BACHELOR THESIS
COMPUTER SCIENCE

Fia:

a
é\9 Ny
@
orrer

MiNe €

RADBOUD UNIVERSITY

Lost in Translation: Automatic
Learning of Statistical Models for

Language Translation

Author: First supervisor/assessor:
Sanne Boumans Dr. A. Martins Da Silva
3031926 alexandra@cs.ru.nl

[Second supervisor:]
Dr. H.H. Hansen
h.h.hansen@Qcs.ru.nl

Second assessor:
Dr. T. Claassen
t.Claassen@Qscience.ru.nl

April 7, 2015

Abstract

In this thesis we investigate which algorithms within a Statistical Machine
Translation model do or don’t contribute to a better text translation. A spe-
cialized SMT model named GIATI was compared to its more basic counter-
part and as expected GIATI performed much better, in most cases doubling
the number of correctly translated words. A number of possible explana-
tion for this difference in result were found. Some of which include N-gram
values, word alignment model choice, and smoothing algorithm choice. How-
ever the biggest difference and thus most likely explanation was the use of
different word order models.

Contents

Introduction

Preliminaries

2.1 Statistical Machine Translation
2.1.1 Language Model
2.1.2 Translation Model
2.1.3 Decoder

Basic Methods for SMT

3.1 TImplementation,
3.1.1 Language Model
3.1.2 Translation Model
3.1.3 Decoder

3.2 Evaluation
3.21 BLEUResults

GIATI method for MT

4.1 TImplementation 0 oL
4.1.1 Translation Model
4.1.2 Language Model
4.1.3 Decoder
4.1.4 The Inverse Labeling process

4.2 Evaluation

Conclusions

Translation Model Training Example

A.1 Initialization
A.1.1 Translation table
A12 Dutchtable
A.1.3 Englishtable 0.

A2 Tteration 1.
A.2.1 Translation table
A22 Dutchtable

10
10
11
15
19
21
21

23
23
24
25
27
27
28

30

A.2.3 Englishtable

A.3 Tteration 2

A.3.1 Translation table

Chapter 1

Introduction

Machine Translation is the concept of using computers for the translation of
texts or audio fragments[4, 8]. In an ideal world computers would be perfect
at this and would be able to make correct translations 100% of the time. In
turn translation by humans would become unnecessary and many hours of
human labor would be saved.

Unfortunately however we do not live in the ideal world and in this world
people generally do better than computers when it comes to translation[8].
The reason why computers usually do worse than humans is because lan-
guage can be very dependent on different factors[4, 8]. For example, there
are languages in which two words are written in the exact same manner
but whose meaning depend entirely on the way they are pronounced. Fur-
thermore, in some languages there are words, such as the Dutch word bank
that are written and pronounced the exact same way but still have different
meaning. In these cases the meaning of a word is thus based on the content
of the rest of the sentence. Another possible difference between languages
is the way sentences are usually structured. While in some languages it is
standard to use a subject-verb-object order in a sentence, other languages
might make use of other orders.

As stated before these differences between languages makes it hard for
computers to make correct translations on their own, a trend that has been
observed before. However, in an attempt to solve this problem, different
Machine Translation (translation by computers) methods have been devel-
oped [1, 5,12, 13, 17, 14]. All of which have their own set of used algorithms
and end results.

The exact reason why these end results differ for every Machine Trans-
lation (MT) method however is not very apparent in the above mentioned
papers. The different MT method papers all describe the algorithms that

were used within it and tell what improvements are made in comparison
to more basic MT methods. However while comparison of implementation
techniques is done, comparison of test results is not. It seems the topic of
translation result comparison is not the main focus of papers that introduce
new MT methods. Luckily, there are of course, papers that do explore this
topic and make a study out of comparing a multitude of methods, yet unfor-
tunately not every single method is covered in them. [8, 11, 13] This while
method comparison gives greater insights in which factors in a MT method
contribute to better/worse translation end results. Without knowing these
exact factors, improving a MT method simply becomes a guessing game as
to where adaptations should be made.

In this thesis I will therefore add to the topic of MT method comparison
and will try to find the answer to the following question Which algorithms
within a MT method do/don’t contribute to a better translation end result?.

In order to do this, the following questions shall in turn be answered in
consecutive order. 1) Which end results does a basic MT method implemen-
tation give? 2) Which end results does a more specialized MT method give?
3) What are the differences between a basic and the specialized MT methods?

In this thesis the specialized MT method that will be used is the GIATI
method[5, 16]. And, seeing as this method is an improvement of more basic
translation algorithms, these more basic translation algorithms shall form
the basic MT method. This way the results of the GIATI and the basic MT
method (question 1 & 2) can be compared and if a difference is found the
improvements GIATI made to the basic algorithms (question 3) can be seen
as factors that did/didn’t improve these results. Thus the main research
questions will too get an answer.

Chapter 2

Preliminaries

2.1 Statistical Machine Translation

Both the - in the introduction mentioned - GIATI model and its underly-
ing basic method are examples of Statistical Machine Translation (SMT)
models [5, 16, 3]. Compared to other models that use simple word-by-word
translations SMT models main goal is to also take into account the results
that each word translation provides. This way when translating a sentence
with an SMT model one would not simply get a possible translation for said
sentence but one would get the most likely translation[8, 4, 5, 17] .

However, in order to give this most likely translation every SMT model
needs to take into account two main things, namely: word order and cor-
rect word-by-word translation[8, 4, 7, 17, 11, 3]. Table 2.1 below that
shows possible translations for the Dutch sentence “Dat heb ik al gedaan.”
clearly illustrates these two concepts. We see that when word order and
correct word-by-word translation are both not taken into account the given
possible translation makes no sense and certainly is not a correct English
translation of the Dutch sentence. However, when only word order is taken
into account, the translated English sentence is actually a correct one and
is certainly understandable. Yet it is not a correct translation of the Dutch
sentence because correct translation was not achieved. On the other hand,
if only correct word-by-word translation is used, prefect translation is also
not achieved. While all individual words are correctly translated the words
in the sentence seem scrambled and in the wrong order, causing the sen-
tence to be grammatically incorrect. As we see, it is only when both correct
word order and correct word-by-word translation are achieved that we get
a proper Dutch-English translation.

Correct word order

No Yes

No | ”Cat brown fish the eats.” ”The brown cat eats fish”

Correct translation

Yes | ”That have I already done” | ”I have already done that.”

Table 2.1: Possible translations of “Dat heb ik al gedaan.”

s

Having these concepts in mind every SMT model consist of two cor-
responding main elements [8, 4, 11]. The first of which is the Language
Model whose job it is to deal with word order. The Translation Model
makes up the second main element and its focus is achieving correct word-
by-word translation.

Further explanation on both the Language- and Translation Model and
their inner workings will be done in sections 2.1.1 and 2.1.2. Followed by a
section 2.3 which will focus on decoders, which are also an essential part
of any given SMT model.

2.1.1 Language Model

As stated before, the Language Model’s job is to deal with proper word
order within a sentence. When given an English sentence F the Language
Model should be able to calculate what its word order probability (or P(E))
is. The higher this word order probability P(E) is, the more likely it is that
the word order in sentence E is a logical one. Thus if one has a correctly
working Language Model one could expect the sentence “I have already done
that.” to have a higher word order probability than the sentence “That have
I already done.”

This way, when given a set of possible English translations F;,F,subscript2,. . .

for a foreign sentence F' the Language Model can simply calculate the word
order probability of each sentence E; and then conclude that the E; with the
highest word order probability is the most likely translation of sentence F.

How exactly the Language Model calculates these P(E) probabilities can
be seen as follows [8, 11, 3, 12].
Let sentence E be of length I, then £ = wj,ws,...,w;, where each w; is an
individual word. Now, to compute P(E) we require the probability of each
word w; being in position 7 in the sentence. To do this we simply need to
find what the probability is of w; following the words that came before it in
the sentence ((w!™!).
This P(w;| wi™!) for every w; € E can then be used to calculate P(E) by

using the chain rule of probability, given the following formula:

P(E) = P(w1)P(wy | wy)P(ws | w%)...P(wl | wlfl)
l
~ 1 PG | i) (21)
=1

To make this formula more concrete consider the example below where a
number of P(w;| w™!) probabilities within the Language Model are shown.

P(w;| wi™!) probabilities in the language model
P(I) =038
P(have | I) = 0.6
P(already | I have) = 0.3
P(done | I have already) = 0.1

P(that | I have already done) = 0.1

Using these probabilities the Language Model can now calculate the word
order probability of the sentence ”I have already done that.” as follows:

P(I have already done that) = P(I)P(have | I)P(already | I have)...
=08*0.6%0.3%0.1%0.1

Of course, before a machine can fully translate a text said machine must
first know these above-mentioned probabilities P (w;] wi_l). Here the Lan-
guage Model’s job comes into play because what the model does is read in
some (large) English text and from that text try to derive the probabilities
of the word orders. How the Language Model does this can vary greatly
since there are multiple algorithms that deal with this problem. Later on,
in section 3, we will see one basic Language Model algorithm fully explained.

2.1.2 Translation Model

The Translation Model is meant to deal with finding the best word-by-word
translation for a foreign language sentence F. In order to do this it needs
to be able to calculate P(E | F), which is the probability of a sentence F
translating into an English sentence F. Then when given a set of English sen-
tences Ej,Fs,...,E, the Translation Model can calculate this P(E; | F) for

every E; and conclude which of these English sentences is most likely the cor-
rect word-by-word translation of sentence F' [brown,collins,ma,berring,koehn
book].

To calculate these P(E | F) probabilities so called T-tables are used
[8, 11, 3]. In this T-table set-up each foreign language word f has its own
table of English words ey,...,e, in which each e; is coupled with the proba-
bility of f translating into e; (P(f| e;)). The following tables are examples
of possible T-tables:

Ik heb gedaan
1 0.7 have 04 done 0.8
me 0.15 had 0.4 did 0.16
we 0.075 got 0.1 do 0.02
us 0.05 posses 0.06 household 0.015
he 0.025 petty 0.04 shell 0.005

Then when we have a foreign language sentence F' = f;,fs,...,f, of n words
and an English sentence F = ey, eg,...,e, (also of n words, these T-tables -
in which every P(f; | e;) can be found - can help calculate P(E | F) with the
following formula[l1, 6, 3, ?]:

P(E|F)[]P(fi | &) (2.2)
i=1
For example, by using the above T-tables, P(I have done | Ik heb gedaan)
would be: 0.7%0.4*0.8 = 0.224.

Once again, when starting translation, a machine does not know any
of these T-table probabilities, luckily the Translation Model takes care of
this. It does this by first reading in an English and a Foreign language text
which are identical to one another (i.e. translations of the same text) in
every aspect other than the language they are in (this is called a parallel
corpus)[10]. Secondly, by reading in these texts sentence by sentence and
word by word, the Translation Model then tries to estimate the probability
of each Foreign language word f; translating into each English word e;. For
this process too there are multiple algorithms available.

2.1.3 Decoder

When we have a language model that can calculate P(E) and a translation
model that can calculate P(E | F') for every possible English sentence E and

foreign language sentence F there is still one big SMT piece missing. This
piece is Decoder.

The Decoder’s job is to, when given a sentence F, find an English trans-
lation that has the highest probability of having both a correct word order
and a correct word-by-word translation[7, 19, 18, 9]. Thus when we have a
set of English sentences F;,FEs,...,E, the best English translation E of F is
the one with the highest P(E;)P(E; | F). This gives the following decoder
formula:

E = argmazp P(E|F)P(E) (2.3)
That it is important that the Decoder uses a combination of P(E) and
P(E | F) can be seen in the example below. Here we see some possible
translations for the sentence ”Dat heb ik al gedaan.”together with the prob-
abilities they got from the language model and the translation model and
their product. It is clear that even though a sentence has the highest P(E),
and thus has the most logical order, is not always the best translation. The
same goes for a sentence that has only a high probability on correct word-
by-word translation. Therefore a combination is needed.

P(E) | P(E| F) | P(E)P(E | F)
"The brown cat eats fish” 0.8 0.1 0.08
"That have I already done.” | 0.3 0.9 0.27
"I have already done that.” | 0.7 0.9 0.63

Just as with the language and the Translation Model there are multiple
algorithms that can be used for decoding. Most of these algorithms are
adapted versions of some widely known algorithms (A* Beam-search,etc.),
this is because decoding is essentially a search problem. When given a
sentence in some foreign language it is the decoder’s task to, for every foreign
word, find its most likely translation and also to find the most likely word-
order (as seen in the Language Model). We will see the most simplistic,
greedy Decoder in the section on basic methods for SMT. For more advanced
decoders we refer to other papers.

Chapter 3

Basic Methods for SMT

3.1 Implementation

In this chapter we will look at the implementation of a basic methods within
the SMT model. Which will consists of a trainings phase, a run phase, and
an evaluation phase. All of which are described in detail in various papers
and literature [5, 3, 13, 7, 12, 11, §].

To go through these three separate phases we shall require a Dutch-
English parallel corpus obtained from the Euro Parliament [koehn]. Which
consists of four documents:

1. An English trainings text
2. A Dutch trainings text
3. An English test text

4. A Dutch test text

Of which text pairs 1 & 2, and 3 & 4 are the same texts only in different

languages. Furthermore, this corpus has a closed vocabulary, meaning
that whatever words will occur in the test set will also have been in the
trainings texts and thus will be learned during training.
Finally, as is crucial in SMT, all texts that were used in the implementa-
tion of were tokenized, transformed into lowercase, and empty lines were
removed. This was done by the use of an SMT system named Moses|2] and
self-implemented code.

With this parallel corpus the trainings phase can start. In this phase
both the language- and Translation Model will be trained to learn the word
order and word-by-word translation probabilities (the T-tables) they need
in order for the decoder to use them.

10

After this training is done the SMT model further consists of running a
Dutch test text through the decoder and having the decoder find the best
English translation for every sentence F' in that test text. These best trans-
lations will then be written in a separate translation file, which will thus be
the found English translation of the Dutch test text.

Finally the acquired translation file will be coupled with the English test
text and go into the evaluation phase. Since the English test text is — save
for its language - the same as the Dutch test text it can be used as a measure
for correctness of the translation file. How this works will be more clear in
section 3.2.

The phases of the implemented SMT method and the inputs/outputs
they have can be seen in figure 3.1. and shall be explained in more detail
this chapter. While previously using F' to indicate a foreign language sen-
tence we will now continue to use D instead since our implementation uses
the Dutch language. Furthermore d and e shall represent individual Dutch
and English words.

English trainings text Dutch trainings text
Y Y
English test text
Language Model Translation Model l
word order probabilities T-tables
> Evaluation
L 4
Dutch test text ———™ Decoder

translation text

Figure 3.1: The steps in a basic SMT method.

3.1.1 Language Model

As stated before, the goal of the Language Model training phase is to learn
the word order possibilities by reading in the English training text and
performing some action on this. What this action pertains shall be explained

11

shortly but first an important adaptation of equation (2.1) must be made.
This adaptation comes in the form of N-grams.

When dealing with long and complicated sentences the chances of one of
those sentences being in an English text become very low. As a consequence
equation (2.1) becomes highly unreliable since word order probabilities can’t
be calculated properly since there are near none sentences to derive this
probability from. To solve this problem SMT models usually use N-grams.
These N-grams don’t calculate the word order probability based on all the
preceding words but rather based on the N-1 words before that. For example
the probability P(that | I have already) changes into the probability P(that |
I have) in a 3-gram situation. Using these N-grams the formula to calculate
P(E) thus becomes:

l

P(E) =[] P(ws | w]_j_y) (3.1)
=1

However, all implementations below are based on Translation Models
that work with bigrams (2-grams). Therefore we can now forget about any
other N-grams as all further formulas will assume this set up. Important
to note though is that all basic implementations could relatively easily be
adjusted to accommodate other N-gram forms. Continuing with bigrams we
can now focus on the real training phase of the Language Model.

Basic Language Models estimate P(E) by using a Maximum Likeli-
hood Estimation (MLE). This MLE method works by keeping a count
C(w;,wg) for every bigram and a count C(w;) for every first word in the
bigram. It then estimates the word order probability of the bigram by nor-
malizing the bigram count through division ny C(w;). Formally expressed,
the word order probability of the bigram (wz | w;) is given by the following
formula:

More concretely, we consider the example below where we see a short two
sentence example English training text and some of the word order bigram
probabilities it derives from them.

The brown cat
The brown bear
The black dog

P(brown | the) = C(the, brown) / C(the) = 2/3
P(cat | brown) = 1/2 P(dog | brown) = -/2 = - (since the word
order brown dog does not exist)

12

Training phase

With the use of formula 3.1 and using the English part of the parallel corpus
we can now train a machine to estimate the probabilities of each English
word bigram simply by doing the following things:

1. Prepend every sentence in the English corpus with start symbol <s>
and, append it with end symbol </s>. This way we can also estimate
the probability of a word being in the first or last position in a sentence.

2. For every word [wi] in every sentence keep count count_fw;] of that
word.

3. For every bigram [w;,wi1] in every sentence keep count count_[w;,w; 1/
of that bigram.

These simple steps give the following Language Model pseudocode:

Algorithm 3.1: Language Model Training.

1 input: set of sentences E, table with unigrams and their counts (
initialized with 0), table with bigrams and their counts (
initialized with 0)

2 output: a list of bigram and l—gram counts for all bigrams and
individual words

3 begin

4

5 forall e in E

6 e = "<s>" + e

7 e =e + <[/s>"

8 split e into array W of words

9

10 forall i = 0 through W.length -1

11 count-W[i] 4= 1

12 count_ [W[i] W[i+1]] +=1

13 end

14

15 end

16

17 end

As we can see, this code does not return any direct output, but simply
changes the unigram (1-gram) and bigram counts in their respective tables.

Running phase

Although the above mentioned method works well for finding bigram prob-
abilities it has one major flaw. Think of what would happen if after training
of the Language Model, with the above mentioned three sentences, the ma-
chine was asked to find P(E) of the sentence The brown dog. While this
is a completely correct English sentence, the machine would still return a

13

probability of 0.0 (or an error), simply because the bigram (brown, dog) does
not occur in the learned table. This too can be seen in the example above.

To solve this problem of possibly stating that a correct English sentence
is in fact incorrect the Language Model uses a technique called smoothing.
There are multiple smoothing algorithms but in this thesis we shall use the
most simplistic one, namely Laplace smoothing. The basic mechanism
behind Laplace smoothing is that the algorithm always increases the bigram
count of any bigram with +1 during the calculation of P(E). This way even
bigrams that do not occur within a text still have a bigram count of 1.
This would mean just a simple adjustment to equation (3.1) but since all
bigramscounts have been incremented the denominator in the equation that
normalizes the probabilities should also be changed. In Laplace smoothing
this is done by simply adding the total number of individual words in the
vocabulary V to the unigram count. Thus the new equation for a bigram
probability with Laplace smoothing becomes:

C(wi, wip1) +1

Ploifwin) = =70 577

(3.2)

Using this new formula with smoothing the example previously used
changes into the following:

The brown cat
The brown bear

The black dog

P(brown | the) = C(the, brown) + 1 / C(the) + 6= 3/9
P(cat | brown) = 2/8
P(dog | brown) = 1/8

With smoothing and equation (2.1) taken into account we can now cal-
culate probability P(E) which shall be used by the decoder in the running
phase. This calculation is done with the following pseudocde:

Algorithm 3.2: Language Model Testing.

o

input: a sentence e and the lists with bigram and unigram counts
acquired from the training phase

output: the probability of e
begin
P(e) = 1.0

e = ""<s>" + e
e = e + 77</S>77
split e into array W of words

O W W N U AW N

=

forall i = 0 through W.length—1

14

11 wordcount = count-W[i] + vocabulary size

12 bigramcount = count_[W[i]i W[i+1]] + 1
13

14 P(e) #= bigramcount/wordcount

15

16 end

17

18 return P(e)

19

20 end

3.1.2 Translation Model

When training the Translation Model word alignments are implicitly
learned. There are different definitions for these word alignments depend-
ing on which alignment model is used in the SMT model. However in this
implementation we will use a simplified version of IBM Model 1 which
means that, in our case, word alignments are pairs of one Dutch word
and one English word that have occurred in the same sentence in their
respective language’s trainings texts and are thus possible translations of
one another[11, 4, ?]. Furthermore, since we are using a simplified version
of the model we will use we will assume that every Dutch word is aligned
to at least one English word. More specialized models (IBM Model 2-5) can
deal with non-aligned words or with alignments of multiple words instead of
just one on one alignments.

To learn these IBM Model 1 word alignments the Translation Model is
trained and this usually happens with the use of the Expectation Maxi-
mization Algorithm, or EM algorithm.The idea behind this EM algo-
rithm is that it does the the following:

1. Initialize the values in the Translation Model.
2. Let the Model run through the data (expectation step).
3. Let the Model learn new values through the data (maximization step).
4. Repeat step 2 and 3 until the model has converged.
We will see these steps more concretely explained in the following sec-
tions.
Initialization

Before the Translation Model can start with its training and thus it’s learn-
ing of the translation probability between some foreign word and some En-
glish word initialization is required. In this initialization phase the program
iterates through the Dutch and English trainings texts one time and con-
structs a total of three tables named Translation, English, and Dutch. These

15

tables can contain the following data:

Translation The table that has, for every possible Dutch/English word
alignment (e | d) its probability P(e | d) and its count count_(e | d).
In this table the value of P(e | d) is always set to 1 / vocabulary size
of the Dutch trainings text during initialization.

Dutch The table that has the count (count_(d)) of every single Dutch word.

English The table that has the count (count_(e)) of every single English
word.

Before we continue on to the pseudo code for this EM algorithm, it is
important to note that during initialization not every (e | d) word combi-
nation exists. This is because the algorithm only sees two words as possible
translations for one another when they occurred in the same sentence in
each parallel corpus. For example, when given the following sentence com-
binations as trainings text:

De kat The cat
De beer | The bear

The word alignments (the | de), (cat | de), (the | kat),(the | beer), etc.
are all quite possible. However, the translation (bear | kat) is not possible,
simply because these words occur in different sentences in the parallel cor-
pus. Therefor this translation will not occur in table Translation.

These results are acquired by the following psuedocode:

Algorithm 3.3: Translation Model Initialization.

1 input: set of sentence pairs (D,E) acquired from Dutch and
English trainings texts
2 output: the Translation, Dutch and English tables with all
possible alignments and individual words and their initialized
probabilities and counts.
3 begin

5 Translation = new table <String f, String e, Double P(e|d),
Double count (e|d)>

6 Dutch = new table <String d, Double count_(d)>

7 English = new table <String e, Double count_(e)>
8

9 forall sentence pairs (D,E)

10

11 forall d in D

12 if not d already in Foreign

13 Foreign.add(d,0.0)

16

14
15 forall e in E

16 if not e already in English

17 English.add(e,0.0)

18

19 if not (e | d) already in Translation

20 Translation.add(e,d, 1/vocabulary size (D), 0.0)
21

22 end

23 end

24

25 end

Training phase

Steps 2, 3, and 4 of the EM algorithm make up the actual training for the
Translation Model.

However, before we go into more detail on step 2 and 3 we will first briefly

discuss step 4. This step namely involves convergence. When testing if
the model has converged the model runs through the trainings files again an
calculates, with the learned probability values, the translation probability
for every sentence pair it finds. It then uses a different formula to calculate
the perplexity of the model as a whole. Convergence is then achieved if
this preplexity has reached a global minimum and thus doesn’t drop any
lower on all the next training iterations.
In this thesis however, we will not make use of convergence. Calculating per-
plexity is time consuming and complex work and it may take over a thousand
iterations before a model is fully converged. The code used for this SMT im-
plementation will have a total of five trainings cycles, something that gives
relatively good results since most of the convergence happens in the first few
cycles.

We can see in the pseudocode below that during the execution of these
steps the counts for all foreign words, English words, and translation pairs
get set to 0 only to be incremented during the times the translation model
iterates through the parallel corpus. The model does this by, for every sen-
tence, first changing the count_(d) for all Dutch words. Following this it
uses these counts to calculate both count_(e | d) and count_(e). Then, fi-
nally, after the model is done with running through the complete corpus
every translation probability P(d | e) is calculated by dividing count_(e | d)
by count_(e).

Algorithm 3.4: Translation Model Training.

1 input: set of sentence pairs (D,E) aquired from the trainings
files , table Translations, English, and Foreign, from
initialization fase.

17

© 0N O U W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

output: The Translation table with updated probability for every
Dutch/English word alignment
begin

forall i = 0 through 5
forall (e|d) in P
count_(e|d) = 0

end

forall e in E
count_(e) =0

end

forall sentence pairs (D,E)

forall d in D
count_(d) =0
for all e in E
count_(d) += P(e]|d)
end
end

forall d in D
for all e in E
count_(e|d) += P(e|d) / count d
count_(e) += P(e|d) / count d
end
end

end
forall (el|d)

p(e|d) = count_(e|d) / count_(e)
end

end

end

To see the precise workings of the EM algorithm in a concrete example

see Appendix A.

Running phase

Calculating P(E | F)) can now simply be done by transforming equation (2.2)

into code.
Algorithm 3.5: Translation Model Testing.
1 input: a sentence pair (F,E), Translations table
2 output: the probability of P(E|F)
3 begin
4
5 prob = 1.0
6
7 forall f in F
8
9 forall e in E

e e
N = O

if (e|d) in Translations
prob x= P(e|d)
else

18

13 prob x= 0.0;

14 end
15

16 end

17

18 end

For an example of this simply recall the example in section 2.1.2.

3.1.3 Decoder

The decoder is the final, and perhaps the most complex, part used in SMT.
The most basic decoder that would, when given a foreign language sentence
F, try every possible English word e for every f in F is not a decoder that
we would want to use. Namely, without any use of any sort of heuristics, the
size of the entire search space would grow roughly exponential according to
the input size of the sentence. This complexity is clearly unwanted, and the
time it would take to, for example, translate a text with 1 million sentences,
would be simply unacceptable.

The use of heuristics in decoding is thus unavoidable and, since we are im-
plementing the very basics of SMT in this thesis, we will use many of them.

The decoder that was tested in this thesis was a very simplistic one
in the sense that, for every word that needed translating, it only used the
most likely translation as found by the Translation Model. Other possible
word translations were thus not taken into account. Also, when we look at
the pseudocode below, we see that the word orders found by the Language
Model are only used in their most greedy form.

First (line 7) the sentence that needs to be translated into English is
split into individual words. Following that (line 11/15) the decoder runs
through those words wy,...,w, trying to find the word w; that is most likely
to be at the beginning of the sentence (thus the w; fro which P("<s>",w;)
is highest. When the first translated word of the sentence gets added to
the translated sentence so far it gets removed from the original sentence.
Finally after that, in lines 24 through 32, the model does the same only
instead of using the probability of a w; following ”<s>" it searches for the
word that has the highest probability of following the word it found in the
previous iteration and is thus currently the last word of the translation until
now. When there are no more words to translate the decoder has found a
translation for the sentence.

Algorithm 3.6: Decoder

1 input: Dutch sentence d
2 output: translated English sentence e
3 begin

19

String e = '’

split d into list W of words
best probability = 0.0

best word = 7777

© 0 N o

10

11 forall w in W

12 if P(’<s>’’,w) > best probability
13 best probability = P(7’<s>"",w)
14 best word = w

15 end

16

17 e.add(best word)

18 W.remove (best word)

19

20 while W.size > 0

21 best word = 7’

22 best probability = 0.0

23

24 for all w in W

25 if P(last word of e, w) > best probability
26 best probability = P(last word of e, w)
27 best word = w

28 end

29

30 e.add(best word)

31 W.reove (best word)

32

33 end

34

35 return e

36

37 end

As a more clear example, when having acquired the probabilities shown
below from both the Language Model and the Translation Model this de-
coder would, when translating the sentence ”De bruine kat.”, use the words
the, brown, dog (which are the most likely word translations) but would
reorder them into ”The dog brown.”. This because the word the was most
likely to be the first in the sentence, with dog being most likely to follow
after that, etc.

word orders
The | <s>) =10.8
brown | <s>) = 0.6
dog | <s>)=10.3
brown | the) = 0.7
dog | the) = 0.8

translation probabilities
P(the | de) = 0.9
P(a| de) = 0.5

20

P(brown | bruine) = 0.7
P(cat | bruine) = 0.2
P(dog | kat) = 0.6
P(cat | kat) = 0.5

We shall see how these decoders, in combination with the implemented
Language and Translation Model, preformed in the evaluation section.

3.2 Evaluation

One possible method for the evaluation of a SMT model is using human
evaluation. We could simply take the text that needed translation and the
translated text and check word for word whether it was translated correctly
or not. However this scoring is of course strongly dependant on the persons
vocabulary in both languages and also possibly on his or hers interpretation
of certain words and sentences. Another problem could arise when dealing
with the translation of very long texts. Using human evaluation for those
would be time consuming, and a very monotone task.

Luckily there are some methods that can also evaluate the work of an
STM model. And though there is no golden standard for which one of
these works best, one of the most commonly used methods seems to be
BLEU[15, 5, 8]. Therefore, an implementation of BLEU called iBLEU was
used for our implementation.

BLUE is an evaluation method that requires two files as input. Namely;
the file that was translated by the implemented SMT method, and a file
that has the correct translation for the testing file that was used. Given
these two files BLEU then, like the human translator would, checks word
for ford whether the correct translation was used. However, BLEU also
has the added feature that it also evaluated the correct translations of N-
grams. Thus, if we had sentences The cat and The dog and they would be
compared by BLEU the number of correct unigrams would be 1 (the and
cat) while the number of correct bigrams would be 0, since there were no
correct translations of two words in a row.

In BLEU the scores range from 0 to 1, in which 0 is the worst score (0%
of the words correctly translated) and 1 (100% correctly translated) is the
best score.

3.2.1 BLEU Results

When translating the test file with the basic SMT method that was imple-
mented in this thesis the following results came forward:

21

Type

1-gram

2-gram

3-gram

4-gram

Cumulative score

0.3287

0.1394

0.0589

0.0244

This table indicates that when it comes to the translation of individual
words our implementation was correct in 32% of the cases. However when
looking at the number of times we correctly translated multiple words in
a row these percentages decreased quickly, eventually correctly translating

four words in a row only 2% of the time.

22

Chapter 4

GIATI method for MT

In this section we will look at a different, more advanced method for machine
translation. As mentioned in the introduction, this will be the Grammat-
ical Inference and Alignments for Transducer Inference (or GIATI)
method that was developed by Casacuberta and Vidal [5, 16]. The basic
algorithms and techniques within this model will be briefly explained before
being compared to their counterparts that we have seen in the more basic
SMT model in chapter 3l. Following that we will look at some of the results
these researches found when evaluating their model.

4.1 Implementation

Casacuberta and Vidal explain in their paper that during training, when
faced with a sentence pair (F,E) their GIATI method goes through three
main steps:

1. A labeling process that transforms the training pair (F,E) into some
sort of String.

2. A GI algorithm for the inference of a Finite State automaton from
the strings obtained in step 1.

3. An inverse labeling process in which the string found in the labeling
process is transformed back to word pairs.

These steps can be clearly seen in the figure below, which was provided
by Casacuberta and Vidal in their paper.
Here we see that starting with a sample A of trainings pairs (F,E), we go
through a labeling process in order to obtain a sample of training strings.
Then these training strings go through a grammatical inference (GI) algo-
rithm in order to learn a Finite State Automaton from them.

23

- Labeling — £(-)
ACE " x A scr

Sample of training pairs * Sample of training strings

GI |algorithm

T:ACT(T) Inverse labeling — A(-) A S C L(A)
A finite-state transducer A finite-state automaton

Figure 4.1: GIATI method steps

In the following sections we will explore how these individual steps com-
pare to the Language Model, the Translation Model, and the Decoder in a
basic SMT model.

4.1.1 Translation Model

The reason why, unlike in the previous chapters, we start with explaining
the Translation Model is that in the GIATI model the Translation Model is
the starting point.

While in the basic SMT method we showed that before the machine
learned which foreign sentence words were aligned with which English words,
the GIATI method assumes these alignments are already known before trans-
lation training occurs. The training of these alignments is therefore not part
of the GIATI model. Thus even before the GIATI model is used it is given
a set of sentence pairs (F,E) which would look something like this: (Dat heb
ik al gedaan, 1(3) have(2) already(4) done(5) that(1)). In which the number
between the parenthesis indicates the position of the aligned foreign word
in the foreign sentence. If we were to make similar alignments in between
parenthesis with our basic SMT implementation each foreign word f would
be aligned with its most likely translation which is acquired from training
the translation model.

The fact that GIATT also works with these most likely translations shows
that, even though the Translation Model is not part of the GIATI model, it
has the same basic idea as the one we used in the previous chapter.

The only real difference is that the Translation Model that was used in
the GIATI paper made use of alignments based on IBM Model 5. Which,
compared to Model 1, is better adapted to handle the possibility of one
word translating into multiple words and preventing word pairs that appear
together often to translate to the same word.[11]. However since the align-
ments used in the GIATI method were individual word-to-word alignments
the benefits of IBM Model 5 compared to lower order models are not really

24

neccesary.

4.1.2 Language Model

Of the three steps in the GIATI model step 1 and 2 are most similar to
the Language Model in our basic SMT Model. The labeling process first
finds word orders that occur within sentences and then the GI algorithm
calculates the probabilities of these phrases having these word orders and
translations. We will now see how this process works.

The Labeling Process

As we have seen before, word order is an important part of proper machine
translation. It is thus no surprise that GIATI also has some way of handling
the fact that words in different language sentences might not always be in the
same position in said sentences. Take for example once again the sentences
Ik heb dat al gedaan. and I(1) have(2) already(4) done(5) that(3).(6). Here
we can clearly see, since the alignment isn’t sequentially ordered, that the
word order is definitely not the same. GIATI solves this by turning sentences
E and F of training pair (F,E) into one string z continuously using one of
the following rules until all the foreign words are aligned:

Each foreign word f; in position 7 is paired with an English word at the
same position e;. In turn each English word e; has an alignment position j
(between its parenthesis).

If « < 7 and no words are saved
pair f; with A and save ¢;

If ¢ < 7 and words are saved
save e;

If ¢ > 5 and no words are saved
pair f; with e;

If ¢ > 5 and words are saved
pair f; with all previously saved words (starting from the first one
saved) + e;. After using all saved words they are removed from the
saved list.

To make this method more explicit we will look at what will happen to
the previously mentioned sentences Ik heb dat al gedaan. and I(1) have(2)
already(4) done(5) that(3).(6). We will look at each position i of the foreign
word f, English word e;, and each aligned position j.

25

i|f €j j | pair

1] Ik I 1| i=j so: (Ik,I)

2 | heb have 2 | i=j so (heb,have)

3 | dat already | 4 | i<j so (dat,\) already gets saved

4 | al done 5 | i<j and there is already something saved so done gets saved
5 | gedaan | that 3 | i>j so all saved words get used (gedaan,already done that)
6 6 |i=jso(.,.)

In the end this results in z = (Ik,I)(heb,have),(dat,\)(gedaan,already
done that)(. , .).

Thus, in the labeling process of GIATI, the correct word order of a
sentence is found just like the Language Model in chapter 3 did. There
are some differences however, the first one being that in GIATI the word
order probabilities are not derived from training with an English text but
are derived from alignment information given by the Translation Model.
Another big difference is that while in the basic implementation each foreign
word f got paired with exactly one English word e here f can be paired
with multiple English words. This practice is called phrase translation
[8, 11, 3, 13] and gives rise to the possibility of one word translating into
none or multiple words.

The GI algorithm

In the second step of the GIATI model the strings obtained from step 1 are
used to make a Finite State automaton. This is done, for every string z,
by makin a state transition for every (f,e) pair in z. Furthermore if there
are two pairs (f;, e;) and (f;, ej) with f; = f; and e; = e; then their state
transitions always go towards the same state. A final state is made once
sentence z has ended.

For example we obtained the following strings from step 1:

(1Ik,I) (heb,have), (dat,\) (gedaan,already done that)
(1Ik,I)(heb,have), (dat,\)(gedaan,done that)

(Jig, You) (hebt,have)(dat,\) (gedaan,done that)
(1k,1)(heb,have) (ijs,icecream)

the following Finite State Automaton would be created:

26

(heb, have) .’/—\\
> 3

{dat A} ‘m[gedaan.already dane tha&@

(ijs,icecream gedaan,done that)

: {hebthave)

Figure 4.2: a Finite State Automaton

After this Finite State Automaton is drawn in GIATI the probabilities of
each transition are calculated the same was as the n-gram probabilities were
calculated in the basic SMT model. For example in the above seen situation
the probability of gedaan translating into already done that is 1/2. The word
order probability is thus calculated using the same method, only, in GIATT it
is calculated for phrases instead of individual words. The only real difference
in this probability calculation is that, instead of Laplace smoothing, the
GIATI model made use of back-off smoothing which is an more advanced
smoothing technique and give more accurate results[8].

4.1.3 Decoder

In order to find a correct translation for a new sentence GIATI goes through
one final step. Namely the Inverse labeling process.

4.1.4 The Inverse Labeling process

In the final Inverse Labeling Process all pairs in z from step 1 (and thus
all transitions made in step 2) are transformed back into translation pairs
as we know them after translation model training. However, since the GI
algorithm before this step calculated the probabilities associated with each
transition within its Finite State automaton, each translation pair will now
have a probability assigned to it.

For example the above automaton will give the following translation
pairs with each an example/ made up probability.

P(Ik| I) = 0.8
P(Jij | You) = 0.9
P(hebt | have) = 0.8
P(heb | have) = 0.7

27

P(dat | A) = 0.6

P(ijs | icecream) = 0.4

P(gedaan | already done that) = 0.3
P(gedaan | done that) = 0.7

This way the decoder can, when translating a Dutch sentence, simply go
through this Dutch sentence word by word and pick the most likely trans-
lation for it and append it to the translated English sentence.

It is obvious here that this decoder is much simpler than the one we used
in the basic SMT model. This is the case because instead of needing to first
find correct translations for each word and then, ideally, trying all possible
word orders this word ordering is already done and can be found in the finite
state automaton. This makes decoding much faster since word translation
probabilities are implicitly combined in the word order probabilities.

4.2 FEvaluation

Just like we did in the previous chapter, the developers of GIATI also used
the BLEU method for the evaluation of their SMT implementation. They
evaluated GIATT’s performance on three different corpora and in three dif-
ferent language combinations. However, unlike our 1,2, 3, and 4-gram BLEU
evaluations only the 1-gram variant was used to evaluate GIATI. Below we
see the results.

2-gram
Spanish English 1 | 0.86
Spanish-English 2 | 0.86
Italian-English 1 0.56
Italian-English 2 0.62
Spanish-German 0.74

Here we can clearly see that the GIATI model performed much better
than our basic SMT implementation. While our individual word translation
(BLEU’s 1-gram score) was only correct 32% of the time, GIATI scored at
least double that percentage in almost all translation tasks.

While in our SMT implementation we only used bigrams in the language

model the developers of GIATI also tested their model with a wide range (N
= 2-12) of N-grams.Evaluation of these different N-grams for the language

28

model showed that the higher values of N gave better translation results
than the lower ones. In some cases higher N-gram values resulted in a 10%
increase of correctly translated words.

29

Chapter 5

Conclusions

After implementing a basic SMT method and comparing its end results with
the more advanced GIATI method a few conclusions can be drawn in respect
to the research questions asked in the introduction.

When it comes to sub questions 1 and 2 that were asked then a clear
answer has been found. While the basic SMT method implementation cor-
rectly translated individual words 32 % of the time, the GIATI method
did this 56% to 86% of the time, depending on which languages were used.
The answer to sub question 3 can also be found when looking at chapter 4.
The main differences between the basic SMT implementation and the GIAT
method were: the use of different alignment models (model 1 vs. model 5),
the difference in word ordering technique, the difference in smoothing al-
gorithm, and the difference in allowing non-alignment and one-to-multiple-
alignments for words.

However, as we also saw in chapter 4 the advantages of IBM Model 5
were not really used and while good smoothing gives more reliable results
it, per definition, only helps with word orders that are on average very rare.
The difference in word ordering technique was the biggest one found in this
thesis and was the direct cause for acceptance of non-alignment and one-to-
multiple-alignments.

As for an answer to the main research question of this thesis, we can
therefore give a partial one. While the differences in algorithms between the
two methods are all possible algorithms that contribute to a better transla-
tion results, we can’t say with certainty if all the algorithm improvements in
GIATI contributed to a better end result. However since the main difference
was the way word order probabilities were calculated we dare conclude there
is a definite correlation between having a good model for this and having
good translation end results.

In order to find out exactly why this big difference in results due to
different handling of word order was found further research is needed. A

30

possible continuation of this thesis could be further research into word order
models. While we have seen that word order could very well be an important
part in correct machine translation we have not compared all different word
order algorithms that are out there and it is thus possible that there are
also factors that contribute to bad/good translation within these separate
word order models. Using the same translation model and decoding method
one could possibly vary the Language Models/word order models used and
compare the results each of them gives.

31

Bibliography

1]

H. Alshawi, S. Bangalore, and S. Douglas. Learning dependency trans-
lation models as collections of finite state head transducers. Computa-
tional Linguistics, 26:1:45-260, 2000.

S. Ananiadou, editor. Moses: Open Source Toolkit for Statistical Ma-
chine Translation. Association for Computer Linguistics, 2007.

P.F. Brown and et al. A statistical approach to machine translation.
Computational Linguistics, 16:2:79-285, 1990.

J. Brunning. Alignment Models and Algorithms for Statistical Machine
Translation. PhD thesis, Cambride University Engineering Department
and Jesus College, 2010.

F. Casacuberta and E. Vidal. Machine translation with in-
ferred stochastic finite-state transducers. Computational Linguistics,
30:2:181-204, 2014.

M. Dillinger. Implementing machine translation, 2004.
http://www.translationoptimization.com/papers/
DillingerLommel_MT_BPG.pdf.

U. Germann and et al., editors. Fast Decoding and Optimal Decoding
for Machine Translation. Toulouse, France, 2001.

D.1 Jurafsky and J. H. Marthin. Speech and Language Processing: An
Introduction to Natural Language Processing, Speech Recognition, and
Computational Linguistics. Prentice-Hall International, 2007.

P. Koehn. Pharaoh: A beam search decoder for phrase-based statistical
machine translation models. http://homepages.inf.ed.ac.uk/
pkoehn/publications/pharaoh-amta2004.pdf, 2004.

P. Koehn. Europarl: A parallel corpus for statistical machine transla-
tion. http://www.statmt.org/europarl/i, 2005.

P. Koehn. Statistical Machine Translation. Cambridge University
Pressl, 2009.

32

[12]

[13]

[14]

[15]

[16]

[17]

M. Korenevsky, A. Bulusheva, and K. Levin, editors. Unknown Words
Modelling in Training ang Using Language Models for Russian LVCSR
System. Sppech Technology Center, Saint-Petersburg, Russia, 2011.

J. Ma. Automata in natural language processing. Technical Report
0834, Laboratoire de Recherche er Developpement, I’Epita, France,
2008.

S. Niessen and H. Ney. Statistical machine translation with scarce re-
sources using mopho-syntactic information. Computational Linguistics,
30:2:205-225, 2014.

K. Papineni, S. Roukos, T. Ward, and W. Zhu. Bleu: a method for au-
tomatic evaluation of machine translation. Technical Report RC22176
(W0109-022), IBM Research Division, 2001.

D. Pico, J. Tomas, and F. Casacuberta. Giati: a general methodology
for finite-state translation using alignments. http://personales.
upv.es/~Jjtomas/articulos/sspr04%28David%29.pdf, 2004.

C. Quirk, A. Menezes, and C. Cherry. Dependency tree translation:
Syntactically informed phrasal smt. Technical report, Microsoft Re-
search,Redmond, USA, 2004.

M.]1 Turitzin. Statistical machine translation of french and german into
english using ibm model 2 greedy decoding. http://nlp.stanford.
edu/courses/cs224n/2005/turitzin.pdf.

Y. Wang and A. Waibel. In International Conference on Spoken Lan-
guage Processing, ISCA, Sydney, Australia, 1998.

33

Appendix A

Translation Model Training
Example

Set of sentence pairs (D,E)

Het boek
The book

Bruin boek
Brown book

A.1 Initialization

A.1.1 Translation table

translation pair | P(e | d) | count_(e | d)
(the | het) 1/3 0
(the | boek) 1/3 0
(book | het) 1/3 0
(book | boek) 1/3 0
(brown | bruin) 1/3 0
(brown | boek) 1/3 0
(book | bruin) 1/3 0

A.1.2 Dutch table

het 0

boek | 0

bruin | 0

34

A.1.3 English table

the
book

brown

A.2 TIteration 1

A.2.1 Translation table

translation pair | P(e | d) | count_(e | d)
(the | het) 0.5 0.5
(the | boek) 0.25 0.25
(book | het) 0.4 0.5
(book | boek) 0.4 0.2540.25
(brown | bruin) 0.66 0.5
(brown | boek) 0.33 0.25
(book | bruin) 0.4 0.5

A.2.2 Dutch table

het 1/3+1/3
bock | 1/3 +1/3 + 1/3 + 1/3
bruin 1/3+1/3

A.2.3 English table

the 0.5+0.5

book | 0.2540.25+0.5+ 0.25

brown 0.540.25

35

A.3 TIteration 2

A.3.1 Translation table

translation pair | P(e | d)
(the | het) 0.556
(the | boek) 0.181
(book | het) 0.0.444

(book | boek) 0.580
(brown | bruin) 0.625
(brown | boek) 0.242
(book | bruin) 0.375

36

