
Bachelor thesis
Computer Science

Radboud University

Approximate Nearest Neighbor Field
Computation via k-d Trees

Author:
Jeftha Spunda
s4174615

First supervisor/assessor:
dr. Fabian Gieseke

fgieseke@cs.ru.nl

Second assessor:
prof. dr. Tom Heskes

t.heskes@science.ru.nl

August 15, 2016

Abstract

An Approximate Nearest Neighbor Field (ANNF) describes the coherency between two images
A and B by approximating the nearest neighbor from image B for every pixel patch in image
A. In this thesis we propose an algorithm using k-d trees and PCA to efficiently compute an
ANNF between two images. This approach is then compared to a state-of-the-art method
called PatchMatch which tackles this problem in a different way. Because both methods exploit
different aspects of the data, it is not directly clear which method is more suited for ANNF
computation. This research aims to provide a better insight in this area. What we find is that
PatchMatch yields reasonable accuracy about 3-4 times as fast as our approach, but when given
enough time a k-d tree + PCA will surpass accuracy of PatchMatch.

Contents

1 Introduction 4
1.1 Nearest Neighbor Field . 4
1.2 Goal . 5

1.2.1 Comparison to PatchMatch . 6

2 A k-d tree based ANNF computation 7
2.1 Approximate Nearest Neighbor Field . 7
2.2 In-depth algorithm overview . 9

2.2.1 Image preparation . 9
2.2.2 Dimensionality reduction . 9
2.2.3 Finding the nearest neighbors . 11
2.2.4 Building the ANNF . 12
2.2.5 Exporting to MATLAB . 12

2.3 Pseudocode . 13
2.4 Additional speedups . 13

3 Results 14
3.1 Data . 14
3.2 Parameters . 14
3.3 Testing PCA reduction and patch size . 15

3.3.1 PCA reduction . 15
3.3.2 Patch size . 16
3.3.3 Testing PCA fitting . 17

3.4 ANNF visualized . 18
3.4.1 Ground truth comparison . 19

3.5 Image reconstruction . 20

4 Conclusions 23

3

Chapter 1

Introduction

1.1 Nearest Neighbor Field

A problem in computer vision is matching image patches between two images A and B. More
specifically, finding, for every pixel patch in image A, the most similar pixel patch in image B.
This means that we are finding the nearest neighbor for every patch in an image. The result is
a nearest neighbor field that describes the mapping from image A to image B as seen in Figure
1.1 below.

A B
Figure 1.1: The arrow represents the nearest neighbor mapping between the pixel blocks in A
and B. Applying this to every pixel block in A creates a nearest neighbor field between A and
B.

A nearest neighbor field has many different applications. It is mainly used in computer graph-
ics. For example in image retargeting, completion and reshuffling [1] (See Figure 1.2), Super-
Resolution (upscaling an image while maintaining high quality detail) [4] and image denoising
[2].

Figure 1.2: Example of application of an ANNF. It is used in image editing tools and makes use
of the PatchMatch algorithm to compute an ANNF. (Image from PatchMatch paper [1])

4

1.2. GOAL

Computing a nearest neighbor field is a computationally expensive task. This is because every
pixel patch in image A has to be compared with every other pixel patch in image B. In an image
of size 1920*1080 pixels there are 2067604 overlapping patches of 3 by 3 pixels in each image.
Each pixel in a patch is represented by three values (RGB) that determine the color. This means
that a pixel patch of size 3 by 3 is a vector of 27 dimensions. For a pixel patch of size 8 by 8
this vector grows to a size of 192 dimensions.

Speeding up the construction of a nearest neighbor field is done by settling for approximate
nearest neighbors, instead of exact nearest neighbors. This gives rise to the term Approximate
Nearest Neighbor Field (ANNF).

Much research has already been done in this field. Some popular algorithms that are used to
compute an ANNF are PatchMatch and Coherency Sensitive Hashing (CSH).

PatchMatch is a randomized algorithm that generates an ANNF by incremental updates. It
begins with a random field. With every iteration it then goes through two phases: propagation
and random search.

Propagation attempts to improve the current position in the field by using information from
its direct neighbors. Random search attempts to do the same, only this time by randomly by
testing a sequence of candidate offsets. This typically converges after 4 to 5 iterations.

Furthermore, some image editing tools are provided with PatchMatch that use this algorithm
to achieve effects as shown previously in Figure 1.2.

CSH is an extension to PatchMatch which speeds up PatchMatch by 3 to 4 times. It uses
hashing to seed the initial patch matching and, alike PatchMatch, uses image coherence for
propagation. This hashing allows for faster propagation and thus results in a speedup compared
to PatchMatch.

1.2 Goal

In this thesis we propose an algorithm for computing an ANNF between two images. This
approach uses a traditional k-d tree to represent the patches, combined with PCA to reduce
dimensionality. Measuring performance is done by running our algorithm on pairs of images
and reporting the runtime for ANNF construction and plotting it against the accuracy of the
matches between pixel patches.

The main goal is to assess to what extent using our algorithm is viable for ANNF computation. A
critical step in speeding up a nearest neighbor field construction is reducing the dimensionality
of the pixel patches. There are a number of ways to achieve this, and for this research we
opt for PCA. We will show that PCA can significantly decrease runtime, but at the cost of
accuracy.

What we aim to find is a good balance between accuracy loss and runtime by trying different
values for fitting the PCA model and changing the number of dimensions that the pixel vector
is reduced to.

5

CHAPTER 1. INTRODUCTION

1.2.1 Comparison to PatchMatch

PatchMatch [1] is a state-of-the-art method for ANNF construction. In this research we compare
our algorithm’s performance to that of PatchMatch’s to see how using a traditional k-d tree
approach holds up against a method like PatchMatch. We do so by running a series of tests
on several image pairs and plotting performances side by side. PatchMatch includes a method
that allows for image reconstruction. Given an image B and an ANNF from image A to image
B, image A can be reconstructed. This is done by picking a pixel value based on a voting
mechanism. A pixel is voted upon by all the patches in which it is included to determine its
final value.

To further visualize the comparison between our algorithm and PatchMatch, we will feed ANNFs
generated by our algorithm into PatchMatch’s reconstruction method. This allows us to evaluate
how suited our approach is for image reconstruction.

6

Chapter 2

A k-d tree based ANNF
computation

In this chapter we give a more exact definition of an ANNF and provide an in-depth description
of our method and show the different aspects and phases that our implementation consists of.
We do so by first showing a quick overview of our method, before discussing each aspect in more
detail. To make everything more explicit, pseudocode can be found in Section 2.3.

2.1 Approximate Nearest Neighbor Field

A nearest neighbor field (NNF) describes the correspondences between two images by showing
how every pixel patch in image A is mapped to its nearest neighbor from image B.

Let A and B be two RGB images represented by a 3-d matrix of size h×w× 3 (Figure 2.1) and
let AP, BP be the sets of all patches in image A and B, respectively. Let p ∈ AP be a pixel
patch of height and width n, flattened to a vector of size 3n2 and let f be a function such that
f : R3n2 ×BP → R3 where f(p,BP) = (x, y, d). x and y represent the coordinates of the pixel
which is in the top left corner of the pixel patch q ∈ BP that is the nearest neighbor of patch
p. d is the distance between p and q, for some distance metric.

In this research we are using the Euclidean distance metric, given by:

d(u, v) =
√

(p1 − q1)2 + (p2 − q2)2 + · · ·+ (pi − qi)2

For two vectors u and v of dimensionality i.

Now we define an NNF as a predicate over R3, such that:

NNF (AP,BP) = ∀p∈AP,(x,y,z)∈R3 [f(p,BP) = (x, y, z)]

Reshaping NNF(AP,BP) into a 3-d matrix of size h− n+ 1×w− n+ 1× 31, gives us the final
representation of a nearest neighbor field that we are using in this research.

1there are h− n+ 1 ∗ w − n+ 1 overlapping patches of size n in an image of size h× w

7

CHAPTER 2. A K-D TREE BASED ANNF COMPUTATION

Blue

h

Green

Red

w

Figure 2.1: RGB image representation

Distances

h-n+1

Y-coords

X-coords

w-n+1

Figure 2.2: NNF representation where h×w are original image dimensions and n is patch height
and width.

The NNF has 3 layers (numbered 0, 1 and 2). The first layer contains all the x-coordinates
of the patches in B. So, the NNF on index (x, y, 0) contains the x-coordinate of the patch in
image B of which the patch in image A on position (x, y) (in image (A)) is the nearest neighbor.
Similarly, the second layer contains all the y-coordinates of the patches in B. Finally, the third
layer contains all the Euclidean distances (Figure 2.2).

Approximation

Because computing an NNF as described above is very computationally complex as image size
increases, approximation is required. This is done by reducing the dimensionality of the patches
in AP and BP . Let AP ′ and BP ′ be the sets that contain dimensionality reduced patches and
p′ ∈ AP ′.

Computing f(p′, BP ′) will now return a 3-tuple that is not guaranteed to match f(p,BP). This
is due to the data loss caused by dimensionality reduction. The more dimensionality reduction
is applied, the less likely it becomes that f(p′, BP ′) = f(p,BP).

We now define an Approximate NNF (ANNF) as a predicate over R3, such that:

ANNF (AP,BP) = NNF (AP ′, BP ′)

8

2.2. IN-DEPTH ALGORITHM OVERVIEW

2.2 In-depth algorithm overview

In short, our implementation can be described in the following way. First, the images A and
B that the ANNF will be built for are read. This is followed by dividing the images into
patches. When the patches have been created, dimensionality reduction in the form of PCA is
applied.

After dimensionality reduction, the algorithm builds the k-d tree from all the patches from image
B and then finds the nearest neighbor in this tree for every patch from image A. Reshaping and
rearranging the output yields the first two fields of the ANNF (x and y coordinates). Lastly,
the L2 distances between patches from A and their nearest neighbor in B are computed in the
original patch representation (so not in the reduced dimension space created by PCA) and added
to the ANNF.

Furthermore, the algorithm provides functionality to export the ANNF to .mat format for easy
importing in MATLAB, used for the reconstruction of an image.

Code has been written in Python, making use of NumPy, SciPy, scikit-image and scikit-learn
libraries. A more detailed explanation follows below.

2.2.1 Image preparation

Image representation Before any sort of computation can be performed on images, it is
necessary to read them from a file and represent them in the right data structure. For this we
use the scikit-image library. Calling skimage.data.imread(filename) loads an image from file
and returns it in the form of an ndarray (N-dimensional array). This array is shaped as shown
in Figure 2.1.

Extracting patches Because nearest neighbor computations are performed between patches,
we have to be able to divide an image into overlapping pixel blocks of size n. In order to achieve
this efficiently we use the scikit-learn library which provides methods to extract patches from
an array. Calling sklearn.feature extraction.image.extract patches 2d(image

, (patch height, patch width)) extracts all overlapping blocks of size patch height *

patch width from image (in our case image means the ndarray from
skimage.data.imread(filename) and patch height and patch width are both n).

This creates a list of all pixel patches of size 3n2 in an image (3 layers deep, because every pixel
has is represented by 3 values (RGB)). Every pixel patch is represented by its top left pixel.
Meaning that the i-th patch is a pixel block in which the i-th pixel is the top left pixel.

Patch representation After patch extraction, every patch is flattened to a 3n2-dimensional
vector to prepare it for nearest neighbor computation. We do so by using NumPy. NumPy is a
Python package that allows for very efficient operations performed on large arrays and matrices.
Using numpy.reshape() we can flatten a pixel patch as displayed in Figure 2.3.

2.2.2 Dimensionality reduction

Because dimensionality is a very important parameter in decreasing the runtime, it is necessary
to implement a form of dimensionality reduction in addition to using a k-d tree. For this

9

CHAPTER 2. A K-D TREE BASED ANNF COMPUTATION

Figure 2.3: Pixel patch of size 2 converted to a 12-dimensional vector

research we are using the PCA implementation from scikit-learn to reduce the dimensions of
pixel patches. Calling pca = sklearn.decomposition.PCA(n components=x) creates a PCA
object which, after fitting, is able to reduce data to x components.

Choosing the number of components in a PCA reduction can greatly affect the outcome of a
nearest neighbor computation, so this needs to be chosen carefully. The greater the number of
components, the more data is kept, but the slower the computation will be. Because a k-d tree
loses its effectiveness as the number of dimensions grows, we have decided to limit the number
of components to between 2 and 10 for our tests.

Fitting As mentioned above, a PCA model has to first fit a model. Fitting this model is not
done on the entire set of patches, but on a random subset of both images A and B prior to the
reduction. The insight here is that to create a PCA model for images that represents the data
well , the entire image is not required. We have found that choosing a relatively small random
subset (10% of patches from both A and B) suffices. It is important that this is a random subset,
because that allows the model to fit on patches taken from all over the image. In many images,
the top left corner does not represent the data well, so taking the first 10% of patches to fit
PCA on, would result in a poor fit.

Increasing the size of this subset will not necessarily significantly improve accuracy (as will
become evident in the next chapter). At some point, the accuracy stagnates. This insight allows
us to save a lot of computation time in the PCA reduction step of the algorithm.

We use NumPy to generate a random subset. For image A, this is done by calling rand subset a

= patches a[numpy.random.choice(

patches a.shape[0], patches a.shape[0]*x, replace=False), :]. Note that x should be
between 0 and 1 here and it denotes the size of the random subset that is returned. For example,
if x = 0.1, 10% of patches is selected. Replacement is set to False, because it is not desired to
fit the model on potentially duplicate patches.

We repeat this process for image B and concatenate the result to the random subset of image
A. Calling pca.fit(rand subset a + rand subset b) readies the PCA model for transforma-
tion.

Transformation Now that the PCA-model has been fitted, the actual dimensionality reduc-
tion is done by calling pca.transform(patches a) and pca.transform(patches b).

10

2.2. IN-DEPTH ALGORITHM OVERVIEW

Figure 2.4: Nearest neighbor selection in a 2-dimensional k-d tree, leaf size is 5. A ◦ represents
a data point in the tree and the • represents the query point. Note that in the leaf, the L2

distance is computed for every point. The shortest arrow points to the nearest neighbor.

2.2.3 Finding the nearest neighbors

After the dimensionality reduction has been applied, we build a k-d tree for all the patches in
image B and traverse the tree for every patch in image A to find its nearest neighbor. Note that
we are interested in just one nearest neighbor when computing an ANNF. We do this using the
scikit-learn library.

Tree building The k-d tree is built by calling
neighbors = sklearn.neighbors.NearestNeighbors(n neighbors=

self.nearest neighbors, algorithm="kd tree").fit(patches b)

. The tree is built by taking median splits, so building is done in O(n log n) time. We set the
leaf size in the tree to its default, which is 20. This means that median splitting stops when
there are 20 patches in a leaf of the tree.

Tree traversal Finding the nearest neighbor is done by traversing the k-d tree for every patch
in image A. In our implementation this is realized by calling neighbors.kneighbors(patches a).

When we get to a leaf in the tree a switch is made to brute force, meaning that the L2 distance
is computed to each of the 20 patches in the leaf and the patch with the shortest distance
to the query patch is the nearest neighbor. Figure 2.4 visualizes this for a k-d tree built for
2-dimensional data points where the leaf size is 5.

11

CHAPTER 2. A K-D TREE BASED ANNF COMPUTATION

2.2.4 Building the ANNF

The nearest neighbor search results in a list of indices, which tells us which patch in image
A is mapped to which patch in image B. We now create the ANNF by taking all the x and
y-coordinates from the patches in B and rearranging them such that the ANNF on position
[x][y][0] contains the x-coordinate of the patch in B that the patch on position [x][y] in image
A is mapped to. Similarly, position [x][y][1] contains the y-coordinate of the patch in B (recall
Figure 2.2).

Distance computation The third field of the ANNF contains all the distances between
patches in image A and their nearest neighbors in image B. Using scikit-learn to find nearest
neighbors already results in a list of distances, alongside a list of indices, but because the patches
have been reduced by PCA we cannot use these distances as a performance measure, if we want
to compare it to PatchMatch.

Therefore, all distances have to be computed in the original dimension space. We do this by
calling numpyp.linalg.norm(numpy.array(patches a old,

dtype=numpy.int32) - numpy.array(patches b old[indices, :],

dtype=numpy.int32), axis=1). Note that we are performing this operation on patches a/b old.
These are the original patches, before PCA was applied.

2.2.5 Exporting to MATLAB

In order to allow importing our ANNF field in MATLAB, we use the SciPy library to easily
export Python array objects to .mat files. Calling scipy.io

.savemat(filename, "ann field": self.ann field) achieves this. We use the exported
ANNFs to reconstruct image A, given just image B and the ANNF from A to B, a functionality
that comes with PatchMatch, which uses MATLAB.

12

2.3. PSEUDOCODE

2.3 Pseudocode

Algorithm 1: ANNF A → B via k-d trees + PCA

Data: RGB images A and B, patch size n
Result: ANNF A → B

1 patches a org = extract patches(image A);
2 patches b org = extract patches(image B);
3 subset = random subset(patches a org);
4 PCA.fit(subset);
5 patches a = PCA.apply(patches a old);
6 patches b = PCA.apply(patches b old);
7 tree = build kdtree(patches b);
8 indices = [];
// Find all nearest neighbors

9 for p in patches a do
10 nearest = tree.search nearest(p);
11 indices.append(nearest);

// Use remainder to compute all the x-coordinates for the ANNF

12 x-coords = remainder(indices, (B.width - n + 1));
// Use floor divide to compute all the y-coordinates for the ANNF

13 y-coords = floor divide(indices, (B.width - n + 1));
// Finally, compute distances in original dimension space

14 distances = compute distance(patches a org, patches b org);
15 annf = [];
16 annf.append(x-coords);
17 annf.append(y-coords);
18 annf.append(distances);
19 return annf;

2.4 Additional speedups

There are numerous ways to improve on the current algorithm. Because these are out of the
scope of this bachelor thesis these have not been implemented, but could be added as future
extensions.

Backtracking One way to speed up a nearest neighbor search using k-d trees is to alter the
backtracking behaviour when traversing the tree. In this way, the nearest neighbor search would
stop early, instead of potentially traversing the entire tree during the backtracking phase. This
speedup would of course come at the cost of some accuracy.

Buffer k-d trees A variant of the traditional k-d tree, called buffer k-d tree[3] can be im-
plemented instead of a classical k-d tree used in this research. The buffer k-d tree harvests the
power of GPUs to greatly accelerate the process of nearest neighbor searching. In contrast to
changing the backtracking behaviour, using a buffer k-d tree would not lead to a decrease in
accuracy.

13

Chapter 3

Results

In this chapter we describe some relevant parameters in this research and how they affect the
algorithm’s performance. We illustrate this by plotting L2 distance between two images against
the time taken to finish the ANNF computation for different parameter values. Furthermore, we
measure performance in the form of ANNF visualizations and image reconstruction behaviour.
We compare our findings with PatchMatch’s performance.

All tests are done on a Windows 7 machine, an Intel Core i7-3820 CPU @ 3.6 GHz, with 8GB
of RAM.

3.1 Data

For this research we are using the VidPairs1 dataset. The set consists of 133 image pairs taken
from movie trailers. The images are all 1920*1080 pixels, but for some tests we have reduced
image size to 500*208 pixels. The two images in a pair are about 1-30 frames apart.

Figure 3.1: An image pair from the VidPairs dataset

3.2 Parameters

Patch size The size of the patch vectors. The size of a patch notably impacts algorithm
performance as it grows. A pixel patch of 3 × 3 produces a 3 ∗ 32 = 27-d vector, but for a patch
size of 8 × 8, this grows to a 3 ∗ 82 = 192-d vector, which dramatically increases runtime.

1http://www.eng.tau.ac.il/~simonk/CSH/

14

3.3. TESTING PCA REDUCTION AND PATCH SIZE

PCA reduction The number of dimensions that we reduce the patches to. The fewer dimen-
sions we reduce to, the faster our algorithm performs. However, this leads to a loss of accuracy.
The bigger the difference between the original dimensionality and the reduced dimensionality,
the more information loss.

For example, starting with 27 dimensions and using PCA to reduce to 10 dimensions results in
less accuracy loss compared to reducing to 10 dimensions from a 192-d vector.

PCA fitting The amount of patches that we use to fit the PCA model on. The trade-
off between accuracy and runtime is not the same as in the PCA reduction step. Fitting to
more patches does not necessarily mean a higher accuracy in the end. A good accuracy can be
achieved by fitting the PCA model on a random subset of patches. However, fitting to fewer
patches always leads to a shorter runtime, because less work has to be done.

3.3 Testing PCA reduction and patch size

In this series of tests we show how the average L2 distances and runtime are affected by different
PCA reductions and different patch sizes.

3.3.1 PCA reduction

Consider the plot in Figure 3.2. As can be seen from the figure, PatchMatch is quicker at
reaching a reasonable accuracy (±35). To reach similar accuracy, our approach is about 3 times
slower.

Note that the image size is only 500*208 pixels for this test. The original image size in our
data set is 1920*1080 pixels. Figure 3.3 shows performance for an image of full HD resolution.
A similar result here; our approach is about 3-4 times slower to reach the same accuracy.
PatchMatch reaches reasonable accuracy in a shorter time span. Whereas a 500*208 images
takes about 1-2 seconds to reach a reasonable accuracy, 1920*1080 takes 20-30 seconds.

Surpassing PatchMatch

What is evident from the two figures presented in the previous section is that our algorithm
benefits more in terms of accuracy with every PCA reduction step than PatchMatch benefits
from every iteration. In fact, it appears as if PatchMatch benefits less with every iteration.
What this implies is that our approach will eventually surpass PatchMatch in terms of accuracy,
given enough time. To illustrate this, consider Figure 3.4

This test aims to show how PatchMatch behaves compared to our approach as we increase the
number of iterations. It shows that PatchMatch’s accuracy will at some point hardly benefit
from increased iterations. As seen in Figure 3.3, L2 distance reaches 9 after 8 iterations. At 60
iterations the distance has only increased ±2, but it took 50 seconds longer.

Our approach surpasses PatchMatch in terms of accuracy, if given the same amount of time.
However, recall that PatchMatch is designed to make ANNF computation viable in real-time
applications, like image editing tools, where having to wait 50 seconds is most likely not desired.

15

CHAPTER 3. RESULTS

0 1 2 3 4 5 6 7 8

seconds

20

25

30

35

40

45

50

55

60
L
2
 d

is
t

10 image pairs, patch size 3, image size 500*208 pixels

PatchMatch

k-d tree + PCA

Figure 3.2: Runtime and L2 distance averaged over 10 image pairs of size 500*208 pixels, patch
size 3. Every marker PatchMatch’s curve represents one iteration, starting from 1. Every
marker on the k-d tree + PCA curve represents the number dimensions that the pixel patches
were reduced to, starting from 2 and incrementing by 1 with every step.

0 10 20 30 40 50 60 70

seconds

5

6

7

8

9

10

11

12

13

14

15

L
2
 d

is
t

1 image pair, patch size 3, image size 1920*1080 pixels

PatchMatch

k-d tree + PCA

Figure 3.3: Runtime and L2 distance measured for 1 image pair of size 1920*1080 pixels, patch
size 3. PatchMatch ran for 8 iterations. Our approach with PCA to 2, 3, 4 and 5 dimensions.

Returning a reasonable result in a short amount of time is more important, which is exactly
what PatchMatch does well, as we have seen so far.

3.3.2 Patch size

To illustrate the effects of an increase in patch size, consider the plot in Figure 3.5. What we can
conclude from the difference in L2 distance is that accuracy decreases as the patch size grows.
For our approach this can be explained by the PCA reduction step.

16

3.3. TESTING PCA REDUCTION AND PATCH SIZE

25 30 35 40 45 50 55 60 65

seconds

5

6

7

8

9

10

11

12

13

14

L
2
 d

is
t

1 image pair, patch size 3, image size 1920*1080 pixels

PatchMatch

k-d tree + PCA

Figure 3.4: Runtime and L2 distance measured for 1 image pair of size 1920*1080 pixels, patch
size 8. PatchMatch ran for 58, 59 and 60 iterations. Our approach with PCA to 2, 3, 4 and 5
dimensions. The image pair is the same as in Figure 3.3.

When patch size is 8, a pixel patch is a 192-d vector. Reducing from 192-d to 5-d leads to much
more information loss than reducing from 27-d to 5-d, as is the case when patch size is 3. Our
previous observation still holds: PatchMatch is roughly 3 times faster.

0 10 20 30 40 50 60

seconds

35

40

45

50

55

60

65

70

75

L
2
 d

is
t

1 image pair, patch size 8, image size 1920*1080 pixels

PatchMatch

k-d tree + PCA

Figure 3.5: Runtime and L2 distance measured for 1 image pair of size 1920*1080 pixels, patch
size 8. PatchMatch ran for 8 iterations. Our approach with PCA to 2, 3, 4 and 5 dimensions.
Note that this test was run on the same image pair as in Figure 3.3 above.

3.3.3 Testing PCA fitting

This test aims to show that it is not necessary to use the entire image when fitting a PCA
model to the patches. Using a random subset of patches suffices. The plot shown in Figure
3.6 confirms our insight that it is not necessary to fit PCA on the entire set of patches to get
a good PCA model. Fitting on more data takes increasingly longer, but the accuracy does not

17

CHAPTER 3. RESULTS

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Seconds

233.25

233.30

233.35

233.40

233.45

233.50

L2
 d
is
t

10 pairs, patch size 8, pca to 3, image size 500*208

Figure 3.6: The plot above shows performance of our approach averaged over 10 pairs where
every marker denotes the percentage of data used to fit the PCA model on. Starting at 10%
and incrementing by 10% with every step.

necessarily improve. In fact, in some cases it yields slightly worse accuracy compared to a PCA
model fitted on a random subset.

In conclusion, fitting on 10% of patches is sufficient to bring the final L2 distance within a range
of ±1 of the accuracy achieved by a 100% fit, at a fraction of the time and memory cost. This
makes PCA viable in ANNF computation, which was discouraged in [5] due to time cost and
instead a Walsh-Hadamard transform [6] was used

3.4 ANNF visualized

Visualizing the ANNF is done by plotting the different layers of the field. In the figures below
we show the second (y-coordinates) and third (L2 distances) layer of the field for a given image
pair. In Figure 3.7 we plot the y-coordinates in gray scale and the L2 distances in hue.

In this plot, PatchMatch reaches about 35 L2 distance (in 0.5 seconds) and our approach reaches
approximately 20 L2 (in 10 seconds). A lower L2 distance results in a detailed field which shows
more subtleties, compared to a high L2 distance field, which is still quite rough.

18

3.4. ANNF VISUALIZED

Figure 3.7: ANNF visualization for the image pair in shown at the top. Left shows the y-
coordinates. Right shows the L2 distances. Image size 500*208 pixels, patch size is 3 and
PCA was used to reduce to 10 dimensions. Runtime ± 10 seconds. Bottom row shows the
y-coordinates of the field that PatchMatch created after 5 iterations. Runtime ± 0.5 seconds.

To show a more detailed view of the ANNF, consider the plots in Figure 3.8. This shows an
ANNF for a high resolution image, which allows for a more detailed visualization.

3.4.1 Ground truth comparison

We show a visual comparison of a ground truth matched field and our field from Figure 3.7.
Ground truth means an exact nearest neighbor matching, so PCA was not applied before finding
the nearest neighbors, resulting in the most accurate NNF that can be created between two
images. Figure 3.9 illustrates this further.

The left image shows y-coordinates from a ground truth matching for the pair in Figure 3.7.
The middle image shows a zoomed in region of this field. The right image is a zoomed in region
of the y-coordinate plot of Figure 3.7, put here for visual comparison which shows minimal

19

CHAPTER 3. RESULTS

Figure 3.8: ANNF visualization for different image pair. Size 1920*1080 pixels, patch size 8,
reduced to 5 dimensions with PCA.

difference. This shows that using PCA to reduce from a 27-d vector to 10-d vector yields a field
that is similar to the ground truth.

3.5 Image reconstruction

Given an image B and an (A)NNF A → B, image A can be reconstructed by means of a voting
mechanism, which checks for every patch a pixel is included in, in order to determine its final

20

3.5. IMAGE RECONSTRUCTION

Figure 3.9: ANNF ground truth comparison.

value. This reconstruction method can be used for image editing purposes. It is included with
PatchMatch.

Feeding our ANNF into this algorithm allows us to gauge reconstruction performance visually.
Consider Figure 3.10. This plot shows reconstructions created for the image pair from Figure
3.7. What can be seen is that PatchMatch is able to create a more accurate reconstruction in 0.7
seconds, which is in line with Figure 3.2. Our reconstruction seems to generate the structures
properly, but the colors are not quite close to the original.

A reconstruction detail can be found in Figure 3.11. This plot shows that our algorithm will
create a slightly better reconstruction if given more time. Our algorithm surpasses PatchMatch’s
performance when both are given 8500ms, which is in line with Figure 3.4, where we show that
our algorithm benefits from increased runtime, whereas PatchMatch will stop benefiting as much
from a certain point onwards.

21

CHAPTER 3. RESULTS

Figure 3.10: Reconstruction for image size 500*208 pixels, patch size 3. Top: Original image,
middle: Our reconstruction after 0.7 sec runtime (PCA to 3 dimensions), bottom: PatchMatch
reconstruction after 0.7 sec runtime (10 iterations).

Figure 3.11: Detail of reconstruction for image size 500*208 pixels, patch size 3. Left: original
detail. Middle: Our approach after 8.5 seconds (PCA to 10 dimensions). Right: PatchMatch
reconstruction after 8.5 seconds (120 iterations).

22

Chapter 4

Conclusions

We have presented an algorithm for Approximate Nearest Neighbor Field computation. This
algorithm is based on a k-d tree approach to perform nearest neighbor search, combined with
PCA for approximation. We have tested our approach and compared the results with a state-
of-the-art method called PatchMatch.

In our tests we have found that our approach works reasonably well, but is not as fast as
PatchMatch. In general, our approach is 3 to 4 times slower to achieve the same accuracy.
However, if given enough time, our approach surpasses PatchMatch by not reducing as much in
the PCA step.

In terms of reconstruction behaviour, we have found that PatchMatch is more suited to this
task, due to its ability to generate reasonable results in a short amount of time. Our approach
needs more time to reach the same quality of reconstruction.

Furthermore, it has become clear that fitting the PCA on the entirety of the image is not neces-
sary to get a quality fit. Using a random subset of roughly 10% of all patches is sufficient.

In the future, our algorithm could be extended in numerous ways to improve performance. For
example, backtracking behaviour in the k-d tree could be altered or a much more efficient version
of a k-d tree, called buffer k-d tree, could be used.

23

Bibliography

[1] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan Goldman. Patchmatch: A
randomized correspondence algorithm for structural image editing. ACM Transactions on
Graphics-TOG, 28(3):24, 2009.

[2] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. A non-local algorithm for image
denoising. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, volume 2, pages 60–65. IEEE, 2005.

[3] Fabian Gieseke, Justin Heinermann, Cosmin Oancea, and Christian Igel. Buffer kd trees:
processing massive nearest neighbor queries on gpus. In Proceedings of The 31st International
Conference on Machine Learning, pages 172–180, 2014.

[4] Daniel Glasner, Shai Bagon, and Michal Irani. Super-resolution from a single image. In
Computer Vision, 2009 IEEE 12th International Conference on, pages 349–356. IEEE, 2009.

[5] Kaiming He and Jian Sun. Computing nearest-neighbor fields via propagation-assisted kd-
trees. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,
pages 111–118. IEEE, 2012.

[6] Yacov Hel-Or and Hagit Hel-Or. Real-time pattern matching using projection kernels. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, 27(9):1430–1445, 2005.

24

