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Abstract

In order to understand how genes affect each others expression, we want
to infer regulatory relationships between genes and use these genes to build
gene regulatory networks. Several algorithms exist for inferring regulatory
relationships between genes. One of the state of the art algorithms is Trig-
ger, but Trigger seems to produce unsatisfactorily high probability estimates
in some cases. In this thesis we analyze several issues of Trigger which are
related to the estimation of the local false discovery rate, which Trigger uses
to calculate its probability estimates. We show that even though Trigger is
able to identify regulation relationships, the issues lead to an overestimation
of the probabilities for regulation relationships.

We will also demonstrate that a new approach using Bayes factors for
correlation matrices can be applied to this problem and does not suffer
from these issues. We apply the new algorithm, which we call BFCM, to
an experiment in yeast in order to show that it is able to produce rich
and biologically coherent information about the underlying gene regulatory
relationships. The new algorithm produces more conservative probability
estimates than Trigger, and is able to identify new regulation relationships.
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Chapter 1

Introduction

Large scale gene expression and genotype data has become abundant since
the rise of microarrays [6, 30, 10]. Microarrays have allowed us to measure
genetic variation, and RNA and protein expression levels for thousands of
genes on hundreds of individuals [31, 19, 20]. This made quantative trait
locus (QTL) mapping possible, which is a method that identifies genetic
regions that are linked to a phenotype of interested, such as the expression
level of gene. The QTL mapping does not give full information about the
interaction between genetic locations and gene expression levels as genes
influence each other through regulation. In order to fully understand how
genes affect each others expression levels, the “wiring diagram” is of great in-
terest, which describes how genes regulate each other and how they interact.

Inferring gene regulatory networks is of great interest, as it can help with
studying complex diseases such as cancer. An example of such research, is
the research by Emmert-Streib et al. [15] in which they infer a gene regula-
tory network of breast cancer, which they use to identify genes that play a
role in breast cancer. Figure 1.2 shows the gene regulatory network which
they found.

Recently a large number of algorithms have been published that try to
infer these regulation relationships between genes [3, 17, 18, 8, 21, 22]. In
thesis we will look at one of these algorithms, Trigger [8]. Trigger constructs
the underlying regulation network by estimating the probabilities of one
gene regulating another. Trigger has several issues however; it is known to
overestimate some of these probabilities [7] and it is unable to detect regu-
lation relationship which also include hidden variables which affect both of
the genes [8].

In this thesis we analyze the issues of Trigger that cause probability esti-
mates that seem to be too high and we determine the causes of these errors.

2



Figure 1.1: Gene regulatory network of breast cancer. Taken from Emmert-
Streib et al. [15].
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Figure 1.2: Gene expression. Taken from Wikipedia.

We will also try to find solutions for these problems. Finally we introduce
a new algorithm for the inferring of gene regulation relationships, which we
call BFCM and uses correlation matrices and Bayes factors [16]. We will
show that this algorithm is able to produce rich and biologically coherent
information by applying it on a gene expression dataset for yeast [6, 5] and
we will compares these results to the results of Trigger..

The remaining part of this chapter provides a short overview of the bi-
ology behind gene expression and putative regulation relationships between
gene and provides an overview of the remaining chapters in this thesis.

1.1 Genomics

Cells store their hereditary information in the form of DNA. In order to
carry its information-bearing function DNA must express its information.
During a process called gene expression the information stored on DNA is
used the guide the creation of other molecules in the cell. Gene expression
consists of two main steps: first the gene is transcribed to a molecule called
messenger RNA. This messenger RNA is then transported outside the cell’s
nucleus and is translated into long sequences of 20 different animo acids
called proteins by a complex molecule machine called a ribosome.

Proteins can influence how cells function, and proteins can also influence
the process of gene expression. Through regulation proteins can influence
both the transcription of DNA and the translation of messenger RNA. Not
only can a protein influence the expression of the gene that it was copied
from, but it can also regulate the gene expression of different genes. This
process is called gene regulation and allows a cell to express proteins when
needed, which improves the versatility and adaptability of an organism.
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A Quantitative Trait Locus (QTL) is a section of DNA, which is called
the locus, that highly correlates with the variation of a quantitative trait.
Especially of interest are Expression QTLs (eQTLs) which are genomic loci
which contribute to a variation of expression levels of messenger RNAs and
proteins. We make a distinction between two types of linkage between genes
and QTL. The first type is called cis-linkage in which eQTLs are mapped
to a location on the DNA which is close to the gene of origin. The second
type of linkage is trans-linkage in which the expression levels of proteins and
mRNA are linked to loci that are far way from their gene of origin.

We refer the reader to ”Molecular Biology of the Cell” by Alberts et al.
[1] for more information about gene expression.

In order to analyze regulation between genes data about the loci and ex-
pression levels of genes have to collected. Two inbred lines, individuals who
are completely homozygous, having identical alleles of each gene on both
homologous chromosomes, by repeated sibling mating, are crossed to create
new individuals with randomized DNA. The simplest cross is a backcross, in
which two inbred lines are crossed to obtain the first filial generation. As this
generation receives a copy of every chromosome of each of the two parental
strains, the first filial generation is heterozygous, thus having different alle-
les of some genes on both homologous chromosomes. These individuals are
then crossed with one of the two parental strains, which results in a new
generation with a chromosome that is a mosaic of the chromosome of the
two parental strains.

A more complicated approach uses recombinant inbred lines. This ap-
proach again crosses the two parental strains to create a first filial generation,
but instead of creating a backcross with one of the two parental strains, an
individual from the first filial generation is crossed with another individual
from that generation two create N pairs of individuals in the second filial
generation. Finally these pairs are crossed in recombinant inbred lines until
we have N individuals that are completely homozygous at every locus.

Once we have N segregants we can collect the necessary data for analysis.
The individuals are genotyped to find their genetic structure. Microarrays
are used to identify genetic markers on the genome and to measure the al-
leles on each of the N individuals. The allele is used to identify from which
parental strain each piece of DNA comes from. Microarrays are also used
to measure the expression levels of each gene by measuring the activity of
proteins and messenger RNA corresponding to those genes. These two mea-
surements give us the allele at each genetic marker for each individual and
the expression level of each gene for each individual.
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1.2 Thesis organization

The following chapter provides a description of Trigger [8] and we show how
the local false discovery rate is used to calculate probability estimates for
gene regulation relationships. The chapter also provides a short analysis of
the yeast dataset using Trigger. The third chapter analyzes two issues that
cause Trigger to produce estimates that are higher than expected.

The fourth chapter introduces a new algorithm for inferring gene regu-
latory relationships, called BFCM. The algorithm applies theory based on
Bayes factors of correlation matrices to produce a probability estimate for
gene regulation relationships. The remainder of the chapter analyzes the
yeast dataset using BFCM and compares the results with this results of the
analysis using Trigger.

And finally the final chapter will provide a conclusion and will discuss
some of the future work we plan to do.
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Chapter 2

Trigger Algorithm

Trigger (Transcriptional Regulation Inference from Genetics of Gene Ex-
pRession) [8] is an algorithm that can be used to reconstruct transcriptional
regulatory networks and to identify putative regulators of genes.

2.1 Description of the algorithm

Trigger estimates the probability Pij that the transcription of gene i is a
regulator of the transcription of any other gene j, after which the user has
to decide for which probabilities the regulation relationship is significant.
Trigger calculates conservative estimates of these probabilities which are
denoted by P̂ij . Using these estimated probabilities Trigger constructs a
directed graph which is used to represent the regulatory network in which
nodes represent genes and directed edges represent regulation relations be-
tween genes. If the estimated probability, P̂ij , is higher than an user set
threshold λ, a directed edge between genes i and j is added in the graph.

In order to calculate these probabilities we first have to define what it
mathematically means that gene i regulates gene j. The regulation of gene
i by gene j corresponds to the causal model L → Ti → Tj . Here L is used
to denote the locus, Ti is used to denote the transcription level of gene i
and Tj is used to denote the transcription level of gene j. We are interested
whether or not L causes Ti and Ti causes Tj . By the causation Ti → Tj we
mean that a causal manipulation of Ti will change the distribution of Tj ,
but an ideal manipulation of Tj will not cause a change in the distribution
of Ti.

The locus L is used to determine causation. The locus L is properly
randomized, as its randomization takes place before the expression levels of
the Ti’s are measured. Thus the association of L and the expression level of
a Ti implies a causation of Ti by L.
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In order to estimate the probability Pij Trigger estimates the probabil-
ity Pr(L → Ti → Tj), the probability that the causal model L → Ti → Tj
explains the gene expression data. As this model is quite complicated, it is
difficult to directly estimate this probability. The Causal Equivalence The-
orem is used to split the model in three simpler models. The theorem states
that the causal relationship L → Ti → Tj exists and there are no hidden
variables causal for both Ti and Tj if and only if the conditions L → Ti,
L→ Tj and L⊥Tj |Ti hold. The conditions L→ Ti and L→ Tj ensure that
Ti and Tj are both randomized by L and the condition L⊥Tj |Ti ensure that
the causal effect from L on Tj is fully explained by Ti.

By splitting the causal model in three simpler conditions we can also
split the probability Pr(L → Ti → Tj) in three probabilities that are much
easier to estimate:

Pr(L→ Ti → Tj)

= Pr(L→ Ti and L→ Tj and L⊥Tj |Ti)
= Pr(L→ Ti) Pr(L→ Tj |L→ Ti) Pr(L⊥Tj |Ti|L→ Ti, L→ Tj)

As a consequence of the usage of the Causal Equivalence Theorem Trig-
ger is unable to detect regulation relationships in which there is confounding
caused by hidden variables. Trigger detects the cases when there are no con-
founding hidden variables, and is only able to calculate correct probabilities
in these cases. Chen et al. claim that this causes Trigger to produce conser-
vative estimates of Pij , as Pr(Ti → Tj) ≥ Pr(L→ Ti → Tj) ≥ Pr(L→ Ti →
Tj and there exists no hidden variable H such that H → Ti and H → Tj),
the probability of regulation relationships with confounding hidden variables
are underestimated, but this does not necessarily imply that the probability
estimates are conservative, as the estimate itself can still overestimate Pij .

Algorithm 1 provides an algorithmic description of Trigger. Trigger first
finds the marker with strongest local linkage to Ti for each gene g and then
estimates the probabilities for each of the three models. The next section
explains how each of the probabilities are estimated.

2.2 Estimation of probabilities

The estimation of the three probabilities is split in five steps. First the
expression data, ti1, ti2, . . . , tin, for each gene is transformed to follow a
standard normal distribution using the following formula:

t∗ik = Φ−1

(
rank(tik)

n+ 1

)
k = 1, 2, . . . , n
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Algorithm 1 Algorithmic description of Trigger
1: p← loc link p values
2: for all genes g do
3: loc markers ← get local markers(marker.pos, exp.pos, g)
4: l[g] ← min(p[g, local markers])
5: loc prob[g] ← calc loc prob(l, p, g)
6: end for
7: for all genes g1 do
8: for all genes g2 do
9: sec prob[g1, g2] ← calc sec prob(l, g1, g2)

10: ind prob[g1, g2] ← calc ind prob(l, g1, g2)
11: end for
12: end for
13: return loc prob × sec prob × ind prob

The next three steps involve the generation of the observed and null
statistics, the latter are generated using permutation testing. First we have
to generate the statistics for the primary linkage, L→ Ti. The model

tik = αi + βi`k + εik

can be used to test if Ti is linked to Li. Under the null hypothesis of no
linkage βi = 0 and under the alternative hypothesis of linkage βi 6= 0. Using
a permutation test the null statistics X0b

i are generated by replacing tik with
ti,r(j), where r is a random permutation of 1, 2, . . . , n.

The next step is the calculation of the test statistics for the secondary
linkage, L → Tj . Again we model the relationship between Tj and L as
tjk = αj + βj`k + εjk, but now we need to consider that there is a linkage
between Ti and L as the test is conditioned on L → Ti. As (Ti, Tj) jointly
follow a bivariate normal distribution, the two variables have the following
distribution when conditioned on L:(

tik|`k
tjk|`k

)
∼ N

((
αi + βi`k

αj + βj`k

)
,

(
σ2
i σij

σij σ2
j

))
Again, under the null hypothesis of no linkage βj = 0 and under the alter-
native hypothesis of linkage βj 6= 0. Just like when we tested for primary
linkage, we have to compute an observed likelihood ratio statistic Yij and
a number of permuted statistics Y 0b

ij . These null statistics are computed
by permuting the expression data of Tj . Note that in the previous step we
could have also permuted the genotype markers `k, but in this step this is
no longer as it would also remove the primary linkage which we conditioned
on.
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In the fourth step the observed and null statistics for the conditional
independence between L and Tj given Ti are calculated. Contrary to the
previous two tests we will now have to test for independence instead of test-
ing for dependence. As this is proves to be much more difficult we will
instead test for dependence. A test of Tj |Ti and L being independent is
equivalent to a test of (Tj − ρijTi)|Ti and L being independent, where ρij
is the correlation between Ti and Tj . Under the null hypothesis the dis-
tribution of (tjk − ρijtik)|tik, `k will not depend on `k and thus it will be
distributed by a single normal distribution (with mean zero and a variance
of 1 − ρ2

ij). Under the alternative hypothesis the distribution will depend
on the allele and thus (tjk − ρijtik)|tik, `k will be distributed by a mixture
of normal distributions with unspecified allele-specific means and variances.
In order to calculate the null statistics the expression data is permuted for
both gene i and gene j with seperate permutations.

In the final step the calculated statistics are used to compute empirical
Bayesian estimates for the probabilities. The local false discovery rate[12,
13, 14], which is the posterior probability that null hypothesis is true given
a test statistic X. The local false discovery rate is defined as

fdr(X) =
π0f0(X)

π0f0(X) + (1− π0)f1(X)
,

with f(X) = π0f0(X) + (1− π0)f1(X) the mixture density of the statistics
X, where f0 is the null density, the density function of the statistics for
which the null hypothesis is true, and f1 is the alternative density, and π0

the proportion of true null hypotheses. When using p values the local false
discovery rate can be simplified as fdr(p) = π0

f(p) with the simplified mixture

density f(p) = π0 + (1− π0)f1(p), as independent p values that come from
the null hypothesis have a uniform distribution between 0 and 1.

The local false discovery rate is used to provide a probability estimate
for each of the three models. In order to estimate the probability of the
primary linkage, L → Ti, we can simply estimated the local true discovery
rate, which is one minus the local false discovery rate, over all i.

Pr(L→ Ti|Xi) = 1− fdr(Xi)

We can use the same strategy for each fixed i to estimate the probability of
secondary linkage:

Pr(L→ Tj |L→ Ti, Yij) = 1− fdr(Yij)

The same strategy cannot be applied to estimate the probability of condi-
tional independence for a twofold of reasons: we now want to calculate the
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probability that the null hypothesis is true and we need to condition on pri-
mary and secondary linkage. In order to properly condition on primary and
secondary linkage we select the (1 − πiY0 ) most significant proportion of Tj
for secondary linkage from the previous step and only their corresponding
Zij are used for the estimation of the local false discovery rate:

Pr(L⊥Tj |Ti|L→ Ti, L→ Tj , Zij) = fdr(Zij)

Finally the three probabilities are multiplied to form the estimate of Pij :

Pr(L→ Ti → Tj) =

Pr(L→ Ti)× Pr(L→ Tj |L→ Ti)× Pr(L⊥Tj |Ti|L→ Ti, L→ Tj)

2.3 Implementation details

In this section we will discuss a number of issues that arise during the im-
plementation of Trigger.

In order to detect causation Trigger not only looks at Ti and Tj , the
transcripts for genes i and j, but also at a locus L. This requires us to
consider each triplet (L, Ti, Tj) instead of each pair (Ti, Tj). In the case of
the yeast dataset this means that we now have to consider 125,323,635,360
triplets instead of just 38,632,440 pairs. In order to improve the computa-
tional efficiency, Trigger only considers one locus, Li, for each gene i, which
is the locus with strongest cis-linkage to transcript i.

The second issue that arrises is that we need to select a method for the
estimation of the local false discovery rate. A large number of these methods
involve the estimation of the densities of the observed p values under the
null and alternative hypotheses, the considered methods differ in the way
that they estimate these densities. As p values have an uniform distribu-
tion under the null hypothesis, we only have estimate the density of the p
values under the alternative hypothesis. Chen et al. [9] use kernel density
estimation for all three probabilities, but our implementation we will only
kernel density estimation for primary and secondary linkage and we use a
Beta-Uniform Model (BUM) for the conditional independence. In the next
section we will argue that kernel density estimation is unsuited when trying
to determine conditional independence between L and Tj given Ti.

It is possible to approximate the distribution of the null statistics using
analytic distributions. As Trigger uses likelihood ratio tests we can approx-
imate the distribution of two times the log of the likelihood ratio statistic
with a Chi-squared distribution. As this is only an approximation this will
reduce the accuracy of the estimated probabilities, but as we are no longer
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required to compute the permuted statistics the algorithm becomes signifi-
cantly more efficient. We’ve opted to use an approximation for the primary
and secondary linkage, but to use empirical p values for the conditional
independence.

2.4 Results

We used Trigger to analyze an experiment of yeast [6, 5].
In this experiment two strains of genes were crossed to produce 112

independent recombinant segregants. The cross involved the two parental
strains BY4716, which is isogenic to the laboratory strain S288C, and the
wild isolate RM11-1a, which was acquired from a Califnornia vineyard. The
expression levels of 6216 were measured and genotypes were measured on
3244 markers, which covered 99% of the genome. The genetic map of the
marker locations is shown in figure 2.1.

Figure 2.1: Genetic map of the 3244 marker locations in the yeast dataset

We examined two genes in detail, both of which are suspected regula-
tors. NAM9 is a suspected regulator [8] which is located on chromosome
14 and is a component of mitochondrion [27]. NAM9 also is a structural
constituent of ribosome, it is involved in mitochondrial translation and the
mitochondrial ribosomal small subunit [29].
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ILV6 is another suspected regulator [8] which is located on chromosome
3 and is a regulatory subunit of acetolactate synthase, which catalyzes the
first step of branched-chain amino acid biosynthesis, enhances the activity
of the Ilv2p catalytic subunit and localizes to mitochondria [11, 24].

We used Trigger to analyze linkages between gene transcripts and loci.
In order to find locally linked genes we performed likelihood ratio tests for
all markers within a 50 kb window of the gene. We limited the locus to be
in a 50 kilobase region of the transcript Ti in order to increase statistical
and computational efficiency, this region was large enough such that most
genes were linked to a locus in their region. Figure 2.2 shows the locations
of the markers and genes on the genome that are linked. We used a p value
cut-off corresponding to a FDR of 5%, using the methodology described in
[32]. The figure shows large amount of cis-linkage, which is indicated by
the diagonal line. Vertical lines in the figure indicate linkage hotspots, both
chromosome 3 (the chromosome of ILV6) and chromosome 14 (where NAM9
is located) seem to be linkage hotspots.

Figure 2.2: Genome-wide eQTL and gene expression linkage map.

We also used Trigger to construct a gene regulatory network for the
experiment of yeast. We compared our implementation with the results re-
ported by Chen et al. Figure 2.1 shows the results for genes significantly
regulated by NAM9, showing large differences in the reported probabili-
ties. Figure 2.2 shows the results for genes significantly regulated by ILV6,
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Gene Rank (Chen et al. ) Prob (Chen et al. ) Prob (Ours)

MDM35 1 0.973 0.828

CBP6 2 0.969 0.827

QRI5 3 0.960 0.805

RSM18 4 0.959 0.816

RSM7 5 0.954 0.818

MRPL11 6 0.925 0.778

MRPL25 7 0.888 0.750

DLD2 8 0.872 0.759

YPR126C 9 0.861 0.730

MSS116 10 0.849 0.752

Table 2.1: Genes regulated by NAM9 with estimated regulation as estimated
by Chen et al. and by our implementation.

showing more similar results. The differences in probabilities indicate that
estimations by Trigger are unstable.
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Gene Rank (Chen et al. ) Prob (Chen et al. ) Prob (Ours)

TRP4 1 0.999 1.000

ARG2 2 0.988 0.991

YPL264C 3 0.977 0.981

GGC1 4 0.951 1.000

LYS4 5 0.948 0.980

NPR1 6 0.947 0.954

ASN1 7 0.938 0.969

CCP1 8 0.937 0.956

YKR015C 9 0.928 0.938

CPA2 10 0.928 0.988

Table 2.2: Genes regulated by ILV6 with estimated regulation as estimated
by Chen et al. and by our implementation.
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Chapter 3

Analysis of Trigger

This chapter provides an analysis of two issues in Trigger which lead to the
overestimation of the regulation probabilities. The previous chapter showed
that the probability estimate for a regulation relationship was split in three
parts, in the case of local linkage and secondary linkage the probability
is defined as one minus the local false discovery rate and in the case of
the conditional independence it is defined as simply the local false discovery
rate. The next sections show that this problematic in the case of conditional
independence, due to two issues that can cause the local false discovery rate
to overestimate. The next section explains how Trigger estimates the local
false discovery rate, and the remaining sections discuss its issues.

3.1 Estimation of the local false discovery rate

Trigger estimates the probabilities using the local false discovery for p values,
which for p values is defined as

fdr(p) =
π0

f(p)
,

where π0 is the proportion of true null hypotheses, and f is the mixture
density, which is defined as

f(p) = π0 + (1− π0)f1(p),

where f1 is the density of the p values for which the alternative hypothesis
is true. The proportion of true null hypotheses π0 and the mixture density
f have to be estimated in order to estimate the local false discovery rate.

In order to estimate the local false discovery rate we first have to estimate
the proportion of p values that come from the null hypothesis, π0. This is
difficult without knowing the distribution of alternative p values, but we
can use the fact that null p values are uniformly distributed between zero
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and one, as the p value is the probability that a more extreme statistic is
found under the null hypothesis, to find a reasonable estimate. Storey and
Tibshirani [32] introduced the following estimation method, which is used
by Trigger [9]:

π̂0(λ) =
#{pi > λ; i = 1, . . . ,m}

m(1− λ)

which involves a tuning parameter λ. The method assumes that p values
larger than λ the null hypothesis is true and that they are thus uniformly
distributed. This means that the height of the region p > λ can be viewed
as a conservative estimate of π0, in the sense that it does not underestimate
the proportion of true null hypotheses.

The tuning parameter has to be set such that the region p > λ is mostly
flat, which would indicate that most of the p values in that region are uni-
formly distributed. In order to do this automatically, Storey and Tibshirani
estimate π0 for a range of value of λ and then fit a natural cubic spline
with three degrees of freedom through the estimated values to approximate
π0 as a function of λ. Finally this cubic spline is estimated in p = 1 and
the resulting value is used as the estimate for π0. Figure 3.1 shows a visual
description of this method.

The other component that needs to be estimated is the mixture density
f , which is defined as

f(p) = π0 + (1− π0)f1(p)

and is the mixture of null density (which is uniform in the case of p-values)
and the alternative density function, f1, with mixing weight π0. Trigger
estimates the mixture density as a whole, instead of plugging in the esti-
mate for π0 and estimating the alternative density f1. Trigger uses Kernel
Density Estimation [28, 25] and in order to deal with the bounded support
of p-values it transforms [33] the p-values using the quantile function of a
standard normal distribution. Figure 3.2 shows how the mixture density
function and the local false discovery are estimated after transformation.

3.2 Issue 1: the estimate of π0 is an upper bound

The first issue occurs during the estimation of the proportion of true null
hypotheses, π0. The estimation method for π0 assume that the mixture
density of the p values, f , is decreasing and that π0 = f(1). However these
assumptions are not always correct. As π0 ≤ f(p) = π0 + (1 − π0)f(p) for
all p, this will lead to an overestimation of the true π0, which will lead to
an overestimation of the local false discovery rate which is equal to π0/f(p),
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Figure 3.1: Estimation of π0. The histogram gives a rough estimate of
density of the p values, the dots represent the estimates π̂0(λ), and the line
is the cubic spline used to estimate π0.

Figure 3.2: Estimation of the fdr for conditional independence for regulator
NAM9.

18



and thus it will lead to an overestimation of the probability for conditional
independence between Li and Tj given Ti.

Nguyen and Matais [23] show that π0 and f1 are identifiable on a set
(0, 1) × F if and only if for all g1 ∈ F and for all c ∈ (0, 1) we have that
c+(1− c)g1 6∈ F . Here F is the set of possible alternative density functions.
This is not necessarily the case when using a likelihood ratio test, so π0 is
not guaranteed to be identifiable.

In the case of Trigger, which uses two-sided likelihood ratio tests, the
distributions of the alternative p values are unknown, thus π0 is not al-
ways identifiable. When π0 is unidentifiable π̂0 serves as an estimated upper
bound for π0. This causes no issues in the case of local linkage and secondary
linkage as Pr(L→ Ti|p) = 1−fdr(p). In this case we find an estimated upper
bound of the fdr and thus the estimated probability is conservative. In the
case of conditional independence however the probability is overestimated,
as in this case the probability is equal to the fdr, which is overestimated.

During the estimation of π0 it is assumed that the mixed density function
of the p values is decreasing and that thus f(1) ≤ f(p) for all p ∈ [0, 1]. As
the mixture density function is defined as f(p) = π0 + (1 − π0)f1(p), π0 is
smaller or equal than f(p) for all p ∈ [0, 1], and thus π0 ≤ minp∈[0,1] f(p). If
we incorrectly assume that f is always the lowest in p = 1, a better upper
bound might be available. This means that Trigger possibly overestimate
the local false discovery and thus the probability of conditional independence
even more than necessary.

3.3 Issue 2: estimation of π0 and f are decoupled

Trigger decouples the estimation of the proportion of true null hypotheses
and the mixture density. Careful estimation of the mixture density is re-
quired to ensure that f̂(p) ≥ π̂0 for all p, otherwise the estimate of the local
false discovery rate π̂0/f̂(p) will be larger than 1, which causes the estimated
probability to be above 1 in the case of conditional independence (in the case
of local and secondary linkage this causes no issues as we are not interested
in low probabilities). We have observed this behaviour during the analysis
of the yeast dataset using Trigger. Figure 3.3 shows the estimated local false
discovery rate for the conditional indepence with ILV6 and shows that for
high p values the local false discovery rate, an thus the probability, could be
estimated as exactly 1.

Figure 3.3 shows that for p values larger than 0.7 the local false discov-
ery rate and thus the estimated probabilities of conditional indepence are
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Figure 3.3: Plot of the fdr for conditional independence for the regulator
ILV6. Note that the local false discovery is estimated as equal to 1 for p
values above 0.8

close or equal to one. The histogram of the p values, which provides a sim-
ple approximation of the density function of the p values, suggests that the
empirical density between 0.65 and 0.75 is below π̂0, which would cause a
local false discovery rate above one and hence after cut-off of the local false
discovery rate an estimated probability of conditional independence that is
larger than one.

Figure 3.4 shows a plot of the estimated false discovery rates, but this
time we did not enforce the monotonicity of local false discovery rate for
p values and we did not cut-off values above one. It shows that between
p values 0.6 and 0.85 the estimated local false discovery rate is larger than
one. This clearly indicates that the estimate of the local false discovery rate
is wrong, as the local false discovery rate is the probability that the null
hypothesis is true for a given p value and thus cannot be higher than one.

Figure 3.5 shows that similar errors occur during the estimation of the
local false discovery rate for secondary linkage. In this case however these
kinds of errors are less troublesome as these errors occur for high p values
and produce a high fdr and in the case of secondary linkage we are interested
in a low fdr for low p values.
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Figure 3.4: The local false disocery rate estimate for conditional indepen-
dence for the regulator ILV6. The fdr is no longer corrected for monotonicity
and fdr values above one are no longer cut off. It is now visible that the fdr
incorrectly gets estimated for p values between 0.6 and 0.8.

These errors occur because the estimation of π0 and f are decoupled.
And thus it is never enforced that π0 ≤ f(p) for all p-values p and that thus
the estimate π̂0 should be smaller than the estimate f̂(p) for all p-values p.

3.3.1 Solutions

In order to solve this issue the estimation of π0 and f should be coupled:
either f should be estimated while ensuring that f̂(p) ≥ π̂0 for all p values
p, or π0 should be estimated such that π̂0 ≤ minp∈[0,1] f(p).

Efron et al. [14] noted that this behavior should not happen and used
this to property to find the following upper bound for π0 for p values:

π0 ≤ min
p∈[0,1]

f(p)

Using this property they found the following estimator for π0:

π̂0 = min
p∈[0,1]

f̂(p).

Note that the minimum of the ratio of the estimated densities no longer
forms an upper bound for π̂0, but that when π̂0 ≥ minp∈[0,1] f̂(p) errors will
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Figure 3.5: The fdr for secondary linkage for regulator NAM9.

occur in the estimation of the local false discovery rate. Efron et al. note
that much better estimates for π0 are available.

In order to improve the estimation of the mixture density without de-
creasing the quality of the estimation of the proportion of true null hypothe-
ses, a number of assumptions are made [23]

(a) f is monotonically decreasing.

(b) limp→1 f(p) = π0.

(c) f ≥ π0 for all p values.

As shown in the previous section the second assumption is incorrect, but as
this assumption was already implicitly made by Trigger we believe that this
will not worsen the estimation of the local false discovery rate.

These assumptions allow us to estimate the mixture density using a
Beta-Uniform Mixture model [26]. This method fits a number of Beta dis-
tributions to observed p-values.

f(x) = λ+ (1− λ)axa−1

The parameters λ and a are estimated using Maximum Likelihood esti-
mation. Pounds and Morris use this model to estimate π0 using π̂0 =
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Figure 3.6: Estimation of the fdr for conditional independence for regulator
ILV6. Note that the mixture density f (green line) is lower than π0 · f0 (red
line), leading to a local false discovery estimate of one (black line).

λ̂ + (1 − λ̂)â, but instead we will use our estimate π0 to estimate the mix-
ture density. We fit the following more general distribution to the observed
p-values:

f(p) = π0 + (1− π0)
pα−1(1− p)β−1

B(α, β)

We plug in our estimate of π0 and we use maximum likelihood estimation to
estimate α and β, we restrict α to values in (0, 1) and β to values in (1,∞)
to ensure that the mixture density function is non-increasing.

Figure 3.7 shows the results when using the BUM model for the esti-
mation of the mixture density and the local false discovery rate. Compared
3.3 which uses a kernel density estimation which is decoupled from the es-
timation of π0 there no longer is a region of p values for which the local
false discovery rate is equal to one. As the BUM method explicitly assumes
that f is non-increasing there no longer is a need to adjust the local false
discovery rate for monotonicity.

3.4 Summary of the issues

In this chapter we analyzed the seemingly high probability estimates that
Trigger calculates. We found two issues in Trigger that could explain these
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Figure 3.7: Estimation of the fdr for conditional independence for regulator
ILV6 using a BUM model.

high estimates. Both of these issues occur during the estimation of the local
false discovery rate, which Trigger uses as the probability for conditional
independence between Li and Tj given Ti. The first issue is caused by the
incorrect assumption that for high p values the null hypotheses is always
true. This causes an overestimation of the proportion of true null hypothe-
ses, which in turn causes an overestimation of the local false discovery rate.
The second issue is caused by the decoupled estimation of f and π0. This
allows situations to occur in which π̂0 > f̂(p) which causes the estimate of
the local false discovery rate, π̂0/f̂(p) to be larger than one.
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Chapter 4

Bayes Factors of Correlation
Matrices

In the previous section we have shown two issues that cause Trigger to over-
estimate the probabilities for regulatory relationships between genes, due to
problems in the estimation of the local false discovery rate. In this section
we will show how a method based on a Bayesian factors using correlation
matrices [16] can be applied infer regulatory relationships between gene tran-
scripts. This approach completely avoids the usage of local false discovery
rates by scoring a larger number of models and thus does not suffer from
the same issues as Trigger.

4.1 Description of the algorithm

The goal of BFCM is to infer the structure between three stochastic vari-
ables, X1, X2 and X3. Five types of structures are considered by BFCM:
full independence (X1 ⊥ X2 ⊥ X3), acausal single independence (X1 ⊥ X2),
causal conditional independence (X1 ⊥ X2|X3), one independent variable
(X1 ⊥ (X2, X3)) and full dependence (X1 6⊥ X2 6⊥ X3). Algorithm 2 gives a
short overview of the algorithm.

Similarly to Trigger first selects the marker with the highest local link-
age for each gene transcript. Instead of calculating a test statistic BFCM
measures the absolute value of the correlation between markers and expres-
sion levels and selects the locus in a region near the gene with the highest
absolute correlation to the expression levels. As the genotype markers are
randomized before the expression levels a measured, a correlation between
the genotype markers and the expression levels of the gene transcripts im-
plies a causation of the expression levels by the genotype markers.

Once the number of triples (L, Ti, Tj) has been reduced, we calculate the
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Algorithm 2 Algorithmic description of BFCM

1: corr1 ← correlation(marker, exp)
2: for all genes g do
3: loc markers ← get local markers(marker.pos, exp.pos, g)
4: l[g] ← max(corr[g, local markers])
5: end for
6: corr2 ← correlation(exp, exp)
7: for all genes g1 do
8: for all genes g2 do
9: Pr[g1, g2]← score corr patterns(corr1, corr2, l, g1, g2)

10: end for
11: end for
12: return Pr

probability of a structure explaining the data:

Pr(S|D) =
P (D|S) Pr(S)

P (D)

. By conditioning on S we can rewrite P (D) in terms of P (D|S) and P (S):

P (D) =
∑
S

P (D|S) Pr(S)

These probabilities are estimated using Bayes factors of correlation matrices
[16]. The correlation matrices are transformed to covariance matrices and a
Bayes factor comparing a structure S1 with another structure S2:

K =
Pr(D|S1)

Pr(D|S2)
=

∫
Pr(Σ|S1) Pr(D|Σ, S1)dΣ∫
Pr(Σ|S2) Pr(D|Σ, S2)dΣ

.

The algorithm constructs a correlation matrix for the (Ti, Tj) pair and
then for each triplet it constructs a 3×3 correlation matrix, ρ, which is com-
puted by extracting the correlation coefficients from the two larger correla-
tion matrix. For each (L, Ti, Tj) triple we calculate a Bayes factor for each
structure, in which compare the structure with the structure X1 6⊥ X2 6⊥ X3:

K(X1⊥X2⊥X3) = c1(n, v)c 1
2
(n, v)‖ρ‖

n+v
2

K(X1⊥(X2, X3)) = c1(n, v)

(
‖ρ‖

1− ρ2
23

)n+v
2

K(X1⊥X2|X3) = c 1
2
(n, v)

(
‖ρ‖(1− ρ2

12)

(1− ρ2
12)(1− ρ2

13)(1− ρ2
23)

)n+v
2

K(X1⊥X2) =
c1(n, v)

c 1
2
(n, v)

(1− ρ2
12)

n+v−1
2
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with:

c1(n, v) =
n+ v − 2

v − 2

c 1
2
(n, v) =

Γ(n+v
2 )Γ(v−1

2 )

Γ(n+v−1
2 )Γ(v2 )

We also need to choose a prior on the eleven structures. One option is
to represent the causal relationships using directed acyclic graphs (DAGs).
We then count the number of DAGs for each possible structure and compare
that to the total number of DAGs. Figure 4.1 shows the structures which are
considered by BFCM in order to infer the regulatory relationships between
genes. Some of the possible DAGs are missing from this list of structures as
these are biologically impossible, such as Ti → Li.

Using the Bayes factors we can then estimate the probability of a struc-
ture:

Pr(S|D) =
K(S) Pr(S)∑
T K(T ) Pr(T )

(4.1)

in which the common term 1/Pr(D|X1 6⊥ X2 6⊥ X3) cancels out. The
estimated probability Pr(Li⊥Tj |Ti|D) is then used as probability estimate
for the regulation relationship Li → Ti → Tj .

4.2 Results

We analyzed the yeast dataset using BFCM, in order to analyze the algo-
rithm. Table 4.1 shows the number number of putative regulators found and
the number of edges found for different probability thresholds. For instance
for a threshold of 0.75 we found 5042 significant regulatory relationships
among 2580 genes of which 365 were regulators, these edges have a false
discovery rate of 24.1%. Figure 4.2 shows the distribution of the probabili-
ties found by BFCM. No probabilities above 80% were found, even though
this can be unsatisfactory, it also means that the estimated probabilities are
more conservative than those found by Trigger which means that the FDR
won’t be underestimated as much.

These results show that BFCM estimates are much more conservative
than the estimates found by Trigger. The probability estimates found by
BFCM also have a slower fall-off than Trigger and they highest probability
is at roughly 80%. This means that it could be harder to select a suitable
probability cut-off using the False Discovery Rate.
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Figure 4.1: Models considered by BFCM. (a) Full dependence. (b) Sin-
gle independence (Li⊥Ti). (c) Single independence (Li⊥Tj). (d) Condi-
tional Independence (Li⊥Ti|Tj). (e) Conditional independence (Li⊥Tj |Ti).
(f) Conditional independence (Ti⊥Tj |Li). (g) One independent variable
(Li⊥(Ti, Tj)). (h) One independent variable (Ti⊥(Li, Tj)). (i) One indepen-
dent variable (Tj⊥(Li, Ti)). (j) Full independence (not pictured). Arrows
with two directions indicate that there two possible structures for the model.
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Probability Number of putative regulators Total number of genes Number of edges FDR (%)

0.77 12 39 27 22.9

0.76 209 1488 2002 23.5

0.75 365 2580 5042 24.1

0.7 851 5266 31531 27.2

Table 4.1: Number of putatitive regulators and regulation relationships
found by BFCM at different probability cut-offs.

Figure 4.2: Histogram of probability estimates by BFCM. The histogram
shows that most of the gene pairs get assigned a low probability estimate.
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Gene Rank (BFCM) Prob (BFCM) Rank (Trigger) Prob (Trigger)

MRPS8 1 0.764 87 0.473

UBP16 2 0.763 257 0.318

MTO1 3 0.763 510 0.209

MRP1 4 0.763 706 0.154

IFM1 5 0.763 738 0.148

COX10 6 0.763 631 0.173

MRPS5 7 0.762 58 0.528

DIA4 8 0.762 134 0.402

MDM35 9 0.761 2 0.766

MNP1 10 0.761 146 0.391

Table 4.2: Genes regulated by NAM9 with highest probabilities for BFCM
and corresponding rank and probabilities for Trigger

Gene Rank (Trigger) Prob (Trigger) Rank (BFCM) Prob (BFCM)

CBP6 1 0.768 13 0.759

MDM35 2 0.766 9 0.761

RSM7 3 0.756 14 0.758

RSM18 4 0.747 18 0.754

QRI5 5 0.742 39 0.743

MRPL11 6 0.720 20 0.754

MSS116 7 0.696 27 0.750

AFG3 8 0.694 28 0.749

DLD2 9 0.693 23 0.752

MRPL25 10 0.688 62 0.729

Table 4.3: Genes regulated by NAM9 with highest probabilities for Trigger
and corresponding rank and probabilities for BFCM
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Gene Rank (BFCM) Prob (BFCM) Rank (Trigger) Prob (Trigger)

QDR3 1 0.769 1 1.0

TRP4 2 0.769 3 1.0

ARG1 3 0.768 1134 0.386

YDR476C 4 0.768 97 0.890

ARG5 5 0.767 553 0.589

LAP3 6 0.766 1649 0.216

HIS1 7 0.766 92 0.894

BSC5 8 0.765 235 0.782

ARG2 9 0.765 15 0.989

YIL056W 10 0.763 48 0.938

Table 4.4: Genes regulated by ILV6 with highest probabilities for BFCM
and corresponding rank and probabilities for Trigger

Gene Rank (Trigger) Prob (Trigger) Rank (BFCM) Prob (BFCM)

QDR3 1 1.0 1 0.769

GGC1 2 1.0 13 0.762

TRP4 3 1.0 2 0.769

CPA2 4 1.0 24 0.756

FRE6 5 1.0 35 0.751

YPR059C 6 1.0 29 0.753

ADE3 7 0.998 37 0.750

DMA2 8 0.998 65 0.735

UGA3 9 0.997 56 0.742

HIS5 10 0.996 41 0.749

Table 4.5: Genes regulated by ILV6 with highest probabilities for Trigger
and corresponding rank and probabilities for BFCM
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GO term P value Cluster frequency Background frequency FDR (%) Genes

mitochondrial translation 3.325e-22 18 out of 26 170 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, MNP1, MRPL3, MRP49, RSM7, MRPL27, MRPL11

mitochondrion organization 9.836e-22 22 out of 26 429 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MTO1, MDM35, MNP1, YNR020C, MRPL3, MRP49, MRPL27, RSM7, MRPL11

single-organism biosynthetic process 1.946e-11 20 out of 26 934 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MNP1, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

translation 1.538e-10 18 out of 26 753 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, MNP1, MRPL3, MRP49, RSM7, MRPL27, MRPL11

peptide biosynthetic process 1.686e-10 18 out of 26 757 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, MNP1, MRPL3, MRP49, RSM7, MRPL27, MRPL11

peptide metabolic process 3.375e-10 18 out of 26 788 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, MNP1, MRPL3, MRP49, RSM7, MRPL27, MRPL11

amide biosynthetic process 4.983e-10 18 out of 26 806 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, MNP1, MRPL3, MRP49, RSM7, MRPL27, MRPL11

cellular amide metabolic process 1.551e-9 18 out of 26 861 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, MNP1, MRPL3, MRP49, RSM7, MRPL27, MRPL11

organelle organization 3.584e-9 22 out of 26 1622 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MTO1, MDM35, MNP1, YNR020C, MRPL3, MRP49, MRPL27, RSM7, MRPL11

single-organism organelle organization 1.138e-8 19 out of 26 1127 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, MTO1, MNP1, MRPL3, MRP49, MRPL27, RSM7, MRPL11

organonitrogen compound biosynthetic process 1.465e-8 19 out of 26 1143 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, MNP1, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

organonitrogen compound metabolic process 3.601e-7 19 out of 26 1369 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, MNP1, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

single-organism metabolic process 0.000001067 22 out of 26 2133 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, DLD2, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MTO1, MNP1, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

cellular protein metabolic process 1.306e-6 20 out of 26 1680 out of 7166 0.00% CBP6, UBP16, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, YNR020C, MNP1, MRPL3, MRP49, MRPL27, RSM7, MRPL11

cellular component organization 2.048e-6 22 out of 26 2202 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MTO1, MDM35, MNP1, YNR020C, MRPL3, MRP49, MRPL27, RSM7, MRPL11

protein metabolic process 4.346e-6 20 out of 26 1794 out of 7166 0.00% CBP6, UBP16, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, YNR020C, MNP1, MRPL3, MRP49, MRPL27, RSM7, MRPL11

cellular component organization or biogenesis 4.530e-5 22 out of 26 2566 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MTO1, MDM35, MNP1, YNR020C, MRPL3, MRP49, MRPL27, RSM7, MRPL11

cellular nitrogen compound biosynthetic process 4.854e-5 19 out of 26 1819 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, MNP1, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

gene expression 6.646e-5 20 out of 26 2087 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, MTO1, YNR020C, MNP1, MRPL3, MRP49, MRPL27, RSM7, MRPL11

cellular macromolecule biosynthetic process 0.0004719 18 out of 26 1854 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, MNP1, MRPL3, MRP49, RSM7, MRPL27, MRPL11

macromolecule biosynthetic process 0.0005172 18 out of 26 1865 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, MNP1, MRPL3, MRP49, RSM7, MRPL27, MRPL11

organic substance biosynthetic process 0.0006984 20 out of 26 2386 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MNP1, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

biosynthetic process 0.0008792 20 out of 26 2418 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MNP1, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

cellular biosynthetic process 0.003231 19 out of 26 2348 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, MNP1, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

cellular metabolic process 0.004386 24 out of 26 3934 out of 7166 0.00% CBP6, UBP16, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, DLD2, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MTO1, MNP1, YNR020C, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

organic substance metabolic process 0.006802 24 out of 26 4014 out of 7166 0.00% CBP6, UBP16, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, DLD2, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MTO1, MNP1, YNR020C, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

cellular macromolecule metabolic process 0.009326 21 out of 26 3066 out of 7166 0.00% CBP6, UBP16, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, MTO1, MNP1, YNR020C, MRPL3, MRP49, MRPL27, RSM7, MRPL11

cellular nitrogen compound metabolic process 0.009512 20 out of 26 2783 out of 7166 0.00% CBP6, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, MRPS17, MRP1, DIA4, NAM9, MRPS8, MTO1, MNP1, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

Table 4.6: GO Terms for biological processes for NAM9 and top 25 regulated
genes found by BFCM

Just as in previous sections we looked at two genes in detail: NAM9 on
chromosome 14 and ILV6 on chromosome 3. In section 3.1 we saw that both
genes had high cis-linkage and each locus that they were locally linked to
showed large amounts of trans-linkage to other genes. At a 75% probabil-
ity cut-off BFCM found 27 significantly regulated genes by NAM9 and 38
significantly regulated genes by ILV6. Tables 4.2, 4.3, 4.4 and 4.5 show the
genes with the 10 highest probability estimates for BFCM and Trigger, for
NAM9 and ILV6. These results show that many of genes that get a high
probability estimate from Trigger also receive a high probability estimate
from BFCM, but many of genes that received a high probability estimate
from BFCM did not receive a high probability estimate from Trigger.

In order to determine whether significantly regulated genes were related
to their regulator we used the Gene Ontology (GO) database [2]. We em-
ployed the tool GO Term Finder [4] to find the significant terms among regu-
lators and regulated genes. This approach infers information from separately
and independently performed experiments and allowed us to test specifically
whether common processes, functions, and components are present among
each set of genes. We found that all regulated genes were significantly re-
lated to their regulators.

Tables 4.6, A.1 and A.2 show the significant GO terms for NAM9 and its
significantly regulated genes. All genes that were found to be significantly
regulated by NAM9 using BFCM share significant GO terms with NAM9.
Furthermore all but two of the terms found annotate NAM9, which further
suggests that NAM9 is a putative regulator for these genes. NAM9 isn’t the
only gene that appears in all but two of the terms though, other such genes
include MRPS8 and RSM18.

Tables A.3 and A.4 show the significant GO terms for ILV6 and its sig-
nificantly regulated genes. All genes that were found to be significantly
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regulated by ILV6 using BFCM share significant GO terms with ILV6. Fur-
thermore all but three of the terms found annotate ILV6, which further
suggests that ILV6 is a putative regulator for these genes. ILV6 isn’t the
only gene that appears in all but two of the terms though, other such genes
include HOM3 and ARG2.
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Chapter 5

Conclusions

In this thesis, we investigated algorithms which can be used to infer regu-
latory networks between genes. We investigated Trigger, which seemed to
produce probability estimates that are too high, and we developed a new ap-
proach, which we call BFCM, to infer causal regulatory relationships among
genes, which is based on Bayes factors of correlation matrices.

We have shown that Trigger overestimates some of the probabilities for
regulation relationships among genes, and that these estimates are unsta-
ble. After thresholding the probabilities, these overestimated probabilities
can be incorrectly identified as regulation relationships in the gene regu-
latory network. These issues are caused by an overestimation of the local
false discovery rate which is used as the probability estimate when test-
ing for conditional independence between Li and Tj given Ti in the model
Li → Ti → Tj , and thus leads to an overstimation of the probabilities.

The first issue occurs during the estimation of the proportion of true
null hypotheses, π0, and its identifiability. We have shown that currently
available estimates for this proportion are unsuited as they give an upper
bound for π0, which results in an upper bound for the local false discovery
rate.

The second issue is caused by the decoupled estimation of the proportion
of true null hypotheses and the mixture density of the p values. We have
shown that in the case the value of the mixture density f is close to π̂0, the
estimated upper bound of π0, kernel density estimation can provide an esti-
mate of f(p) which causes an overestimation of the local false discovery rate.

We believe that Trigger is suitable for the discovery of putative regu-
lation relationships, even though Trigger overesimates the probabilities, as
gene regulation relationships that get assigned a high probability estimate
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by Trigger also get a high probability estimate from BFCM, which avoids
issues in the estimation of the local false discovery rate by using Bayes fac-
tors instead.

We introduced a new algorithm for inferring gene regulatory network
called BFCM, which does not suffer from these issues as it uses Bayes factors
instead of local false discovery rates in its estimates. We have demonstrated
how BFCM can be applied to inferring causal regulatory relationships be-
tween genes. We applied BFCM to an experiment in yeast in which 112
recombinant lines were monitored for genome-wide expression. Using anal-
ysis of the Gene Ontology database of two suspected putative regulators we
have shown that BFCM produces biologically coherent information.

BFCM fixes some of the issues of Trigger. Firstly it does not overestimate
the probabilities of regulation as much as Trigger. Trigger only estimates
the probability for one of the causal models, whereas BFCM compares a
large number of possible models.

5.1 Future Work

In the future we would like to see if the issues with Trigger can be fixed.
Currently no underestimates for the proportion of true null hypotheses is
available. Thus in the future we’d like to investigate whether or not there
are good underestimates of π0.

We would also like to test BFCM using simulations similar to [21] and
[22]. In order to compare BFCM with Trigger on simulated data we would
need to use a slightly different approach to simulating the networks. As
Trigger uses local false discovery rates in the estimation of the probabilities,
it needs to test a large number of hypotheses at the same time. We believe
that the comparison between the two algorithms on the yeast dataset pro-
vides a sufficient comparison, but a comparison on the simulated data could
provide more insight.

Trigger is not the only available method for inferring gene regulation
networks. Other methods such as CIT [21] and CMST [22] are also available.
We would like to compare BFCM with these methods. As these methods
produce p values instead of probability estimates, a framework has to be
built which allows us to compare these methods with BFCM.
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Appendix A

Appendix

A.1 Statistics

A.1.1 Hypothesis Testing

In statistics we are often concerned with modeling a population or experi-
ment. A statistical model is a pair (S, P ) where S is the sample space and
P is a set of probability distributions on S. The set P is chosen such that it
contains a distribution that approximates the true distribution. Usually the
set P is parametrized: P = {Pθ : θ ∈ Θ}, where Θ is the set of all possible
parameters in the model.

We are interested in inferring more information about the true parame-
ter, θ. One way of doing this is by utilizing a hypothesis test. In a hypothesis
test we are concerned with testing a Null Hypothesis, H0 : θ ∈ Θ0, against
an Alternative Hypothesis, H1 : θ ∈ Θ1. Here {Θ0,Θ1} is a partitioning of
the parameter space Θ. Testing can lead to two kinds of conclusions: We
either reject H0 (and accept H1 as being correct) or we do not reject H0

(but we do accept H1 as being incorrect either).

There are two kinds of errors that can be made: A type I error occurs
when we reject H0 even though H0 is correct, a type II error occurs when
we fail to reject H0 when H0 is incorrect. A type I error is also called a false
discovery.

As the data X = (X1, . . . , Xn) can consist of many observations it can
be difficult to test the Null Hypothesis. In this case it might useful to sum-
marize (a part of) the data in a single real value T = T (X), which is called
a statistic. This statistic can be chosen such that it does not depend on the
unknown parameter.

We have not specified yet when the Null Hypothesis should be rejected.
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In order to these we a define a rejection region R, if T ∈ R we reject the
Null Hypothesis. We want to choose R such that we minimize the type I
and type II errors.

Definition (Power Function). The power function of a test with rejection
region R is defined by:

β(θ) = Pθ(T ∈ R)

We want to choose the rejection region R such that it maximizes the
power function when θ ∈ Θ0 and minimizes the power function when θ ∈ Θ1.
This turns out to be difficult in practice as the power function is usually a
continuous, so decreasing the power under the null hypothesis will result in
a decrease of the power under alternative hypothesis.

Definition (Size). A test with power function β(θ) is a size α test if:

sup
θ∈Θ0

β(θ) = α

We then select a rejection region R which has size α and the maximal
power under the alternative hypothesis.

A.1.2 P-values

In the last paragraph we used a rejection region to define a test. The size,
α, describes how reliable the test is. If α is low the decision to reject a null
hypothesis is convincing, but if α is high the probability of a false positive
becomes too high and the rejection becomes unconvincing. Instead of using
the size of a test we can also look at the so called p-value.

Definition (Right-tailed p-value). Let t be the observed value of the test
statistic T then the right-tailed p-value is defined as

p(T ) = sup
θ∈Θ0

Pθ (T ≥ t)

If the p-value, p, is low we reject the null hypothesis. It is easy to con-
struct a rejection region with size α using the p-values. If we reject H0 if
and only if p(T ) ≤ α we get the rejection region R = {T : p(T ) ≤ α}. Thus
the smaller the p-value is, the stronger the evidence becomes that the null
hypothesis is false.

Instead of using a right-tailed p-value we can also use the left-tailed
p-value

p(T ) = sup
θ∈Θ0

Pθ (T ≤ t)
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or the two-tailed p-value

p(T ) = 2 min( sup
θ∈Θ0

Pθ (T ≤ t) , sup
θ∈Θ0

Pθ (T ≥ t)).

A.1.3 Likelihood-Ratio Test

An example of a hypothesis test is the likelihood-ratio test, which is the test
used by Trigger. The likelihood-ratio test compares the likelihood of the null
hypothesis given the data with the likelihood of the alternative hypothesis
given the data. The likelihood-ratio test is defined using the likelihood-ratio
statistic:

Definition (Likelihood-Ratio Statistic). Let X be a stochastic vector with
density function pθ, then the likelihood-ratio statistic for the testH0 : θ ∈ Θ0

against H1 : θ ∈ Θ1 is defined as:

Λ(X) =
supθ∈Θ L(θ;X)

supθ∈Θ0
L(θ;X)

Using the asymptotic behavior of two times the log of the likelihood-
ratio we can construct a rejection region. Wilks’s theorem states that under
certain conditions the distribution of 2 log Λ(X) under the null hypothesis
converges to χ2

k−k0 when n → ∞. Here k is dimension of Θ and k0 is the
dimension of Θ0. In the case that the null distribution is unknown or cannot
be approximated using its asymptotic behaviour, permutation testing can
be used to approximate p values. This done by calculating the test statis-
tics on permuted data. These statistics can then be used to calculate the
empirical p value.

The likelihood-ratio test is related to the so called maximum likelihood
estimators, which maximize the likelihood function with respect to θ.

Definition (Maximum Likelihood Estimator). Let X be a stochastic with
density pθ which depends on θ ∈ Θ, the maximum likelihood estimator
(MLE) is defined as:

T (X) = arg sup
θ∈Θ

L(θ;X)

We can now see that likelihood-ratio statistic is simply the likelihood-
ratio ratio of the likelihood evaluated at the MLE and the MLE restricted
on Θ0.
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We can apply the likelihood ratio test to regression models. Suppose a
stochastic variable Y is linearly dependent of the variable X then we can use
the following simple linear regression model to model this relationship:

Y = α+ βX + ε

where α is called the intercept, β is called the slope and ε is the error, which
is usually distributed by a normal distribution N(0, σ2). We will only look
at the even simpler case in which X is either equal to −1 or equal to 1.

Often we want to test whether Y depends on X, which involves testing
whether β 6= 0. This can be done using a likelihood ratio with H0 : β = 0
and H1 : β 6= 0. Which gives us the following test statistic:

Λ =

(∑N=−1

i=1 (x=−1,i − x=−1)2 +
∑N=1

i=1 (x=1,i − x=1)2∑N
i=1(xi − x)2

)N
2

A.2 Test statistics used by Trigger

This appendix gives the test statistics used by Trigger, in order to test
whether three models holds.

A.2.1 Notation

We denote the observed transcription levels as tik for the ith gene and kth
sample of the n samples. li is equal to −1 if the allele was inherited from
the first parent and equal to 1 if it was inherited from the second parent.
We use taik with 1 ≤ i ≤ na to denote the tim with lim = −1 and tbik with
1 ≤ i ≤ nb to denote the tim with lim = 1. The average of n samples is
denoted as ti and similarly we denote the average of the na samples with
lik = −1 as tai .

A.2.2 Local linkage

Xi =

( ∑n
k=1(tik − ti)2∑na

k=1(taik − ti
a
)2 +

∑nb
k=1(tbik − ti

b
)2

)n
2

A.2.3 Secondary linkage

Yij =

(
σ̂2
j,0σ̂

2
i,0 − σ̂2

ij,0

σ̂2
j σ̂

2
i − σ̂2

ij

)n
2

43



with:

σ̂2
i =

1

n

(
na∑
k=1

(taik − tai )
2 +

nb∑
k=1

(tbik − tbi)
2

)

σ̂ij =
1

n

(
na∑
k=1

(taik − tai )(t
a
jk − taj ) +

nb∑
k=1

(tbik − tbi)(t
b
jk − tbj)

)

σ̂2
j =

1

n

(
na∑
k=1

(tajk − taj )
2 +

nb∑
k=1

(tbjk − tbj)
2

)

σ̂2
i,0 =

1

n

(
na∑
k=1

(taik − tai )
2 +

nb∑
k=1

(tbik − tbi)
2

)

σ̂2
j,0 =

1

n

n∑
k=1

(tjk − tj)2

σ̂ij,0 =
1

n

(
na∑
k=1

(taik − tai )(t
a
jk − tj) +

nb∑
k=1

(tbik − tbi)(t
b
jk − tj)

)

A.2.4 Conditional independence

Zij =
1
n

∑n
k=1(xk − x)2)

n
2

( 1
na

∑na
k=1(xak − xa)2)

na
2 ( 1

nb

∑nb
k=1(xbk − xb)2)

nb
2

A.3 Extra Results of CBF

GO term P value Cluster frequency Background frequency FDR (%) Genes

structural constituent of ribosome 2.8751e-13 14 out of 26 233 out of 7166 0.00% NAM9, MRPS8, RSM18, RSM28, MRP10, MNP1, MRPL3, MRPS5, MRP49, MRPL27, MRPS17, MRP1, RSM7, MRPL11

structural molecule activity 1.609e-10 14 out of 26 368 out of 7166 0.00% NAM9, MRPS8, RSM18, RSM28, MRP10, MNP1, MRPL3, MRPS5, MRP49, MRPL27, MRPS17, MRP1, RSM7, MRPL11

Table A.1: GO Terms for biological functions for NAM9 and top 25 regulated
genes found by CBF

GO term P value Cluster frequency Background frequency FDR (%) Genes

organellar ribosome 3.209e-21 15 out of 26 91 out of 7166 0.00% CBP6, NAM9, MRPS8, RSM18, RSM28, MRP10, MRPL3, MNP1, MRPS5, MRP49, MRPL27, MRPS17, MRP1, RSM7, MRPL11

mitochondrial ribosome 3.209e-21 15 out of 26 91 out of 7166 0.00% CBP6, NAM9, MRPS8, RSM18, RSM28, MRP10, MRPL3, MNP1, MRPS5, MRP49, MRPL27, MRPS17, MRP1, RSM7, MRPL11

mitochondrial matrix 1.875e-20 18 out of 26 222 out of 7166 0.00% CBP6, RSM18, RSM28, MRP10, MRPS5, DLD2, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MNP1, MRPL3, MRP49, MRPL27, RSM7, MRPL11

mitochondrial part 1.212e-18 22 out of 26 617 out of 7166 0.00% CBP6, UBP16, RSM18, RSM28, MRP10, MRPS5, DLD2, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MDM35, MNP1, YNR020C, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

mitochondrion 2.721e-17 25 out of 26 1195 out of 7166 0.00% CBP6, UBP16, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, DLD2, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MTO1, MDM35, MNP1, YNR020C, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

organellar small ribosomal subunit 4.889e-14 9 out of 26 34 out of 7166 0.00% NAM9, MRPS8, RSM18, RSM28, MRP10, MRPS5, MRP1, RSM7, MRPS17

mitochondrial small ribosomal subunit 4.889e-14 9 out of 26 34 out of 7166 0.00% NAM9, MRPS8, RSM18, RSM28, MRP10, MRPS5, MRP1, RSM7, MRPS17

ribosomal subunit 9.849e-13 14 out of 26 254 out of 7166 0.00% NAM9, MRPS8, RSM18, RSM28, MRP10, MNP1, MRPL3, MRPS5, MRP49, MRPL27, MRPS17, MRP1, RSM7, MRPL11

ribosome 5.361e-12 15 out of 26 362 out of 7166 0.00% CBP6, NAM9, MRPS8, RSM18, RSM28, MRP10, MRPL3, MNP1, MRPS5, MRP49, MRPL27, MRPS17, MRP1, RSM7, MRPL11

membrane-enclosed lumen 1.112e-9 20 out of 26 1211 out of 7166 0.00% CBP6, RSM18, RSM28, MRP10, MRPS5, DLD2, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MDM35, YNR020C, MNP1, MRPL3, MRP49, MRPL27, RSM7, MRPL11

small ribosomal subunit 1.538e-9 9 out of 26 100 out of 7166 0.00% NAM9, MRPS8, RSM18, RSM28, MRP10, MRPS5, MRP1, RSM7, MRPS17

organelle lumen 8.654e-8 18 out of 26 1154 out of 7166 0.00% CBP6, RSM18, RSM28, MRP10, MRPS5, DLD2, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MNP1, MRPL3, MRP49, MRPL27, RSM7, MRPL11

intracellular organelle lumen 8.654e-8 18 out of 26 1154 out of 7166 0.00% CBP6, RSM18, RSM28, MRP10, MRPS5, DLD2, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MNP1, MRPL3, MRP49, MRPL27, RSM7, MRPL11

intracellular ribonucleoprotein complex 4.675e-7 15 out of 26 800 out of 7166 0.00% CBP6, NAM9, MRPS8, RSM18, RSM28, MRP10, MRPL3, MNP1, MRPS5, MRP49, MRPL27, MRPS17, MRP1, RSM7, MRPL11

ribonucleoprotein complex 4.675e-7 15 out of 26 800 out of 7166 0.00% CBP6, NAM9, MRPS8, RSM18, RSM28, MRP10, MRPL3, MNP1, MRPS5, MRP49, MRPL27, MRPS17, MRP1, RSM7, MRPL11

cytoplasmic part 1.711e-6 25 out of 26 3262 out of 7166 0.00% CBP6, UBP16, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, DLD2, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MTO1, MDM35, MNP1, YNR020C, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

intracellular organelle part 0.00055 22 out of 26 3055 out of 7166 0.00% CBP6, UBP16, RSM18, RSM28, MRP10, MRPS5, DLD2, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MDM35, MNP1, YNR020C, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

organelle part 0.00060 22 out of 26 3069 out of 7166 0.00% CBP6, UBP16, RSM18, RSM28, MRP10, MRPS5, DLD2, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MDM35, MNP1, YNR020C, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

intracellular membrane-bounded organelle 0.00083 25 out of 26 4218 out of 7166 0.00% CBP6, UBP16, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, DLD2, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MTO1, MDM35, MNP1, YNR020C, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

membrane-bounded organelle 0.00088 25 out of 26 4228 out of 7166 0.00% CBP6, UBP16, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, DLD2, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MTO1, MDM35, MNP1, YNR020C, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

non-membrane-bounded organelle 0.00096 15 out of 26 1420 out of 7166 0.00% CBP6, NAM9, MRPS8, RSM18, RSM28, MRP10, MRPL3, MNP1, MRPS5, MRP49, MRPL27, MRPS17, MRP1, RSM7, MRPL11

intracellular non-membrane-bounded organelle 0.00096 15 out of 26 1420 out of 7166 0.00% CBP6, NAM9, MRPS8, RSM18, RSM28, MRP10, MRPL3, MNP1, MRPS5, MRP49, MRPL27, MRPS17, MRP1, RSM7, MRPL11

cytoplasm 0.0033 25 out of 26 4471 out of 7166 0.08% CBP6, UBP16, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, DLD2, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MTO1, MDM35, MNP1, YNR020C, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

intracellular organelle 0.00512 25 out of 26 4555 out of 7166 0.08% CBP6, UBP16, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, DLD2, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MTO1, MDM35, MNP1, YNR020C, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

organelle 0.00541 25 out of 26 4566 out of 7166 0.07% CBP6, UBP16, RSM18, MEF1, RSM28, IFM1, MRP10, MRPS5, DLD2, MRPS17, MRP1, DIA4, NAM9, MRPS8, ACN9, MTO1, MDM35, MNP1, YNR020C, MRPL3, MRP49, MRPL27, RSM7, COX10, MRPL11

large ribosomal subunit 0.00843 5 out of 26 154 out of 7166 0.07% MRPL3, MNP1, MRP49, MRPL27, MRPL11

Table A.2: GO Terms for biological components for NAM9 and top 25
regulated genes found by CBF

44



GO term P value Cluster frequency Background frequency FDR (%) Genes

alpha-amino acid biosynthetic process 6.412e-11 11 out of 26 135 out of 7166 0.00% ASN1, HIS4, THR1, HOM3, ARG1, HIS1, ILV6, LYS21, CPA2, ARG2, TRP4

cellular amino acid biosynthetic process 1.316e-10 11 out of 26 144 out of 7166 0.00% ASN1, HIS4, THR1, HOM3, ARG1, HIS1, ILV6, LYS21, CPA2, ARG2, TRP4

alpha-amino acid metabolic process 1.558e-10 12 out of 26 199 out of 7166 0.00% ASN1, HIS4, THR1, HOM3, LAP3, ARG1, HIS1, ILV6, LYS21, CPA2, ARG2, TRP4

cellular amino acid metabolic process 4.668e-9 12 out of 26 265 out of 7166 0.00% ASN1, HIS4, THR1, HOM3, LAP3, ARG1, HIS1, ILV6, LYS21, CPA2, ARG2, TRP4

organic acid biosynthetic process 6.4000e-9 11 out of 26 205 out of 7166 0.00% ASN1, HIS4, THR1, HOM3, ARG1, HIS1, ILV6, LYS21, CPA2, ARG2, TRP4

carboxylic acid biosynthetic process 6.4000e-9 11 out of 26 205 out of 7166 0.00% ASN1, HIS4, THR1, HOM3, ARG1, HIS1, ILV6, LYS21, CPA2, ARG2, TRP4

small molecule biosynthetic process 1.452e-7 12 out of 26 356 out of 7166 0.00% ASN1, HIS4, THR1, HOM3, ARG1, HIS1, ILV6, LYS21, RIB3, CPA2, ARG2, TRP4

carboxylic acid metabolic process 1.631e-6 12 out of 26 440 out of 7166 0.00% ASN1, HIS4, THR1, HOM3, LAP3, ARG1, HIS1, ILV6, LYS21, CPA2, ARG2, TRP4

oxoacid metabolic process 2.442e-6 12 out of 26 456 out of 7166 0.00% ASN1, HIS4, THR1, HOM3, LAP3, ARG1, HIS1, ILV6, LYS21, CPA2, ARG2, TRP4

organic acid metabolic process 2.565e-6 12 out of 26 458 out of 7166 0.00% ASN1, HIS4, THR1, HOM3, LAP3, ARG1, HIS1, ILV6, LYS21, CPA2, ARG2, TRP4

small molecule metabolic process 3.045e-6 15 out of 26 837 out of 7166 0.00% ASN1, HIS4, THR1, HOM3, LAP3, ARG1, HIS1, ILV6, LYS21, RIB3, URA10, CPA2, ZWF1, ARG2, TRP4

single-organism biosynthetic process 0.0008735 13 out of 26 934 out of 7166 0.00% ASN1, HIS4, THR1, HOM3, ARG1, HIS1, ILV6, LYS21, RIB3, URA10, CPA2, ARG2, TRP4

organonitrogen compound metabolic process 0.0021103 15 out of 26 1369 out of 7166 0.00% ASN1, HIS4, THR1, HOM3, LAP3, ARG1, HIS1, ILV6, LYS21, RIB3, URA10, CPA2, ZWF1, ARG2, TRP4

organonitrogen compound biosynthetic process 0.008190 13 out of 26 1143 out of 7166 0.00% ASN1, HIS4, THR1, HOM3, ARG1, HIS1, ILV6, LYS21, RIB3, URA10, CPA2, ARG2, TRP4

Table A.3: GO Terms for biological processes for ILV6 and top 25 regulated
genes found by CBF

GO term P value Cluster frequency Background frequency FDR (%) Genes

amino acid binding 0.004223 3 out of 26 23 out of 7166 0.00% HOM3, ARG2, ILV6

carboxylic acid binding 0.006155 3 out of 26 26 out of 7166 1.00% HOM3, ARG2, ILV6

organic acid binding 0.006155 3 out of 26 26 out of 7166 0.80% HOM3, ARG2, ILV6

Table A.4: GO Terms for biological functions for ILV6 and top 25 regulated
genes found by CBF
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