BACHELOR THESIS
COMPUTER SCIENCE

h

AN,

Q
S
iorren

YiNe S

RADBOUD UNIVERSITY

Statistical Model Checking of a
Digital Hydraulic Power
Management System

Author: First supervisor/assessor:
Rob ten Berge Prof. dr., Frits Vaandrager
0740357 f.vaandrager@cs.ru.nl

Second assessor:
Dr., D. N. Jansen
dnjansen@cs.ru.nl

April 16, 2015

Abstract

This thesis extends on a Finnish case study on a Digital Hydraulic Power
Management System, which is an example of a cyber-physical system. Such
systems may have strict bounds on properties, which can be proven using
modeling techniques and verification queries. Scaling of models to arbitrary
size is under ongoing research, which this paper explores using the example
of the Digital Hydraulic Power Management System with the tool UPPAAL.
Statistical Model Checking sidesteps the state space explosion problem, and
this paper contains a practical example of using UPPAAL-SMC to visualize
results efficiently. Experiences with UPPAAL-SMC are also discussed.

Contents

1.1 The DHPMS| . . .
[1.2 Scheduling Theory|

2 Theoretical Approach|

2.1 Assumptions| . . .
[2.2 A single cylinder| .
2.3 Multiple cylinders|

2.4 Calculating WCRT]

B_From TTMES to UPPAAT]

4

13.3 Scheduling Framework|

[3.4 Simplification| . . .

oving onto

10
10
13
13
15
17

20
25

31

32
32

35

Chapter 1

Introduction

This thesis will extend on a Finnish case study by Bostrom et al on Digital
Hydraulic Pomp Motor Systems (DHPMS). They describe a DPHMS as a
“universal flow source for hydraulic systems” [4]. As seen in figure an
arbitrary number of pistons are connected to a rotating shaft powered by
an electric engine. Each piston is connected to possibly several outlets and
each outlet can have a variable desired amount of pressure. The flow from
and to the cylinders is controlled by on/off valves. It is these valves that
must be triggered by software at a precise time. If the timing of the valve
triggers is off then the system may be damaged over time and eventually
cause the hydraulic system to fail. It is therefore crucial for the software to
have strict bounds on the worst case response times.

Cyber-physical systems such as a DHPMS may have requirements that
dictate strict bounds on properties. Modeling the entire physical system as
well as the software may likely result in models that are far too large and
thus abstractions and higher level reasoning are required to make statements
on the system as a whole.

The original case study was carried out using the tool TIMES [2] and
concluded that their approach did not scale. The goal of our research was
to re-create the original results regarding response times using UPPAAL,
investigate scaling beyond the original results, and then attempt to apply
UPPAAL-SMC to the model to calculate averages and maxima using many
more cylinders than is calculable with traditional model checking.

The original paper mentioned but did not attempt to apply Statistical
Model Checking. It claimed that the SMC extension of UPPAAL only sup-
ports uniform and exponential distributions, which is false [5]. Likewise, the
TIMES tool makes use of unique priorities among tasks with equal priori-
ties, leading to technically inaccurate results which were barely adressed at
all.

This paper extends on the original case study by adding the following
results:

A theoretical analysis of WCRT for DHPMS with arbitrary number

of cylinders, found in chapter [2}

e An UPPAAL model that is equivalent but significantly simpler than
the TIMES model, explained in chapter

e WCRT analysis scaling to five cylinders, deadlock testing scaling to
six cylinders, detailed in section [3.5)

e Extension to UPPAAL-SMC with results based on raw data by Bostrom,

shown in chapter

Our contribution to the field of SMC lies in the practical application of
UPPAAL-SMC on a simplified model of a real-life system. Lesssons learned
and suggestions for improvements can be found in chapter 5 and final com-
ments on the capabilities and stability of UPPAAL-SMC can be found in
chapter [6]

1.1 The DHPMS

The physical details of the DHPMS are explained in a clear way in the paper
by Bostrom et al:

“For simplicity, only one pressure outlet of the DHPMS is considered, i.e,
a digital pump-motor is studied. The overall hydraulic architecture of the
digital pump motor is presented in Fig. . Let N, be the total number
of on/off valves in the DHPMS. Each valve should be opened and closed
exactly once in one turn of the rotating shaft. Therefore the software of the
DHPMS needs to initiate 2N, triggering events within one period. Let ej
denote an event of opening or closing of a valve j € [0,2N, — 1], t and 6?
denote the desired time and angle of the rotating shaft for the event ejre-
spectively. The angle 62 and all other angles are given relative to a fixed
position on the axle. The calculation of 82 depends on factors such as desired
hydraulic fluid flow direction (mode), the angular velocity of the shaft w, the
size of the hydraulic chamber and compressibility of the fluid. The details of
the calculation of 62 can be found elsewhere [...]. Only w and # need to be
calculated by the DHPMS, all other parameters can be considered as input
data arriving from the rest of the hydraulic system. The angular velocity
w is defined as w = %,Where 0 denotes the current angle of the rotating

shaft. If w is constant, the time delay before triggering of the valve # can
6l —6
w

be estimated as tg = . Hence, estimation of both w and tg requires
measurement of the actual angle of the rotating shaft. This task is solved
with an incremental rotary encoder [...], which is commonly used for angular
velocity measurement. The measurement requires the following two sensors:
- Zero sensor that produces an impulse when 6 = 0°.

- Tooth sensor that outputs an impulse when it meets with one of teeth

A

AT

Figure 1.1: The hydraulic architecture of a digital pump motor. The figure
shows three pistons connected to a rotating shaft to the left. Each piston is
connected via valves to a high pressure line A and a tank line T'.

placed at flxed positions on the rotating shaft.

There is some angle difference between starting point of angle measurement
and teeth [..]. In practice this difference cannot be eliminated due to techno-
logical reasons. Therefore impulses from zero sensor and tooth sensor never
arrive simultaneously. In the system the shaft is attached to an electric
motor, which runs unloaded with wy,q, = 257s-1 (12.5Hz or 750rpm).

We assume that all teeth are placed absolutely uniformly at the shaft.
The discrete character of sensor signals implies that 6 can be known precisely
only at the moment of arrival of a signal from either zero or tooth sensor.
During the rest of the time, # can be estimated with an existing kinematic
models, e.g., model of a rotating shaft with constant angle velocity. We used
the following deflnitions for discretisation:

- N - total number of teeth placed on the rotating shaft. The studied system
has 144 teeth;

- i - index of the current tooth met by the tooth sensor, i € [0..N — 1];

- 00 - angle difference between positions of the zero sensor and the flrst tooth
presented in Fig. 2;

- t; - time of arrival of impulse from the tooth sensor at position 1.

The DHPMS in the case study of the paper has three cylinders and each
cylinder has two valves, one for the pressure line and one for the tank line
as shown in Fig. . Let 0, denote the angle position of the shaft that
corresponds to the position with maximum extraction (bottom-dead-centre)
of piston of cylinder k. The angle of the shaft is counted from the bottom
position of piston of the flrst cylinder, so that 6,; = 0p = 0°. Positions
of pistons of other cylinders are shifted by 120° with respect to each other,

therefore 62 = 120° and 6,3 = 240°. The construction of the DHPMS
imposes constraints on opening and closing of all valves as follows:

- The pressure line can be opened if 0 € [0y 4,055 + 90°) and closed if
6 € [0y +90°,0p 1, + 180°).

- The tank line can be opened if 6 € [0 + 180°, 6 + 270°) and closed if
6 € [6pr +270°,0p 1 + 360°).

The proposed architecture of the DHPMS software is presented [...]. This
architecture is based on interrupt handling and use of timer-triggered (de-
layed) tasks. There are two main interrupt handlers:

- The zero sensor handler is needed to determine the moment for starting of
a new period of rotating shaft. This allows to define reference points of the
time ¢ and to reset tooth index (counter) i.

- The tooth sensor handler increments i, estimates 6; and @; [...] , and cal-
culates both angles #2 and correspondent time delays t for each triggering
event e;.

The tooth sensor handler enables delay-based triggering of valve triggering
tasks. The task for event e; is triggered if 67 is expected to be between

current and next tooth of the rotating shaft: 6; < 92 A 0@ < Biy1”

1.2 Scheduling Theory

This thesis makes use of a few basic definitions of scheduling theory. In a
scheduling system, the response time of a task is the time between the initial
scheduling of the task and the moment the task concludes execution. This
response time may vary due to pre-emption, for example, and the highest
response time is appropriately named the worst case response time. While
for some systems it is possible to calculate the worst case response times
through the use of formulae and algorithms instead of models, these are
usually higher upper bounds than is realistically attainable in models [6].
The DHPMS software uses fixed-priority scheduling with pre-emption. Each
task has a fixed priority value, and when a task with a higher priority is
scheduled, it is placed ahead of tasks with lower priority including the cur-
rently running task.

Chapter 2

Theoretical Approach

This chapter presents a theoretical approach to calculating the Worst Case
Response Time (WCRT) of the DHPMS. Any mention of time units corre-
sponds to microseconds in the physical system.

2.1 Assumptions

The physical system runs at 12.5 rotations per second unloaded and con-
tains 144 teeth. This results in a rotation time of 80 milliseconds, and a
delay between teeth of 555.5 microseconds. We round this number to 555
microseconds for simplicity, and allow the number of teeth to be any num-
ber divisible by 4 and the number of cylinders. We abstract from a variable
rotation speed because the given variance of =5 microseconds is only a frac-
tion of the distance between teeth and is not useful unless timing errors are
also modeled. There are six tasks to be scheduled (see table[2.1). While it is
possible to give each cylinder its own valve tasks, this is unnecessary due to
symmetry leading to each cylinder having the same WCRT for each Valve
task labeled the same. The Zero and Tooth tasks are periodic, while the
four Valve tasks are considered sporadic but required to be scheduled exactly
once in a fixed interval. A single-core processor is available as resource, and
the scheduling uses fixed-priority with pre-emption.

2.2 A single cylinder

A single cylinder in the hydraulic system rotates through four quadrants
in which a specific valve can be triggered. The order is: Open Pressure
Valve(P,), Close Pressure Valve (P.), Open Tank Valve (7,), Close Tank
Valve (T;). In figure the Pressure Valve corresponds with Valvel and
the Tank Valve with Valve2. A key problem of WCRT in the DHPMS is
that Valve tasks from a previous quadrant can be scheduled at the very end

Task Duration (us) | Priority
Zero 10
Tooth 20
ValvelOpen | 10
ValvelClose | 10
Valve20pen | 10
Valve2Close | 10

o O Ot O N

Table 2.1: Assumed worst case execution times and priority per task

Figure 2.1: A single cylinder

of that quadrant, spilling over into the next. If the Valve for the following
quadrant is scheduled instantly, one of the two Valve tasks will be delayed.

2.3 Multiple cylinders

The original paper contains a lemma regarding worst-case response times.
(Lemma 1) The worst-case response times will occur after tooth events on
a multiple of 30 degrees.

This lemma, is derived from a reasoning that the greatest common divisor
of 120 (360 divided by three cylinders) and 90 (360 divided into four quad-
rants) is 30. We can be more precise though. Let the number of cylinders be
C'. During a tooth event, at most ged(4, C) cylinders will change quadrant.
This means either 0, 1, 2 or 4 extra valve events can occur on the edge
of a quadrant. This is most apparent when looking at graphs such as
for arbitrary cylinder counts and comparing how many cylinders line up to
eachother given the greatest common divisor of 4 and C. Examples up to a
cylinder count of 11 can be found in the appendix in figure

If C' is relative prime to 4, then at most one cylinder will change quadrant
on a tooth event, which is the least and thus preferred for cylinder configu-
rations.

The Finnish case study investigated three and four cylinder configurations
and concluded having a task for each valve event was not better than using a
polling method with 50 microsecond intervals. The above result shows that

for example a five cylinder system would in fact have a better WCRT. It
remains an open question whether average response times would be better
as well, because this is dependent on (realistic) probability distributions of
Valve tasks.

The time between teeth is signficantly larger than the amount of time
spent processing tasks as long as C' is small. In the physical system, the time
between teeth is approximately 555 microseconds. There is an assumed de-
lay of 200 microseconds between the Zero event and the first tooth event,
leaving a delay of roughly 355 microseconds between the last tooth event
and the Zero event. Thus, to even have the Zero task influence the WCRT,
the system would need to schedule 20 Valve tasks, and it would have to be
a system of 20 or more cylinders.

Figure 2.2: Four cylinders and five cylinders

Figure [2.2] depicts how the quadrants of different cylinders overlap. The
first cylinder is the inmost circle, the second cylinder the second inmost
circle, and so on. Each solid line depicts the start or end of a quadrant of
a cylinder. The red surface denotes the quadrant for ValvelOpen or Open
Pressure Valve. The blue surface denotes the quadrant for Valve20pen or
Open Tank line. The quadrants for ValvelClose and Valve2Close are not
colored to avoid clutter, as the image is entirely symmetric in regards to the
colored areas belong to ValverOpen or ValvexClose (where z € {1,2}).

2.4 Calculating WCRT

The WCRT for closing valves can be calculated through summing of task ex-
ecution times. Each cylinder in the system can potentially schedule a Valve
task on the exact same moment a cylinder changes quadrant, leading to C'
regular Valve tasks scheduled. We know that dependent on C', there are one
to four extra Valve tasks outstanding exactly when a quadrant changes and

with a tooth event on that same moment. The Zero task is too far from the
very first tooth event to have an influence on the WCRT while C' is smaller
than 20, as reasoned above. For tasks to close valves, this leads to a formula
of: WCRT = 20 + 10C + 10 - ged(4, C), with C' < 20.

For opening valves, one only has to consider half the Valve tasks because
closing valves has a lower priority than opening valves and thus cannot cause
pre-emption. The formula for these simplifies to:

WCRT = 20 + 00H0Ed1O) | wien ¢ < 2.

To conclude, both formulae are linear in the number of cylinders leading
to worst case response times (far) higher than the 50 microsecond baseline
of polling as seen in table As the number of cylinders increases, even the
factor for the number of outstanding Valve tasks becomes relatively small.
On the other hand, these results are entirely pessimistic and should have
a very low chance of ever occurring. This is something that can be tested
using Statistical Model Checking.

WCRT WCRT

Cylinders | Open Valve | Close Valve
3 40 60

4 60 100

5 50 80

6 60 100

7 60 100

8 80 140

9 70 120

10 80 140

11 80 140

12 100 180

13 90 160

Table 2.2: Theoretical worst case response times per number of cylinders in
the DHPMS

Chapter 3

From TIMES to UPPAAL

In order to convert the TIMES model to an UPPAAL model, we first de-
scribe the TIMES model in detail. Then we describe how an UPPAAL
model was based on it, and how it was simplified. It is worth noting that
as the optimization and usage of UPPAAL features progressed queries ran
slower for reasons we do not quite understand. In the TIMES and UPPAAL
models, 1 time unit corresponds to 1 microsecond in the physical system.

3.1 Understanding the TIMES model

TIMES is a modelling and schedulability analysis tool for em-
bedded real-time systems, developed at Uppsala University in
2001. It is appropriate for systems that can be described as a
set of preemptive or non-preemptive tasks which are triggered
periodically or sporadically by time or external events. It pro-
vides a graphical interface for editing and simulation, and an
engine for schedulability analysis. [2]

The TIMES model abstracts from realistic slowing/accelerating of the
shaft, simplifies the number of teeth to 12 which is the minimum required
for three and four cylinders, uses a uniform distribution for the release of the
Valve tasks, and keeps the release of Valve tasks independent from eachother.
The physical system runs at 12.5 rotations per second unloaded and contains
144 teeth. This results in a rotation time of 80 milliseconds, and a delay
between teeth of 555.5 microseconds. The TIMES model uses a minimum
teeth delay (variable Tmin) of 550 time units and a maximum (variable Tmax)
of 560. This means the model runs at approximately 12 times the speed of
the real life system because it assumes one-twelfth of the number of teeth,
but maintains the realistic delay between teeth from the physical system.

For each task the behaviour (B), priority (Pr), and duration (D) are de-
fined. While the tasks in the DHPMS are considered sporadic and TIMES

10

does support sporadic tasks, they are labeled as ‘C’ for controlled because
sporadic tasks in TIMES may only have a minimum distance between ar-
rival times (column T), while the tasks in the DHPMS must be triggered
in a specific interval. Controlled tasks have their arrival times defined by
timed automaton templates. As the deadline requirements for the tasks in
this system are complex or irrelevant, the values in the Deadline column (D)
are ‘inf’ for infinite.

Tz>0

Scheduling policy

WaitingForZeroDelay
{Clk<=Tz

c
ZeroActive
Zero

User-defined Pricrities - Preemptive
Tz==0 L |
e (o]
(c (18 Zero C 8 (10 (nf
ToothActive € signall = N
/—m ‘onafing 1% Tooth c |7 |20 |inf
T g7 valvelOpen € |6 (10 |finf
opInd==OpNum,{Cnt<N~-1 opind<OpNum JF ValvelClose € |5 |10 |inf
(Clk>=Tmin WaitingForTooth | @PInd:=1, 1Clk:=0,iCnt=tCnt+1 [C opind:=opind+/ : -
tClk<=Tmax iC I valve20pen € [(10 |finf
g valve2Close |C |5 (10 |finf
Clk>=Tmin-Tz oplnd==0pNumtCnt==N-1
\Clk:=0 WaitingForZero opind:=1, tClk:=0,tCnt:=0 All Periodicl Mon-periodic
{Clk<=Tmax-Tz

Figure 3.1: RotatingShaft template of the TIMES model and a screenshot
of the global settings for the DHPMS project in TIMES

The RotatingShaft template handles the release of the Zero and Tooth
tasks, as well as signalling of the tooth to the Operation template. As there
is a non-zero delay between the Zero sensor and the first tooth, it first goes
into a delay location. As a note, the transition with ‘tZ == 0’ is never
taken, because tZ is a constant and not zero in the model. The guard from
WaitingForZeroDelay is for an unknown reason an equality instead of a
greater-or-equals, but this does not appear to affect the results. Because
synchronization in TIMES cannot broadcast to multiple instances at once,
there is a loop which goes over the cylinder indices between the Signalling
and Inc locations. Then, the tooth number counter (tCnt) is incremented
and the template moves to one of two delay locations, depending on whether
it is on the last (normally twelfth) tooth or not.

The Operation template appears large and unwieldy, but the basic idea
is straightforward. Transitions are either activated by ToothSignaled sig-
nals from RotatingShaft, or there is a delay, or a Valve task is sched-
uled. There are four locations per quadrant, for example WaitForToothl,
WaitForTooth12, WaitForDelayl, and OperationActive for the first quad-
rant of a cylinder.

In WaitForToothl the instance waits for the tooth counter to hit the ini-
tial value given through the parameter tInd. Then it non-deterministically
chooses to wait for an unknown number of tooth signals (but smaller or

11

@
OperationActived . 1Cnti=tind, opind==cylinder
[Valve2Close WaitForToothl ‘J<Too|h$\gna\g ! J

dClk:=0

(Cnt==tind, opInd==cylinder
?

dClk>=0 Toohsignaled
(U tR<TRmax, oplnd==cylinder
(dClk<Dr M [WaltFovToolh12](Tumh5\gnaled’7
=N ? (tind+S4)), _RERHL y

tCnt==((
ToothSignaled?
dClk:=0,tR:=1

{Cnt==tind, opnd==cylinder
ToothSignaled?
4Clk:=01R:=1

oplnd==cylinder

ToothSignaled?

WaitForDelayl dCIk:=0, tR:="
dClk<Dmax

opind==cylinder|
7

- ©
tR<TRmax, oplnd==cylinder |dCIk:=0,1R:=1 ‘OperationActive
ToothSignaled? WaitForToothd2 -~ ValvelOpen
\R:=tR+1 ~ dClk:=0
i e ? {(tind+S2)), op
WaltForToolhzr Foothsignaleds

{ 1Cr)-N :(tind+S2)), opl
1Cr 2 (tind+S4))| opl ToothSignaled?
ToothSignaled? I
— (TR<TRmax, opind==cylinder
= N2)
'T%mhsfgna\em (lind+S2)). L WaitforTooth22 KTD&ZAthgna\ed" J
dClk:=0,tR:=1 tR:=tR+1

oplnd==cylinder

I

WaitForDelay2
dClk<Dmax
_{ i ? (tind+S4)), opl
UETIAKEET Kmhsmna\ed’) ,‘)

dClk:=0,IR==1

ValveiClose
dClk=0
(Ct== =N 2 (Und+S3)), (
=0R:= F (tind+S3)), opl
. dClk:=0R:=1 WaitForTootn3. (& (Cnt(tinded)

(tind+S3)), op

opind==cylinder iTanthlgna\edv

dClie=0 i hSignale
c dClIk:=0,iR=1 tR<TRmax, opind==cylinder
OperationActive3 WaitforDelay3 WaitForTooth32
[Valve2open | dClk<Dmax ToothSignaled?

Template attributes
Mame |Operation

Parameters |const tInd, const cylinder

[T] Environment

Local dedarations

[Name N[Type ||[value
dClk dock 0

R int 1
[TRmax const 2

52 const 3

53 const 5

54 const &l
Dmax const 550

Figure 3.2: Operation TIMES template with properties window

equal to the constant TRmax), or go to the delay location. At the location
WaitForTeeth12, it chooses non-deterministically for up to two teeth signals
whether to stay in the WaitForTeeth12 location, or go to the delay location.
This has the result that 50% of the time, valve events are scheduled between
the first and second tooth, 25% between the second and third, and the re-
maining 25% between the third and fourth tooth. If the number of teeth
were to be increased, it would become increasingly likely for a Valve task to
be scheduled at the start of the quadrant. This does not affect standard UP-
PAAL queries, because the state space includes all possible transitions, but
it would be unsuitable for SMC queries. TIMES does not appear to have a

12

function comparable to UPPAAL’s select statement to non-deterministically
choose a random number, leading to this kind of construction being required.
Once the instance is in the WaitForDelay location, it waits up to 550 time
units before transitioning to the OperationActive location, therefore it can
never overshoot the true edge of a quadrant. The Valve task is then set to
be scheduled, and the instance moves to the next WaitForTeeth location to
wait for the start of the next quadrant. A quirk of the Operation template is
that the second and third cylinder do not release Valve tasks during the first
four teeth and eight teeth respectively of a run, as they wait for the tooth
indicator to be equal to the constant variable tInd. TIMES also does not
have support for the modulo operator, hence the use of a ternary operator
in several fields.

3.2 Translation

The model-checker Uppaal is based on the theory of timed au-
tomata and its modelling language offers additional features such
as bounded integer variables and urgency. The query language
of Uppaal, used to specify properties to be checked, is a subset
of CTL (computation tree logic). [3]

The reader is assumed to be familiar with the tool UPPAAL, for more
information on it we refer to the tutorial paper by Behrmann et al [3].

The translation from a TIMES model to an UPPAAL model can be

made in a straightforward way, because TIMES has a very similar syntax.
In fact, TIMES uses an older version of UPPAAL as back-end and has an
option to export to .ta format, which is an older format no longer used by
UPPAAL 4.0, but can still be read. Because of the large version differences,
the exported model contains many syntax errors when opened in UPPAAL
4.0 and 4.1. We decided not to pursue investigating and editing the erronous
syntax.
The release of a task was changed to a synchronization channel, as this can-
not happen inside a location in UPPAAL because updates and synchroniza-
tions are only possible on transitions. It was visible in the broken exported
file that TIMES internally adds edges with synchronizations to the template
for a location with a task release. While it is now the case that the release
of a task happens after the location where it is triggered in TIMES, this
is necessary to keep the TIMES template intact as much as possible and
avoids adding new locations to the templates.

3.3 Scheduling Framework

To convert the TIMES model to an UPPAAL model we also need to have
templates that model scheduling and resource usage. The scheduling frame-

13

ScheduleTask[Zero]!

ZeroAcﬂveTl >0

& tClk <= Tz
Tz==0 tClk == Tz
ScheduleTask[Tooth]! Signalling
@)
© c
e feomiene cotrsignalled | apindam i
tClk =0 tClk >= Tmin ans P
WaitForTooth 1 —OpNum && tCnt<N-1 ¥
O (S
A oplnd =1,
{Clk <= Tmax {Clk = 0,
tCnt += 1
Wa";‘;zem oplnd==0pNum && tCnt==N-1
oplnd =1,
{Clk <= Tmax - Tz {Clk = 0,
tCnt=0
WaitForDelay4 OperationActived
dck < Dmax(@)

(Crt==(tind+S4)>=N ? (tind+S4)-N (tind+S4)) &

dClk

(Cnti=((tind+S4)>=N 7 (N :(tInd+S4)) && oplnd==cylinder

OperationActivep
©

dClk =0, iR =1 5
WaitForDelayt Q%c,

? (tind+S2)-N :(tind+S2)) && opind==cylinder

WaitForTooth22

OperationActive2

ScheduleTask[Valve1Close]!

Clk>= 0

dClk < Dmax
ToothSignalled?

M==cylinder

Figure 3.3: First version of the UPPAAL DHPMS model, above is the Ro-
tatingShaft template, lower image is the Operation template

work we took as base is also bundled with UPPAAL 4.1 as an example.[7]
The framework contains many features that were of no use to this particular
case study, and those were removed in the quest to verify the query “A[]
not deadlock”. It also does not support sporadic tasks.

During verification we discovered that the altered templates overestimate
response times. For ValvelOpen/Valve20pen and ValvelClose/Valve2Close
the worst case response times were respectively 50 and 90, instead of the ex-
pected 40 and 60. My supervisor provided a different template for scheduling
and resources shown in figure (3.4

Unfortunately, computation times for non-SMC queries increased expo-
nentially at first. The problem turned out to be that the array completiontime
was defined as an ‘int’, which has a default range of [-32768, 32767] as noted
in the UPPAAL help file under Types. Properly defining the range for this
array is a kind of catch-22, because to calculate the upper bound the set

14

©)

lempty() && Istarted[front()]

x[front()] := 0,

started(front()] := true,

lempty() && x[front()] >= completiontime[front()] updateCompletionTimes()
finished[front()]! empty() || ScheduleTask[id]?

started|[front()] := false, started[front()] insert_task_in_buffer(id)
completiontimel[front()] := 0,
removeTask()

©

lempty() imply x[front()] <= completiontime[front()]

Figure 3.4: Resource template for a single-core CPU with fixed-priority
scheduling and pre-emption

range must be at or above the upper bound. The Resource template has no
way of knowing this in advance, nor does the user. Fortunately, UPPAAL
is able to calculate the exact upper bound with only an imprecise guess of
500 in a short amount of time. Our conjecture is that UPPAAL uses the
upper bound on completiontime to reduce the searched state space, and
when the bound is set too high UPPAAL assumes certain reductions cannot
be done leading to a much larger state space searched.

3.4 Simplification

Once we confirmed that the initial conversion to UPPAAL functioned, it was
time to simplify using the more advanced features in UPPAAL unavailable
in TIMES. The goal of simplification was two-fold: one was to make the
templates more understandable from a glance, and the other to hopefully
speed up the calculation times. Unfortunately, the latter goal was not met,
as calculation times increased.

There was not much to simplify in the RotatingShaft template, as shown
in figure [3.5] The unused transition with the guard ‘tZ == 0’ was removed
and the loop to signal each cylinder seperately was removed in favor of chang-
ing the channel to a broadcast channel, which is not available in TIMES. As
broadcast channels do not block, it was required to define queries to test if
the signal was always received before continuing. This template was already
ready for tests with increased number of teeth due to usage of the N variable,
as well as for increasing the number of cylinders.

The Cylinder (renamed from Operation) template was simplified drasti-
cally, as seen in figure |3.6| There were originally four locations per quadrant,
which was knocked down to three. The non-uniform behaviour was fixed by
uniformly choosing a number of teeth to wait before looping through teeth
signals at location WaitForDelay.

The variable quadrant was added to keep track of which quadrant the in-
stantiation of the Cylinder template is in. Instead of three global variables
82, 83, S84, an array S was defined locally in the Cylinder template. The cal-

15

ZeroActive

tClk <= Tz

ScheduleTask[Zero]!
tClk >= Tz
tClk >= Tmin - Tz Signalling
tClk =0 ScheduleTask[Tooth]!
© ©
ToothActive
!
{Clk >= Tmin ToothSignalled
WaitForTooth Inc
~ tCnt<N-1 rC)
N tClk =0, S
tClk <= Tmax tCnt += 1
WaitForZero {Cnt==N-1
. J
A tClk =0,

tClk <= Tmax - Tz tCnt=0

Figure 3.5: Simplified RotatingShaft template

culation of which valve task to release was softcoded to a Valve () function.

WaitForTooth tCnt==(tInd + S[quadrant]) % N
ToothSignalled?
tR = teethDelay, dClk = 0

tR>0
tR-=1,dClk=0
ToothSignalled?

WaitForDelay

quadrant = (qupdrant+1) % 4 tR >0 || dClk <= Dmax

Figure 3.6: Simplified Operation template renamed to Cylinder

UPPAAL has support for total symmetry reduction [12].

We investigated briefly if this feature would be of use to the case study
for the Cylinder templates and the tasks. There is no total symmetry in
either case, because the functionality of a Cylinder template depends on
an ordering of the index of the instantiation and each task is effectively
unique in usage even for duplicate tasks. It remains an open question if
more advanced forms of symmetry reductions involving more specific sets
could allow for reductions in state space for this kind of cyclical system in
UPPAAL.

Likewise, UPPAAL has support for progress measures [9]. The idea is that
by defining an expression that is weakly monotonic, UPPAAL can determine
which states provide the most progress and reduce the state space with this
information. Unfortunately, any attempt to define a progress measure for the
model resulted in higher computation times. As in the Herschel case study
[11], there is no intrinsic measure of progress in this kind of cyclic model,

16

but while their application of a progress did function for their models, the
same pattern did not function for the DHPMS models.

3.5 Verifications

Our goals with verifying the simplified templates are to confirm deadlock
freedom and to determine WCRT for as many cylinders as possible. With
the current Resource and Measure templates, UPPAAL scales to six cylin-
ders for deadlock testing and up to five cylinders when using sup queries for
WCRT. Our conjecture is that calculation times increase so severely because
in addition to the state space explosion problem UPPAAL has to consider
every permutation of task events, which for n events increases on the order
of n! or more. Furthermore, due to the method of implementing arbitrary
number of cylinders, there are four additional clocks (for four duplicate valve
tasks) per four additional cylinders. Increasing the number of clocks in an
UPPAAL system increases computation times and memory usage signifi-
cantly. Due to these factors, even if further optimizations were to be done it
would likely be impossible for current computer systems to go through the
entire state space of a model with ten or more cylinders.

No. of Computation | Maximum
Cylinders | time memory usage
3 00h00mO08s 28 MB

4 00h29m40s 1897 MB

5 09h53m12s 7585 MB

6 99h58m36s 77349 MB

Table 3.1: Verification times and maximum memory usage for the query
‘A[] not deadlock’

WCRT for
No. of ValvelOpen & | ValvelClose & | Computation | Maximum
cylinders | Valve20pen Valve2Close time memory usage
3 40 60 000h01m23s 43 MB
4 60 100 032h11m38s 7,279 MB
5 50 80 038h31m13s 14,269 MB
6 - - 507h00m00s+ | 46,000+ MB

Table 3.2: Worst Case Response Times ordered by cylinder count

One important distinction between the original results of [4] and the

17

UPPAAL verification is that ValvelOpen and Valve20pen have the same
WCRT in table While tasks can be defined with equal priority in
TIMES, internally tasks with equal priority are given unique priorities based
on the order from top to bottom. [2]

For example, in TIMES ValvelOpen has a higher internal priority than
Valve20pen and therefore Valve20pen can be pre-empted by ValvelOpen,
leading to a lower WCRT for ValvelOpen.

This behaviour was only tersely mentioned by the Finns, but it does lead
to an inconsistency between the task definitions and the calculated results
in [4]. Tasks with equal priority and duration in this kind of symmetric
system must have equal worst case response times. The UPPAAL schedul-
ing template does handle such tasks in a consistent manner. As far as it
was calculable, the values in table are also consistent with the theorized
results found in section Note: For four cylinders and above, the WCRT
is the maximum of the two duplicate tasks for each Valve. It would have
sufficed to run the sup query over only the duplicate tasks, as those have
the highest WCRT due to only being scheduled if the original task is already
present in the resource buffer.

For five cylinders, the number of teeth was set to 20, for all other queries
the number of teeth was set to 12.

For three cylinders the query ran was:

‘sup: Measure(ValvelOpen), Measure(ValvelClose),
Measure(Valve20pen), Measure(Valve4Close)*

For four cylinders and above the query ran was:

‘sup: Measure(ValvelOpen), Measure(ValvelClose),
Measure(Valve20pen), Measure(Valve4Close),
Measure(ValvelOpen+4), Measure(ValvelClose+4),
Measure(Valve20pen+4), Measure(Valve4Close+4)°

Due to the inclusion of an invariant ‘x’ == 0’ in the Idle location in the
Measure automaton for faster calculations, the queries returned a ‘Formula
MAY be satisfied.. In the case of sup queries this has the result that the
listed upper bounds may not be the lowest upper bounds, but using queries
such as those below, it was confirmed that the sup queries did return the
lowest upper bounds. If one explicitly enables over-approximation, the sup
queries in fact return higher upper bounds. It is important to add that these
queries are not the most efficient to run, if we already know the exact upper
bound. It is also more efficient to run queries with only one Measure instan-
tiation. As an example, we shall show how to confirm the upper bound of
ValvelClose in a system of four cylinders. We add to to the System tab:
‘Measure ValvelCloseDup = Measure(ValvelClose+4);’, replace ‘Measure’
with ‘Measure_ValvelCloseDup’ in the ‘system’ line and run the following
two queries:

‘A[] Measure_ValvelCloseDup.Action imply Measure_ValvelCloseDup.x
<= 100’

18

‘E<> Measure_ValvelCloseDup.Action and Measure ValvelCloseDup.x
== 100’

The first query determines that 100 is an upper bound, and the second (if sat-
isfied) proves that there exists a path where the value of 100 is reached, there-
fore 100 is the smallest upper bound. Explicitly using over-approximation
is highly efficient for the A[] query with calculation times of 27 seconds, but
returns a ‘may be satisfied’ for the E<> query. Using standard DBM, the
resource usage for the E<> query is in the order of 268 seconds and under one
gigabyte of RAM for this example. Even though these numbers are notably
less than testing for deadlock, this approach will likely still not scale to ten
cylinders or more.

The queries with a maximum memory usage of 2GB or less were run on

an AMD Phenom 2 processor at 3.6Ghz using the Windows 32-bit version
of UPPAAL 4.1.19. The remaining queries were ran on a cluster node with
AMD Opteron processors at 2.3Ghz using the Linux 64-bit version.
As can be seen from the tables and we run into the state space
explosion problem by 6 cylinders. By the time the WCRT query for six
cylinders was terminated, there were still millions of states left to go through
at a rate of at most hundreds of states per second.

19

Chapter 4

Moving onto UPPAAL-SMC

Statistical Model Checking applies statistics on automata to determine a
probability range for a given query. It uses mathematical sound results from
the field of statistics. Instead of searching the state space of an automata to
prove statements, SMC is based on runs through the automata with bounds
on clocks or steps to guarantee termination. [10] UPPAAL-SMC is the
implementation of SMC for UPPAAL. It offers for example more freedom
for floating point calculations by including a variable type double, a user-
friendly interface for creating graphs using SMC-style queries called the Plot
Composer, and allowing probabilistic transitions. [5]

UPPAAL-SMC does not allow any non-determinism in the model for its
queries. This results in select statements being unuseable except to emit or
receive a channel array. Likewise, multiple non-exclusive transitions leav-
ing a location are also not allowed. If possible, it would be preferable to
model a system such that both UPPAAL and UPPAAL-SMC both work,
as each has possible queries which the other does not have. Being limited
to using a subset of UPPAAL and UPPAAL-SMC features limits model
freedom, and it becomes tempting to have one standard UPPAAL model
and an UPPAAL-SMC model, each for their own queries. Proving that
these two models are functionally identical or even semantically identical
is not trivial, and not guaranteed to be true at all. Instead of the non-
deterministic features of UPPAAL, UPPAAL-SMC introduces probabilistic
transitions and the random() function returning a double. This results in
a problem when a random integer is required. While it is is possible to
write a function to convert a floating point number to an integer, this is not
ideal. The functions ceil() and floor () are available, but return a double.

UPPAAL-SMC offers three kinds of queries: simulations, probabilities
and expected values.
Simulations queries have the following general syntax:
simulate N [<=bound] {E1, ... , Ek}, with N and bound positive inte-

20

gers (for Windows UPPAAL version 4.1.19, bound is limited to 32 bit signed
integer values), and E1 to Ek expressions to be monitored. Each run will
have the expressions drawn onto one graph, accessible upon right-clicking
the completed query. The graph data remains in memory until UPPAAL
is closed, and there are more options visible upon right-clicking the graph.
The options available are Areas, Show, Scale, Export and Numeric locale.
The tick-able options in Areas appear to be non-functional in this window,
they are functional when using the Plot Composer. The options in the sec-
tion Show such as Title and Legend are tick-able, primarily for customizing
a graph to be exported. The options for Scale set the x-axis and/or y-axis
to log scale. The graph may be exported to various graphic file formats and
to comma-seperated-value text files. The bound may also be for a specific
clock (syntax: simulate N [clock <= bound] {E1, ..., Ek})oranum-
ber of steps (syntax: simulate N [# <= bound] {E1, ..., Ek}. Finally,
the query can be extended to a search for a maximum specified number of
runs (N2) for which a given expression is true, using the following syntax
(using the implicit time bound as example): simulate N [<= bound] {E1,

., Ek} : N2 : expression. This can be used for example to specif-
ically display runs which violate deadlines instead of having to find those
manually between thousands of runs.

Probability queries have the basic syntax of Pr [bound] (phi). The num-
ber of runs is based on alpha and epsilon listed in the Statistical Parameters
option menu, where alpha is the confidence interval and epsilon the approx-
imation interval. More detailed information can be found in the UPPAAL-
SMC Overview paper by Bulychev et al. UPPAAL-SMC is able to calculate
(cumulative) probability distributions based on the clock in the bound. By
changing a variable to a clock with zero rate and bounding runs using phi
one can obtain probability distributions of any clock or variable.

Expected values queries use the syntax E[<=bound;N] (min:expr) for
the expected minimum values of expr and E[<=bound;N] (max:expr) for
the expected maximum values.

There are four goals to be achieved in the conversion to SMC:

1. Arbitrary delay for each Valve task

2. Arbitrary speed in RotatingShaft that does not affect calculations in
Cylinder

3. Arbitrary amount of Cylinders

4. Maintain awareness of true quadrant edges for deadline misses

Arbitrary delay for each Valve task was implemented through a pattern
from the tutorial to UPPAAL-SMC. The variable delay is a clock with its
rate set to zero manually. UPPAAL requires that guards compare clocks
with eachother, or a clock to an integer value. Comparing to a const dou-
ble results in inconsistent behaviour in UPPAAL-SMC where it may give
an error that the system is time-locked (as in, deadlocked), while a double

21

WaitForTooth

tCnt==(tInd + S[quadrant]) % N
ToothSignalled?
dClk = 0, delay = f()

ScheduleTask[Valve()]!
quadrant = (quadrant+1) % 4

OperationActive

dClk >= delay

delay = 0 dClk <= delay &&

delay' == 0

Figure 4.1: Cylinder template modified for UPPAAL-SMC

(functionally a clock with its rate set to zero) would trigger fine-grained
discretization.

The function £ () was setup such that it returned the value of yet another
function for ease of changing distribution of Valve tasks.

Because the delay is now a value of an arbitrary function, there is signifi-
cantly more freedom in defining a probability distribution.

ZeroActive
@ tClk <= Tz && delay' == 0
ScheduleTask[Zero]!
{Clk >= delay (Clkc==Tz
tClk =0 Signalling
ScheduleTask[Tooth]!
&
ToothActive
!
{Clk >= Tmin ToothSignalled!
WaitForTooth {Cnt<N-1 Inc
) 9
N4 tClk = 0, tCnt += 1,
tClk <= delay && delay' == 0 delay = f()
WaitForZero
tCnt==N-1
L i\ !
A= tClk =0, tCnt = 0,
tClk <= delay && delay' == 0 delay = f() - Tz

Figure 4.2: RotatingShaft template modified for UPPAAL-SMC

The raw data provided implied that the speed variations would be of
fractions of microseconds in terms of delay between teeth. UPPAAL-SMC
uses fine-grained discretization at least when clocks are set to non-integer
values, or when guards involve general floating-point expressions. A naive
implementation of jittery rotation speed would involve the former, and re-
sults in simulations taking roughly 2000 times longer at default settings for
discretization step (a value of 0.01).

Furthermore, UPPAAL-SMC returned errors such as “Location Rotating-
Shaft. WaitForZero has unbounded delay but no positive rate.”.

22

In the first attempt to apply the ’clock delay’ pattern, we merely replaced
Tmin and Tmax with delay. This left transitions with ‘tClk <= delay -
Tz’ and ‘tClk >= delay - Tz’. Our conjecture is that fined-grained dis-
cretization can cause runs to skip the moment when tClk equals delay -
Tz, and somehow miss the transition to the next state, presumably due to
floating point inaccuracy. The error disappeared when delay was initialized
as “f() - Tz” on the next-to-last tooth. In this model, the function £ ()
for RotatingShaft template is based off the minimum and maximum values
which are 550 or higher, therefore ‘f () - tZ’ is always strictly positive. As
a note, the ‘clock delay’ pattern shows random errors such as the one listed
above if £() returns 0.

©)=

MeasureTask[last_added]!

lempty() && !started[front()]
x[front()] := 0,
started([front()] := true,

lempty() && x[front()] >= completiontime[front()] updateCompletionTimes()

finished[front()]! empty() ||
started[front()] := false, started([front()]
completiontime[front()] := 0,

removeTask()

ScheduleTask[id]?
insert_task_in_buffer(id)

@)
A =4

lempty() imply x[front()] <= completiontime[front()]

Figure 4.3: Resource template modified for UPPAAL-SMC

Arbitrary number of cylinders has been implemented. This required lit-
tle adjustment in the templates, as it involved modifying code related to
the resource buffer and lookup of task data. Duplicate tasks are allowed
by means of increasing the task ID if the base ID for that task is already
present in the buffer. The maximum number of duplicate tasks is a function
of the number of cylinders and is bounded. Because the bound is a theoret-
ical maximum and is very unlikely to be hit, there may be a large number
of Measure templates which are present in the system but lay unused for
simulations counted in thousands of runs. UPPAAL-SMC has a feature to
dynamically spawn templates, but it has not been investigated whether this
would improve the efficiency of the system by leaving out Measure automata
which are never triggered.

An additional synchronisation transition was added to the Resource tem-
plate for triggering the correct Measure template as the Cylinder template
is unaware of running Valve tasks.

Development of the model halted at this point. The simplified SMC
model does not take into account how the software would calculate the
release time of Valve tasks depending on last known axis speed and intended
task release time. Tasks lengths are also still constants, whereas a more
realistic version of the model should include a probability distribution of
individual task lengths.

Figure [£.4] shows a chart of the four Valve tasks as the axis turns. The

23

E Gantt{valve10pen)
E Gantt{valve20pen)
E Gantt{valve1Close)
E Gantt{valve2Close)
4 Last tooth seen

value

o ‘H

[v] 1.8E3 3.6E3 5.4E3 7.2E3 9.0E3 1.0BE4 1.26E4
time

Figure 4.4: Gantt-like chart for the four Valve tasks for three cylinders

chart is of 100 runs to show where a given task may be scheduled. It
also shows that even with the alteration to the starting value of quadrant,
ValvelClose and Valve2Open still do not properly schedule in the first full
rotation of the shaft.

One trick noted in the UPPAAL-SMC tutorial is the usage of clocks

with zero rate for use as variable for queries. Mathematical expressions
with clocks work as expected in UPPAAL-SMC, and converting integers to
clocks is mostly straightforward. The ternary operator does not appear to
have been updated and will not work with clocks or doubles, nor does the
shorthand notation ‘var += expression’ for example.
One downside of using the Pr [variable <= upper_bound] (expression)
query to generate a probability distribution of a variable is that the proba-
bility is 1 (if the upper bound is a true upper bound of the variable). For
such queries, UPPAAL-SMC with default settings (o = € = 0.05) only needs
36 runs to determine the probability, leading to reduced accuracy in the re-
sulting graph. This can be fixed by modifying « and € in the Settings menu.
We were not able to determine the exact algorithm or formula UPPAAL-
SMC uses to calculate the number of runs (The formula listed in ?? does
not match the numbers), therefore it was easier to just try. Table shows
the number of runs based on various values for o and e.

24

a /€| 0.05]|0.01]|0.005|0.001 | 5E-4 | 1IE-4 | 5E-5 | 1E-5
0.05 | 36 183 | 368 1843 | 3688 | 18443 | - -

0.01 |51 263 | 528 2647 | 5296 | 26489 | - 264914
0.005 | 57 297 | 897 2993 | 5989 | - - -

0.001 | 73 377 | 757 3797 | - - - -

5E-4 | 79 411 | 826 4143 | - - - -

1E-4 | 94 491 | 986 4947 | 9899 | 49513 | - -

Table 4.1: The number of runs for a Pr query with probability 1

4.1 Results

The graphs found in this section were generated using a Measure template in
figure [4.5] and queries such as ‘Pr [Measure(Valve2Close) .max <= 1000]
(<> global == Tmax*N=*2)’. The upper bound for the clock variable does
not matter as long as UPPAAL-SMC does not reach an internal maximum of
100,000 steps per run, at which point the query will terminate with an error.
The expression ‘<> global == Tmax*N*2’ results in UPPAAL-SMC saving
the value of the clock after exactly two rotations. Systems with with an
odd number of cylinders do not schedule all Valve tasks correctly during the
first rotation, therefore the end of the second rotation was chosen as bound.
global is a clock that is never reset, effectively the same as the implicit clock
in SMC queries. Variable Tmax was set to 550 for SMC queries, removing
all variance in rotation speed.

MeasureTask[id]?

Action

X' == max' ==
&& max' ==
finished[id]?
max = (max>?x), x = 0,
WCRT = (WCRT>?max)

Figure 4.5: The Measure template for SMC queries. WCRT is a clock
with its rate set to zero elsewhere. The Resource template emits both
MeasureTask[id] and finished[id], respectively when a task is scheduled
and when a task finishes. The syntax ‘max>7x’ returns the maximum of vari-
ables max and x, as the use of a ternary operator for clocks is not allowed.
This pattern allows us to place variables Measure (i) .x, Measure (i) .max,
and WCRT on the z-axis in graphs of Pr queries.

25

Figure [£.6] shows the cumulative probability distribution for ValvelOpen
and Valve2Close response times when using a uniform distribution for the
release of said tasks. While this distribution is wholly inaccurate for real life
scenarios it does show how the distribution develops. Calculation time for
both queries is in the order of 250 seconds with a memory usage of 9MB.
This gives a calculation time of 4.1 milliseconds per run, which is far faster
than the 160 milliseconds the physical system would take to do two full
rotations. With three cylinders and a uniform distribution, it is possible to
find runs very close to the WCRT for each task.

Figure shows that with a slightly more realistic probability dis-
tribution, the response times are consistently lower for ValvelOpen and
Valve20pen, while ValvelClose and Valve2Close are always scheduled at or
near a Tooth task, leading to a near consistent response time of 30 millisec-
onds.

Then it was time to test the computing ability of UPPAAL-SMC. Figure
shows the WCRT per run of a system with 16 cylinders and 16 teeth.
Computation time per run was 28 milliseconds, which again is two full rota-
tions. The query was “Pr [WCRT <= 200] (<> global==Tmax*N*2)”. The
theoretical WCRT for 16 cylinders is 220 as per section In 61025 runs,
UPPAAL-SMC was unable to find runs with a WCRT over 80. Even with
significantly more runs, the graph for the cumulative probability distribution
would not change significantly, except for a possible longer tail of extremely
rare events with higher WCRT. If one can already determine the chance for
deadline misses to be this small in a model where the rotating shaft effec-
tively rotates at nine times the original speed (the time per rotation is the
number of teeth multiplied by a constant time value), it is not even required
to investigate the more realistic model which takes more time to calculate
through. In figure [£.8] the cumulative probability graphs are shown for a
system with 16 cylinders and 128 teeth. Computation time per run was 79
milliseconds, still twice as fast as the physical system. With the significantly
increased available time in a quadrant, the uniform distribution gives Valve
tasks ample time to execute without interfering with other tasks. Running
probability queries on rare events would take significantly more runs that
each take more time to compute. To conclude, as with simplifying models
to make them calculable with UPPAAL, thus is it more efficient to simplify
and shorten intervals of UPPAAL-SMC models to increase the probability of
finding rare events and proving with more certainty that the WCRT of a sys-
tem is below a certain value, while at the same time decreasing calculation
times.

26

Cumulative Probability Distribution

0.80,

0.70 F/

0.60,

o
u1
=)

3 cumulative
E=] average

<
N
o

probability

0.30,

10.0 13.3 16.6 19.9 23.2 26.5 29.8 33.1 36.4 39.7
Measure[Valve1Open].max

Parameters: a=1e-005, €=0.0001, bucket width=0.12069, bucket count=248

Runs: 61025 in total, 61025 (100%) displayed, 0 (0%) remaining

Span of displayed sample: [10, 39.932264839299]

Mean of displayed sample: 14.0422474940892 + 0.128456087640781 (99.999% CI)

Cumulative Probability Distribution

1.00

0.90,
0.80,

0.70,

0.60 /

ot
n
S

3 cumulative
E=] average

probability

o
S
o

0.30,
0.20,

0.10

0
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Measure[Valve2Close].max
Parameters: a=1e-005, €=0.0001, bucket width=0.16129, bucket count=249
Runs: 61025 in total, 61025 (100%) displayed, 0 (0%) remaining
Span of displayed sample: [10, 50]
Mean of displayed sample: 14.669944207911 + 0.131325957784156 (99.999% CI)

Figure 4.6: Cumulative Probability Distributions for the highest response
times per run of ValvelOpen and Valve2Close for 3 cylinders and 12 teeth
with a uniform distribution for all Valve tasks

27

Cumulative Probability Distribution

=] valve10Open
=] valve10pen (avg)
[Valve20pen
[Valve20pen (avg)
[valve1Close
=] valve1Close (avg)
EJ Valve2Close
= Valve2Close (avg)

10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 Meéz\ﬁe[valvzeolvgpen]_élaf 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0
Figure 4.7: Cumulative Probability Distributions for the highest response
times per run per Valve task using the minimum and maximum raw data
values per cylinder as minima and maxima for uniform distributions, with
a = 0.0001 and e = 0.0005, leading to 9899 runs of 3 cylinders with 12 teeth.

28

Cumulative Probability Distribution

0.80,

0.70

0.60,

o
3]
o

3 cumulative
E= average

probability
o
3

0.30,
0.20

0.10, —//
0

14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68
WCRT

Parameters: a=1e-005, €=0.0001, bucket width=0.2221, bucket count=249

Runs: 61025 in total, 61025 (100%) displayed, 0 (0%) remaining

Span of displayed sample: [14.9183116666973, 70]

Mean of displayed sample: 32.9911390491575 + 0.0958992748249708 (99.999% CI)

Cumulative Probability Distribution

1.00
0.90,
0.80
0.70,

0.60,

o
n
S

E cumulative
E=] average

probability
o
3

0.30,

0.20

0.10,

0
38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78
WCRT

Parameters: a=1e-005, €=0.0001, bucket width=0.16616, bucket count=248

Runs: 61025 in total, 61025 (100%) displayed, 0 (0%) remaining

Span of displayed sample: [38.6678269364247, 79.8760165286562]

Mean of displayed sample: 52.2777676026483 + 0.0939280383798349 (99.999% CI)

Figure 4.8: Cumulative Probability Distributions for WCRT per run for
16 cylinders and 16 teeth. For the first image a uniform distribution for
all Valve tasks was used, while for the second the limited uniform range
originally of 3 cylinders was used. Cylinder ¢ in the 16 cylinder system used
the distribution of cylinder (i mod(3)) for its Valve tasks.

29

Cumulative Probability Distribution

’_._'_._'_._._'_,_._.—/

1.00

0.90

0.80

0.70

=
@
=

=
wn
=

E cumulative
B average

=
b
[=]

probability

0.30

20.0 23.7 27.4 311 34.8 385 42,2 45.9 49.6
WCRT
Parameters: a=0.0001, e=0.0005, bucket width=0.3, bucket count=101
Runs: 9899 in tokal, 9899 (100%) displayed, 0 (0%) remaining
Span of displayed sample: [20, 50]
Mean of displayed sample: 30.0083748046175 £ 0.0973041219223534 (99,99% CI)

Cumulative Probability Distribution

R

1.00

0.90

0.80

0.70

=
@
=

=
wn
=]

E cumulative
B4 average

=
s
[=]

probability

0.30

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 S0 52 54 56 58 60
WCRT

Parameters: a=0.0001, £=0,0005, buckst width=0.39951, bucket count=100
Runs: 9899 in total, 9899 (100%) displayed, 0 (09%) remaining

Span of displayed sample: [20, 59.9512481478378]

Mean of displayed sample: 30.4115769506196 + 0.118871468534425 (99,99% CI)

Figure 4.9: Cumulative Probability Distributions for WCRT per run for 16
cylinders and 128 teeth. The distributions for the Valve tasks use the same

rules as for figure

30

Chapter 5

Discussion

Working with UPPAAL-SMC was very much a mixed experience. Initially,
we used UPPAAL 4.1.18 to develop the models, and attempts to use the
simulator while using UPPAAL-SMC features would cause the server to
crash. This was fixed in 4.1.19. UPPAAL certainly is a powerful tool to
create models of systems in the real world and is user-friendly. Development
on UPPAAL does not appear to be as active, with an official release 4.0.13
on 27th of September 2010, and the current development snapshot of 4.1.19
on lst of July 2014. We ran into several (known) bugs in UPPAAL and
UPPAAL-SMC. Parsing of user-defined functions can still outright crash the
server if control structures reach end of file, or give non-sensical errors when
defining a new variable after an if statement. The simulator tab is a very
useful feature when debugging UPPAAL models, but it does not function
if UPPAAL-SMC features are used. There is some support for UPPAAL
to ignore clocks designated as hybrid which cannot affect the model logic,
which then allows usage of standard UPPAAL queries and the simulator
tab, but for models that rely on SMC for its logic this will not work.

The ability to visualize variables and other expressions is unquestionably
useful for developing models and showing results. But documentation on
UPPAAL-SMC is insufficient, there is one paper which serves as tutorial
but is not complete [5]. The ability to select runs from a simulate query
based on an expression is a fully functional feature only documented in the
Herschel case study [II]. The bug tracker contains a bug report in which
some undocumented built-in functions are listed [I].

Contact with Bostrom suggested that stiff differential equations are re-
quired to correctly calculate delays in their software. UPPAAL would be
unsuitable to calculate such equations by definition of stiffness. It would be
a useful future feature for UPPAAL to be able to use external libraries for
calculations. It was inconvenient to have to set variables such as cylinder
count explicitly in the model, where for a future feature such (constant)
variables could be moved to the queries themselves for ease of use.

31

Chapter 6

Conclusion

This thesis extended on a Finnish case study of a Digital Hydraulic Power
Management System. Given a TIMES model we created an UPPAAL
model to verify the original results and then extended the model for use
with UPPAAL-SMC. Among the successes were verifying deadlock free-
dom for systems with three to six cylinders and calculating Worst Case
Response Times for systems with three to five cylinders. Beyond five cylin-
ders, the UPPAAL model does not scale. UPPAAL-SMC was able to cal-
culate through much larger systems, but due to the simplified probability
distributions it was not viable to find runs with response times close to the
theoretical worst case response times, even for systems with a high num-
ber of cylinders. That example also showed that it is sufficient to calculate
through a sped-up model to guarantee that the real system has a very lim-
ited number of deadline misses over a long period of time.

UPPAAL-SMC has a lot of potential but, in its current form, is not ma-
ture. Since real-time control systems are pervasive in the area of embed-
ded systems, we see many potential applications for a mature version of
UPPAAL-SMC.

6.1 Acknowledgements

We would like to thank Pontus Bostrom for providing us with the TIMES
models and some raw data, they have been invaluable in developing models
for this thesis.

32

Bibliography

1]

Bug 588 - uppaal smc features: operations and limitations of double/-
clock type. http://bugsy.grid.aau.dk/bugzilla/show_bug.cgi?
1d=588. Accessed: 2015-04-07.

Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson,
and Wang Yi. Times b—a tool for modelling and implementation of
embedded systems. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 460-464. Springer, 2002.

Gerd Behrmann, Alexandre David, and Kim G Larsen. A tutorial on
uppaal. In Formal methods for the design of real-time systems, pages
200-236. Springer, 2004.

Pontus Bostrom, Petr Alexeev, Mikko Heikkild, Mikko Huova, Marina
Waldén, and Matti Linjama. Analysis of real-time properties of a digital
hydraulic power management system. In Formal Methods for Industrial
Critical Systems, pages 33—47. Springer, 2014.

Peter Bulychev, Alexandre David, Kim Gulstrand Larsen, Marius
Mikucionis, Danny Bggsted Poulsen, Axel Legay, and Zheng Wang.
Uppaal-smc: Statistical model checking for priced timed automata.
arXw preprint arXiv:1207.1272, 2012.

Giorgio C Buttazzo. Hard real-time computing systems: predictable
scheduling algorithms and applications, volume 24. Springer Science &
Business Media, 2011.

Alexandre David, Jacob Illum, Kim G Larsen, and Arne Skou. Model-
based framework for schedulability analysis using uppaal 4.1. Model-
based design for embedded systems, pages 93-119, 2009.

Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain
Peyronnet. Approximate probabilistic model checking. In Verification,
Model Checking, and Abstract Interpretation, pages 73-84. Springer,
2004.

33

http://bugsy.grid.aau.dk/bugzilla/show_bug.cgi?id=588
http://bugsy.grid.aau.dk/bugzilla/show_bug.cgi?id=588

[9]

[12]

Benedikt Huber and Martin Schoeberl. Comparison of implicit path
enumeration and model checking based wcet analysis. In Proceed-
ings of the 9th International Workshop on Worst-Case Execution Time
(WCET) Analysis, pages 23-34, 2009.

Axel Legay, Benoit Delahaye, and Saddek Bensalem. Statistical model
checking: An overview. In Runtime Verification, pages 122-135.
Springer, 2010.

Marius Mikuéionis, Kim Guldstrand Larsen, Jacob Illum Rasmussen,
Brian Nielsen, Arne Skou, Steen Ulrik Palm, Jan Storbank Pedersen,
and Poul Hougaard. Schedulability analysis using uppaal: Herschel-
planck case study. In Leveraging Applications of Formal Methods, Ver-
ification, and Validation, pages 175-190. Springer, 2010.

Alice Miller, Alastair Donaldson, and Muffy Calder. Symmetry in tem-
poral logic model checking. ACM Computing Surveys (CSUR), 38(3):8,
2006.

34

Appendix A

Appendix

I,
Iy
RO
o,
4%
7
KL
Y
%

-—
-=.
.
iy
O ey,
o)
2 .""',
A7)
ALK
llll““
s
T\
—m

11

“%
0,
e

Figure A.1: Graphics detailing the intervals for ValvelOpen and Valve20pen
for systems with three to eleven cylinders

35

	Introduction
	The DHPMS
	Scheduling Theory

	Theoretical Approach
	Assumptions
	A single cylinder
	Multiple cylinders
	Calculating WCRT

	From TIMES to UPPAAL
	Understanding the TIMES model
	Translation
	Scheduling Framework
	Simplification
	Verifications

	Moving onto UPPAAL-SMC
	Results

	Discussion
	Conclusion
	Acknowledgements

	Appendix

