameter for the space between each
patch, which is called the ‘stride’. A small value for the stride leads to the
best classification performance because this way you miss the least data, but
it is computationally more expensive since more patches are created. This
creates M patches. Each patch is represented by a vector of n × n (each
voxel intensity is a value in the vector). After this, K-means runs over the
M vectors to create K centroids. The resulting centroids which were trained
from our input data can be seen in the dictionary image. Using a higher K
yields better results [4], but also makes the algorithm computationally more
expensive, and thus slower. We chose a K of 200. Now for each new patch
the distance to each centroid Ki can be computed and be concatenated into
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a vector. This concludes the description of our procedure to map an input
patch into a set of features.

Figure 5: Dictionary image of the trained features.

3.2.1 Pooling

Pooling is a technique to reduce the number of features, proposed by Mitra
et al [11]. To do this, we first needs to choose the amount of regions to pool
over. After this, the patches inside each pool are averaged and taken as a
single vector instead of each patch separately. For instance, an intermediate
patch of 100× 100 pixels with a patch size of 5× 5 and stride of 1 pixel and
a K of 200 would give 95 × 95 × 200 = 18050000 features. Now if we pool
over four regions this is reduced to 4 × 200 = 800 features. Because of the
larger vertical size of the intermediate patches (16 × 24) we chose to pool
over 6 regions. This corresponds to 6 × 200 = 1200 features.

3.2.2 Labeling

In the RUN DMC study two human experts marked WML regions in the
MRI images, they each marked different parts of the dataset which we used
as ‘ground truth‘. A candidate region is classified as a WML if it overlaps
for eighty or more percent with the ground truth. Otherwise it is labelled as
healthy/non-WML tissue. It should be noted that this is not ideal as mark-
ing lesions can’t be done consistently by the same by expert and especially
not by two different experts. Although the human experts are not always
marking every lesion (there are in fact a lot of small ones missed), this was
still the data we had to use. It took the two experts nine months of full time
work to mark all scans.

3.3 Classifying the dataset

For training we have the earlier mentioned 64958 candidate lesions out of
312 MRI-scans. A linear support vector machine (SVM) was trained on
this using Azure Machine Learning 1. For testing we use 32 MRI scans
containing 6419 candidate regions.

1Azure Machine Learning is a toolset which contains several machine learning algo-
rithms for use on large-scale datasets.
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3.4 Evaluating the results

To compare results we also created a dataset with regular features. These
features are: minimum intensity, maximum intensity, average intensity and
standard deviation of the intensity in each candidate region. These were
taken for each candidate lesion, the same ones used for the USFL algorithm,
for both training and test. On both training sets (USFL and regular fea-
tures) a linear SVM is trained and subsequently tested on 32 MRI scans
which were not used in the trainingset. The USFL SVM scores better with
a low rate of false positives. The regular SVM scores better with high rates
of false positives. Overall the two SVM’s are in the same league, there is
no large difference in performance. The exact results can be found in table
1. Accuracy is calculated with accuracy = TP+TN

P+N , this gives the percent-
age of the dataset that was correctly classified. Precision does the same,
but only for the positives: precision = TP

TP+FP . Recall: recall = TP
(TP+FN) ,

this gives an indication how good the algorithm can identify a WML cor-
rectly. F1 score combines precision and recall by taking their harmonic
mean: F1score = 2×(precision×recall)

precision+recall .

Unsupervised feature learning Hand-crafted features

True Positive 371 343

False Positive 78 107

True Negative 5207 5187

False Negative 754 782

Accuracy 0.869 0.862

Precision 0.810 0.762

Recall 0.330 0.305

F1 score 0.469 0.463

Table 1: Unsupervised feature learning and hand-crafted features results.
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Figure 6: Comparison of unsupervised feature learning approach (blue) to
conventional learning with hand-crafted features (red).
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Chapter 4

Conclusions

Using the unsupervised feature learning algorithm to classify white matter
lesions performs more or less the same as using regular features. The pro-
posed method performs better on lower false positive rate, which is more
practical in clinical use. Using unsupervised learning is computationally
more expensive since this method has more features per instance, but it
makes the process independent of selection of a number of domain-dependent
features.

There are some possible ways to improve the results of the USFL algo-
rithm, the number of clusters can be increased - the K parameter -. This
way each region can better match one of the extracted features, and the
algorithm will have better results [4]. Another option is to pre-process the
input images by whitening them first [2]. Stride can’t be reduced, that was
already at the minimum of one pixel, the patch size might be varied, but
further research is required to see if this increases classification performance.

A completely different option is to combine both methods (USFL and hand-
crafted features), there might be some features that we already know that
might be very important, such as location information. This hybrid ap-
proach can help to better decide whether or not a sub-image contains a
white matter lesion.
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