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Abstract

Interaction is a concept that is different from the computable func-
tions. The Turing machine model is widely accepted as a model of
computation and two different extensions have been proposed to turn
Turing machines into a model for interaction. This thesis describes the
details of those models and provides several examples to illustrate the
differences between them. The result is that the notion of a reactive
Turing machine [2] is a suitable model for interaction.
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1 Introduction

Since Alan Turing introduced his model of machine computation, Turing
machines have been used as the basic model for computation. For every
computable function there exists a Turing machine that can compute it
and there exists a universal Turing machine that can simulate every Turing
machine, with an appropriate input.

Modern computation is wider than merely computing functions. Not
all input is available from the start and a system may run infinitely, still
behaving correctly. Turing machines are no longer an appropriate model
since they can’t model interaction. Peter Wegner provides many examples
in [11] like airline reservation systems and car drivers being able to take input
from the world. Interaction goes beyond the current models of computation
and therefore we need to explore the expressiveness of new models and their
properties.

In this thesis we will focus on two models that have been proposed to
extend the Turing machine paradigm: reactive Turing machines [2] and
persistent Turing machines [6]. We will use various examples to explain
them and we will make a comparison between those models. The research
question is: When is an interactive process computable in terms of Turing
Machines?

In Section 2 we will discuss standard Turing machines and the notion of
transition systems as a preliminary. In Section 3 and Section 4 the models
of reactive Turing machines and persistent Turing machines will be ex-
plained. Because they are rather new notions, most definitions from their
corresponding works will be repeated in a similar fashion. Of course they
are slightly adapted to fit our conventions and notation. We also discuss
concrete examples that are similar for each model to make the differences
and similarities easy to see. In the consecutive sections we will make the
comparison in terms of behavioural equivalence, universality and divergence.
Finally Section 8 includes a brief discussion on the λ-calculus, the π-calculus
in relation to RTMs and other extensions to the Turing machine paradigm.

The result of this thesis is a comparison of two works that share the
goal of modelling interaction by making a slight adaption to the Turing ma-
chine model. Reactive Turing machines focus on interactive processes and
persistent Turing machines focus on dynamic stream semantics. The notion
of computable transition system is exactly defined in [2]1. The transition
system associated with a persistent Turing machine is not necessarily com-
putable while the transition system of an RTM is. Baeten et al. prove
that for every deterministic computable transition system there exists an
RTM that can simulate it up to divergence preserving branching bisimilar-
ity, which is a nice property for the goal of this model.

1It is actually reformulated from [1].
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2 Preliminaries

In this section we will discuss the knowledge that is needed to read this
thesis, with the assumption that the reader is familiar with set theoretic
notation.

As a preliminary and to fix the notation that we will use, we will first
go through the definition of the standard Turing machine. Because we will
compare models from different authors that all prefer a different notation,
we will use one notation for comparable aspects of these models for the sake
of consistency. We will use Q to denote the set of states for example.

2.1 Turing machines

In 1936 Alan Turing published his paper on computable numbers [9]. He
introduced a notion of machines that could be built physically.

Definition 2.1. A standard Turing machine M ∈ TM is a 6-tuple
M = (Q,Γ,Σ,→, qI , QF ) where

Q is the set of states;

Γ is the set of tape symbols and Γ� = Γ ∪ {�}, the set of tape symbols
including the symbol for a blank cell �;

Σ is the alphabet with Σ ⊆ Γ;

→ ⊆ Q×Γ�×Γ�×{L,R}×Q is the transition relation where L and R
describe the movement of the tape head;

qI is the initial state with qI ∈ Q;

QF is the set of final states with QF ⊆ Q.

2.1.1 Tape

A Turing machine executes on a tape, which is a sequence of tape symbols.
A tape instance δ is a string that is made up from tokens ∈ Γ�. Furthermore
there is one special symbol in the tape, namely the one that the tape head
currently points to. Traditionally we use a tape that is one-way infinite.
This means that the machine “crashes” if the head moves to the left when
it’s on the left end of the tape.

Definition 2.2. The language of tape instances is the language

Lδ = Γ∗�Γ̌�Γ∗�

where Γ̌� denotes the tape symbol that the tape head currently points to.
The notation for the empty word and also the empty tape is ε.
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The relation → requires more explanation. If a certain Turing machine
is in state qi and the tape instance is wLab̌cwR with wL, wR ∈ Γ∗�, then a
transition (qi, b, d, L, qj) ∈→ results in writing the symbol d on the location
of the tape head, moving the tape head to the left and going into state qj .
This particular transition gives us the tape instance wLǎdcwR. Because this
notation is difficult to read we prefer to visualise Turing machines as state

machines. For single transitions we use the notation qi
[b,d]L−−−→ qj .

The configuration of a Turing machine is not the same as its state. We
also need to keep track of the tape and the location of the tape head. We
will make use of a general definition of Turing machine configurations for
n-tape Turing machines. This general definition will help us when we are
going to use Turing machines that use multiple tapes.

Definition 2.3. A configuration of an n-tape Turing machine is a (n+ 1)-
tuple (q, δ0, δ1, . . . , δn−1) ∈ Q× Lδn.

Initially the Turing machine is in configuration (qI , �̌i�� . . . ) where i
denotes the input. The machine then performs state transitions from →
until it reaches state QF , leaving an output on the tape. This is also where
the difference between Γ and Σ is. The input and the output can only be
described as strings of Σ∗, but the creator of the machine is free to use any
symbol in Γ� to aid him in the computation.

There are many variations and extensions of Turing machines that use
multiple tapes, multiple tracks, tapes that are finite or infinite in one or two
ways. We can even declare only one final state, but these additions don’t
improve the expressiveness of Turing machines since they are all equivalent
to each other. The proof that each of those variations is equivalent to this
standard Turing machine is taught in many computer science courses on
computability [8].

2.1.2 Languages

Turing machines can be used to accept languages that are defined over Σ. A
TM accepts a language L if and only if it reaches a final state for every input
w ∈ L. The highest level of formal languages in the Chomsky hierarchy
is the set of recursively enumerable languages. A language is recursively
enumerable in case its elements are accepted by a Turing machine, but the
rejection of a word may result in non-termination. This means that the TM
may never give us the answer w /∈ L. The more specific layer, the language
of recursive languages, is defined as the sets of words that can be accepted
by a TM that always stops.
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2.1.3 Computable functions

Although he explicitly wrote his article on the computable numbers, Turing
also stated that the fundamental problems for computability on functions
and numbers are the same. Functions like Nn → N can be described as
machines that take n numbers as an input on the tape and produce an
output that is left on the tape after termination. Natural numbers are
represented as strings of 1’s. A natural number n is denoted by 1n+1 where
a single 1 on the tape denotes zero. A function is computable if and only if
there exists a machine that can compute it.

2.1.4 Universal Turing machine

With the introduction of machines, Turing also proved the existence of a
universal machine that could simulate the behaviour of any other machine.
These days we refer to such a machine as a universal Turing machine denoted
by U . Let’s assume that a Turing machine M takes i as an input and
produces o as an output (notation: M(i) = o). Then the universal Turing
machine produces the same output U(dMe, i) = o. To give U a machine to
simulate, we need to put M on the tape. We need to express this machine
as a coding.

Definition 2.4. The coding of a TM is a bijective function d−e : TM→ Γ∗�.

2.1.5 Halting problem

The terms “decidable problems” and “computable functions” suggest that
there also exist undecidable problems and noncomputable functions. One
of the first problems that were proved undecidable is the halting problem.
The machine that corresponds to the halting problem is the following:

Mhalting(dMe, w) =

{
1 if M halts with input w

0 if M diverges with input w

This machine Mhalting does not exist. In Section 8 we will briefly discuss
the Church-Turing thesis along with the λ-calculus, another model that
captures the computable functions.

2.2 Transition systems

To reason about the behaviour of processes we use the general definition of
an A-labelled transition system. Transition systems are comparable to finite
state automata in a sense that their state transition relation is labelled by a
symbol from an alphabet. The main differences are that transition systems
can contain an infinite number of states and transitions. Also the final
state is optional. Throughout this thesis we will use a general definition of
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transition systems. In later sections we will use two different models that
have their own way of creating a transition system.

Definition 2.5. An A-labelled transition system is a 5-tuple (S,A, A−→, sI , sF )
where:

S is the set of states;

A is the set of action symbols;

A−→ ⊆ S × A× S is the transition relation;

sI is the initial state with sI ∈ S;

sF is the set of final states with sF ⊆ S.

The goal of this thesis is to study the computability of the transition
systems associated with reactive or persistent Turing machines. We will use
the notion of computable transition system that Baeten et al. describe in
[2]. Let out : S → 2A×S be the function that yields a set of all outgoing
transitions for state every state s, defined as:

out(s) = {(a, t) ∈ A× S|s a−→ t}.

Definition 2.6. Let T = (S,A, A−→, sI , sF ) be a finitely branching transition

system (i.e. |out(s)| < ∞ for all s). Then T is effective if
A−→ and sF are

recursively enumerable sets. T is computable if out is a recursive function
and sF is a recursive set.

Definition 2.7. The branching degree of a transition system is bounded by
B if ∀s∈S , |out(s)| ≤ B.
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3 Reactive Turing machines

In [2] Baeten, Luttik and van Tilburg propose reactive Turing machines
(RTMs for short) as an extension of standard Turing Machines. Every tran-
sition has an extra argument, which is an action symbol. This action symbol
can be used to send or receive tape symbols to/from other processes along
communication channels.

Definition 3.1. A reactive Turing machine M ∈ RTM is a 7-tuple (Q,Γ, C,Aτ ,→
, qI , QF ) where

C is the set of communication channels;

A = {c!γ, c?γ|c ∈ C ∧ γ ∈ Γ�} is the set of action symbols and Aτ =
A∪{τ}, the set of action symbols including the silent transition symbol
τ ;

→ ⊆ Q×Aτ × Γ� × Γ� × {L,R} ×Q is the transition relation.

An action c!γ should be seen as the event that γ is sent along communica-
tion channel c. Similarly c?γ is the event that γ is received along communi-
cation channel c, thus c!γ and c?γ are complementary actions. Transitions
that use an action symbol must be executed simultaneously with transi-
tions of their complementary action symbol. The complementary action
must take place in another agent, for example another RTM. The transi-

tion qi
c!γ[a/b]R−−−−−→ qj can only be executed when a transition with c?γ can be

executed by another agent interacting with the RTM. To make internal com-
putations an RTM can use the silent, unobservable transition τ . A standard
Turing machine can be modelled by an RTM that only uses τ -transitions.

Example 3.2. In Figure 1 we see M1, a simple RTM that sends the string
aaa#aaa# . . . along channel i. This RTM in particular does not make use
of silent τ−transitions, which means that every step is externally observable.

q0start q1 q2 q3
i!a[�/�]R i!a[�/�]R i!a[�/�]R

i!#[�/�]R

Figure 1: M1, an example of an RTM.
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3.1 Transition system of an RTM

With every RTM we can associate an A-labelled transition system.

Definition 3.3. The transition system TRTM (M) = (S,A, A−→, sI , sF ) asso-
ciated with a reactive Turing machine M = (Q,Γ�, C,Aτ ,→, qI , QF ) is an
A-labelled transition system such that:

S is the set of all configurations of M (see Definition 2.3);

A = Aτ is the set of labels;

A−→ is the least relation such that ∀a∈Aτ , ∀d,e,f∈Γ�
, ∀δL,δR∈Γ∗�

,

(q, δLděδR)
a−→ (q′, δLďfδR) if and only if q

a[e/f ]L−−−−→ q′

(q, δLědδR)
a−→ (q′, δLfďδR) if and only if q

a[e/f ]R−−−−−→ q′;

sI = (qI , �̌) is the initial state;

sF = QF × Lδ.

Example 3.4. The transition system of M1 in Example 3.2 is the following:

TRTM (M1) = (q0, �̌)
i!1−→ (q1, �̌)

i!1−→ (q2, �̌)
i!1−→ (q3, �̌)

i!#−−→ (q0, �̌) . . .

The RTM M1 does not have any final states, thus the transition system is
infinite.

3.2 Parallel composition

To describe interaction requires multiple RTMs running in parallel. This re-
quires a new definition in which a set of communication channels is chosen for
communication between those two machines. For this parallel composition
we can also create a transition system. The notation for this composition is
[M1||M2]C′ where C is a set of communication channels that are externally
observable.

Definition 3.5. LetM1 = (Q1,Γ1, C1,Aτ 1,→1, qI1, QF 1) andM2 = (Q2,Γ2, C2,Aτ 2,→2

, qI2, QF 2) be RTMs. Then the parallel composition of M1 and M2 is defined
as [M1||M2]C = (Q, C,→, qI , QF ) where

Q = Q1 ×Q2 is the set of combined states of M1 and M2;

C ⊆ C1 ∪ C2 is a set of shared communication channels;

→ ⊆→1 × →2 is the transition relation such that (q1, q2) → (q′1, q
′
2) if

and only if

9



(a) either q1
a[b/c]M−−−−−→1 q

′
1 and q2 = q′2 or q2

a[b/c]M−−−−−→2 q
′
2 and q1 = q′1

(either M1 makes a transition or M2 makes a transition) or

(b) q1
c!γ[b/c]M−−−−−−→1 q

′
1 and q2

c?γ[b′/c′]M ′−−−−−−−→2 q
′
2 or q1

c?γ[b/c]M−−−−−−→1 q
′
1 and

q2
c!γ[b′/c′]M ′−−−−−−−→2 q

′
2 for some c ∈ C and γ ∈ Γ�1 ∩ Γ�2

(M1 and M2 make transitions of complementary action symbol);

qI = (qI1, qI2) is the initial state;

QF = QF 1 ×QF 2 is the set of final states.

Similarly to the transition systems of single RTMs, we can define a tran-
sition system over a parallel composition. Note that Baeten et al. do not
mention the definition of the parallel composition itself, but only the defi-
nition of its transition system. The definition of a transition system over a
parallel composition is defined likewise.

Definition 3.6. LetM1 = (Q1,Γ1, C1,Aτ 1,→1, qI1, QF 1) andM2 = (Q2,Γ2, C2,Aτ 2,→2

, qI2, QF 2) be RTMs and let their corresponding transition systems be TRTM (M1) =

(S1,A1,
A−→1, sI1, sF 1) and TRTM (M2) = (S2,A2,

A−→2, sI2, sF 2). Let M =
[M1||M2]C for some C ⊆ C1 ∩ C2. Then the transition system of the parallel
composition ofM1 andM2 is the transition system TRTM (M) = TRTM ([M1||M2]C) =

(S,Aτ ,
A−→, sI , sF ) such that

S = S1 × S2;

A = A1 ∪ A2;

A−→ is the relation such that (s1, s2)
a−→ (s′1, s

′
2) if and only if

a ∈ Aτ \ {c!γ, c?γ|c ∈ C ∧ γ ∈ Γ�} and either

• s1
a−→ s′1 and s2 = s′2 or s2

a−→ s′2 and s1 = s′1 or

• a = τ and either
s1

c!γ−−→ s′1 and s2
c?γ−−→ s′2 or

s1
c?γ−−→ s′1 and s2

c!γ−−→ s′2 for some γ ∈ Γ�, c ∈ C;

sI = (sI1, sI2);

sF = sF 1 × sF 2.

The communication between two RTMs along some channel becomes just
an invisible τ -transition when you look at the parallel composition. This is
visualised in 2 and we will also see this in the following example.
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M2M1
i

Figure 2: Internal communication in [M1||M2]{i} is unobservable

Example 3.7. To illustrate parallel composition we need another RTM to
read the output of M1 (Figure 1). In Figure 3 the RTM M2 receives a string
along channel i, copies is to its tape and decides whether the tape contains
an even or an odd number of a’s. After the input is separated by receiving
#, the RTM submits the answer to this question to channel o (by sending
either a 0 or a 1), followed by a #. The received input remains on the tape
and M1 also remembers the parity of the number of a’s on the tape. At any
time it can receive a new input from channel i to continue counting a’s.

qevenstart qodd

q1

q2

q3

q4

i?a[�/a]R

i?#[�/#]R

i?a[�/a]R

i?#[�/#]R

o!1[�/�]R

o!#[�/�]L

o!0[�/�]R

o!#[�/�]L

Figure 3: M2, another example of an RTM.

We are going to create the transition system of the parallel composition
of M1 (recall Figure 1) and M2. The communication channel i is used only
for communication between the RTMs, thus C′ = {i}.
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TRTM ([M1||M2]{i}) =

((qeven, �̌), (q0, �̌))
τ−→

((qodd, a�̌), (q1, �̌))
τ−→

((qeven, aa�̌), (q2, �̌))
τ−→

((qodd, aaa�̌), (q3, �̌))
τ−→

((q3, aaa#�̌), (q0, �̌))
o!0−−→

((q4, aaa#��̌), (q0, �̌))
o!#−−→

((qodd, aaa#�̌), (q0, �̌))
τ−→

((qeven, aaa#a�̌), (q1, �̌))
τ−→

((qodd, aaa#aa�̌), (q2, �̌))
τ−→

((qeven, aaa#aaa�̌), (q3, �̌))
τ−→

((q1, aaa#aaa#��̌), (q0, �̌))
o!1−−→

((q2, aaa#aaa#�̌), (q0, �̌))
o!#−−→

((qeven, aaa#aaa#�̌), (q0, �̌))
τ−→ . . .

As we defined in Definition 3.6, the communication between M1 and M2

cannot be observed, as it is transformed into a τ -transition.
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4 Persistent Turing machines

In [6] Goldin, Smolka, Attie and Sonderegger formally describe persistent
Turing machines (PTMs for short) and their expressiveness. The article
is from 2004, although Goldin introduced PTMs in earlier papers [4, 5]. A
PTM is a minimal extension of a Turing machine that uses three tapes. We
will go through the formal definition of PTMs, persistent stream languages
and their corresponding transition systems.

Definition 4.1. A persistent Turing machine M ∈ PTM is a 5-tuple
(Q,Γ,→, qI , QF ) where

→ ⊆ Q× Γ�
2 × Γ�

2 × {L,R, S}3 ×Q is the transition relation where L,
R and S describe the movement of the tape head2;

A PTM uses three tapes. The first tape is a read-only input tape, the
second tape is a read/write work tape and the third tape is a write-only
output tape. Therefore the transition relation looks different from what we
have seen so far. We denote transitions in a PTM, also called microsteps, as

qi
[a/R,b/c/R,d/R]−−−−−−−−−−→ qj . This particular microstep means that the PTM goes

from state qi into state qj , reads a from the input tape and b from the work
tape, writes c to the work tape and d to the write tape, and shifts all tape
heads to the right. Note that we want to use the option to have a tape head
stand still by using S. Otherwise the state machines would become very
large. Another option would be to do what is mentioned in the footnote,
but we’d rather be consistent.

Example 4.2. Consider the PTM M3 in figure 4. On the input tape there
should be an input and the work tape contains a word. The machine first
checks the parity of the number of a’s on the work tape. After that, the
machine copies the input tape to the work tape, also keeping track of the
parity. When M3 is done copying, the output tape contains a 0 or a 1
depending whether the number of a’s is odd or even respectively. The final
state does not denote the end of this process’ life. Afterwards the machine’s
configuration shifts back to (q1, �̌w′i, �̌w

′, �̌) to respond to the new input
w′i. Note that Goldin et al. did not discuss such a concrete example on a low
level. We will discuss the abstraction to macrosteps in the next subsection.

4.1 Macrosteps

The articles about PTMs don’t focus on the small computational steps that
a mechanical PTM would execute. They focus on the ‘big’ steps rather than

2The definition in [6] allows either a movement or a writing action in every transition
(using the notation Γ� ∪ {L,R}). For the sake of consistency, we will stick with our
convention of moving and writing at the same time. Yet for convenience we want to use
the option to have a tape head stand still, which is indicated by the movement S.

13



q3

qeven qodd

q1start q2

[�/S, a/a/R,�/S]

[�/R,�/�/S,�/R]

[�/S, a/a/R,�/S]

[�/R,�/�/S,�/R]

[a/R,�/�/R,�/S]

[�/S,�/#/S, 1/L]

[a/R,�/�/R,�/S]

[�/S,�/#/S, 0/L]

Figure 4: M3, an example of a PTM.

the microsteps between interactions. Before a macrostep, a PTM has an
input on the first tape. The work tape may contain a word and the output
tape is empty. The machine then computes an output to write on the output
tape. The content of the work tape may have changed during this process.
After a macrostep the contents of the output tape are erased and the PTM
receives a new input word. The content of the work tape persists between
macrosteps, thus explaining the name ‘persistent Turing machine ’.

Definition 4.3. Let wi, w, w
′, wo ∈ Γ�

∗. Let M be a PTM containing wi

on the input tape and w on the work tape. Then w
wi/wo−−−−→ w′ is a macrostep

in M where as a result wo is on the output tape and w′ is on the work tape.

If the M diverges, we write w
wi/µ−−−→ s∞ where s∞ denotes a special

divergence state and µ denotes a special divergence output. Since a PTM

acts chaotically after it diverges we have s∞
wi/µ−−−→ s∞ for all wi.

For this thesis we assume that a macrostep (as a sequence of microsteps)
ends when a PTM reaches its final state. We will refrain from describing
detailed machines like the one in Example 4.2 for the remainder of this
thesis and we will rather stick to describing PTMs as relations that deal
with continuous interaction and persistent stream languages.
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To describe the behaviour of a PTM we need to describe the output
behaviour and the new work tape behaviour as a relation over the old work
tape and the input tape, and the new work tape and the output tape. For
this relation we use the notation

fM (wi, w) = (wo, w
′)

where wi, w, wo and w′ are the contents of the input tape, work tape, output
tape and new work tape respectively. It is straightforward to show that fM
is a function if M is deterministic.

Example 4.4. The function corresponding to M3 is:

fM3(wi, w) =

{
(0, wwi#) if wwi contains an odd number of a’s

(1, wwi#) if wwi contains an even number of a’s

4.2 Interaction streams

PTMs take elements from streams as input and produce their output accord-
ingly. A stream is defined coinductively over a set. Each stream contains an
element and another stream. Goldin et al. use this definition in [6] to use
coinduction as a proof technique.

Definition 4.5. Let A be a recursively enumerable set of action tokens.
The stream SA is the class of streams over A defined as

SA = A× SA

.

We are going to use streams over A = Γ× (Γ ∪ {µ}). This coninductive
definition of streams, in particular SΓ×(Γ∪{µ}), yields elements that look like
((wi, wo), σ) where σ ∈ SΓ×(Γ∪{µ}).

Definition 4.6. The persistent stream language of a PTM M in state w is
defined as:

PSL(M,w) = {((wi, wo), σ) ∈ SΓ×(Γ∪{µ})|∃w′∈Γ�
∗ , w

wi/wo−−−−→ w′∧ σ ∈ PSL(M,w′)}.

Example 4.7. Consider example 4.2. Assume that M3 receives the input
stream (aaa, aaa, . . . ). The persistent stream language PSL(M3) contains
the stream ((aaa, 0), (aaa, 1), (aaa, 0), (aaa, 1), . . . ).
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4.3 Transition system of a PTM

We reuse Definition 2.5 to define the transition system of a PTM (also called
an interactive transition system in [6]).

Definition 4.8. The transition system TPTM (M) = (S,A, A−→, sI , sF ) as-
sociated with a persistent Turing machine M = (Q,Γ�,→, qI , QF ) is an
A-labelled transition system such that:

S ⊆ Γ∗ ∪ {s∞} is the set of all states of M;

A = Γ× (Γ ∪ {µ}) is the set of labels;

A−→ ⊆ S × A× S;

sI ∈ S \ {s∞} is the initial state;

sF = ∅.

Example 4.9. The transition system TPTM (M3) = (S,A, A−→, sI , sF ) is de-
fined as follows:

S = Γ∗ = {ε, a, aa, . . . }

A−→ = {(w,wi, wo, w′) ∈ (Γ∗)4|w = am ∧ wi = an ⇒ wo = (m + n) mod
2 ∧ w′ = am+n}

sI = ε

Figure 5 is a graphical representation of a small part of this transition sys-
tem. Only the transitions from the initial state are depicted, but from any
state ai there is a transition to aj with i < j.

ε

a aa . . . ai . . .

a/0
aa/1

ai/(i mod 2)

Figure 5: TPTM (M3)
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5 Behavioural equivalence

In the previous sections we discussed models that shared the goal of mod-
elling interaction. Though RTMs clearly differ from PTMs in low level
aspects, they become comparable when we talk about transition systems.
Therefore we will study the process theoretic equivalence.

5.1 Equivalence relations

The goal of this thesis is to compare RTMs to PTMs and for that we need
a notion of equivalence. In Definition 2.5 we defined a general transition
system. We will now introduce the equivalence relations over those transition

systems. For this we will assume two transition systems T1 = (S1,A1,
A−→1

, sI1, sF 1) and T2 = (S2,A2,
A−→2, sI2, sF 2).

5.1.1 Isomorphism

The most straightforward relation holds when the structure of T1 and T2 are
identical and their labelled transitions are equal.

Definition 5.1. Two transition systems T1 and T2 are isomorphic if there
exists a bijective function f such that:

• f(sI1) = f(sI2) and

• ∀a∈A1 , ∀s,s′∈S1 , s
a−→1 s

′ if and only if f(s)
a−→2 f(s′).

In [6] Goldin et al. prove that a PTM M is macrostep equivalent to M ′

if TPTM (M) is isomorphic to TPTM (M ′). We will not use this relation since
it is too restrictive to be useful for our comparison.

5.1.2 Strong bisimulation

Definition 5.2. A strong bisimulation from T1 to T2 is a relation R ⊆
S1 × S2 such that:

• if s1Rs2 and s1
a−→1 s

′
1 then ∃s′2∈S2 , s2

a−→2 s
′
2 and s′1Rs′2;

• if s1Rs2 and s2
a−→2 s

′
2 then ∃s′1∈S1 , s1

a−→1 s
′
1 and s′1Rs′2;

T1 and T2 are bisimilar if there exists a strong bisimulation such that
sI1RsI2. We denote (strong) bisimilarity by T1↔T2.
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s1 R s2 s1 R s2

=⇒

s′1 s′1 R s′2

a a a

Figure 6: (Strong) bisimilarity

5.1.3 Weak bisimulation

Because of internal computations (τ -transitions) many transition systems
are not bisimilar. The following equivalence relation ignores τ -transitions.
The double arrow denotes the reflexive-transitive closure of a labelled tran-
sition (zero or more transitions).

Definition 5.3. A weak bisimulation from T1 to T2 is a relation Rw ⊆
S1 × S2 such that:

• sI1RsI2

• if s1Rws2 and s1
τ−→ s′1 then ∃s′2∈S2 , s2

τ−→
∗
s′2 and s′1Rws′2

• if s1Rws2 and s2
τ−→ s′2 then ∃s′1∈S1 , s1

τ−→
∗
s′1 and s′1Rws′2

• if s1Rws2 and s1
a−→ s′1 then ∃s′2∈S2 , s2

τ−→
∗ a−→ τ−→

∗
s′2 and s′1Rws′2

• if s1Rws2 and s2
a−→ s′2 then ∃s′1∈S1 , s1

τ−→
∗ a−→ τ−→

∗
s′1 and s′1Rws′2

T1 and T2 are weakly bisimilar if there exists a weak bisimulation such that
sI1RwsI2. We denote weak bisimilarity by T1↔wT2.

s1 Rw s2 s1 Rw s2

=⇒

s′1 s′1 Rw s′2

τ τ τ

s1 Rw s2 s1 Rw s2 u

=⇒

s′1 s′1 Rw s′2 v

a a

τ

a

τ

Figure 7: Weak bisimilarity
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In Figure 7 we can see a visual representation of weak bisimulation. If
T1↔T2, then T1↔wT2. In the definition of weak bisimulation a special case
holds where it takes exactly zero τ -transitions from s2 to u (thus s2 = u)
and from v to s′2 (thus s′2 = v).

5.1.4 Branching bisimulation

Definition 5.4. A branching bisimulation from T1 to T2 is a relation Rb ⊆
S1 × S2 such that:

• sI1RsI2

• if s1Rws2 and s1
a−→ s′1 then (∃s′2,s′′2∈S2 , s2

τ−→
∗
s′′2

a−→) or (∃s′2 , s2
τ−→ s′2

and s′2
τ−→ s′2) and s′1Rws′2

• if s1Rws2 and s1
a−→ s′1 then (∃s′2,s′′2∈S2 , s2

τ−→
∗
s′′2

a−→) or (∃s′2 , s2
τ−→ s′2

and s′2
τ−→ s′2) and s′1Rws′2

• if s1Rws2 and s1
a−→ s′1 then ∃s′2∈S2 , s2

τ−→
∗ a−→ τ−→

∗
s′2 and s′1Rws′2

• if s1Rws2 and s2
a−→ s′2 then ∃s′1∈S1 , s1

τ−→
∗ a−→ τ−→

∗
s′1 and s′1Rws′2

T1 and T2 are branching bisimilar if there exists a branching bisimulation
such that sI1RbsI2. We denote branching bisimilarity by T1↔bT2.

s1 Rb s2

Rb s′′2

s1 Rb s2 s′1 Rb s2

=⇒ ∨

s′1 s1 Rb s2

Rb

s′1 Rb s2

a

a
τ

a

a τ

Figure 8: Branching bisimilarity
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5.1.5 Divergence preserving branching bisimulation

Definition 5.5. A divergence preserving branching bisimulation from T1 to
T2 is a relation R∆

b ⊆ S1 × S2 such that:

• R∆
b is a branching bisimulation Rb;

• if there exists an infinite sequence {s1,i ∈ S1|i ∈ N} such that ∀is1,i
τ−→1

s1,i+1, then ∃s′2 , s2
τ−→

+

2 s′2 and s1,iR∆
b s
′
2for some i;

• if there exists an infinite sequence {s1,i ∈ S1|i ∈ N} such that ∀is1,i
τ−→1

s1,i+1, then ∃s′2 , s2
τ−→

+

2 s′2 and s1,iR∆
b s
′
2 for some i.

T1 and T2 are divergence preserving branching bisimilar if there exists a di-
vergence preserving branching bisimulation such that sI1R∆

b sI2. We denote
this bisimilarity by T1↔∆

b T2.

s1,0 R∆
b s2 s1,0 R∆

b s2

s1,1 =⇒ s1,1 s′′2

s1,i s1,i R∆
b s′2

τ

τ

τ

τ

τ

τ

τ

τ

Figure 9: Divergence preserving branching bisimilarity

5.2 Expressiveness comparison

This subsection includes the expressiveness results from [2] and [6]. In the
preliminaries we defined effective and computable transition systems.

We introduced the machines in Figure 1, 3 and 4 and to behave in such
a way that TRTM ([M1||M2]{i}) is comparable to TPTM (M3). Intuitively
M2 does the same as M3, though the corresponding transition systems in
Example 3.7 and Example 4.9 are not ((divergence preserving) branching)
bisimilar. There is a difference between intuitive equivalence and formal
equivalence. In the following example we create an RTM for an existing
PTM.

Example 5.6. Let MAM ∈ PTM be the answering machine that Goldin et
al. used as an example in [6]. The machine can receive a command ‘record’
with a parameter Y that MAM records on the work tape. The command
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‘play’ puts the entire work tape on the output tape and finally the command
‘erase’ removes all content from the work tape.

fAM (record Y,X) = (ok,XY )
fAM (play,X) = (X,X)
fAM (erase,X) = (done, ε)

It is easy to define an RTMM ′AM that acts like this. Let {record, play, erase, ok, done} ⊂
Γ and let i and o be the input and output channel respectively. Then M ′AM
has three possible outgoing transitions from qI , one for each of the symbols
{record, play, erase}. The internal computations that M ′AM has to do for
each command resemble those of MAM . The way that input and output
is treated, is once again different as RTMs can output one symbol for each
state transition and PTMs can only output an entire output tape in each
macrostep.

While the intuition for transforming RTMs into PTMs and reversed is
simple, we need to know whether this is possible for all cases. This is not
easy since Baeten et al. stick to process theory and Goldin et al. were more
interested in dynamic stream semantics and interaction streams associated
with PTMs. We will continue to discuss the process theoretic notions of
interaction.

Theorem 5.7. Let M be an RTM. Then the transition system TRTM (M)
is computable.

Baeten et al. gave the essence of the proof in [2]. We will give the formal
details to illustrate the meaning of computable transition systems.

Proof. Assume that M = (Q,Γ�, C,Aτ ,→, qI , QF ) is an RTM. Let M be in
configuration (q, δL). Then we can compute the set of outgoing transitions
out(q, δ) by using Definition 3.3. We know that → is finite, thus out(s) is
finite for all configurations (q, δ). Then the function out is also recursive.

We can compute the set of final configurations sF = {(q, δ)|q ∈ QF ∧ δ ∈
Lδ}. We know that QF is a finite set. Then there is an algorithm that
decides whether a configuration is final, thus sF is a recursive set.

One of the main results in [2] is that these exists a simulator that can
take the coding of a computable transition system as an input to simulate
it up to divergence preserving bisimilarity.

Theorem 5.8. Let T be a computable transition system. Then there exists
an RTM Sim such that T↔∆

b TRTM (Sim)

The question at hand is whether RTMs and PTMs can simulate each
other’s behaviour up to some equivalence relation. Baeten et al. proved
that RTMs can simulate PTMs up to branching bisimilarity. The proof
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transforms the transition system of a PTM into an effective transition sys-
tem, which can only be simulated up to branching bisimilarity instead of
divergence preserving bisimilarity if the transition system of a PTM would
be computable.

The transition system of a PTM is not always computable since PTMs
allow infinite branching. Example 4.9 is infinitely branching for every state
including the initial state. The transition system of an RTM is computable
because it relies on the definition of an RTM containing finite sets. A PTM
is also composed of finite sets, but the abstraction into macrosteps causes
many internal computations completely disappear in the transition system,
resulting in infinite branching. τ -transitions that we don’t see in its corre-
sponding transition system.
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6 Divergence

In this section we discuss the behaviours of RTMs and PTMs once they
diverge. In process theory divergence is defined as an infinite path of τ -
transitions. We also saw in Section 4 that divergence in a PTM is denoted

by w
wi/µ−−−→ s∞ and for all wi ∈ Γ�

∗, s∞
wi/µ−−−→ s∞. Intuitively these notions

of divergence capture the same infinite path of externally unobservable com-
putations. The following examples illustrate two instances of both models
that behave in a comparable way.

Example 6.1. Let RTMdiv be the RTM with 3 states as depicted in Fig-
ure 10. Once the machine reaches state q2 it won’t be able to communicate
with the environment anymore since there is no transition that allows it.
The corresponding transition system is depicted in Figure 11.

q0start

q1

q2

i?a[�/a]R

i?a[�/a]R

o!a[�/�]R

τ

Figure 10: RTMdiv, a nondeterministic RTM that has the possibility to
diverge.

t0 t′ u0 u′ v0

t1 u1 v1

i?a o!a i?a o!a

τ τ τ

τ τ τ

Figure 11: TRTM (RTMdiv)

Similarly we have the PTM PTMdiv that does the same as RTMdiv.
The transition system of this machine is depicted in Figure 12.

PTMs have a special divergence state that cannot be escaped once
reached. We assumed in Section 4 that the final state of a PTM marks
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s0 s1 s2 s3 s4

s∞

a/a a/a a/a a/a

a/µ

a/µ
a/µ

a/µ

a/µ

a/µ

Figure 12: TPTM (PTMdiv)

the end of a macrostep. This assumption makes the transition from s∞
to s∞ for all inputs unnecessary. Also if one creates a divergence state,
the transition system can never be computable since we can never decide
whether a PTM diverges. The divergence state s∞ doesn’t exist. Since
we cannot even observe internal computations of a PTM in transition sys-
tems, we cannot reason about divergence preserving branching bisimilarity
between both models.
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7 Universality

In the preliminaries we discussed the universal TM that Turing used to prove
the undecidability of the halting problem. In [2] and [6] the universality of
both RTMs and PTMs is discussed. In this section we compare UP and UR,
the universal machines that simulate PTMs and RTMs respectively.

7.1 Universal reactive Turing machine

Baeten et al. specified that an RTM initialises in configuration (qI , �̌), thus
an RTM cannot start with the code of some other machine on the tape. Thus
the universal RTM needs another machine M with the purpose of sending
the code dMe along communication channel u. The RTM UR is defined as
follows.

Definition 7.1. A universal RTM UR is an RTM such that:

∀M∈RTM, [UR||M ]{u}↔bTRTM (M)

where the machine M is the RTM that only sends dMe over communication
channel u.

Unfortunately UR does not exist when we demand divergence preserving
branching bisimilarity because an RTM has a fixed maximum number of
transitions (see Definition 2.7). If UR has branching degree B, then one
can always find a machine M with branching degree B + 1 that cannot be
simulated by UR. Baeten et al. proved this in [2]. They also proved the
following result.

Theorem 7.2. For every B ∈ N there exists an RTM UBR such that:

∀M∈RTM if M has a branching degree B′ ≤ B then [UBR ||M ]{u}↔∆
b TRTM (M)

A universal RTM UR can only simulate up to divergence preserving
branching bisimilarity up to a fixed branching degree.

7.2 Universal persistent Turing machine

The universal PTM is also limited by the fact that all behaviour is influenced
by interaction. Therefore it is not allowed to have content on the work tape
initially. This is not a problem though because the code of a PTM M can
be put on the input tape in its initial macrostep. UP is defined as follows.

Definition 7.3. A universal PTM UP is a PTM such that for all M ∈ PTM:

• there is an initializing macrostep ε
dMe,dwe/ε−−−−−−→ dMe, dwe;
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• if M has a halting computation w
wi/wo−−−−→ w′ then UP has a halting

computation dMe, dwe dwie/dwoe−−−−−−→ dMe, dw′e and

• ifM in state w diverges (w
wi/µ−−−→ s∞) then UP also diverges (dMedwe wi/µ−−−→

s∞).

7.3 Comparison

Clearly Baeten et al. and Goldin et al. discuss different notions of uni-
versality. The universal PTM simulates an arbitrary PTM up to macrostep
equivalence (modulo the first macrostep) while the universal RTM simulates
an arbitrary RTM up to branching bisimilarity and up to divergence pre-
serving branching bisimilarity for a fixed branching degree. Goldin et al.
showed in [6] that two isomorphic transition systems are also bisimilar and
that two PTMs are macrostep equivalent if and only if their transition sys-
tems are isomorphic. Thus a universal PTM can also simulate an arbitrary
PTM up to strong bisimulation. This difference is due to the possibility of
infinite branching of PTMs that we discussed in Section 5.
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8 Related Work

In this section we will look at other notions of modelling computability and
attempts at introducing interaction to them.

The λ-calculus [3], is a model of computation based on substitution.
When Turing published his article [9] in 1936, Alonzo Church also published
an article about the λ-calculus. Both Turing’s machines and the lambda
calculus are able to capture the computable functions.

The π-calculus is a process calculus that is based on the λ-calculus.
Similar to the models that we discussed in this thesis, the π-calculus is about
communication and interaction instead of only the computable functions.
For the π-calculus it also holds that any computable term in the λ-calculus
can be expressed in the π-calculus. The models that we compared in this
paper are similar in a sense that any Turing machine can be simulated by
an RTM (only allowing τ -transitions) and a PTM (erasing the contents of
the work tape after a macrostep, removing persistence). Bas Luttik, one of
the writers of [2], compared the π-calculus to the notion of reactive Turing
machines in [7] together with Fei Yang. The result of this comparison is
that any executable behaviour (that according to [2] can be simulated by
an RTM) can also be specified by the π-calculus, while the converse is not
true.

Interaction is not the only extension to the Turing machine model. There
are works of Turing machines that have access to an advice function and
also TMs that have access to an all-knowing oracle machine. Van Leeuwen
and Wiedermann propose interactive Turing machines in [10]. They also
discuss non-uniform evaluation as it takes place in distributed systems. The
underlaying hardware of a system may partially change during the execution
and it is not desirable to stop the execution of important systems such as
those of banks. TMs are also limited in the sense that the entire machine
must be defined before execution and so are RTMs and PTMs.
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9 Conclusions

Reactive Turing machines and persistent Turing machines are two models
proposed in [2] and [6] respectively. We discussed the formal definitions of
RTMs and PTMs and provided several examples. This showed the intiution
of the differences between both models.

In Section 5 we discussed the formal equivalence relations that are used
in both articles to compare instances of the models to each other. These
relations cannot be used to compare RTMs to PTMs directly, but Baeten
et al. showed that the transition systems of PTMs can be transformed
into an effective transition system. Since RTMs can simulate any effective
transition system up to branching bisimilarity, any PTM’s transition system
can be simulated by an RTM up to branching bisimilarity. PTMs do not
have the property of their transition system being computable because of
the microsteps that don’t appear in the transition system.

In Section 6 we briefly discussed divergence in both models. Divergence
preserving branching bisimulation is an equivalence relation over transition
systems that can be used to reason about divergence. A transition system
diverges if it performs an infinite number of internal computations. RTMs
have τ -transitions to indicate internal steps while PTMs have a special di-
vergence state. We saw that PTMs don’t provide a way of reasoning about
divergence since transitions to s∞ can never be computable. There are re-
sults about divergence preserving branching bisimilarity for RTMs, which
are nice to have.

Section 7 is about the universal machines that are proposed along with
each model. The universal PTM can simulate any PTM up to macrostep
equivalence, thus also strong bisimilarity. This is also due to the ability
of PTMs to yield an infinitely branching transition system. The universal
RTM is limited to a finitely branching transition system.

For these reasons the notion of reactive Turing machine is more suit-
able. PTMs abstract from all internal computation with the introduction
of macrosteps. The examples that we discussed provided an insight for this
main difference.

Discussion

RTMs and PTMs clearly describe a notion of interaction. The set of com-
putable functions can be captured by Turing machines, the λ-calculus, prim-
itive recursion and so on. The Church-Turing thesis states that they are
equally powerful, but the concept of interaction is still vague. The ex-
pressiveness of RTMs, in particular with respect to computable transition
systems, uses the notion of recursive functions. Since this notion provides a
strict limit to what is possible to compute, the notion of RTM is a suitable
model for interaction.
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