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Abstract

Smartphones are very popular today. Nearly everyone in our area is using
one and is especially using WiFi to connect to the internet. This connection
is normally established automatically, so that the user does not have to
enter the credentials every time. To find known networks, smartphones are
searching for them the whole time. While searching, they offer private data
that can be captured by anyone. We try to do that: collect the data, analyze
and match it with each other and computer new information that was not
presented originally.

Since the common smartphone user is not aware of privacy risks and
most of the time chooses for comfort above the security of his own data,
we want to make him aware of how much information one can gather and
compute about him without his participation. Since those people quickly get
bored when trying to explain it, we want to show it. Therefore, we display
the collected and computed data about them (as soon as there is enough)
at the moment they are present so that a screen can ”welcome” them with
an overview of things we know about them that they didn’t expect.
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Chapter 1

Introduction

1.1 Smartphones and WiFi

Today, more than every fifth person on the world is using a smartphone [7].
Such a smartphone is a combination of a telephone, an Internet device, a
music player and a lot of other functionality that can be added through
”apps” – small applications that run on the smartphone.

Nearly every functionality of the device uses the Internet, e.g. surfing,
checking e-mails, listening to Internet radio stations, checking Facebook,
Twitter, etc., looking up directions and many other scenarios. Since it
is way more expensive for Internet Service Providers (ISPs) to maintain
their radio towers than to provide Internet via cable or DSL, it is also more
expensive for customers to use their mobile data connection than using WiFi,
no matter whether at home, at the work place, university, with friends or
in a public café. Therefore, nearly every smartphone user tries to use WiFi
networks as often as possible. For their comfort, the smartphones try to
automatically reconnect with a known WiFi network as soon as it is in
range. The smartphones scan the environment for known hotspots. While
searching, the phones need to send a lot of private information in order to
find those hotspots. This data can be captured by anyone.

1.2 Motivation

Sadly, only few people are aware of this. When trying to explain this to
people that are not interested in information and communication technology,
they quickly get bored, so a new approach would be helpful. Specifically, we
will take these three steps:

1. We will install a modified WiFi access point that just captures the
searching of the devices. Personal data will be gathered on the router.

2. We will analyze the data and create a profile for each phone. These
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profiles will also be linked and prepared for displaying them. This will
be done on the server.

3. Thereafter, we will install a screen in the surroundings of the hotspot.
As the router detects a phone, it sends its appearance to the server
which will then present the corresponding profile.

We think that the data, collected over a few weeks and linked with each
other, will also deliver new information and insights. For example, social
relations can be discovered by searching for smartphones that are detected
always at the same time.

Further, our contribution lies in the third point: with the demo, which
is ultimately a continuous presentation of our collected and computed data,
we will warn people and show also those who are not aware of cyber crime
what can be done with their data.
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Chapter 2

Preliminaries

2.1 MAC addresses

Today, every modern device is connected with others. This happens via net-
works that consist of different layers, implemented in the TCP/IP protcoll.
If a device wants to talk with another, it has to go through these layers
down to the physical layer where the transmission actually takes place. On
top of that layer, there is the Data Link Layer which is needed to identify
the right receiver. This identification takes place based on its Media Access
Control (MAC) address, so it is a unique identifier to find the right network
interface that is attached to the receiver machine.

A WiFi adapter is also such a network interface, which means that every
device can uniquely be identified by its MAC address.

2.2 Service discovery

Smartphones normally try to reconnect to known networks as soon as they
are in range. In order to do so, the access point that is connected to the
Internet and the smartphone have to discover each other. This service dis-
covery happens in two different ways (passive and active refers to the point
of view of the device that wants to get an Internet connection):

Passive: The access point (AP) sends its own identitiy regularly. The pack-
ets it sends are called beacons that can be seen by the clients which are
searching for networks. If it is one of the networks the client knows, it
connects to it.

Active: The client actively searches for networks it knows. To find them,
it sends the name of all the networks in so-called probe requests. Each
of them contains the name of one known network. If an AP receives
such a probe requests that was searching for it, it answers with a probe
response that is used by the searcher to connect to it.
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2.3 Receiving probe requests

Our goal is to show privacy leakage. We are using probe requests to achieve
this. To capture them, we reconfigured a standard home network router.
Since we do not want the clients to connect with our AP but do want to
read the packets that go through the air, we put the WiFi adapter in monitor
mode. It then becomes a passive antenna that receives every packet on the
frequency it is adjusted to. We change that frequency regularly to catch
as many requests as possible. There are defined frequencies that represent
channels. The repeated changing of the frequency is called channel hopping.

2.4 Flashing a router

Linksys is one of the major router manufacturers. To run their devices, they
need an operating system. In 2003, it turned out that Linksys used Linux
with software that was published under the GPL license [9]. This license
grants the right to use the software that was published under it without
charge. In exchange, the software that uses the GPL licensed software has
to be made open source, too. Linksys did not take this into account, used
GPL software on its routers and sold them. When it turned out that they did
so, they had to publish their source code. That gave developers the chance
to write an open operating systems that would run on the chipsets Linksys
used in its routers. One of these new operating systems is OpenWRT [10].
Once installed on the router (this process is called flashing), it is accessible
via a command-line interface and a web interface and it is also possible to
install software on it.

2.5 HTTP requests and responses

Since we want to present information to the user, we chose to do this via a
website that runs in a browser on full-screen. To communicate with a web
server, that website has to make HTTP requests. Such a request can be of
different kinds. We will use those two:

GET In order to receive data from the server, the GET request is mainly
used. It can contain some parameters but according to the HTTP
standard, it should not cause any changes made on the server, e.g.
alter a database. The URL is used to transfer these parameters, e.g.,
http://example.org?param1=value1.

POST If the sender want to transmit a lot of data to the server, a POST
request is advised. Therefore, the request body is used instead of the
URL to send the data. The server then can process the data sent
within the request body.
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For every HTTP request, the server answers with an HTTP response. That
does not only contain a status code (e.g. 200 OK, 404 Not Found, 500

Internal Server Error, ...), but also some content. If a user just wants
to visit a website, the browser sends a GET request to the URL the user
typed in. The content of the HTTP response is the HTML page shown to
the user.

2.6 AJAX

AJAX means Asynchronous JavaScript and XML. Traditionally, for each
step or at every time that new data has to be sent to or received from the
server, the webbrowser sends a request to the server, eventually containing
some new data, and gets a response containing a whole HTML webpage that
then is shown to the user. AJAX creates a new layer: instead of the core
of the webbrowser, the JavaScript engine (that is part of the webbrowser)
makes the HTTP request to the server and gets the answer. That does not
necessarily have to be a HTML webpage but could, for instance, also be
an XML document (that’s where the name comes from). The JavaScript
application then can process that XML document and alter the elements on
the webpage instead of loading a whole new page where possibly only a part
has changed. This saves loading time and creates a browsing experience
that is more seamless.
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Chapter 3

Setup

As shown in Figure 3.1, the setup of our system consists of three parts:
router, server and client. The router receives all the probe requests sent
by devices nearby and sends them to the server. On top of that, it sends
information about which devices are currently in range. The server receives
and processes the new information by analyzing and storing them into the
right tables. Also, it regularly updates the profiles of the known devices
and thus generates information based on the data it has stored. The client
asks the server continuously which profiles it should display. As soon as
it receives new profiles, they appear on the screen. If the server does not
mention those profiles anymore, they disappear.

3.1 Router

The router has two tasks: it captures the packets that are sent through the
air and it forwards them to the server.

We are using a Western Digital My Net N600, a standard home network
router which we flashed with OpenWRT. Through this, we were able to
install aircrack-ng [1], an application suite that was initially designed to
crack password-protected networks. In our case, we are using it to put the
first WiFi adapter (2.4 GHz) into monitor mode using airmon-ng, one part
of the suite, by running the following command:

airmon-ng start wlan0

Airmon-ng creates a new interface called mon0 that can be treated as a WiFi
interface in monitor mode. We are then using tcpdump [11] to receive WiFi
packets that are sent through the air. Communication with the server is
done via HTTP requests using cURL [5], a command line tool to transfer
data via a network. We are using HTTP POST requests which have the
output of tcpdump as body. Every line represents one probe request. What
such a probe request looks like is explained in Section 4.1.1.
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Figure 3.1: Experiment setup

3.2 Server

The server receives raw data about captured requests and has to store them
structurally. It also has to update profiles and compute new information
about devices regularly in the background. When asked by the client, the
server has to present the data about currently active devices that the router
informed the server about.

As server, we are using a computer with an Intel Celeron G1820 processor
at 2.7 GHz (x2), a 500 GB HDD and 2 GB of RAM. On that system, we run
Ubuntu 15.04 64 bit as operating system and installed a standard Apache
webserver with PHP to process data and MySQL to store it structurally. In
Figure 3.2, our database structure is visualized. We will now explain each
table and its task.
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devices

id INT(11)

mac_address CHAR(17)

name VARCHAR(45)

appMon INT(5)

appTue INT(5)

appWed INT(5)

appThu INT(5)

appFri INT(5)

appSat INT(5)

appSun INT(5)

appNrOfCompanions INT(5)

nationality VARCHAR(40)

ageMin INT(2)

ageMax INT(2)

Indexes

friends

device_a INT(11)

device_b INT(11)

seen_together_count INT(4)

Indexes

appearances

device INT(11)

appeared TIMESTAMP

nr_of_companions INT(3)

Indexes

probed_networks

device INT(11)

network_ssid VARCHAR(50)

Indexes

currently_present

shown TINYINT(1)

mac_address CHAR(17)

appeared TIMESTAMP

Indexes

special_networks

id INT(11)

network_ssid VARCHAR(50)

public_name VARCHAR(100)

nationality VARCHAR(40)

ageMin INT(2)

ageMax INT(2)

Indexes

Figure 3.2: Database structure

devices stores all the devices, giving them a unique number that is asso-
ciated with the MAC address of a device. We also reserved a column
for the name of the device, but we cannot establish the name auto-
matically. It will give us the possibility to personalize the demo later
on, if people are actively willing to be addressed with their name or a
pseudonym so that they can easily identify which of the shown profiles
is theirs. In addition, we store a count how often the device is seen per
day of week, a guessed nationality and guesses about the minimum age
and maximum age of the owner. We also store the average number of
companions the device was seen with.

appearances contains one row for each appearance of a device. It also
stores how many devices are seen at the same time.

probed networks are those networks the client is searching for. There are
no duplicates, so if a device searches again for the same network, no
new row will be created.

friends will help us later to discover friendships. Each time two devices
are seen together, the counter increases. To prevent duplicate entries
(e.g. device a = 1, device b = 2 would have the same meaning as
device a = 2, device b = 1), the devices are ordered according to their
MAC address and after that, the row is inserted or updated in case
the friendship count already existed.

special networks consists of networks such as ”eduroam”. Networks in
this table will give us more information about the user. Eduroam, for
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instance, means that the owner of the device is most likely a student or
university teacher. Furthermore, we make guesses about how old a user
of that network is. Therefore, we store a minimum and a maximum
age. If such a guess is not possible (for instance, the public train
network does not say anything about the maximum age of the user),
we leave the field empty. In addition to that, a guess of nationality is
stored for people that want to connect with that special network.

currently present contains the MAC addresses of devices that are cur-
rently in the surroundings of the router. Furthermore, the last time
it was seen is recorded and whether it was already displayed on the
screen.

3.3 Client

In our case, the computer that runs the web server is also the client which
displays the information. Nevertheless, we treat it as a separate computer
since its work could be done on another machine without any change.

The client is thus connected to the same network as the server, being
able to make HTTP requests to the server. This is done on a standard
HTML website that contains our JavaScript application. The HTTP GET
requests are done via AJAX and the transmitted data is formatted in JSON
(JavaScript Object Notation). This website is shown within a standard
webbrowser that is running on the client in full-screen mode. The client is
connected to a screen visible to the people.
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Chapter 4

Running the demo

4.1 Analysis

4.1.1 Data gathering

To create profiles, we need information about the devices. We are capturing
probe request to gather this information. After putting the WiFi interface
into monitor mode, we run tcpdump with a filter so that only probe requests
are caught:

tcpdump -i mon0 -e -s 256 type mgt subtype probe-req

Every probe request captured by tcpdump has the following layout:

22:14:29.849593 6015968459us tsft 1.0 Mb/s 2467 MHz 11g -33dB

signal [bit 29] BSSID:Broadcast DA:Broadcast SA:60:d9:c7:0c:91:b3

(oui Unknown) Probe Request (Jansen) [1.0 2.0 5.5 11.0 Mbit]

22:14:29.849593 Exact time the packet was captured

-33dB Signal strength

SA:60:d9:c7:0c:91:b3 MAC address of the device that sent the request

Probe Request (Jansen) SSID of the network the device was looking for
(between parantheses)

Table 4.1: Interesting parts of a sample probe request

We are using only some interesting parts of that request which we point
out in Table 4.1. Since there are only some seconds between the capturing
and the insertion in the database, we are simply using a current timestamp
while inserting the row into the database as the time when the device was
seen. Currently, we also do not use the signal strength. This could be used
in future research to exclude some devices that have too poor signal. What
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we actively use are the MAC address to (re-)identify the device and the
SSIDs it is looking for.

Everything is sent regularly to the server using an HTTP POST request.
The server then processes the data by adding and updating information
in the corresponding tables: If a device is unknown, it is inserted in the
devices table and gets a new unique ID. Otherwise, the ID is fetched from
the database. After that, the appearance for that device is recorded as well
as all the networks it sent probe requests for. Finally, every pair of two
devices that were seen together are written into the table friends. If the
pair already exists, the ”seen counter” is increased by one.

4.1.2 Processing

The server regularly updates the profiles of the known devices. Therefore,
it analyzes the data to make guesses for the following information:

1. When does the person normally show up?
e.g. mostly on Mondays to Thursdays

2. How many people are mostly with her/him?
e.g. always seen with at least 5 other people

3. Which are her/his friends?
e.g. device #1534 and #1938 are very often seen together with her/him

4. Where is the person from?
e.g. searching for a lot of typical Dutch networks such as ”Wifi in de
trein”, therefore (s)he could be Dutch

5. How old is the person?
e.g. searching for a lot of disco networks, so (s)he is probably between
18 and 28

To show information about when the person normally shows up (1), we
look at the appearances table and count maximal one appearance per day.
We thus compute on which days the person showed up, not how often and
at what time. Then, those days are associated with the day of the week – we
thus calculate on which days of the week the person mostly shows up. We
will get an absolute count on how many Mondays, Tuesdays, Wednesdays,
... the person was seen.

Per appearance is also saved how many other devices were seen with the
person. We compute the average of that number to guess how many people
are mostly with her/him (2).

As pointed out under 4.1.1, every time two devices are seen together
a counter increases for this pair of devices. We select per device those
other devices that are mostly seen with that device and present them as the
friends (3).
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In the table special networks, we collect data about networks that give
us information about the devices that connected to it. The network with
SSID ”Cafe de Fuik”, for instance, suggests that the user is living in the
Netherlands (guessing the person is Dutch), and is between 18 and 30 years
old. For every device, all probed networks are searched in the special

networks table. The information is collected and the top nationality is
chosen as where (s)he is from (4) and the average minimum and maximum
age is used to calculate how old (s)he is (5).

4.2 Live

Since we want to warn people about their information leakage, the computed
data has to be presented at the time the person passes the screen.

4.2.1 Detecting people

We are again using a WiFi adapter in monitor mode to capture packets that
devices send through the air, but since we are now only interested in who
there is, we do not need to filter the packets by type of request. Therefore,
we use tcpdump with the following command:

tcpdump -i mon0 -e -s 256

Now, the device doesn’t have to send out probe requests to be discovered by
our system—as long as it sends anything, we detect it. The data is again
sent to the server via a HTTP POST request, but in a shorter interval so
that our application can react faster on devices that are now seen.

It thus sends all the captured packets to the server, which extracts all
different MAC addresses and stores them in the table currently present.
The standard values apply for the other columns: a current timestamp for
appeared, so when the device was seen, and the value 0 for shown because
it has not been displayed on the screen yet. If the MAC address already
existed in the database, only the column appeared is altered to the current
time.

4.2.2 Showing profiles

As explained in the Setup, we wrote a JavaScript applications that contin-
uously makes HTTP GET requests to the server which then presents the
data. An example of such a JSON-formatted response is shown in Listing 1.

The server looks up the devices stored in currently present. Devices
that appeared more than k seconds ago will be deleted since we assume that
they are not in range anymore. We started with a value of 30 seconds for k.
This value depends on the amount of different devices that are passing by
and has to be adjusted to the setting in which the system runs.
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The rest of the table is fetched and every record’s shown-attribute is set
to 1 since the server will now give an answer containing all those devices and
they will appear on the screen. For devices that had an 0 in their column
shown, the server looks up the whole profile and adds it to the answer (in
Listing 1, this would for instance be the device with ID 1523). For devices
that had a 1, the server only adds the ID to the answer (in Listing 1 the
second element of the array, 1934). This means that the server only looks
up and sends the whole profile once; afterwards, it only provides the ID.

The JavaScript application processes those answers. It has an own list
of devices that have to be shown to the viewers. Every time a response
arrives, this list is updated. For new devices, the whole profile is saved to
the list. For known devices (meaning that the full profile is cached and their
ID is present in the response of the server), nothing is changed. Devices in
the cached list are removed if their ID is not present in the response of the
server. After every update of the list, the devices with their cached profiles
are shown to the user. That means that, as long as people are in range
of the router, their profile is presented on the screen. As soon as they are
leaving, their profile disappears.
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Listing 1 Example JSON-formatted answer of the server

[

{

{

"id": "1",

"mac": "60:D9:C7:0C:91:B3",

"name": "Michaels iPhone",

"appearances": {

"days": {

"Mon": "1",

"Tue": "1",

"Wed": "1",

"Thu": "0",

"Fri": "0",

"Sat": "0",

"Sun": "0"

},

"nrOfCompanions": "2"

},

"age": {

"min": "18",

"max": "47"

},

"nationality": "Dutch",

"probed": [

"ADR Wireless",

"anumo",

"Augustus",

"eduroam",

"free-hotspot.com",

"Freewave",

"FREEWIFI De Fuik",

"UTGUEST",

"WLAN-0FEA00"

]

}

},

{

"id" : 1934

}

]
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Chapter 5

Lessons learned

While designing and implementing this demo, we discovered some difficul-
ties.

5.1 Router

As explained in Section 2.4, the first router which caused the open source
community to develop its own firmware was the Linksys WRT54G [9]. We
therefore tried a Linksys WRT54GL but it turned out that it had too little
memory to install and run the software we needed.

To capture the probe requests, there are multiple software programs.
One possibility is airodump-ng, a part of the aircrack-ng package mentioned
in Section 3.1. It has a GUI that shows the devices captured and their probed
networks in a table and hops channels automatically. Another program is
tcpdump (also mentioned in Section 3.1). We decided to use the second since
it gives an output that is easy to parse: every line represents one captured
probe request (explained in Section 4.1.1).

In order to capture packets that are sent over the air, the WiFi inter-
face has to be set into monitor mode. Therefore, we use airmon-ng (see
Section 3.1) that creates a new, virtual interface mon0 that used wlan0 in
monitor mode. Our script then starts tcpdump on the new interface. It is
essential to stop mon0 after using it by running airmon-ng stop mon0 be-
cause otherwise, every time we run airmon-ng with wlan0, a new interface
is created (mon1, mon2, ...). Since our script still uses mon0, the router is
likely to hang.

5.2 Detecting

While trying to detect devices that are currently in range, we looked at the
probe request in realtime. We discovered that as soon as devices are con-
nected with a network, they are not searching for other networks anymore.
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We therefore have to find a spot for our system where the devices that are
passing by are unlikely to be connected with a network. In addition, we
removed the filter of only finding probe requests when detecting devices, so
that we see every packet the smartphone sends.

Another issue is timing. There are three timespans that have to be
defined:

• The router searches for packets that are sent over the air and sends
its output regularly to the server. How often should it send that per
minute?

• The client regularly asks the server which devices are currently present.
How often should it ask that per minute?

• The devices saved in currently present have the attribute when they
are seen the last time. After what amount of time should they be
removed?
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Chapter 6

Related Work

As explained in Section 2.2, smartphones try to find known networks. As
Cunche explains [4], there are two ways for the so-called ”service discovery”
according to the IEEE 802.11 [8]. On the one hand, there is the passive
service discovery. The access point regularly sends its own name (the SSID)
and waits for devices to answer. Those messages are called beacons. On the
other hand, there is the active service discovery. The clients (smartphones,
tablets, computers, ...) searchs actively for known networks by sending the
SSIDs of all networks they were previously connected with. These messages
are called probe requests. If a network that was searched for answers, this
answer is called a probe response. Both, request and response, can be cap-
tured by every WiFi interface. To accomplish that, the interface has to be
in monitor mode, which means that it passively captures everything that
goes through the air. It is also important to mention (which is also pointed
out by Cunche) that no physical access to the devices is needed to run this
system.

Today, those techniques are already in use to track people. For instance,
Fukuzaki et al. [6] showed that it is possible to simulate the flow of pedes-
trians in a controlled area by capturing probe requests. To achieve this, the
researchers installed multiple WiFi access points that – comparable to our
system – look which devices are in range. They also send those data to a
central server, but from multiple access points. In the end, they were able
to see where pedestrians go to in realtime as long as they are in the range
of the access points. In contrast to our system, they only use the MAC
address to reidentify people. We loook also at the networks the devices are
searching for.

It is also doable the other way around: an app on a smartphone can
locate itself by searching for probe requests in the surroundings. Therefore,
the smartphone antenna self is in monitor mode. This was shown by Chon et
al. [3]. Through this, a person is also trackable, but in contrast to Fukuzaki
et al., they have to participate actively by using the app and sending the
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information.
All those researchers used WiFi signals to identify deivces and analyse

the users. This is also possible through GSM: Aloul et al [2] did this on
a campus: they installed GSM modems to track the users and used text
messages over those GSM modems to display the information gathered by
the modems. This shows that preventions against our demo (for instance a
MAC-address randomizer) aren’t effective.

A MAC-address randomizer changes the MAC-address of a devices reg-
ularly so that it is not possible to re-identfy a device based on its MAC
address. Stil, we could try to re-identify them by fingerprinting: two de-
vices that search for exactly the same networks are likely to be the same
device.

Another difference between Cunche et al. and our system is that they
identify friends base on those fingerprints. If two devices have a very similar
list of known networks, then it is likely that the two owners know each other
or are friends. We identify friends based on how many times two devices
were seen at the same time.
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Chapter 7

Conclusions

You need to fight for your pricacy or you’ll lose it.

– Eric Schmidt

As Eric Schmidt said, everyone has to do something in order to keep
his privacy. We showed that this does not only include not posting private
things on social networks or publishing it on blogs so that it can be found
by Google, whose chairman Eric Schmidt is. Privacy can also be violated
without the user doing something stupid. Just by passing by and having
the smartphone on, a user leaks information that can be gathered and used
by others. The problem is thus fundamental: if we want comfort and let
our smartphone do all those handy things like connecting to networks, de-
termining our position and regularly checking mails, we have to accept that
anyone can track us. The data itself may be encrypted (for instance, check-
ing mails via an SSL connection), but the fact that we send or receive data
at a specific time at a specific place already says something about us. It
may be an information with very little weight, but . . .

Many a little makes a mickle

– Scottisch proverb

Continuously gathering data over time, we showed that we can draw a
better picture about someone. For instance, on which days the person shows
up, with whom and with how many companions on average. Not encrypted
data like the SSIDs of the networks the device is searching for showed us
even more information. We would be able to sell our display as an adaptive
advertising panel. In the movie Minority Report from 2002, Tom Cruise
passed by an advertising panel that showed ads that were personalized for
him. We could also personalize this screen: for instance, we could show ads
of cafés the person visited in the past or show advertisements that fits the
person’s age or nationality. This is like Google AdWords in real world.

Wait a minute . . .
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Appendix A

Appendix

A.1 Rebuilding the setup

Any files that have to be copies on the devices can be accessed in this Git
repository: https://github.com/msjansen/smartphone_privacy_demo

A.1.1 Router

1. Flash the router with OpenWRT [10]. More about flashing in Sec-
tion 2.4.

2. Install aircrack-ng [1], tcpdump [11] and curl [5] on the router.

3. Set up a local network on the router.

4. Copy the files of the folder router from the Git repository

A.1.2 Server

1. Install a webserver like XAMPP containing Apache, MySQL and PHP.

2. Import the database.sql file from the Git repository in the phpMyAd-
min interface.

3. Copy the files of the folder server from the Git repository to the
webserver root.

4. Download mootools (http://mootools.net) and copy the file into the
folder. Choose core, no compatability, full, compressed and ver-
sion 1.5.1. The filename has to be mootools-core-1.5.1-full-nocompat-yc.js.

5. Enter the MySQL user credentials into Model/DBCon.php on line 16
(address, username, password, database name).
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6. The Server has to have the IP 192.168.1.10 since the scripts running
on the router try to connect to the server on that IP.

Now, start a webbrowser on any device that is connected to the router
and enter the IP of the server. On the same time, start the scripts on the
router by executing them in the shell.
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