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Abstract

Decision networks and decision trees are typical frameworks that underly
most of the systems that are able to make automatic decisions under uncer-
tainty. Decision networks are also known as influence diagrams and apply
probabilistic inference among chance variables in a similar way as Bayesian
networks. In addition, decision networks contain decision nodes and value
nodes with associated utilities. They support automatic decision making
by determining those decisions that optimize the expected utility. Current
decision networks have some limitations, in the sense that they are not ca-
pable of analyzing real-world decision problems that have asymmetric com-
ponents. In this thesis, some modifications and extensions are proposed for
decision networks to facilitate dealing with functional, structural and order
asymmetric decision problems.
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Chapter 1

Introduction

In reasoning about situations, one often has to take into account the un-
certainty that is associated with the observations on which conclusions are
based. It is about acting rationally in a world that we do not know com-
pletely or in which we know that various states can hold. In such situation,
several aspects influence our argumentation. Artificial intelligence (AI) deals
among other things with the analysis of these aspects and their translation
to logical expressions that can be interpreted by a machine. Several ap-
proaches have been introduced to enable computers to handle reasoning
under uncertainty.

This paper deals with decision making and reasoning under uncertainty
using a combination of probability, decision and utility theory, and its imple-
mentation in decision networks. A decision network is also known as an in-
fluence diagram (ID) and was first designed as a tool to represent knowledge
[9]. It was developed to bridge the gap between the analysis and formulation
and was meant to help non-experts to get used to decision systems. Orig-
inally decision system were essentially decision tree implementations used
to illustrate and solve decision problems. Nowadays, decision networks are
interpreted using algorithms that support solving decision networks directly.

One preparation to analyze a problem with a decision system is to build
a model of the real world. In this modelling stage, the decision maker is
asked to initialize the required utilities and probabilities. To set the utilities
he or she has to evaluate possible outcomes on a numerical scale, not only to
express the order but also the relative distances between them in line with his
or her preferences. The probabilities represent the uncertainties in the real
world and they address the degree of belief in a particular state. Except for
the probabilities based on frequencies, the mentioned specifications lie in the
eye of the beholder. Hence, the modelling phase obeys a lot of subjectivity
going out from the decision maker that may lead to different results for
the same decision problem. In this thesis, however, we do not question the
correctness of the product of the modelling stage.
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Instead, our starting point is a completely initialized influence diagram,
a framework that we will study and investigate for its ability to handle
different types of decision problems. One property of the network is its
straightforward way to demonstrate relations among components. However,
this feature usually demands that the decision problem is symmetric. In
the following paragraph, we will examine three scenarios that will introduce
three types of asymmetry that may occur in decision problems. The example
is devised and unlikely to match reality.

Suppose we are asked to implement an automatic decision system for a
transplantation department of a hospital. To get a first insight we ask one of
the surgeons to give us a walkthrough for the case that a brain dead organ
donor patient enters the operating room. He informs us about numerous
tests before a patient is decided to be brain death. With the aid of their
results, the attendant doctor declares the brain death and detects its cause.
The next step is to encounter if the organs are qualified to be donated. Once
again various tests are required. Depending on the cause of death some of
the tests become unnecessary. This is an example of functional asymmetry.
It indicates that new information can inhibit later decisions.

Furthermore, the doctor explains that it also may be the case that the
sequence of the tests changes to receive accurate results. This is called order

asymmetry. Its intention is that the decision maker can define the order of
some decisions during the decision process.

Of course, it also may happen that some test results lead to the con-
sequence that particular organs do not come into question for a donation.
In this case, no additional tests are needed. This type of asymmetry is
named structural asymmetry. It indicates that observed information effects
the termination of the remaining decision problem.

For each of the three introduced types of asymmetry, there is no straight-
forward way to design a proper model and use decision networks for their
analyzation. Hence, we will investigate possible extensions of the influence
diagram to facilitate the support for this kind of asymmetric decision prob-
lems.

The thesis is subdivided into five remaining chapters. The succeeding
chapter is about the preliminaries, it gives a review of probability, decision
and utility theory and introduces the predecessors of decision networks, in
particular, Bayesian networks (BN) and decision trees. The third chapter
gives a definition of IDs and illustrates three different algorithms to solve
them. Additionally, we examine the drawbacks of influence diagrams and
make a comparison with decision trees. In chapter 4, potential alternations
and extension are introduced for decision networks to facilitate their trans-
formation to a Bayesian network and the representation of asymmetries.
The last chapter 5 provides an conclusion.
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Chapter 2

Preliminaries

In this chapter, we review the foundations of decision networks consisting
of a graph, probability, utility and decision theory part and establish some
notations used in this paper.

2.1 Graph Theory

Graph theory defines one of the basic concepts to create probabilistic graph-
ical models (PGMs) and decision network representations. Graph represen-
tations have been shown to be particularly useful for explaining probabilistic
reasoning and decision-making to non-experts[10].

Nowadays, the models themselves have become a research subject. This
chapter provides general graph characteristics serving as a foundation for
upcoming detailed definitions in the subsequent chapters.

A graph G is defined as a pair, consisting of a set of nodes N(G) and a
set of edges E(G) ⊆ N(G)×N(G), i.e.

G = (N(G), E(G))

An edge is a pair of two nodes and marks a connection between them. An
edge e1 = (n1, n2) that is directed, i.e. (n1, n2) ∈ E(G) and (n2, n1) 6∈ E(G),
represents an arrow or arc from n1 to n2. It establishes the relation that
node n1 is a parent node of n2. The set of parents of a node ni is notated
as par(ni) and the set of children of a node ni is notated as chi(ni).

Edges can be directed or undirected. So called Markov networks only
contain undirected edges and represent a join probability distribution with
independence information. However, in this thesis we are only concerned
with PGMs that have directed edges, i.e. Bayesian networks and decision
networks.

Another characteristic of a PGM is that it has to be acyclic. Hence, the
directed edges are not allowed to form a directed cycle with a path(n1, n1)
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having a start node that is also an end node. Graphs fulfilling these premises
are called directed acyclic graphs (DAGs).

2.2 Probability Theory

Reasoning under uncertainty uses probability theory to measure and calcu-
late beliefs of whether a variable in the domain has a particular value or not.
There are two different interpretations for these measurements. The first is
to interpret probabilities in terms of the frequency at which an outcome oc-
curs over the long term in relation to the frequency of all possible outcomes,
referred as relative frequency. The second interpretation is to assign a de-
gree of belief based on reasoned arguments to a variable for which certain
knowledge is impossible, i.e. in court cases or medical diagnosis, to declare
some degree of belief whether a defendant is guilty or a a disease is present.
These probabilities are referred to as subjective probabilities [4] [5]. The
probability value of a certain outcome is defined to be on the interval [0,1]
and all probabilities of possible outcomes of a random variable sum up to
1. We will express random variables with capital letters, e.g., X and binary
states with the corresponding small letter, e.g. x for X = true and ¬x for
X = false.

Two rules linked to probability theory are crucial in understanding the
principles of probabilistic reasoning algorithms in probabilistic and decision-
theoretic networks. These rules are referred to as marginalization and con-

ditioning and are used to derive any probability of interest out of a joint
probability distribution in a Bayesian network. Joint probabilities define the
probability of intersections of single outcomes of multiple chance variables.
A joint probability distribution states all associated combinations in a table.
Suppose we have the two chance variables X and Y , that can either be true
or false, and the following probability distribution P (X,Y ).

X Y P (X,Y )

x y 0.15

x ¬y 0.45

¬x y 0.1

¬x ¬y 0.3

From this joint probability distribution we can retrieve the probability
distributions X and Y . Therefore, the probabilities of the same variable
value or state are summed. This can also be done to get joint probability
distributions. It is called marginalization and variables that do not appear
in the resulting probability distribution are called to be summed out.
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P (X) =
∑

y∈Y

P (X, y)

Applying marginalization for X gives us P (x) = 0.6 and P (¬x) = 0.4.

Besides joint probabilities, conditional probabilities are used for proba-
bilistic reasoning. A conditional probability is the probability of a chance
variable as the value of another chance variable has already been observed
and everything else with exception of this observation is irrelevant. Suppose
we observed that X = x, and we want to know the recent probability of
Y = y. Then the conditional probability of y given x is the joint probability
of x and y divided by the probability of x, indicated as P (y|x).

P (y|x) =
P (x, y)

P (x)
=

0.15

0.6
= 0.25

If some observation for X does not change our belief of Y , we say that
Y is independent of X, written as Y ⊥⊥ X. In this case, the probability of Y
is the same as the probability of Y given X.

P (Y ) = P (Y |X)

This independence relation is symmetric. Hence, if Y is independent of
X, X is also independent of Y .

X ⊥⊥ PY ↔ Y ⊥⊥ PX

Furthermore, it may occur that two dependent chance variable X and
Y become free from each others impact as an observation has been made
on a third chance variable Z. This relation between chance variables is
called conditional independence. It states that the conditional probability
of X given Y and Z and X given Y are the same. As the concept of
independence, conditional independence is also symmetric.

X ⊥⊥ PY |Z ↔ P (X|Y,Z) = P (X|Z)

X ⊥⊥ PY |Z ↔ Y ⊥⊥ PX|Z

2.3 Bayesian Networks

A Bayesian network (BN) is a PGM defined as a pair BN = (G,P ), with G
as a directed acyclic graph G = (N(G), E(G)) and a joint probability table
P . It is a compact, expressive representation of uncertain relationships
among parameters in a domain[3].

Decision networks apply it as a probabilistic framework. The start-
ing point is a joint probability table P over the chance variables X =
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{X1, ...,Xn}. The size of the table is 2n for binary state spaces and rep-
resents the full joint probability distribution given by:

P (X) =
n∏

i=1

P (Xi|par(Xi)).

Each variable of the joint probability is represented as a chance node.
The data behind it depends on the number of parent nodes. For root nodes
the data is just the probability distribution of the chance variable. Whereas
for nodes having parent nodes, the data is represented as a conditional prob-
ability table. The linked conditional probability table states the conditional
probabilities of the node given its parents. The size of such a table grows
exponentially with the increasing number of parents nodes. As we assume
that false values are deduced by 1− P (x), the number of entries for binary
state spaces that had to be specified for a chance variable with k parents is
equal to 2k.

A BN uses the independence and conditional independence relations
among chance variables to deduce the data of the full joint probability dis-
tribution without loss of information. To address the independence of two
nodes A and B, we will write A ⊥⊥ GB. This independence relation is valid
for the two nodes in a graph if they are d-separate. D-separation states that
each path in between has been declared to be inactive. An inactive path is
a queue of nodes that contains three sequenced nodes and linked edges that
build up to a chain equivalent to one of the three types serial, convergent or
divergent.

A B

C

convergent

A B C serial

A

B C

divergent

Figure 2.3.1: Three types of edge connections

The joint probability table required for a BN is specified by:
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P (X) =

n∏

i=1

P (Xi|par(Xi)).

A famous example to illustrate the idea of a BN is a probability distri-
bution linked to the reliability of a burglary alarm. The alarm also responds
to earthquakes and it is reported by two neighbors, John and Marry, calling
when they hear the alarm. Marry does not always hear the alarm, whereas
John hears the alarm nearly every time, but sometimes calls when there is
no alarm. The letters B, E, A, J and M stand for burglary, earthquake,
alarm, John calls and Marry calls respectively. Figure 2.3.2 shows the struc-
ture of the corresponding BN on the left side and the probabilistic data of
the chance nodes on the right side.

B E

J M

A

P (B)

b 0.01

P (E)

e 0.02

P (A|B,E)

b ¬b

e ¬e e ¬e

a 0.95 0.94 0.29 0.01

P (J |A)

a ¬a

j 0.9 0.5

P (M |A)

a ¬a

m 0.7 0.1

Figure 2.3.2: Burglar alarm example

With a BN it is possible to compute any probability of interest out of a
joint probability. If we want to know how likely it is that Marry and John
call although there is nor burglary nor earthquake, we can calculate the
probability P (j,m|¬b,¬e) by using conditioning and marginalization. The
scencario that there is no burglary and no earthquake is therefore inserted
as an evidence e = {¬b,¬e}. An evidence is a finding on an chance variable
that makes other states than the evidence itself impossible. Consequently,
impossible states are summed out of the probability distribution.

The first step is to get the joint probability of P (¬b) and P (¬e).

P (¬b,¬e) = 0.99 × 0.98 = 0.9702
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The second step is to get the probability distribution of P (A|¬b,¬e).

P (a|¬b,¬e) = 0.9702 × 0.01 = 0.009702

P (¬a|¬b,¬e) = 0.9702 × 0.99 = 0.960498

The third step is to compute the probabilities P (j|a,¬b,¬e),P (j|¬a,¬b,¬e)
and P (m|a,¬b,¬e), P (m|¬a,¬b,¬e).

P (j|a,¬b,¬e) = 0.009702 × 0.9 ≈ 0.009

P (j|¬a,¬b,¬e) = 0.960498 × 0.5 ≈ 0.480

P (m|a,¬b,¬e) = 0.009702 × 0.7 ≈ 0.007

P (m|¬a,¬b,¬e) = 0.960498 × 0.1 ≈ 0.096

The fourth step is to sum out A.

P (j|¬b,¬e) = 0.009 + 0.480 = 0.489

P (m|¬b,¬e) = 0.007 + 0.096 = 0.103

The last step is to get the joint probability of P (j|¬b,¬e) and P (m|¬b,¬e).

P (j,m|¬b,¬e) ≈ 0.05

Hence, there is a 5% chance of being called by John and Marry although
there is nothing to worry about.

2.4 Decision Trees

A decision tree is a directed acyclic graph G, that is read downward from its
root node. Except for the root node every node has exactly one parent node.
The graph represents a decision problem by illustrating every scenario in an
individual sequence of chance and decision nodes ending up in an utility
node. Therefore, it only represents temporal ordering and no conditional
dependencies among nodes. For every state or decision alternative, there is
an outgoing edge from a chance or decision node, respectively. Accordingly,
a chance node has as many children as states, and a decision node has as
many children as decision alternatives.

Consider the decision problem as to whether or not to go ahead with a
fund raising garden party. If we go ahead with the party and it subsequently
rains, then we will lose money (since very few people will show up); on the
other hand, if we don’t go ahead with the party and it does not rain we are
free to go and do something else fun[1]. The chance variable rain is notated
as R. The set of actions A consists of the action y stating that there is an
party and action n stating that there is no party. The possible outcomes O
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are the combinations of A and R. The utility function u maps the outcomes
to an utility value. The formal description of the decision problem is as
follows.

P (r) = 0.6, P (¬r) = 0.4

A = {y, n}

O = {{y, r}, {y,¬r}, {n, r}, {n,¬r}}

u({y, r}) = −100
u({y,¬r}) = 500
u({n, r}) = 0

u({n,¬r}) = 50

The corresponding decision tree is shown in figure 2.4.1.

To solve a decision tree an optimal policy is defined for every decision
node. Therefore, every edge of a decision alternative is linked to the expected
utility of its children nodes. The expected utilities are notated in brackets.

EU(d = y) = −100 × 0.6 + 500× 0.4 = 140

EU(d = n) = 0× 0.6 + 50× 0.4 = 20

This is done repeatedly from the utility nodes to the root node. Conse-
quently, the optimal policy of a decision node corresponds to the decision
that maximizes the expected utility specified as MEU .

MEU(D) = 140(d = y)

The optimal strategy for multi decision problems consists of the opti-
mal policies of the decision nodes from the root to leaf node. The optimal
strategy is indicated by a boldfaced path in the tree.

2.5 Utility Theory

Which consequences do we prefer or avoid while making a decision? Only
the decision maker can answer this question. Utility theory is about the
form of the evaluation of outcomes to make them comparable and available
for automatic reasoning. Therefore, a utility function U(o, ds) maps all
outcomes o ∈ O together with the instantiated sequence of decisions ds onto
a utility scale. The higher the assigned utility value on the scale, the more
useful is the outcome and the linked decisions to the decision maker. As the
occurrence of an outcome is linked to a set probability, the utility values to
be compared have the form of lotteries. A lottery l ∈ L is a set of outcomes
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D

R1 R2

U1 U2 U3 U4

y(140) n(20)

y n y n

-100 500 0 50

Figure 2.4.1: Decision Tree

oi and its probability pi. The probabilities of all outcomes sum up to 1. To
compare two lotteries l1 and l2 we will use the following notations:

• l1 > l2, if l1 is preferred over l2.

• l1 ∼ l2, if l1 and l2 are indifferent.

• l1 ≥ l2, if l1 is preferred over l2 or l1 and l2 are indifferent.

To guarantee that an lottery l1 is preferred to another lottery l2 if and
only if l1 > l2, the preferences have of the decision maker have to agree with
the axioms of utility theory[4, 6, 8]:

• Orderability:
∀l1, l2 ∈ L, (l1 > l2) ∨ (l1 > l2) ∨ (l1 ∼ l2)

Orderability affirms that a statement about the preference is either
one lottery is preferred, or both lotteries are preferred equally. It is
not conceivable that there is no preference.

• Transitivity:
∀l1, l2, l3 ∈ L, (l1 > l2) ∧ (l2 > l3)→ (l1 > l3)

If lottery l1 is preferred to lottery l2 and l2 is preferred to lottery l3,
then l1 is also preferred to l3.

• Continuity
∀l1, l2, l3 ∈ L, l1 > l2 > l3 ⇒ ∃p[p, l1; 1− p, l3] ∼ l2

If l1 is preferred to l2 and l2 is preferred to l3, then there exists a
probability p for l1 and 1− p for l3 so that both lotteries together are
equally preferred as l2.
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• Substitutability:
∀l1, l2, l3 ∈ L, l1 ∼ l2 ⇒ [p, l1; 1− p, l3] ∼ [p, l2; 1− p, l3]

If l1 and l2 are equally preferred, then their combinations with a third
lottery l3 with same probabilities are also equally preferred.

• Monotonicity
∀l1, l2 ∈ L, l1 > l2 ⇒ (p > q)⇔ [p, l1; 1− p, l2] > [q, l1; 1− q, l2]

If l1 is preferred to l2 and probability p is higher than probability q,
then the lottery that links p to l1 is preferred to lotteries that link q
to l1.

• Decomposability
∀l1, l2, l3 ∈ L,
[p, l1; 1− p, [q, l2; 1− q, l3]] ∼ [p, l1; (1− p)q, l2; (1− p)(1− q), l3]

If l1 is linked to probability p and l2 is linked to 1 − p and q and l3
is linked to 1 − p and 1 − q, then l2 and l3 can be separated form l1
without changing the preference of the three lotteries together.

2.6 Decision Theory

Decision theory combines the preferences expressed by utilities with the
probabilities of chance variables. The fundamental idea is that the decision
maker acts rational if and only if he makes a decision that yields the highest
expected utility, averaged over all possible outcomes of decisions.

Decision theory = Probability theory + Utility theory[8]

A decision Di of a decision problem comprises an set of decisions Di =
{d1, ..., dn}. The expected utility (EU) of an decision di, is the sum of the
utilities of outcomes weighted by their probabilities given that di is chosen.

EU(Di = di) =
∑

o∈O

U(o)× P (o|di)

The decision to be chosen to act rational is the one with the highest
expected utility defined by the maximum expected utility (MEU).

MEU(Di) = max
d∈Di

EU(Di = d)

In a decision problem with only one decision made the MEU already
gives us the optimal solution.

As multiple decisions are involved, an optimal solution has to be found
for a sequence of decisions. To define the partial temporal orderings we will
use the operator ≺. A sequence of n decisions follows the concept that a
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decision Di is made before a decision Dj if i < j, i.e. decision D1 is made
before decision D2.

D0 ≺ D1 ≺ ... ≺ Dn−1 ≺ Dn

A solution to a multiple decision problem is called strategy. It is a set
of policies with a policy δi for every decision Di. A policy δi maps any
combination of states rising because of previous decisions to an decision di.
A strategy that maximizes the expected utility is called an optimal solution
and every policy involved is called an optimal policy [4].
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Chapter 3

Decision Networks

This chapter introduces decision networks also known as influence diagrams.

3.1 Background on Decision Networks

A decision network, DN for short, is defined as a triple DN = (G,P,U),
with G = (N(G), E(G)) a directed acyclic graph, P a joint probability
distribution structured as an Bayesian network, and U a utility function.
N(G) is a set of nodes, where C(G) ⊆ N(G) are chance nodes, introduced
in the section about Bayesian networks, D(G) ⊆ N(G) are decision nodes,
linked to decision theory and V (G) ⊆ N(G) is the set of value nodes holding
the utility function U . The chance, decision and value nodes are mutually
exclusive. Thus,

N(G) = C(G) ∪D(G) ∪ V (G)

Furthermore, E(G) ⊆ N(G) ×N(G) is a set of arcs with some restrictions
that will become clear in the following.

All nodes have already been part of the formerly introduced decision
trees. In decision networks their meaning is slightly different. The nodes
are shown in figure 3.1.1.

Figure 3.1.1: chance, decision and value node

The advantage of decision networks over decision trees is that they offer
a much more compact representation. Figure 3.1.2 shows the influence dia-
gram for the party decision problem introduced in the section about decision
trees.

For multi decision problems the diagram requires a temporal ordering
of nodes in order to determine the set of chance nodes observed before a
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Figure 3.1.2: Influence diagram

decision Di. The set of chance nodes observed before the first decision is
notated as X0 and the set of chance nodes observed after a decision Di and
before the decision Di+1 are notated as Xi. For n decision nodes the set of
chance variables not observed before any decision is given by Xn.

X0 ≺ D1 ≺ X1 ≺ ... ≺ Dn ≺ Xn

Consider the following oil wildcatter problem [7]. The decision is whether
or not to test the seismic structure (D1) and whether or not to drill for oil
(D2). The utility (U) is in line with the profit that is made, the amount
of oil (A), the costs of the test and the decision to whether or not to drill.
This decision can be influenced by the test results (R), depending on the
seismic structure (S). The seismic structure itself depends on the amount
of oil. The influence diagram is shown in figure 3.1.3.

D1 ≺ {R} ≺ D2 ≺ {A,S}

In an influence diagram the order of the decision nodes is defined by
a path comprising all decisions, D1 → R → D2. Based on its target an
edge can either be informational, probabilistic or functional. Informational
edges are pointing towards decision nodes and state that the information of
the child node is accessible when the decision is made. As an informational
edge only states that an information of a decision is available for a succeeding
decision, it is called a no forgetting edge. Probabilistic edges have the same
meaning as the edges in Bayesian networks, they are pointing towards chance
nodes and define probabilistic dependencies. Functional edges are outgoing
edges from chance or decision nodes pointing towards utility nodes. The
state space of the parent node increases the set of outcomes and affects the
utility values that are given by the utility function.

One drawback of an ID is that all scenarios, hidden in the network, have
to be examined to solve it. Several ways have been invented to deal with
this problem, in the following subchapters, we will investigate three of them.
The first way to investigate is the creation of the corresponding decision tree
representation and to apply the rolling back algorithm. The second way is
to transform the ID to a BN and solve it by instantiating all possible se-
quences of decisions. The third way is an algorithm that works with the
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S A

Figure 3.1.3: Influence diagram

ID itself. It“folds” the network up until one value node remains. We will
investigate the different ways of solving an ID with the introduced wildcat-
ter oil problem. Therefore, we will come up with numerical values for the
decision problem, consisting of probability distributions, held by the chance
nodes, and the utility values for all scenarios given by the utility function,
encountered in the value node. Here are the probability distribution for the
nodes amount of oil (A), seismic structure (S) and test result (R).

P (A)

l 0.7

m 0.3

P (S|A)

l m

os 0.85 0.05

cs 0.15 0.95

P (R|S)

os cs

p 0.03 0.99

n 0.97 0.01

The small letters l andm are standing for little and much oil respectively.
The seismic structure can be open (os) or closed (cs). A closed seismic
structure indicates a higher amount of oil. The utility function has two
inputs, an outcome and an instantiated sequence of decisions. There are
three chance nodes with two states leading to 23 possible outcomes.

O A S R

o1 l os p

o2 l os n

o3 l cs p

o4 l cs n

o5 m os p

o6 m os n

o7 m cs p

o8 m cs n
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The table below lists all inputs and the resulting utility value. The utility
value solely depends on the amount of oil and only if the decision is made
to drill D2 = y.

O D1 D2 U(O, d1, d2)

o1 − o4 y y −35, 000$

o1 − o4 n y −30, 000$

o5 − o8 y y 145, 000$

o5 − o8 n y 150, 000$

o1 − o8 y n −5000$

o1 − o8 n n 0$

Hence, we can gather the outcomes with the same instantiations for A.
If the decision is not to drill D2 = n, the instantiations of the chance nodes
have no affect on the utility value.

3.2 From Influence Diagram to Decision Tree

One method to solve a decision network is to use the corresponding decision
tree. The first step is to model the decision tree based on the knowledge
about the decision problem. A direct transformation from a decision network
is only reasonable if the decision problem is symmetric. In this case, we
would receive a symmetric tree structure with the same order of nodes in
each path from the root to the leaves.

To build up a decision tree the temporary order of the nodes is taken into
consideration. The earlier a decision is made, or a chance node is observed;
the higher is its position in the tree. The introduced wildcatter oil problem
results in the decision tree shown in figure 3.2.1, figure 3.2.2 and figure 3.2.3.
Three figures are needed, as the decision tree grows exponentially with the
number of nodes involved.

The decision problem obeys two structural asymmetries. They occur
after the two decisions D1 and D2. The chance node results R solely exist
if we decide to make a test, and there will only be an impact of the chance
nodes amount of oil A and seismic structure S if we decide to drill. The tree
illustrates the corresponding asymmetries.

Once the decision tree is available, we can solve it with the aid of the
average out and fold back algorithm. To get the expected utility of a subtree,
with root node X, we can apply algorithm 1.
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Algorithm 1 average out and fold back algorithm

if X ∈ V then
return

U(X)

else if X ∈ C then
return

EU(X) =
∑

x∈X

P (X = x|par(X))EU(chi(X = x)))

else if X ∈ D then
return

EU(X) = max
x∈X

EU(chi(X = x))

and label the corresponding edge x’ with

argmax
x∈X

EU(chi(X = x))

end if

D1

R D2

part2 part3 A V13

V11 V12

y n

p n y n

l m
0

−30 150

24

2434

Figure 3.2.1: Decision tree part 1
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D2

S V5

A A

V1 V2 V3 V4

y n

os cs

l m l m

−5

−35 145 −35 145

-31 97

91

91

Figure 3.2.2: part 2 positive test result

D2

S V10

A A

V6 V7 V8 V9

y n

os cs

l m l m

−5

−35 145 −35 145

-31 97

-30

-5

Figure 3.2.3: Decision tree part 3

19



3.3 From Influence Diagram to Bayesian Network

Another method to solve an influence diagram is its transformation to a
Bayesian network. Gregory F. Cooper published the transformation steps
in 2013 [2]. Three transformation steps are required. Decision nodes need
to become chance nodes; value nodes need to become chance nodes, and the
utility function needs to become a probability function.

Decision node to chance node
There are three steps to make a chance node out of a decision node. First,
we remove the incoming edges, as these would yield to conditional probabili-
ties. Second, we assign arbitrary probabilities between 0 and 1 to the states,
former decision alternatives, in such a way that they sum up to 1 in total.
The values can be arbitrary as the decision alternatives will be interpreted
as evidence when the network is solved. Third, we adjust the shape of the
node and the labelling, if necessary, to keep the model consistent.

Value node to chance
Similarly to the decision nodes we adapt the shape and the labelling of the
nodes. The remaining modifications are part of the transformation from the
linked utility function to a probability function.

Utility function to Probability function
The transformation of the utility function to a probability function is the
mapping from each outcome and instantiated decision sequence ds onto the
interval [0, 1]. Hence, every outcome and decision sequcence receives a cor-
responding pseudo-probabilistic value P (o, ds).

P (o, dS) =
U(o, ds)−mino∈O U(o, ds)

maxo∈O U(o, ds)−mino∈O U(o, ds)

The table below shows the porbabilistic values for the outcomes and corre-
sponding decision sequences of the wildcatter oil problem and figure 3.3.1
represents the Bayesian network.

D1 D2 O U(o, ds) P (o, ds)

y y o1 − o4 −35, 000$ 0

n y o1 − o4 −30, 000$ 0,027

y y o5 − o8 145, 000$ 0,973

n y o5 − o8 150, 000$ 1

y n o1 − o8 −5000$ 0,162

n n o1 − o8 0$ 0,189
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D1 D2R V

S A

Figure 3.3.1: Bayesian network for the wildcatter oil problem

3.4 Solving an Influence Diagram

The algorithm to solve an influence diagram directly was invented by Ross
D. Shachter in 1986 [9]. It is a stepwise instruction to ”fold up” the network
until the value node remains. Node by node is removed from the network
following an appropriate method. The methods are edge reversals (ER),
chance node removals (CNR), decision node removal (DNR) and barren
node removal (BNR). In the following, v stands for the single value node
in V (G).

Edge reversal (ER)
An edge (c1, c2) ∈ E(G) between two chance nodes with the probability
distributions P (A) and P (B|A) respectively may be reversed, if there is no
other path between the two nodes. The probability distribution of node c1
changes from P (A) to P (A|B) and the probability distribution of node c2
changes from P (B|A) to P (B).

PreconditionER(c1, c2)
= ∃c1, c2 ∈ C(G),∀n ∈ N(G), n ∈ path(c1, c2)→ (n = c1) ∨ (n = c2)

P (A,B) = P (A)P (B|A)

P (B) =
∑

a∈A

P (a,B)

P (A|B) =
P (B|A)P (A)

P (B)

In addition, the set of parent nodes become the same. The set of parents
of c1, par(c1), is extended with the additional nodes of c2 and vice versa.
Additionally, the set of edges E(G) is adjusted, yielding a new graph G′.
The edge (c1, c2) is removed and the edge (c2, c1) is added.

E(G′)← (E(G) \ {(c1, c2)}) ∪ {(c2, c1)}
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Chance node removal (CNR)
A chance node X having the value node V as the only child node, may be
removed by the following procedure. First, the nodes in par(c) are added
to par(V ). So, the value node inherits the parent nodes. Second, the old
utility value is multiplied with the probability of X = x given the par-
ent nodes of X that are chance nodes. The set of parents that are chance
nodes is notated as parc(X) and an instantiated set of parc(X) is written
as p̂arc(X). Furthermore, the set of outcomes O without X is given by O−X .

PreconditionCNR(x)
= ∃c ∈ C(G),∀n ∈ N(G), c ∈ par(n)→ (c = V )

Unew(o−X , p̂arc(X), ds) =
∑

X=x uold(o, ds,X = x)P (X = x|p̂arc(X))

Decision node removal (DNR)
This methods can be applied to a decision node D that is a parent node
of v and a parent node of all other parent nodes of v. After the removal,
the utilities are maximized over the decision alternatives. The sequence of
decision nodes without D is notated as ds−1.

PreconditionDNR(d)
= ∃d ∈ D(G),∀n ∈ N(G), n ∈ par(v)→ ((n = d) ∨ (n ∈ chi(d))

Unew(o, ds−1) = maxd∈Di
U(o, ds−1,Di = d)

Barren node removal (BNR)
During the application of the algorithm, it may happen that a chance or de-
cision node becomes barren indicating that the node does not have a child
node. These nodes can simply be removed from the network without conse-
quences.

The algorithm
The algorithm can only be applied to influence diagrams with a single value
node and requires that all informational edges were added beforehand. It
stops when all parent nodes have been removed from the value node. There-
fore, it first looks for a chance node fulfilling the preconditions to be removed.
As a chance node is found the chance node removal method is called. As
there is no chance node that fulfills the preconditions it searches for a de-
cision node to apply the decision node removal method. Once a decision
node is found the decision node removal method is called. Afterwards, the
potential resulting barren nodes are removed from the network. If there is
nor a chance nor a decision node that can be removed, the algorithm looks
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for a chance node that is a parent of the value node, but has other chil-
dren nodes that are all chance nodes. Subsequently the outgoing edges are
reversed until only the value node remains as a child node and the chance
node can be removed in the next iteration.

Algorithm 2 Shachter’s algorithm

while par(v) 6= ∅ do
if ∃c ∈ C(G), P reconditionCNR(c) then

CNR(c)
else if ∃d ∈ D(G), P reconditionDNR(d) then

DNR(d)
BNR

else
while ∃c1, c2 ∈ C(G), c1 ∈ par(v) ∧ PreconditionER(c1, c2) do

ER(c1, c2)
end while

end if
end while

Subsequently, we will show the working of the algorithm with the aid of
the wildcatter oil problem. Shachter also used this example in the cited
paper to illustrate the shrinking of the diagram. However, the example of-
fered in this paper is shortened and includes numerical values to reveal the
development of the value node.

Starting point is the influence diagram shown in figure 3.1.3 with the added
informational edge (D1,D2).

D1 D2R V

S A

1. First, we must reverse the edge between chance node A and chance
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node S.
ER(e(A,S))

P (A)

l 0.7

m 0.3

→

P (A|S)

os cs

l 0.975 0.269

m 0.172 0.731

P (S|A)

l m

os 0.85 0.05

cs 0.15 0.95

→

P (S)

os 0.61

cs 0.39

D1 D2R V

S A

2. Now, we can remove A from the diagram. As a consequence of the
asymmetry, we have to treat three types of outcomes differently. Out-
comes influenced by chance node S are multiplied with P (A|S), out-
comes solely depending on A are multiplied with P (A) and outcomes
that are not influenced maintain.

CNR(A)
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O ds

R S D1 D2 Unew(O, ds)

p os y y −30.6

p cs y y 96.5

p − y n −5

n os y y −30.6

n cs y y 96.5

n − y n −5

− − n y 24

− − n n 0

D1 D2R V

S

3. Step four is the reversal of the edge from S to R.

ER((S,R))

P (S)

os 0.61

cs 0.39

→

P (S|R)

p n

os 0,045 0,993

cs 0,955 0,007

P (R|S)

os cs

p 0.03 0.99

n 0.97 0.01

→

P (R)

p 0,404

n 0,596
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D1 D2R V

S

4. Step five is the removal of chance node S. Once again only outcomes
that are influenced are adjusted.

CNR(S)

O ds

R D1 D2 Unew(O, ds)

p y y 90.8

p y n −5

n y y −29.7

n y n −5

− n y 24

− n n 0

D1 D2R V

5. Step six is the removal of the second decision node D2. The expected
utility is maximized for the decision alternatives of D2 over the entries
having the same instantiations for the remaining chance and decision
nodes.

DNR(D2)
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O ds

R D1 Unew(O, ds)

p y 90.8

n y −5

− n 24

D1 R V

6. Step seven is the removal of chance node R.

CNR(R)

ds

D1 Unew(ds)

y 33.7

n 24

D1 V

7. The last step is the removal of decision node D1. The remaining entry
in the table is the maximal expected utility, MEU .

DNR(D1)

MEU

33.7

V
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3.5 Decision Trees and Decision Networks

At first, the analyzation of decision problems was solely done with decision
tree applications. The introduction of the influence diagram followed later.
Influence diagrams were first meant to serve as a front-end tool to facilitate
the design and understanding of decision problems. Nowadays, they are also
used during the analytical process. In the following, we want to investigate
the differences between the two decision system; decision trees and decision
networks.

One difference is the representation of scenarios. A decision tree rep-
resents all scenarios as an individual path from the root node to the value
node. In contrast to that, an influence diagram has to provide a single path
that involves all nodes. These different representations have positive and
negative impacts.

One impact refers to the size of the graphs. The size of a decision tree
diagram grows at least exponentially with the number of nodes involved,
whereas the growth of a decision network diagram remains linear. Hence, a
decision tree representations become quite large for greater decision prob-
lems. The figures for the wildcatter oil problem illustrate this disadvantage,
compare figure 3.1.3 with the figures 3.2.1, 3.2.2 and 3.2.3. An influence
diagram presents the example with six nodes, and the decision tree repre-
sentation demands 25 nodes.

However, the more detailed visualization in a decision tree diagram en-
ables the facility to edit any scenario, which makes it possible to model and
analyze asymmetric decision problems.

Decision networks, which use the more abstract representation are lim-
ited to symmetric decision problems. The one path structure defining the
temporal order prohibits an alternation of the action sequence and the bun-
dled representation of scenarios demands their equal treatment. Conse-
quently, either order, functional or structural asymmetry can be expressed.

Another principal difference is that decision networks apply probabilistic
inference. The network structure obeys information about the probabilistic
dependencies of the chance nodes. If the system receives new knowledge
about a probabilistic distribution, the affected nodes can automatically be
updated. In a decision tree, such an observation would lead to a work-
over of the entire diagram. The decision tree structure does not embody
probabilistic dependencies.

The last difference that we want to discuss is the solution process. Deci-
sion trees are solved with the average out and fold back algorithm. Decision
networks on the other side originally did not have any algorithm to solve it.
The different methods to solve an influence diagram were introduced later
by Shachter and Cooper. Still, there is no method that has been added to
the outline of decision networks.
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Chapter 4

More Flexible Decision

Networks

In this section, we want to extend the decision network to make it more
flexible towards asymmetries. Therefore, we will investigate each type of
asymmetry in particular and afterward we will introduce a way to enable
the user of an advanced decision networks to analyze them. In the extended
network, we will implement central elements of the algorithm by Cooper,
using the transformation to a Bayesian network.

4.1 Structural Asymmetry

Structural asymmetry circumscribes the situation in which the existence of
a node depends on its past. The most well-known case is the performance of
a test. If the user decides to make the test, a result in the form of a chance
node is available; otherwise, the chance node does not affect the utility value.
A corresponding decision tree representation is shown in figure 4.1.1.

In the subtree starting with the chance node, the number of outcomes is
multiplied by the number of states. In the path without the chance node,
the number of outcomes is unchanged. In this instance, the structural asym-
metry component consists of one node, but it may also consist of a sequence
of chance and decision nodes. If this is the case, the number of outcomes is
multiplied by each number of states or actions. Thus, the structural asym-
metry has two effects. The number of outcomes of the resulting subtrees is
different, and the probabilistic inference for the affected nodes is absent in
the outstanding scenarios.

4.2 Functional Asymmetry

Functional asymmetry is given if an entered decision or observation restricts
the states of succeeding chance or decision nodes. So, an action or a state
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Di

C Di+1

Di+1Di+1

y n

¬cc

Figure 4.1.1: structural asymmetry

of a chance node may become impossible, because of the past. Figure 4.2.1
shows the case in which a state of a chance node inhibits the action of
the subsequent decision node. The state ¬c inhibts the second decision
alternative of Di. The outgoing edge and the linked subtree is removed in
the decision tree representation.

C

Di Di

c ¬c

Figure 4.2.1: functional asymmetry

4.3 Order Asymmetry

Order asymmetry emerges in the situation, in which the decision maker
wants to have the option to change the sequence of the decision while the
system is running. In a decision tree, we can model this type of asymmetry
with the aid of an additional decision node. Figure 4.3.1 illustrates an order

30



asymmetry in a decision tree. The node Di is the additional node and
works like a railway switch. The decision maker indicates the order of the
two decisions right before the first decision is made. The original order
Di,Di+1 and Di+2 is reversed in one of the resulting subtrees.

Di

Di+1 Di+2

Di+2 Di+2 Di+1Di+1

Figure 4.3.1: order asymmetry

4.4 The Advanced Decision Network

Besides the examined asymmetric components, the significant drawback of
decision networks is the inconvenient way that has to be taken to solve it.
As the Shachter algorithm already can be applied to any regular decision
network, the advanced decision network goes towards a simplification of its
transformation to a Bayesian network.

The design abbreviates the required steps, defined by Cooper [2], by
making a clear distinction between edges performing probabilistic inference
and informational edges solely denoting temporal precedence. Consequently,
the diagram consists of a probabilistic network illustrated with solid lines
and a temporal order defined by informational edges shown with dashed
lines.

The decision nodes have a special role in the system. They are part of
the probabilistic network without holding a probability table. Cooper solved
this problem by linking them to arbitrary probabilities to bring them in line
with the specifications of a Bayesian network. In the advanced decision
network the demanded instantiations are illustrated with thick lines.

The residual layout guidelines are retained unchanged. Figure 4.4.1
shows the new network for the wildcatter oil problem.

So far, we established the visual distinction between the probabilistic and
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D1 D2 VR

S A

{n : D2, A}

{n/A, S}

Figure 4.4.1: advanced decision network for the wildcatter oil problem

informational parts. Now, we want to introduce the features that are needed
to work with structural and functional asymmetries.

The wildcatter oil problem already involves two asymmetric components.
The first asymmetry is the popular test scenario with the decision to make
the test D1 and its results R.
The second asymmetry emerges at decision D2. If the decision is made not
to drill, the utility values become independent of the probability tables hold
by the chance nodes A and S, see figure 3.2.2 and figure 3.2.3.

There are two unwanted effects because of asymmetries. First, the prob-
abilistic network contains entries for redundant data, e.g. P (R = p|D1 = n).
Second, it is not visible if a probabilistic edge is valid for a given scenario.
This can only be deduced based on additional knowledge about the decision
problem.

To overcome these drawbacks, two types of rules are introduced that are
used to define multiple subnetworks to be able to deduce the valid networks
for any structural or functional asymmetry involved.

4.4.1 Bounding and Excluding Rules

Asymmetries are defined by bounding and excluding rules in the advanced
decision networks. These rules are attached to the incoming edges of the
value node and have their starting point at the node where the asymmetry
emerges. Both rules are notated in curly brackets and begin with a set of
states X belonging to the outgoing node. The second set Y contains the set
of nodes and states that are still valid for the states in X or that are not
valid for the states in X. This depends on the type of the rule which either
can be bounding or excluding.

Bounding rules express that the states in X may only be combined with

32



the set of nodes in Y denoted as:

{X : Y }.

Excluding rules express that the states in X may not be combined with
the set of nodes and sates in Y denoted as:

{X/Y }.

4.4.2 Informational Lines

With the aid of the new rules, structural and functional asymmetric com-
ponents can be defined and illustrated as they emerge at direct predecessors
of the value node. Direct predecessors are all decision nodes, because they
are part of the input of the utility function, but a chance node is not neces-
sarily a direct predecessor. To illustrate structural or functional asymmetry
emerging at a chance node that is not a direct predecessor of the value
node, we will use informational lines. These lines are dashed like informa-
tional edges but do not indicate temporal precedence. They solely connect
a chance node to a value node to illustrate the existence of a bounding or
excluding rule.

4.4.3 Temporal Switch

Order asymmetric components demand a relaxation of the rule that a single
temporal oder has to be defined for the network. To illustrate that a decision
Di−1 can also be taken before a decision Di, we will introduce a temporal
switch.

The switch is a small filled rectangle in the diagram that receives multiple
incoming informational edges and has exactly one outgoing edge.

D1

D2

D3

Figure 4.4.2: temporal switch

It allows an arbitrary ordering of the parent nodes. The temporal switch
shown in 4.4.2 allows the ordering D1 ≺ D2 ≺ D3 as well as the ordering
D2 ≺ D1 ≺ D3. Important is to notice that a switch of the decision nodes
also switches the set of chance nodes observed directly before these decisions.
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4.5 Solving the Advanced Decision Network

In this section, a method is presented to solve the advanced decision net-
work for an asymmetric decision problem using multiple Bayesian networks.
So, different networks are used to illustrate asymmetries for the different
scenarios. These networks are deduced based on the introduced bounding
and excluding rules. To receive the maximal expected utility the networks
are parallel solved and merged until one network remains.

4.5.1 Deducing the Bayesian Networks

As mentioned earlier, the system defines a probabilistic network. If we
have a symmetric decision problem, this network would be sufficient. In
asymmetric decision problems however, there are scenarios in which parts of
this network are not valid. Hence, different Bayesian networks are defined
for these scenarios.

To deduce these networks, the bounding and excluding rules are used.
Starting point is the whole network that establishes a set of nodes N . The
rules are worked out in line with the temporal order. The earlier the asym-
metry emerges in the temporal order; the earlier the rule is dealt with. To
work out a bounding rule {X : Y } or an excluding rule {X : Y }, the set
of states defined in X are separated. Therefore, the previous set of nodes
is split into two sets, one including X and one without X. The remaining
nodes are part of both sets.

For the set containing X, the remaining nodes are then adjusted based
on the type of rule. If it is a bounding rule, nodes that are not in Y are
removed and if it is an excluding rule, the nodes in Y are removed. The
next rules have to be worked out for all resulting sets.

The wildcatter oil problem includes two rules, one bounding rule {D1 =
n : D2, A} and one excluding rule {D2 = n/A, S}. So, the bounding rule is
attached to D1 and the excluding rule is attached to D2. In the temporal
order, D1 comes before D2 and therefore we have to work out the bounding
rule first.

The sets that we receive are: {D1 = y,R,D2, A, S} and {D1 = n,D2, A}.
Based on this result we work out the excluding rule and receive four sets
of nodes and states: {D1 = y,R,D2 = y,A, S}, {D1 = y,R,D2 = n},
{D1 = n,D2 = y,A} and {D1 = n,D2 = n}.

Hence, we have four different scenarios in which a different set of nodes
and states is valid. The corresponding Bayesian networks for the solution
process are shown in figure 4.5.1.
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Figure 4.5.1: Multiple Bayesian networks for the wildcatter oil problem
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4.5.2 Calculate the Maximal Expected Utility

To calculate the MEU, the Bayesian networks are first solved for the last de-
cision in parallel. Therefore, we instantiate the network for all combinations
of the last decision and all earlier nodes according to the temporal order.
Then, the value node is queried for each instantiation. For same instantia-
tions of earlier nodes, only the maximum value of the decision alternatives
is retained.

The results become part of a new value node. This value node replaces
the solved part of the network. The solved part consists of the last decision
node and all later nodes according to the temporal order.

Furthermore, edges are added to the network. From every chance node,
an edge to the value node is added.

After this is accomplished for all Bayesian networks, we might receive
same network structures. These networks are merged by holding only the
utility values that maximize the utility for an instantiation in both networks.

This is process is repeated till we receive one Bayesian network, which
solely consists of the value.

So, for the wildcatter oil problem we first have to solve the four Bayesian
networks for the last decision D2. The results and the succeeding Bayesian
network of the first two networks in fig 4.5.1 are shown below.

Network 1:

P (V = v|D1 = y,D2 = y,R = p) = 0.678

P (V = v|D1 = y,D2 = y,R = n) = 0.028

Network 2:
P (V = v|D1 = y,D2 = y,R = p) = 0.162

P (V = v|D1 = y,D2 = y,R = n) = 0.162

Both networks transform into the same network structure, as they are

D1

y
VR

Figure 4.5.2: Resulting Bayesian network 1

solved for D2, see figure 4.5.2. Hence, the networks are merged. The
new value node holds the utilities P (V = v|D1 = y,R = p) = 0.678 and
P (V = v|D1 = y,R = n) = 0.162.
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The third and fourth network also end up in the same network structure,
see figure 4.5.3.

Network 3:
P (v|D1 = n,D2 = y) = 0.319

Network 4:
P (v|D1 = n,D2 = n) = 0.189

D1

n
V

Figure 4.5.3: Resulting Bayesian network 2

The value node of this network only holds the utility P (v|D1 = n) = 0.319.

In the second iteration both resulting networks transform to the value
node. The result of the first network is P (V = v|D1 = y) = 0.37 and
P (v|D1 = n) = 0.319 for the second network. Hence, the maximal expected
utility is 0.37 and the maximizing decision alternative for D1 is y.
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Chapter 5

Conclusions

In this thesis, we reviewed the different theories combined in decision sys-
tems, the different features of decision trees and decision networks and vari-
ous solving algorithms. Later, we introduced an advanced decision network,
capable of presenting asymmetries and showed how the wildcatter oil prob-
lem is is solved with an advanced decision network using multiple Bayesian
networks.

The representation of functional and structural asymmetries is achieved
with rules that have to be set in the modeling process. Their creation claims
that the decision maker is aware of the asymmetries and their impact on
the scenarios in the underlying decision problem. If the rules are attached
properly, the advanced decision network can be transformed into a decision
tree representation. This can be done without additional knowledge about
the decision problem. Hence, an expert that is familiar with these rules can
deduce every scenario and for every scenario the nodes having impacto on
the linked utilities can be determined.

The proposed solution method for the wildcatter oil problem illustrates
that an asymmetric decision problem can be solved using multiple Bayesian
networks. This approach however is very expensive. The networks have to
be created, instantiated, solved using probabilistic inference and merged. So
when we compare the number of steps needed, the solution process propsed
by Shachter or the decision tree representation achieves a beter result [9].

Nevertheless, as we apply the algorithm of Shachter, we can not be
sure about the presence of an edge for a given scenario. Shachter states
that an edge may or may not exist. Thus, this needs to be checked while
the decision problem is solved. This could be realized by holding unique
data for each scenario or by linking the data to the scenarios. Yet, which
data is stored or linked to an scenario can not be read out of the provided
diagram. So, the representaion of an asymmetric decision problem by an
regular influence diagram is incomplete. The advanced decision network
facilitates a full representation of asymmetric decision problems using the
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temporal order and bounding and excluding rules. Now, it is possible to
define the described may or may not existence of an edge based on the
diagram.

Furthermore, there is the algorithm invented by Cooper. This algorithm
transforms the influence diagram to a Bayesian network. In a Bayesian
network, there is no may or may not existence of edges. All edge that are
part of the diagram exists for each scenario. Consequently, all scenarios are
treated the same way. So, the expected utilities of scenarios affected by
asymmetries are distorted. Consequently, a transformed decision network
can not be used to solve asymmetric decision problems. Therefore, it was
shown in section 4.5.2 how an advanced decision network could be solved for
an asymmetric decision problem by transforming it into multiple bayesian
networks.
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