
Bachelor thesis
Computer Science

Radboud University

Optimizing NORX for Atmel 8-bit
AVR microcontrollers

Author:
Leon Botros
s4160894

First supervisor/assessor:
Dr. P. Schwabe

p.schwabe@cs.ru.nl

Second assessor:
Dr. L. Batina

lejla@cs.ru.nl

March 13, 2015



Abstract

This thesis presents the first results of NORX, an authenticated encryption
algorithm, on Atmel 8-bit AVR microcontrollers. Even though NORX was
mainly designed with 64-bit CPUs in mind, the designers claim that NORX
is also compatible with smaller architectures, for instance 8-bit architectures
such as the AVR. We show that by implementing the core parts of NORX
in AVR Assembly a significant speedup is achieved over the reference imple-
mentation. The implementation of NORX32 which provides 128-bit security
and uses 4 rounds of permutation requires 146 cycles/byte, whereas the ref-
erence implementation takes 393 cycles/bytes. Despite the fact that focus
was on primarily on speed, code size also decreased drastically.
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Chapter 1

Introduction

Today’s standard for authenticated encryption is dominated by AES-GCM.
While this standard is trusted by the research community as secure, there
are some practical disadvantages. One way of finding alternatives is through
public competitions. The submissions are evaluated by a committee of cryp-
tographers from different institutes all over the world. Throughout these
competitions the cryptographers get a lot of feedback, e.g., a security eval-
uation, so they can fix vulnerabilities and update their submission. Others
can also prove that an algorithm is broken or has serious design flaws, af-
ter which the submission is either withdrawn or discarded. This way of
designing new algorithms is seen by many a tremendous boost to the re-
search community. Upon withstanding several rounds of critical analyses,
confidence in the security of a cipher is increased significantly.

In a competition conducted by the US Government’s National Institute of
Standards and Technology (NIST), the submission Rijndael [1] by Daemen
and Rijmen was selected to replace the Data Encryption Standard (DES)
with Advanced Encryption Standard (AES). Rijndael was selected because
it offered the best performance across a lot of platforms.

Another example of development through competition is SHA-3 [2]. Even
though SHA-2 has not been broken yet, NIST held a competition to find
an alternative in case it was broken, what many believe, was just a matter
of time. This competition was won by Keccak [3] (actually a subset of
Keccak, since it is a family of sponge functions which can be used for a
variety of things) which was developed by Bertoni, Daemen, Van Assche and
Peeters.

CAESAR [4], not to be confused with the famous politician from ancient
Rome, is an acronym which stands for Competition for Authenticated En-
cryption: Security, Applicability, and Robustness. The goal of this competi-
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tion is to find authenticated ciphers which offer advantages over the current
standards (like, for example, AES-GCM).

NORX [5] is an authenticated encryption cipher designed by Aumasson,
Jovanovic and Neves. It is one of many submissions for the CAESAR com-
petition. The designers included software implementations on 32- and 64-bit
processors.

The designers’ C reference implementation, which is part of the submission
to CAESAR, can be compiled by for example AVR-GCC, a C compiler for
AVRs, but produces big and relatively slow machine code. A way to solve
this issue is to create a platform-specific implementation. There are already
some optimized versions for CPUs supporting AVX and AVX2 (Intel and
AMD CPUs) and NEON-enabled ARMs (Smartphones).

Even though NORX is originally designed with 64-bit architectures in mind,
the designers claim that it should also perform well on smaller architectures,
e.g., 8-bit AVRs. To implement an optimized version for the 8-bit AVR
platform and see whether this claim is true is the goal of this thesis.
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Chapter 2

Preliminaries

In this chapter we look at both the algorithm and the target platform. In
Section 2.1 we take a look at how exactly NORX works. My goal here was to
leave out (small) details that do not matter for optimizing for speed.

Programming for 8-bit devices is a bit different from programming for 32-
and 64-bit machines, especially on assembly level. In Section 2.2 we take a
look at what we need to know about 8-bit AVRs in order to optimize NORX
for this platform.

2.1 NORX

2.1.1 AE(AD)

Authenticated encryption (AE) schemes form a class of symmetric cryp-
tographic algorithms. The goal of this class is to be able to send out a
confidential message that is also authenticated. General input and output
of these algorithms is shown in Figure 2.1.

Message AE

Key, Nonce

Ciphertext,
Authentication tag

Figure 2.1: Authenticated encryption.

Authenticated encryption with associated data (AEAD) is different from
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authenticated encryption in one aspect: The idea is to send out a message
in such a way that part of it is confidential, part of it is in the clear and all of
it is authenticated. This is very useful if you want to send along a message
header containing routing information for datagrams in a network protocol.
The header is not confidential and is sent in the clear but the whole message
is authenticated. An overview is shown in Figure 2.2.

M = H ‖ P ‖ T AEAD

Key, Nonce

Ciphertext,
Authentication tag

Figure 2.2: Authenticated encryption with associated data.

Since this is symmetric (or secret-key) cryptography, both parties have the
shared secret key which they use for both encryption and decryption. This
key is created using a key exchange protocol such as Diffie-Hellman [6]. The
nonce is a public pseudo-random generated number. The designers of NORX
state that NORX is moderately resistant against reuse of nonces as long as
the header data is unique, but fresh nonces are strongly recommended. The
authentication tag, also called a message authentication code (MAC), is then
used to authenticate the (whole) message.

2.1.2 Encryption

What follows is a short overview of NORX encryption. A full detailed
overview can be found in the NORX specification on the NORX website [5].

Symbol Description

a ‖ b Concatenation of bit strings a and b.

|x| Size of bit string x.

¬,∧,∨,⊕ Bitwise negation, AND, OR and XOR.

x� n, x� n Bit shifts left/right of bit string x by n bits.

x ≪ n, x ≫ n Bit rotations left/right of bit string x by n bits.

←− Variable assignment.

Figure 2.3: Symbols & Operations used in NORX.
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Instances

A NORX instance is parameterized by

• a word size of W ∈ {32, 64} bits,

• a number of rounds 1 ≤ R ≤ 63,

• a parallelism degree 0 ≤ D ≤ 255,

• a tag size |A| ≤ 10W bits, 4W bits by default.

A NORX instance is denoted by NORXW-R-D-|A|. In this thesis we focus
on NORX32-4-1, but many of the optimizations can be used for other in-
stances. Since we did not denote a tag size, the default tag size of 4W bits
is used.

Parameters

Input

• a key K of 4W bits (128 bits for NORX32, 256 bits for NORX64)

• a nonce N of 2W bits

• a message M = H ‖ P ‖ T where

H is a header,

P is the payload,

T is a trailer.

Output

• a cipher text of size |P | (encrypted payload of same size as P )

• an authentication tag, default size is 4W bits

The monkeyDuplex construction

NORX is an AEAD scheme. NORX is not based on a block cipher, rather
it uses a fixed permutation to transform the internal state of the algorithm.
This idea is called permutation-based encryption and was first proposed in
2012 by Bertoni, Daemen, Van Assche and Peeters [7].

NORX uses a monkeyDuplex construction, an adaptation of the so-called
duplex construction. The duplex construction is a duplexed version of a
sponge construction. Sponge constructions consist of an internal state, a
padding function (so that the input can be absorbed by the state) and a
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state permutation. They are conveniently called sponges because they be-
have like sponges (absorb and squeeze). Sponges can absorb big amounts
of data and squeeze out a fixed-size output. A duplexed sponge construc-
tion alternates absorbing and squeezing, this way an output is produced for
every block of padded input. This property makes it very useful for au-
thenticated encryption. Authenticated encryption requires one call to the
permutation per message block while allowing arbitrarily long input (and
output) sizes. Sponge- and duplex constructions are not only used for au-
thenticated encryption. They can also be used for hashing, pseudo-random-
number generation and key derivation. An example would be the SHA-3
hash-function-competition winner Keccak [3]. NORX extends the con-
struction by adding in more lanes to add parallelism, hence the parallelism
degree (number of parallel lanes) parameter D. An overview of NORX’s
monkeyDuplex construction can be seen in Figure 2.4.

Figure 2.4: Layout of NORX for D = 1.

NORX State

A NORX state S consists of 16 W -bit-sized words, arranged in a 4 × 4
matrix:

S =


s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15


The entries s0, . . . , s9 are called the rate words which will hold the message
data. The entries s10, . . . , s15 are called capacity words.

State initialization

The NORX state is initialized using the key K = k0 ‖ k1, ‖ k2 ‖ k3, the
nonce N = n0 ‖ n1 and constants u0 through u9:
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S =


s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

←−

u0 n0 n1 u1

k0 k1 k2 k3

u2 u3 u4 u5

u6 u7 u8 u9


The constants can be found in the NORX specification. The NORX param-
eters (W,R,D and |A|) are integrated in state S followed by R iterations of
the round function F, which is a fixed permutation on the state S. We will
get to the details of this function later on.

s14 ←− s14 ⊕ v

S ←− FR(S)

where v = (R� 26)⊕ (D � 18)⊕ (W � 10)⊕ |A|

Similarly, a domain separation constant is integrated into state S:

s15 ←− s15 ⊕ v

S ←− FR(S)

This time around, v is a domain separation constant. NORX performs
domain separation by XORing the domain separation constant v of the
next step with the least significant byte of s15. This is done each time
before the state is tranformed by the NORX permutation FR(S). How to
calculate v for each phase can be found in the NORX specification, but it
does not matter for optimizations described in this thesis. This concludes
the initialization.

Padding

A padding function appends bits to the input message so that the length
of the padded input is a multiple of the rate r. These r-bit blocks can now
effectively be absorbed in the rate words. NORX uses multi-rate padding [8].
The padding rule is pretty simple:

padr : X 7→ X ‖ 10q1

where q = (−|X| − 2) mod r

This mapping pads the bit string X to a multiple of the rate r (hence the
name) and the last block is not an all-zero block (0r).
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Message processing

Message processing consists of the following steps:

1. Header processing

2. Branching (Only if D 6= 1)

3. Payload processing

4. Merging (Only if D 6= 1)

5. Trailer processing

Since we focus on NORX32-4-1, we can ignore the branching and merging
steps. Message (header, payload and optionally a trailer) blocks are injected
(by XORing) into the rate words s0, . . . , s9. Processing payload blocks also
outputs a block of the encrypted cipher text, whereas header and trailer
processing does not; as can be seen in Figure 2.4. This is because the
header and trailer are meant to be sent in the clear. In this figure you
can also see that a domain separation constant is integrated in the capacity
words. By using this duplex construction, a message of arbitrary length is
still processed in a single pass of the algorithm. If a different parallelism
degree D > 1 is used, message processing is done in D different lanes which
improves efficiency on multi-core platforms.

Header processing If there is no header (|H| = 0), this step is skipped.
If there is a header, it is padded to a multiple of r bits using the multi-
rate padding previously mentioned. Let padr(H) = H0 ‖ . . . ‖ HmH−1
denote the padded header. Let Hl be such an r-bit sized header block with
0 ≤ l ≤ mH − 1. Since rate r = 10 (and capacity c = 6) the header blocks
consist of 10 bits hl,0 ‖ . . . ‖ hl,9. Each header block is “injected” into the
rate words as follows:

sj ←− sj ⊕ hl,j for 0 ≤ j ≤ 9

s15 ←− s15 ⊕ v

S ←− FR(S)

Payload processing Let padr(P ) = P0 ‖ . . . ‖ Pmp−1 denote the padded
payload. A payload block Pl = pl,0 ‖ . . . ‖ pl,9 is encrypted as follows:

sj ←− sj ⊕ pl,j for 0 ≤ j ≤ 9

cl,j ←− sj

s15 ←− s15 ⊕ v

S ←− FR(S)

9



The encrypted payload block cl = cl,0 ‖ . . . ‖ cl,9 is the result of encrypting
payload block pl. The last block Pmp−1 creates a truncated ciphertext block
so that |C| is equal to |P |.

Trailer processing Trailer processing is similar to header processing.

The round function F

The round function F uses G (details later) to transform a NORX state S.
G is a function which tranforms four W -sized words. The function F is a
permutation of b = r+c bits, where b is called the width, r the rate, and c the
capacity. The equation b = r + c expresses a trade off between security and
efficiency. The rate determines the efficiency and the capacity determines
the security strength. First, the words in the columns in S are transformed
as follows:

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

G(s0, s4, s8, s12) G(s1, s5, s9, s13) G(s2, s6, s10, s14) G(s3, s7, s11, s15)

Second, the words in the diagonals of S are transformed as follows:

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15
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G(s0, s5, s10, s15) G(s1, s6, s11, s12) G(s2, s7, s8, s13) G(s3, s4, s9, s14)

The application of R rounds of F on NORX state S is denoted by FR(S).
This application is also called a NORX permutation.

The function G

G is a function which takes four W -bit-sized words a, b, c, d and transforms
them as follows:

a←− (a⊕ b)⊕ ((a ∧ b)� 1)

d←− (a⊕ d) ≫ r0

c←− (c⊕ d)⊕ ((c ∧ d)� 1)

b←− (b⊕ c) ≫ r1

a←− (a⊕ b)⊕ ((a ∧ b)� 1)

d←− (a⊕ d) ≫ r2

c←− (c⊕ d)⊕ ((c ∧ d)� 1)

b←− (b⊕ c) ≫ r3

The rotation offset constants r0, r1, r2, r3 in NORX32 are set to 8, 11, 16,
31, respectively. This function is inspired by the quarter-round function
of ChaCha [9], an improved version of the stream cipher Salsa20 [10] from
the eSTREAM software portfolio [11]. The design principle of ChaCha’s
quarterround is sometimes named ARX (add-rotate-xor). NORX replaces
the addition with a logical and, hence the name NORX (short for NOTARX).
Together, F and G are at the core of NORX. The computationally expensive
part of NORX is obviously the R calls to the round function F for each block
of r bits. The following chapters describe how I optimized this part for the
Atmel AVR ATmega family of microcontrollers.

2.1.3 Decryption

Decryption is very similar to encryption. See the full specification.

2.1.4 Tag generation

Tag generation is performed after the whole message is processed by the du-
plex construction. The state S is transformed one last time using FR(S) and
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then extracting the |A| least significant bits from the rate words s0, . . . , s9
yields the tag:

S ←− FR(S)

A←−
9⊕

i=0

(si �W · i) mod 2|A|

If the default tag size of 4W is used, this is equivalent to A←− s0 ‖ s1 ‖ s2 ‖ s3.

2.1.5 Tag verification

Tag verification is performed by compared the received tag A to the tag
A′ which is generated after decryption. If A = A′, the tag verification
succeeds; otherwise it fails. The NORX specification also states that the
decrypted payload should be securely erased if tag verification fails and
that tag verification should not leak information regarding the compared
strings.
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2.2 8-bit Atmel AVR Microcontrollers

In this chapter we give necessary background of the target platform. In
order to understand how to optimize for 8-bit AVRs we first need to have
an understanding of their architecture.

2.2.1 Architecture and instruction set

The AVR is a simple RISC (Reduced Instruction Set Computing) micro-
controller. A microcontroller is in fact a small computer. It has a CPU,
memory (a mix of SRAM, flash and EEPROM) and some I/O-pins. The
microcontroller uses the flash memory to store programs. AVRs use a two-
stage single-level pipeline, which means that while an instruction is exe-
cuted the next instruction is fetched. A general overview provided in the
ATmega2560 Data sheet by Atmel [12] of this Harvard architecture is shown
in Figure 2.5.

Figure 2.5: 8-bit AVR Harvard Architecture.

Most instructions are executed in a single clock cycle. Memory operations
take two cycles to complete. There are three main groups of 8-bit (there are
actually some 32-bit AVRs on the market too but those are not nearly as
popular as the 8-bit ones) AVR microcontrollers to distinguish:
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Series Memory (kB) I/O-pins

ATtiny 1− 8 6− 32

ATmega 4− 256 28− 100

ATxmega 16− 384 44− 100

Table 2.1: An overview of the AVR microcontroller family.

In general, the ATtiny series is used for small applications since they are
small in size and do not consume a lot of power. The ATmega series is by
far the most popular of AVRs, they have a nice amount of memory and are
very suitable for medium to complex applications. The ATxmega series is
used for more complex applications that require more memory and speed.
Also, the higher-end versions offer more features than the lower-end ones. In
this thesis I used an ATmega2560 on an Arduino Mega development board.
The maximum clock frequency is 16 MHz, it has 256kB of flash and 8kB of
SRAM. A full data sheet of this device is provided by Atmel [12].

The AVR has 32 8-bit registers available, R0-R31. Memory addresses are 16
bits. Registers R26-R31 can be used as pointers towards a memory location.
Since addresses in the SRAM are 16-bits, two registers are required. These
pointers are called X (R26:R27), Y (R28:R29) and Z (R30:R31).

The full instruction set manual can be found on Atmel’s website [13]. Some
important instructions are listed in Table 2.2 and some arithmetic operations
used by NORX in Table 2.3. Note that when using arithmetic instructions
with two operands, the first of the input operands gets overwritten by the
outcome.

14



Instruction Example Description Cycles 1

MOV MOV R25, R24 Copies the content of R24 into
R25.

1

MOVW MOVW R25, R17 Copies a register pair (R17/R18
into R25/R26).

1

LD LD R25, X(+) Loads content of memory loca-
tion that X points to in R25 (and
increments X afterwards).

2

ST ST X, R25 Stores R25 at memory location
X.

2

LDD LDD R25, X + n Loads what is at memory loca-
tion X + n in R25, does not
change X.

2

STD STD X + n, R25 Stores R25 at memory location
X + n.

2

PUSH PUSH R25 Pushes R25 onto the stack. 2

POP POP R25 Pops the top of the stack into
R25.

2

RCALL RCALL subroutine Relative call to a subroutine. 3

RET RET Returns to the calling code. 4

Table 2.2: Frequently used general instructions.

Instruction Description Cycles

EOR Exclusive OR. 1

AND Bitwise AND. 1

LSL/LSR Logical Shift Left/Right, inserts 0 and sets the carry flag. 1

ROL/ROR Rotate Left/Right, inserts carry and sets the carry flag. 1

Table 2.3: Arithmetic instructions used in NORX.

Again, some of the higher-end series offer more instructions than the lower-
end ones. In my implementation the load and store with displacement in-
structions (STD and LDD) are used. These only work on pointers X and
Z, not on Y. Unfortunately these instructions are not available on ATtiny
devices. This means that the main goal is of this thesis is to produce an
implementation for the ATmega series. Nevertheless, the implementation
can easily be adapted to run on the ATtiny family. Also, it is worth noting
that some instructions take more cycles on the ATxmega family.

1Listed are the cycles on ATmega. Some instructions take more cycles on ATxmega.
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2.2.2 AVR-GCC

To compile C code for the AVR, AVR-GCC version 4.8.2 is used. Unless
noted otherwise the following flags are used:

-Wall -mmcu=atmega2560 -O3 -DF CPU=16000000

When using AVR-GCC we must keep in mind that AVR-GCC uses registers
too and some require special attention:

Registers How to use

R0 Temporary register, can be changed by C code.

R1 Zero register, can be used but must be cleared afterwards.

R2-R17 Call-saved registers. Calling C subroutines leaves them un-
changed. Assembler subroutines that use these registers
must restore them.

R18-R27 Call-used registers. Calling C subroutines can change them.
Assembler subroutines can use these registers freely, no re-
store required.

R28-R29 Y pointer is used by AVR-GCC as a frame pointer. Needs
to be restored if changed.

R30-R31 Call-used registers. Same usage as R18-R27.

Arguments of a subroutine are allocated in R25-R8. If there are more argu-
ments, they are pushed on to the stack. Return values can be put in R24
(8-bit), R25-R25 (16-bit), R25-R22 (32-bit) or R25-R18 (64-bit).

2.2.3 Timers

Measuring execution speed of code on the AVR is done using timers.

The ATmega2560 has two 8-bit timers (timer0 and timer2) and four 16-
bit timers (timer1, timer3, timer4 and timer5). Timers have an internal
counter register (TCNT) that can be set to scale off the system clock using
a prescaler. A prescaler can be set by setting some bits in the timer control
register (TCCR).

Without a prescaler, the counter is incremented at the same rate as the
system clock (16 MHz for the ATmega2560). Using a prescaler slows this
down. For example, when the prescaler is set to 8, the counter register of
the timer is incremented every 8 system clock cycles. Now the counter is
incremented at a rate of 16/8 = 2 MHz. The prescaler can be set to 8, 64,
256 or 1024.
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The 8-bit timer counts from 0 to 255 (0x00 to 0xFF). The 16-bit timer
counts from 0 to 65535 (0x0000 to 0xFFFF). After that, they overflow (go
back to 0).

The timer interrupt mask (TIMSK) is a register that enables a timer to
cause an overflow interrupt. When a timer overflows, the overflow flag is set
and the timer overflow interrupt flag (TIFR) is set. Normal execution will be
interrupted and the processor will execute the code of the interrupt service
routine (ISR). Global interrupts need to be enabled in order use this.

My supervisor gave me a function which can be used to count CPU cycles
on the AVR. It uses timer0 and timer1 to make a 24-bit timer. timer0

is set to prescale directly off the system clock. When timer0 overflows, no
interrupt is caused because this bit is not set in TIMSK. timer1 is set with a
prescaler of 256 (28). This means that timer1 overflows every 216 · 28 = 224

system clock ticks. When this timer overflows, an interrupt service routine is
executed. In this routine 224 is added to a 64-bit unsigned long long called
ticks. To get the amount of clock ticks from the last overflow until the
time that the function is called, the counter values TCNT0 and TCNT1 are
read. Since timer1 uses a prescaler of 256, the value in the counter register
has to be shifted 8 bits to the left (multiply by 28). The values are then
bitwise ORed (because of overlapping bits) with ticks and the resulting
value is returned. The function itself takes some cycles too, so there is some
overhead. However, this overhead is constant and can be measured using
the function without any code in between.
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Chapter 3

NORX on AVR ATmega

3.1 Optimizing G

Intuitively, the NORX permutation (FR) seemed like a good place to start
when trying to optimize NORX on the AVR. This permutation is called in
every part of NORX. Every message block requires one NORX permutation.
So the longer the message, the more permutations.

After deciding that optimizing the round function F would be a good idea
to start, I started at the smallest building block of this function, which is G
(page 11).

G uses 4 operations which can be seen in Table 3.1. The table also shows
how many cycles are needed to perform the operation on the AVR. Note
that these operations work on 32-bit words, since the NORX state consists
of sixteen 32-bit words in NORX32-4-1.

An exclusive-or operation takes 4 cycles on the AVR since it has to XOR the
4 bytes separately, taking 1 cycle each. The same applies to the bitwise-and
operation. A bit shift is performed by first doing one logical shift (logical
shifts insert a zero) followed by 3 rotate through carry instructions. A 32-bit
rotation costs a little more on the AVR, because we have to set the carry flag
first. First a byte is copied into a temporary register, then either a rotation
or a shift is performed on this register. Now that the carry flag is set, we
can rotate each of the 4 bytes. In total this takes 6 cycles.

Table 3.1 also shows how many of these operations are used in NORX.
The rotation offsets (8, 11, 16, 31) are carefully chosen by the designers to
reduce cost on 8-bit architectures without a barrel shifter, such as the AVR
ATmega. If, for example, we want to shift a 32-bit word 11 bits left, we can
do this by rotating left 3 bits and then renaming the registers. In general
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we never have to rotate more than to the closest multiple of 8, either left or
right. With these offsets we only have to do 4 rotations (3 bits right for the
offset 11 and 1 bit left for the offset 31).

XOR AND Shift Rotation Total

Operations on the AVR 12 4 4 4 24

Cycles on AVR 4 4 4 6

Total cycles on the AVR 48 16 16 24 104

Table 3.1: Operations & Cycles used for G on the AVR.

So, all arithmetic operations for one G-permutation take 104 cycles. This
does not take into account reading or writing memory. If we assume that
we need to read all words a, b, c, d this will cost 4 · 4 · 2 = 32 cycles. Writing
them back costs 32 cycles too. This brings the total to 168 cycles. Plus, to
calculate

a←− (a⊕ b)⊕ ((a ∧ b)� 1)

for example we need to keep a copy of either a or b in a temporary register.
Since both MOV and MOVW instructions cost 1 cycle, MOVW is used where
possible. Keeping a copy of a word costs 2 cycles this way (not counting the
use of an extra register). We have to do this 4 times in G. This brings the
total to 176 cycles.

G takes four 32-bit words as inputs. Ideally, this would fit into the registers
and all calculations can be done without having to do slow memory oper-
ations before writing the final result back. Unfortunately, we only have 32
8-bit registers of which 18 have to be restored after use. Using call-saved
registers is not different in cycles from storing/loading intermediate results,
since whatever was in there needs to be pushed onto the stack to be restored
later. Push and pop operations are operations that work on memory too
and are no different in cycles than a regular load or store.

Eight registers (R25-R18) are required to hold the function arguments, four
16-bit addresses of the words. This does not leave a whole lot of registers to
use for calculations. Therefore, when I implemented G in AVR assembly, I
was forced to store and load after every step of G. Using this G only showed
a very little performance increase over the reference implementation. A
further, much larger, speedup comes from inlining multiple calls to G as
explained in the following section.
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3.2 Optimizing FR

Unrolling G and creating a loop around F, and thus making one big subrou-
tine for FR, has four advantages:

1. Removing function-call overhead. In the reference implementation, F
was called R times in a loop from C code and inside F, G was called 8
times. Depending on the message size this would result in a lot of func-
tion calls. And every time it would do exactly the same. A function
call pushes a stack frame on the stack containing the return address,
local variables and possibly function parameters. When returning to
the calling function, these values are popped. Stack operations (PUSH
and POP) take 2 cycles each and we want to avoid these when trying
to keep the cost low.

2. Allows (efficient) usage of call-saved registers. In the scope of G it was
not worth it to use call-saved registers (registers that require restoring
at the end of a subroutine). In the scope of F we can save the call-
saved registers that are used to do all 8 G calculations and then restore
them afterwards.

3. Memory addressing. G has 4 arguments (pointers to a, b, c, d) which
take 8 registers in total to store. When instead one subroutine for
F is used we have one pointer to the first byte of the NORX state
S = s0, . . . , s15. When stored in pointer register pair Z we can access
sn using the load and store with displacement instructions (STD and
LDD). The four bytes of sn are at memory locations Z+4n+0, . . . ,Z+
4n + 3. The displacement when using these instructions can go up
to 64, which is exactly the size of the NORX state in NORX32-4-1.
Unfortunately, this means that the idea of using LDD and STD cannot
directly be implemented for NORX instances using a word size of 64
bits, since the NORX state is 128 bytes in that case. Two pointers
would probably be required.

4. One word can be kept in registers. After last the column step,
G(s3, s7, s11, s15), we have to do the first diagonal step, G(s0, s5, s10, s15).
Instead of storing and loading s15, we can keep these 4 bytes in the
registers. This saves 4 stores and 4 loads which is equivalent to 16 cy-
cles per round. The bytes of d are rotated right 3 times at this stage,
so some renaming is required.

The main disadvantage to this approach is that it creates AVR assembly
code that repeats for most parts except for some addresses, which increases
the size of the code.
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3.3 Implementation details

3.3.1 Implementation of FR

The AVR assembly subroutine that I implemented takes 2 arguments. The
first one is a pointer to the NORX state. The second one is the number
of rounds. By parameterizing the number of rounds the subroutine is also
suitable for NORX instances that use a different number of rounds. An
overview of how the registers are used in this subroutine can be seen in
Table 3.2.

R0 R1 R2:5 R6:9 R10:12 R13 R14:17 R18:21 R22:25 R26:29 R30:31

t1 t2 s0 s1 s2 r a b c d state ptr

Table 3.2: Register usage in F.

We use two temporary registers so we can use the MOVW instruction instead
of MOV. Register R13 holds the number of rounds left. Registers R2 through
R12 (registers that were left over) are used to hold 11 bytes of the state in
the registers. This way, we only have to load and store them once for all
rounds. Note that only 3 of 4 bytes of s2 are stored.

A basic form of FR in AVR assembly can be found in Figure 3.1. G is left
unimplemented in this overview.
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1 F:

push r2

3 push r3

push r4

5 push r5

push r6

7 push r7

push r8

9 push r9

push r10

11 push r11

push r12

13 push r13

push r14

15 push r15

push r16

17 push r17

push r28

19 push r29

21 movw r30 , r24

mov r13 , r22

23

ldd r2 , Z + 0

25 ldd r3 , Z + 1

ldd r4 , Z + 2

27 ldd r5 , Z + 3

ldd r6 , Z + 4

29 ldd r7 , Z + 5

ldd r8 , Z + 6

31 ldd r9 , Z + 7

ldd r10 , Z + 8

33 ldd r11 , Z + 9

ldd r12 , Z + 10

35

round:

37 ; G(s0 ,s4 ,s8 ,s12)

; G(s1 ,s5 ,s9 ,s13)

39 ; G(s2 ,s6 ,s10 ,s14)

; G(s3 ,s7 ,s11 ,s15)

41 ; G(s0 ,s5 ,s10 ,s15)

; G(s1 ,s6 ,s11 ,s12)

43 ; G(s2 ,s7 ,s8 ,s13)

; G(s3 ,s4 ,s9 ,s14)

45 dec r13

breq end

47 rjmp round

49 end:

std Z + 0, r2

51 std Z + 1, r3

std Z + 2, r4

53 std Z + 3, r

std Z + 4, r6

55 std Z + 5, r7

std Z + 6, r8

57 std Z + 7, r9

std Z + 8, r10

59 std Z + 9, r11

std Z + 10, r12

61

clr r1

63 pop r29

pop r28

65 pop r17

pop r16

67 pop r15

pop r14

69 pop r13

pop r12

71 pop r11

pop r10

73 pop r9

pop r8

75 pop r7

pop r6

77 pop r5

pop r4

79 pop r3

pop r2

81 ret

Figure 3.1: FR in AVR Assembly.

First, all call-saved registers are saved. The address of the state is stored
in Z, the number of rounds is stored in R13. The first 11 bytes of the state
are loaded in R2:R12 as previously mentioned. In one round we do all 8
G calculations, afterwards R13 is decreased by one. If R13 is now equal to
zero we are done and a zero flag is set. The branch-if-equal (BREQ) jumps
if the zero flag is set to the label end where the registers are restored again.
R1, the zero register, is cleared (set to 0). If the zero flag is not set, it does
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not jump but instead just executes the next line. A relative jump (RJMP)
is used to jump to round because the code for all the G calculations is quite
long and the relative jump can jump ±2k lines.

Implementation of G

Now, we need to add the code that performs the G calculations. G(a, b, c, d)
consists of reading the four words, calculating their new values and writing
them back. The assembly code is around 150 lines and can be found in
Appendix B. This code takes exactly 176 cycles. MOVW is used to make a
copy of - for example a in the first step - two bytes simultaneously to R0:R1.
In step 2 and 4, rotations right (3 bits and 1 bit) are performed. The rest
of the rotating does not take any cycles, because we “rename” the registers.
After step 1 for example, instead of looking for d1 (which is the first byte
of d) in R26 we take the value of d2 stored in R27 and treat it like it is d1.
This way no cycles are used to shuffle bytes.

The address displacements are left variable and contain the capitalized let-
ters A, B, C and D. The code is first preprocessed by a simple python script
that replaces these letters by the addresses of the arguments:

#!/ usr/bin/python

def translate(s, a, b):

for x, y in zip(a, b):

s = s.replace(str(x), str(y))

return s

g_args = [[0, 4, 8, 12],

[1, 5, 9, 13],

[2, 6, 10, 14],

[3, 7, 11, 15],

[0, 5, 10, 15],

[1, 6, 11, 12],

[2, 7, 8, 13],

[3, 4, 9, 14]]

displacements = [[n * 4 for n in s_n] for s_n in g_args]

with open(’g’, ’r’) as g_file:

g_filestring = g_file.read()

f_filestring = "".join([ translate(g_filestring , ’ABCD’, g) for g in

displacements ])

with open(’f’, ’w’) as f_file:

f_file.write(f_filestring)

The resulting subroutine does not use the registers we had left for the
first 11 bytes of the state. To change this, I removed the parts in the

23



G-calculations that have either s0, s1 or s2 as input that load and store
and had them use the registers R2:R12 instead. This saves 4 loads and 4
stores (16 cycles) in G(s0, s4, s8, s12), G(s1, s5, s9, s13), G(s0, s5, s10, s15) and
G(s1, s6, s11, s12) and 3 loads and 3 stores (12 cycles) in G(s2, s6, s10, s14)
and G(s2, s7, s8, s13).

I also removed the part that stores and loads s15 in the last column step and
the first diagonal step. This required me to rename the registers contain-
ing s15 to undo the 3-byte rotation. This saves another 16 cycles between
G(s3, s7, s11, s15) and G(s0, s5, s10, s15). In total, 104 cycles are saved per
round.

Cycle Analysis of FR

The result is an AVR assembly subroutine of about 1200 lines that per-
forms one NORX permutation (FR) on NORX state S containing 32-bit
sized words. We can calculate exactly how many cycles this subroutine
takes, see Table 3.3. This analysis does not take into account the cost of
calling this function.

Action # Performed Cycles Total

Push call-saved register 18 2 36

Load first 11 state bytes 11 2 22

Move parameters 1 3 3

Round

G 8R 176 1304R 1

Decrement R2 R 1 R

Branch-if-equal (false) R− 1 1 R− 1

Relative jump R− 1 2 2R− 2

Branch-if-equal (true) 1 2 2

Store first 11 state bytes 11 2 22

Clear R1 1 1 1

Pop call-saved register 18 2 36

Return to caller 1 4 4

Total 1308R + 123

Table 3.3: Cycle analysis of the new FR subroutine.

1Since 104 cycles are saved per round.
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3.4 Results

3.4.1 Execution speed

Whereas one F-call took 3454 cycles using the reference implementation, the
new F takes 1444 cycles. The new FR is optimized for a variable number of
rounds. The average cycles per round converge to 1312 as the number of
rounds increases. This value is close to what we expect if we take a look at
our cycle analysis.

Measuring is performed by using timers. The measured code is put between
a function (cpucycles) that reads the value of the 24-bit timer mentioned in
subsection 2.2.3 on page 16. Reading this value costs a few cycles. We first
measure this overhead by measuring how many cycles “empty code” takes,
i.e., we read the value twice without any code in between and calculate the
cycle count difference.

To measure the effect of this change on NORX32-4-1, I ran multiple en-
cryptions on different sized messages. Since header and trailer processing
is performed completely similar, I only ran encryption using different sized
headers and payloads and the trailer is left empty. Use of the trailer is op-
tional, because anything that can be put in a trailer can also be put in the
header. In this experiment header and payload are equally sized (both half
the message length). In theory, payload bytes take a little more cycles since
they produce cipher text and this has to be written in the memory. That
is why I also ran the encryptions in which the payload size was equal to
the message size (so no header or trailer) and the difference was negligible.
Keys and nonces are pseudo-randomly generated using code I got from my
supervisor, but we might as well use all-zero keys and nonces. The results
are listed in Table 3.4. The cycles-per-byte values converge to a point as
the message size grows, this is due to overhead caused by the initialization
and finalization. This point (asymptotic speed) is called “long” in the ta-
ble. If X is the number of cycles required to encrypt a 2048-byte message
and Y is the number of cycles required to encrypt a 1024-byte message, the
asymptotic speed is computed as (X − Y )/1024 cycles per byte.
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Ref/AVR Message size (bytes) Cycles Cycles/byte

Ref 8 77462 9682

16 77558 4847

32 77750 2429

64 78134 1220

128 108808 850

256 170364 665

512 263466 514

1024 449670 439

2048 852088 416

long 393

AVR 8 30268 3783

16 30364 1897

32 30556 954

64 30940 483

128 42258 330

256 64902 253

512 99636 194

1024 169104 165

2048 318594 155

long 146

Table 3.4: NORX32-4-1 benchmark results on the ATmega2560.

3.4.2 Code size

Since some AVRs have limited memory, code size is an aspect that we should
not forget. The ATmega2560 has 256kB of flash, which is the maximum
amount in the ATmega series. The file norx.c contains both high-level
functions norx aead encrypt and norx aead decrypt. When compiled, it
creates an object file. The program avrsize is used to measure the size
of this file. The reference implementation takes up 65578 kB. The AVR-
optimized implementation takes up 6206 kB in C and 922 kB in AVR as-
sembly.
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3.4.3 Correctness

Unfortunately, a formal proof of correctness is beyond the scope of a Bach-
elors thesis. I will stick to comparing test vectors and the output of the
reference implementation to the output of the AVR optimized implemen-
tation. To test whether the outcome of encryption is correct the results
are compared to full NORX computations listed on page 55 and 56 in the
NORX specification [5]. The ciphertext and authentication tags match the
ones listed there, for both NORX32-4-1 and NORX32-6-1. On a lower level, F
is performed up to 8 times on the state listed on page 53 of the specification
and those values match too. During this project I noticed that a small bug
in F or G would result in very dramatic changes to the resulting state.

3.5 Future work

3.5.1 NORX64

Implementing the NORX permutation FR for a NORX state of 64-bit words
is a bit more of a challenge. The four words of G now take 8 registers each,
which means intermediate saving and loading from the memory is required
to perform G.

Also, the state is 1024 bits in NORX64. LDD and STD instructions have
a maximum displacement of 63 bytes. In order to access the state, two
pointers to both state halves of 512 bits are required (X and Z, Y cannot be
used with LDD and STD).

3.5.2 Other parts of NORX

I prioritized optimizing FR because most cycles went there. This does not
mean that all the other parts do not need optimizing. The table below gives
an indication (they might be off by a few cycles) of where the cycles currently
go when encrypting an 8-byte message (4-byte header, 4-byte payload, no
trailer).
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Part Cycles

Initialization 5680

Header processing 6110

Payload processing 6411

Trailer processing 65

Generating tag 12210

What strikes me here is how many cycles are used to generate the authenti-
cation tag. This is a lot of overhead for encrypting a small message. If the
default authentication tag size of 4W is used, first the state is permutated
one last time by FR followed by setting A to the first 4W bits of the rate
words r0 ‖ . . . ‖ r9. This is basically:

S ←− FR(S)

A←− s0 ‖ s1 ‖ s2 ‖ s3

The next step would be to figure out why so many cycles are used for
something so simple and how we can decrease this number. This is just one
example of a part that might need optimizing.
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Chapter 4

Related Work

Comparing execution speeds of algorithms on different platforms is very
hard if not impossible. For this reason I will only consider cryptographic
primitive implementations for 8-bit AVRs.

As far as I know there are no other implementations of NORX for 8-bit
AVRs. There are several cryptolibraries for the AVR, e.g., NaCl [14], AVR-
Crypto-Lib [15] and TinyECC [16].

NaCl (pronounced as “salt”) uses the stream cipher Salsa20 [10] to encrypt
and Poly1305 [17] to authenticate messages. The implementation for AVRs
requires 277 cycles/byte for Salsa20 and 211 cycles/byte for Poly1305. Both
Salsa20 and Poly1305 use 256-bit keys. Salsa20 uses 8 quarterround function
calls that take 176 cycles each in this implementation.

Unfortunately, there are not a lot of authenticated encryption ciphers im-
plementations for the AVR. I hope that throughout the course of the CAE-
SAR competition we are going to see some more implementations for the
AVR.
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Appendix A. How to run

On Debian/Ubuntu:

Source The source code is available on Github:

$ git clone https :// github.com/leonbotros/norxavr.git

Dependencies The packages avr-gcc, avr-libc, avrdude and binutils-avr are required:

$ sudo apt -get install gcc -avr avr -libc avrdude binutils -avr

Permissions Make sure the development board is plugged in through USB and
seen by the OS as /dev/ttyACM0. Otherwise either unplug the other
device(s) or change the DEVICE variable in the makefile. You can list
devices by running the command:

$ ls -l /dev/ttyACM*

Access to this file is restricted to users in the group dialout. You can
add a user to this group by running:

$ sudo useradd -G dialout <user >

Compile & Run Go to the directory norxavr3241/ or norxref3241/, depending on
which you want to run. To recreate the encryption results listed on
page 55 (NORX32-4-1) and 56 (NORX32-6-11) of the NORX specifica-
tion [5], run:

$ make norxtest

To recreate the results in section 3.4 of this paper, run:

$ make speedtest

1The number of rounds can be changed by editing the variable NORX R in the file
norx/norx config.h.
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Appendix B. AVR Assembly: G

1 ldd r14 , Z + A + 0

ldd r15 , Z + A + 1

3 ldd r16 , Z + A + 2

ldd r17 , Z + A + 3

5

ldd r18 , Z + B + 0

7 ldd r19 , Z + B + 1

ldd r20 , Z + B + 2

9 ldd r21 , Z + B + 3

11 ldd r22 , Z + C + 0

ldd r23 , Z + C + 1

13 ldd r24 , Z + C + 2

ldd r25 , Z + C + 3

15

ldd r26 , Z + D + 0

17 ldd r27 , Z + D + 1

ldd r28 , Z + D + 2

19 ldd r29 , Z + D + 3

21 ;; STEP 1

23 movw r0, r14

eor r14 , r18

25 and r0 , r18

lsl r0

27 eor r14 , r0

eor r26 , r14

29

eor r15 , r19

31 and r1 , r19

rol r1

33 eor r15 , r1

eor r27 , r15

35

movw r0, r16

37 eor r16 , r20

and r0 , r20

39 rol r0

eor r16 , r0

41 eor r28 , r16

43 eor r17 , r21

and r1 , r21

45 rol r1

eor r17 , r1

47 eor r29 , r17

49 ;; STEP 2

51 movw r0, r22

eor r22 , r27

53 and r0 , r27

lsl r0

55 eor r22 , r0

eor r18 , r22

57

eor r23 , r28

59 and r1 , r28

rol r1

61 eor r23 , r1

eor r19 , r23

63

movw r0, r24

65 eor r24 , r29

and r0 , r29

67 rol r0

eor r24 , r0

69 eor r20 , r24

71 eor r25 , r26

and r1 , r26

73 rol r1

eor r25 , r1

75 eor r21 , r25

77 mov r0 , r18

lsr r0

79

ror r21

81 ror r20

ror r19
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83 ror r18

85 mov r0 , r18

lsr r0

87

ror r21

89 ror r20

ror r19

91 ror r18

93 mov r0 , r18

lsr r0

95

ror r21

97 ror r20

ror r19

99 ror r18

101 ;; STEP 3

103 movw r0, r14

eor r14 , r19

105 and r0 , r19

lsl r0

107 eor r14 , r0

eor r27 , r14

109

eor r15 , r20

111 and r1 , r20

rol r1

113 eor r15 , r1

eor r28 , r15

115

movw r0, r16

117 eor r16 , r21

and r0 , r21

119 rol r0

eor r16 , r0

121 eor r29 , r16

123 eor r17 , r18

and r1 , r18

125 rol r1

eor r17 , r1

127 eor r26 , r17

129 ;; STEP 4

131 movw r0, r22

eor r22 , r29

133 and r0 , r29

lsl r0

135 eor r22 , r0

eor r19 , r22

137

eor r23 , r26

139 and r1 , r26

rol r1

141 eor r23 , r1

eor r20 , r23

143

movw r0, r24

145 eor r24 , r27

and r0 , r27

147 rol r0

eor r24 , r0

149 eor r21 , r24

151 eor r25 , r28

and r1 , r28

153 rol r1

eor r25 , r1

155 eor r18 , r25

157 mov r0 , r18

rol r0

159

rol r19

161 rol r20

rol r21

163 rol r18

165 std Z + A + 0, r14

std Z + A + 1, r15

167 std Z + A + 2, r16

std Z + A + 3, r17

169

std Z + B + 0, r19

171 std Z + B + 1, r20

std Z + B + 2, r21

173 std Z + B + 3, r18

175 std Z + C + 0, r22

std Z + C + 1, r23

177 std Z + C + 2, r24

std Z + C + 3, r25

179

std Z + D + 0, r29

181 std Z + D + 1, r26

std Z + D + 2, r27

183 std Z + D + 3, r28
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