
Bachelor thesis
Computer Science

Radboud University

The Evolvability of iTasks using
Normalized Systems

Author:
Justin Mol
s4386094

First supervisor/assessor:
prof.dr.ir. M.J. (Rinus) Plasmeijer

rinus@cs.ru.nl

Second assessor:
dr. Peter Achten

P.Achten@cs.ru.nl

August 17, 2016

Abstract

The problem of evolvability of information systems is playing a bigger and
bigger role in the world of IT. Projects have great overhead expenses when
a change in a large system is necessary. In the struggle to define evolvabil-
ity, we experience difficulties finding stable solutions. Normalized Systems
theory is a novel approach that makes a promising step towards finding this
solution. In this thesis, we follow its path and put the method in a func-
tional programming context in order to analyze the evolvability of the iTask
framework. We have found that the two domains share similarities and the
iTask approach shows promising qualities.

Contents

1 Introduction 2

2 Normalized Systems 4
2.1 Lehman’s Laws of Software Evolution 4
2.2 Systems Theoretic Stability 5
2.3 The Theorems . 6
2.4 Realizing Normalized Systems 10

3 Introduction to iTask 12
3.1 Tasks . 13
3.2 Shared data . 13
3.3 Generic Interaction . 14
3.4 Task Composition . 14

4 Applying Normalized Systems theory to Clean 15
4.1 Primitives in Clean . 15
4.2 Implications for the NS Theorems 17
4.3 NS Elements in Clean . 21

5 The Evolvability of iTask 25
5.1 Data Representation . 25
5.2 Stateful Workflow . 27
5.3 User Interaction and Communication 28
5.4 Summary . 29

6 Related Work 31

7 Conclusions & Future Work 32

References 33

A Appendix 36

1

Chapter 1

Introduction

The problem of evolvability of information systems is playing a bigger and
bigger role in the world of IT. Projects have great overhead expenses when
a change in a large system is necessary. As environments change, so do
business requirements and therefore also the desired systems realizing these
requirements. Alike all information systems, this requires iTask systems to
be as evolvable as possible. In the struggle to define evolvability, we experi-
ence difficulties finding stable solutions.

Normalized Systems (NS) theory is a novel approach that makes a promising
step towards finding this solution. The theory originates in the University
of Antwerp and takes a distinctive approach to develop agile and evolv-
able software. In this thesis we use the theory to analyze the iTask system
methodology in an attempt to determine and increase its measure of evolv-
ability. This resulted in the following contributions:

• We explain how Normalized Systems theory relates to functional pro-
gramming by exploring NS terminology in a functional context. This
resulted in a wide discussion that gives new insight in how to cre-
ate evolvable software in functional languages (Section 4.1 and 4.2).
Hereto, we also discuss the feasibility of the automatic generation of
normalized systems in a functional language (Section 4.3).

• We analyze the evolvability of iTask applications and identify parts
of the system that are (dis)advantageous to their evolvability (Chap-
ter 5). We do so by discussing the iTask framework and its practice
in detail and comparing it to Normalized Systems theory.

• A third contribution can be mentioned, as this thesis finds yet another
way to apply the Normalized Systems theory in an already growing
field.

2

The rest of this thesis is structured as follows. We first go into the theoretical
background on Normalized Systems and iTask in Chapters 2 and 3. In
Chapter 4, we discuss the theory of Normalized Systems in the context
of the functional language Clean. Following that, we analyze the iTask
methodology and contrast it to Normalized Systems theory in Chapter 5.
Finally, we will go into the related work in Chapter 6 and draw our final
conclusions in Chapter 7.

3

Chapter 2

Normalized Systems

Normalized Systems is a fairly new theory developed at the University of
Antwerp. It uses the system theoretic notion of stability (Mannaert, Verelst,
& Ven, 2008) and Manny Lehman’s laws of Software Evolution (Lehman,
Ramil, Wernick, Perry, & Turski, 1997) to offer a method on building infor-
mation systems that are resistant to change. We first go into the background
of Normalized Systems (sections 2.1 and 2.2) and then continue towards the
theorems of Normalized Systems and how to realize these in practice (sec-
tions 2.3 and 2.4).

2.1 Lehman’s Laws of Software Evolution

The study that Lehman did in 1969 has led to a research field in computer
science that has received an increasing amount of attention: software evo-
lution. Software evolvability can be described as the ability for software to
deal with change (Oorts, Huysmans, et al., 2014). This means that when a
software system is evolvable, it is easy to modify. In other words, adapting
the system does not result in extra work other than the desired change; the
overhead is small.

Lehman’s goal was to formulate a scientific theory of software evolution.
He analyzed data acquired during a study of the IBM programming process
(Lehman, 1996). In the mid seventies he formulated the first three laws
of software evolution. These laws have been revisited various times, over
a period of 20 years, in order to deal with the rapidly changing develop-
ment practices in the 80s and 90s (Herraiz, Rodriguez, Robles, & Gonzalez-
Barahona, 2013). The last change was made in 1996 and the following can
be considered the current laws:

4

Lehman’s Laws of Software Evolution

I
1974

Continuing Change
An E-type system must be continually adapted, or else it becomes
progressively less satisfactory in use.

II
1974

Increasing Complexity
As an E-type system is changed, its complexity increases and be-
comes more difficult to evolve unless work is done to maintain or
reduce the complexity.

III
1974

Self Regulation
Global E-type system evolution is feedback regulated.

IV
1980

Conservation of Organizational Stability
The work rate of an organization evolving an E-type software system
tends to be constant over the operational lifetime of that system or
phases of that lifetime.

V
1980

Conservation of Familiarity
In general, the incremental growth (growth rate trend) of E-type
systems is constrained by the need to maintain familiarity.

VI
1980

Continuing Growth
The functional capability of E-type systems must be continually en-
hanced to maintain user satisfaction over system lifetime.

VII
1996

Declining Quality
Unless rigorously adapted and evolved to take into account changes
in the operational environment, the quality of an E-type system will
appear to be declining.

VIII
1996

Feedback System
E-type evolution processes are multilevel, multiloop, multiagent feed-
back systems.

The laws all relate to E-type systems. Lehman describes E-type systems as
software systems that solve a problem or implement a computer application
in the real world (Lehman, 1996).

2.2 Systems Theoretic Stability

In the field of Systems Theory, stability is one of the most fundamental
properties of a system. The notion of stability is related to the input and
output of a function: “a bounded input function results in bounded output
values, even as t→∞” (Mannaert et al., 2008). In the context of software
evolvability, we get that a bounded amount of changes to a software system
leads to a bounded amount of impacts to the system.

5

In Software Engineering, the structure of an information system is com-
monly seen as a composition of various design patterns. This is a widely
studied subfield of Software Engineering. Design patterns are often de-
scribed as reusable solutions to commonly occuring problems. In Normal-
ized Systems theory, design patterns are analyzed from the perspective of
change. Mannaert et al. (2008) argue that design patterns need to be stable
with respect to some anticipated changes in order to deliver evolvable soft-
ware systems. Here, design patterns refer to aggregations of entities that
document good design practices and represent a way to document software
designs. Their study on stability and software design has led to a number
of theorems described in the next section.

Information systems that exhibit stability are referred to as normalized sys-
tems (Mannaert, Verelst, & Ven, 2012, p. 94). Normalized systems are sta-
ble with respect to some pre-defined set of anticipated changes. Mannaert
et al. defined the following changes as a lower bound of evolvability:

• An additional data attribute or field.

• An additional data entity.

• An additional action entity, which may imply:

– an an additional action entity having a specific data entity as
input, or producing a specific data entity as output and

– an additional action entity calling a specific action entity.

• An additional version of a task, which may imply

– an additional version using another external technology,

– an additional version representing a mandatory upgrade, and

– an additional version containing an additional error state.

2.3 The Theorems

The need of information systems to be stable brings us to the requirement
of avoiding any combinatorial effects. Mannaert et al. (2012, p. 93) define
combinatorial effects in the following:

We consider a combinatorial effect to be the consequence of
dependencies between multiple modules in information systems
that cause a change to a specific module to have an impact on
other modules that are [...] unrelated to the original change.

6

In other words, combinatorial effects exist whenever one module x of an in-
formation system depends on a different module y in such a way that when
a change is introduced in y, another unrelated change is also necessary in x.

Avoiding these combinatorial effects leads to an information system where
changes remain constant over time, i.e. changes are independent of the size
of the system. Achieving this can be difficult. Therefore, four design theo-
rems were formulated that “act as constraints on the modular structure of
information systems in order to achieve stability”. In these theorems and
the rest of this thesis, we will use the following definitions.

Firstly, the term software entity refers to the more fundamental concept
of a module. They are instantiations of the constructs provided by a tech-
nology environment. All software entities of an application together form
the modular structure of the software architecture. For example, in Java we
have the Class construct. An instantiation of this construct is considered
to be a software entity.

Next, the term data entity refers to: “a software entity that contains vari-
ous attributes or fields, including links to other data entities”. Data entities
only contain data and have no interface. For example, the study variable
in the below JavaScript code is one data entity, but so is student:

1 var study = "Bachelor Computer Science";
2 var student = {
3 first_name: "Justin",
4 middle_name: "",
5 last_name: "Mol",
6 study: study
7 };

Listing 2.1: A JavaScript example of a data entity

The term action entity refers to: “a software entity that represents an op-
eration at a given modular level in a hierarchy”. Action entities consume
and/or produce data entities and have an interface. An action entity con-
tains one or more tasks. A task, in the widest sense, is a set of instructions
that performs a certain functionality. It can be a unit of processing that
can change independently, or an invocation of another processing action
(Mannaert, Verelst, & Ven, 2011).

It is up to the designer of the information system on which level the tasks
are considered. When the modular structure is more detailed, action enti-
ties will be more fine-grained and any remaining details become submodular
tasks. Moreover, Mannaert et al. write that the identification of these taks
should be based on change drivers (or simply concerns).

7

Mannaert et al. (2012) distinguish between two types of tasks:

• Functional tasks: tasks that perform a specific functional operation in
an information system

• Supporting tasks: generic tasks that perform a cross-cutting concern
in an information system (e.g. persistency, logging, remote access)

The module object in the following JavaScript code is an example of an
action entity with two functional tasks and one supporting task:

1 var students = [];
2 var module = {
3 // A functional task:
4 newStudent: function (first_name, last_name, study) {
5 var student = {
6 first_name: first_name,
7 middle_name: "",
8 last_name: last_name,
9 study: study

10 };
11 students.push(student);
12 return student;
13 },
14 // Another functional task:
15 changeStudy: function (student, study) {
16 students[students.indexOf(student)].study = study;
17 },
18 // A supporting task:
19 logStudents: function () {
20 for(var i = 0; i < students.length; i++)
21 console.log(students[i]);
22 }
23 };

Listing 2.2: A JavaSript example of an action entity

We will refer to data entities, action entities and tasks as primitives.

8

We summarize the Normalized Systems theorems in the following table:

1. Separation of concerns
An action entity can only contain a single task in normalized systems.

2. Data version transparency
Data entities that are received as input or produced as output by
action entities, need to exhibit version transparency in normalized
systems.

3. Action version transparency
Action entities need to exhibit version transparency in normalized
systems.

4. Separation of states
The calling of an action entity by another action entity needs to
exhibit state keeping in normalized systems.

Table 2.1: Normalized Systems Theorems

Theorem 1 shows that it is not possible to create an evolvable information
system with action entities that combine two tasks. After all, when N action
entities all contain the same task y and each a different (version of) task
xi, then changing task y would require a coding change to each of these N
entities.

Theorem 2 states that adding a new field to a data entity should not af-
fect any action elements that do not use the new field. This is to ensure
that you can have multiple versions of data entities, that are used in or are
the result of action entities, without changing other aspects of the system.

Since we have only one task per action entity and tasks can have multiple
versions, action entities must be able to have multiple versions too. Thus,
theorem 3 states that an action entity can have multiple versions without
affecting the actions that call the action entity. In languages like Java, this
is usually achieved using polymorphism or by using wrapper functions.

Theorem 4 implies the need for every action entity to keep state for ev-
ery call to the action entity. The state contains information such as error
or event information, making it closely related to asynchronous processing.
Rather than having an error passed down synchronously, the error is stored
in state and another action should react on it. Another practical manifes-
tation is the need for a separate stateful workflow.

9

2.4 Realizing Normalized Systems

We continue by looking into how to design a normalized system. We realize
that applying the theorems in practice can be very difficult for the average
programmer. To this extend, Mannaert et al. (2012) introduce the concept
of elements (Table 2.2). Elements are higher level modular structures that
encapsulate software entities in such a way that they comply to the four the-
orems. They will be the building blocks to designing a stable information
system.

As with all theories on Normalized Systems, elements are independent of
a specific technology environment or programming language. The internal
implementation of the elements that Normalized Systems theory provides is
described as design patterns. As de Bruyn et al. (2012) point out, every NS
element expands to around ten classes, giving a very fine-grained modular
structure. Therefore, it is infeasible to create a normalized system by hand.
Luckily, the work Mannaert et al. (2012) did has led to design patterns suit-
able to work with automatic code generation for these elements. This is a
process that they call pattern expansion. For example, a data element is
expanded using a basic name, context information (such as component and
package name) and more detailed information about the data fields. A data
element is then expanded to various classes, including a JavaBean class and
classes to realize supporting tasks.

Earlier, we spoke of normalized systems being stable with respect to some
anticipated changes. Mannaert et al. (2012) define the following anticipated
changes for elements: an additional: data field, data element, action element
(which may have a data element as in- or output), version of a task within
an action element, action in a workflow element, workflow element, connec-
tor element or trigger element. They consider deletions a matter of garbage
collection and modification a combination of addition(s) and deletion(s).

10

Table 2.2: Normalized Systems Elements

Element Rationale

Data • Represents an encapsulated data construct providing data ver-
sion transparency.

• Cross-cutting concerns (like persistency and access control) are
considered to be a part of the data element.

Action • Represents a single encapsulated functional task.

• Arguments and parameters of action entities must be encap-
sulated data entities.

• Workflows need to be separated from action entities and will
be encapsulated in workflow elements.

• Tasks need to be encapsulated in such a way that a separate ac-
tion entity wraps the action entities representing task versions.

Workflow • Contains the sequence of action elements that should be exe-
cuted to fulfill a workflow.

• Workflow elements cannot contain other functional tasks.

• Workflow elements must be stateful. The state is required for
every instance of use of the action element and must be part
of, or linked to the instance of the data element that serves as
argument.

Connector • Connector elements must ensure that external systems can in-
teract with data elements, but they cannot call an action ele-
ment in a stateless way.

Trigger • Trigger elements need to control the separated states and check
whether an action element has to be triggered.

11

Chapter 3

Introduction to iTask

iTask is an embedded Task-Oriented Programming (TOP) language built
on the functional programming language Clean. It aims to offer a way for
programmers to create interactive, distributed, multi-user applications that
are commonly manifested as web-services. These applications aid users in
achieving some common goal. It is described as a combinator language
(Achten, Koopman, & Plasmeijer, 2015). This means that it uses combina-
tors, i.e. named programming patterns that in a very precise way state how
a new piece of program is assembled from smaller pieces of programs.

TOP makes it possible to program complex multi-user applications by defin-
ing the tasks that need to be accomplished (Plasmeijer, Lijnse, Michels,
Achten, & Koopman, 2012). iTask tries to take away the burden of devel-
oping and managing complex web applications over various environments
and helps the programmer to focus on what the processors (human users
and computers) have to do and what information structure is necessary to
coordinate this in an efficient manner. It leaves the programmer wondering
only what tasks are necessary to achieve the goal. iTask deals with the how
of the story.

TOP applications use a client-server architecture with the client side im-
plementing the front-end components of the application in various environ-
ments such as web browsers, smart phones and tablets. The server side
implements the back-end of the application, taking care of any coordination
and synchronization jobs done for the front-end components.

TOP makes use of four core concepts described and formalized by Plasmeijer
et al. (2012). These four core concepts are implemented in the iTask frame-
work and represent the components that build an iTask application.

12

3.1 Tasks

Firstly, tasks are abstract descriptions of interactive persistent units of work
that have a typed value. Tasks may be interactive and can observe the
current value of other tasks in three carefully controlled ways:

1. The task has no value observable for others

2. The task has an unstable value

3. The task has a stable value

Such a task value is of type Value a:

1 :: Value a = NoVal | Val a Stability
2 :: Stability = Unstable | Stable

Tasks can handle events. Events have a time stamp that is incremented
using a counter. A task result can be a new task value, coupled with the
time stamp of the event that created the value, or an exception value. A
task can raise an exception value in case it is known that it can no longer
produce a meaningful value.

Semantically, a task is a state transforming function that reacts to an event.
It rewrites itself to a reduct and accumulates responses to users. A reduct
contains the latest task result and a task that represents the remaining work.
The Responses collect all responses of all subtasks the task is composed
of. Three events are known: a RefreshEvent for refreshing the webpage,
an EditEvent for editing values within a task and an ActionEvent for
telling the step combinator what to do next. Similar to events, tasks are pro-
vided with a fresh identification value and a time stamp. The identification
numbers are generated by using the most recent value in the State.

3.2 Shared data

Secondly, shared data allows for the simultaneous execution of tasks. As
tasks are usually not concerned with how or where data is stored, Michels
and Plasmeijer (2012) abstract away from these details using typed ab-
stract interfaces called Uniform Data Sources (UDS) or Shared Data Sources
(SDS). SDSs can be read, written and updated automatically. Moreover,
when one task modifies shared data, other tasks can observe this change.

1 :: RWShared r w = { get :: *State -> *(r,*State)
2 , set :: w -> *State -> *State }

Internally, SDSs (de)serialize values of arbitrary type by using the Dynamic
type. An SDS has type RWShared r w, defined as the record structure
above. A function createShared produces a fresh SDS by returning cor-
responding get and set functions. The @> combinator is used on a task
to write the task value to an SDS.

13

3.3 Generic Interaction

Thirdly, Generic Interaction makes it possible to generate user interfaces
for any type of data used by tasks. Interactions can be described with
arbitrary detail, although this is not necessary to get a fully functional ap-
plication. There is no need for the programmer to worry about designing
the user interface or the required event handling.

User-interactions are defined as interactive tasks (called editors) in TOP.
They allow a user to enter and modify a visualized value of some (first or-
der) type. Editors follow a model-view pattern where the model is the value
of the task and the view is the visualization. The TOP framework handles
the events in the view and updates the model accordingly and vice versa.

3.4 Task Composition

Finally, task composition is used to construct tasks from core combinator
functions, resulting in the combinator language mentioned before. Task
composition knows three modes:

1. Sequential composition

2. Parallel composition

3. Value transformation

A task stays alive until it is no longer needed. The task step operator (>>*)
is used as sequential composition. It inspects the task value and decides
whether or not to step to a next task. The operator takes a list of possible
steps of any length. Steps can happen based on a user action (OnAction),
the current task value (OnValue) or an exception (OnException). Un-
caught exceptions are propagated by the step operator. Plasmeijer et al.
(2012) refer to task steps that can continue without interference of the user
as triggers. These are the abovementioned OnValue and OnException
steps. Triggers have priority over user actions.

To compose parallel (sub)tasks, one can use the parallel combinator,
of which there are two modes of use: Detached and Embedded. Subtasks
of the former sort get distributed to different users, whereas Embedded sub-
tasks are executed by the current user. Both sorts of parallel subtasks can
inspect each other’s progress.

14

Chapter 4

Applying Normalized
Systems theory to Clean

In order to apply the theory of Normalized Systems, we must first clear
up its respective concepts. Therefore, we give an overview of meaning and
terminology within the context of functional languages such as Clean (Sec-
tions 4.1 and 4.2). Besides that, we explore the feasibility of implementing
pattern expanders for the NS elements in Clean (Section 4.3).

4.1 Primitives in Clean

4.1.1 Software entities

Software entities refer to the more fundamental concept of a module and
are defined as the instantiations of the constructs provided by the technol-
ogy environment. In Clean, we have definition modules and implementation
modules (in dcl and icl files). These are not, however, considered software
entities. The main constructs provided by Clean are type definitions and
function definitions. Instantiations of these are therefore considered to be
the software entities.

This complies to the idea that Clean does not handle private and public
modules or inheritance. A software entity is known to the application as
long as the module it was defined in is imported. Therefore, the modular
structure is not formed by the (definition and implementation) modules, but
rather by the definitions inside these modules.

4.1.2 Data entities

A data entity is defined as a software entity with various data attributes or
fields, including links to other data entities and that has no interface. Let us

15

first reflect upon the difference between the way data is represented in func-
tional and object oriented languages. Whereas in object oriented languages
we’d have a class containing (private) attributes (with getters and setters)
of certain types, in functional languages this is defined as a data structure.

We quickly find that type definitions in Clean can be considered data enti-
ties. Let us elaborate on this using a code example:

1 // Type definitions
2 :: Point :== (Int, Int)
3 instance toString Point where
4 toString (x,y) = "(" +++ (toString x) +++","+++ (toString y) +++

")"
5

6 :: Triangle :== (Point, Point, Point)
7 instance toString Triangle where
8 toString(p1, p2, p3) = toString p1 +++ ", " +++ toString p2 +++

", " +++ toString p3
9

10 // Instances of points and triangle
11 p1 :: Point
12 p1 = (1,1)
13

14 p2 :: Point
15 p2 = (2,1)
16

17 p3 :: Point
18 p3 = (1,3)
19

20 t :: Triangle
21 t = (p1, p2, p3)

Listing 4.1: Data entities in Clean

This example illustrates that (an instance of) a type definition can be con-
sidered a data entity in Clean. p1, p2 and p3 are instantiations of the
type Point and t of the type Triangle. We see that, under the defini-
tion of a data entity above, both the points p1, p2, p3 and the triangle t
can be regarded data entities, where t holds references to other data entities.

In functional languages we do not require concepts as private and public
attributes, since all data is passed as arguments of functions to progress
through the workflow of the application. Moreover, Clean works using a
graph rewriting system. Therefore, defining a Point p3 = p1 would not
technically result in p3 referring to p1, but rather in assigning p3 to p1 by
value.

16

4.1.3 Action entities and tasks

An action entity is defined as a software entity that consumes and produces
data entities and represents an operation at a given modular level in a hi-
erarchy. Using the definition of software entities, it shouldn’t come as a
surprise that a function represents an action entity in Clean. Consider, for
example, a function addToPoint :: Point Int Int -> Point that
adds two integers to the x- and y-coordinates of a point. This function can
be considered an action entity since it consumes and produces data entities
and represents an operation at the modular level.

This leaves us to discuss the role of tasks within the context of Clean. The
identification of a task is somewhat arbitrary. It is up to the designer of the
system to choose what will be considered a task. The more fine-grained the
modular level is, the more separate tasks can be identified. However, any
change driver, such as using an external technology, should be a separate
task. Although not pointed out by Mannaert et al., this closely relates to the
Single Responsibility Principle (Martin, 2003) in object oriented program-
ming. SRP essentially expresses that a module should have only one reason
to change (one responsibility). Speaking in terms of normalized systems, we
have that an entity should have only one responsibility, or one task, as men-
tioned earlier. Mannaert et al. (2012) refer to reasons to change as change
drivers.

4.2 Implications for the NS Theorems

In this section we discuss the roles of the Normalized Systems theorems in
the context of Clean and with the previously discussed definitions of the
software entities. We repeat each of the theorems before going into them.
As with all sections in this chapter, our goal is to analyze the concepts of
Normalized Systems in the context of functional programming languages.

We consider deletion a matter of garbage collection, as done by Mannaert
et al. (2012). Deletion of entities or fields usually means these entities or
fields are not necessary anymore. In this case, one could simply stop using
them. In a stable system, these unused parts do not affect the rest of the
system.

We consider modifications as a combination of deletion(s) and addition(s).
A change of type of a field, for example, is actually an addition of a new
field with the new type. In stable systems, the addition of this field does
not affect the rest of the system. When the old field is not used anymore, it
can be deleted as a garbage collection process.

17

4.2.1 Separation of Concerns

An action entity can only contain a single task in normalized
systems.

Continuing on the idea that a task refers to a responsibility or reason to
change, we get that a Clean function should have only one responsibility.
This means that a function can be separated into two function definitions
whenever it has two or more responsibilities.

As an example, consider an application that has the functionality to print
out a complex pdf-document for the tax authority. The document is com-
puted from given tax data and has a specific format. Assume that this
is achieved in one action entity (function). Then apparently this software
entity is not only aware of computing the required data, but also how to
format the data on the document. Changing either the format or the com-
putation then leads to unrelated changes within the software entity. Thus,
the software entity should be split into separate action entities.

This also means that cross-cutting concerns such as logging should always
be implemented in a separate action entity. Therefore, a function should
not be able to both perform its functional task, such as a computation, and
perform a supporting task, such as logging, at the same time. Supporting
tasks are generally seen as a separate change driver or responsibility.

4.2.2 Data Version Transparency

Data entities that are received as input or produced as output by
action entities, need to exhibit version transparency in normal-
ized systems.

In order to adhere to the theorem of Data Version Transparency, we will
consider record structures in Clean. A nice property about record structures
is that adding a field to the structure does not require changing the functions
that consume the type if the function uses selectors, like so:

1 isMotherOf :: Person Person -> Bool
2 isMotherOf mom child = child.mother == mom

It also does not require changing functions that produce this type as long
as they use &-notation (called the update function) such as in the following:

1 setMidName :: Person String -> Person
2 setMidName p m = {p & mid = m}

Neither of the functions above are aware of the fields in the Person type.
They are only concerned with the field(s) they explicitly use. This already
offers a large deal of Data Version Transparency. When adding a new field

18

to Person, both functions will stay correct.

This approach is closely related to information hiding in object oriented
programming. We could see the selectors (.) as getter-operations in the
record structure and the update function (&) as a setter. However, com-
plete Data Version Transparency is not yet achieved by using just these two
operations. Consider, for example, the Person record to be:

1 :: Person = { first :: String
2 , last :: String
3 , mother :: Person }

Adding a mid field to the record will not change action entities that consume
a Person (as long as they use selectors), but action entities that produce
a new Person will fail at first, as the mid field will not be specified. This
expresses the need for every record structure to have a zero instance to
be defined. Action entities that produce a new Person will then have to
use this instance in combination with the update function to achieve Data
Version Transparency:

1 instance zero Person where
2 zero = {frst = "", mid = "", lst = "", mother = zero}
3

4 createPerson :: String String String Person -> Person
5 createPerson first mid last mom =
6 {zero & first = first, mid = mid, last = last, mother = mom}

Since addition of a field in a record structure does not affect action entities
consuming or producing the record structure when using these three func-
tions (., & and zero), we achieve Data Version Transparency at compile
time with respect to the anticipated changes defined earlier.

In general, and as pointed out by Ven, Van Nuffel, Bellens, and Huysmans
(2010, p. 40), the use of primitive types (such as String, Int, Real, etc.)
violates both Data Version Transparency and Action Version Transparency.
Consider an action entity that contains a primitive type in its interface. A
new version of the action entity may imply sending more information to
the entity. The primitive type is not data version transparent however, as
it represents a single value. Therefore, the action entity does not exhibit
Action Version Transparency, as it requires changing the interface of the
action entity.

As for supporting tasks, these should be implemented at the level of the data
entity. For logging, this is easily achieved making use of the toString in-
stance. A class Log a | toString a can be defined with instances such
as logln that logs type a with a newline character at the end:

1 logln :: *File a -> *File
2 logln io x = io <<< (toString x) <<< "\n"

19

This way, we preserve Data Version Transparency, since a new version of a
data entity only implies changing the toString instance of the entity.

Algebraic Data Structures

In additon to record structures, Clean also offers Algebraic Data Types
(ADT). ADTs can be made polymorphic by adding type variables to the type
constructors. Several data constructors (variants) can be used in one ADT,
each with zero or more type arguments. Finally, ADTs can be recursive.

1 :: Tree a = Leaf
2 | Node a (Tree a) (Tree a)

The type definition above is a classic example of a recursive polymorphic
ADT, representing a tree structure taking values of type a. If we look at
ADTs from an evolutionary perspective, we find a few implications. We
immediately see that ADTs have an interface, as both the type constructor
(the left-hand side) and the data constructors (the right-hand side) take
type arguments. This requires functions consuming ADTs as input to pat-
tern match on the ADT. Functions producing the ADT need to deliver any
of the variants, using its data constructor. Consequently, functions produc-
ing ADTs need to be aware of the structure of the variants. Therefore, a
change in any of the data constructors results in combinatorial effects.

However, these combinatorial effects can be avoided by defining getter, set-
ter and creation functions for each ADT. Using ADTs this way is similar to
using record structures with the selector, update and zero functions. Since
all record structures come with the selector and update functions, it may be
more convenient to use record structures as main data construct.

4.2.3 Action Version Transparency

Action entities need to exhibit version transparency in normalized
systems.

Action Version Transparency expresses the need to wrap tasks in wrapper
functions. If the implementation of a task changes, one would have to change
all other entities that call the task directly. If, on the other hand, the task
is called indirectly using a wrapper function, a new version of the task only
implies a change in the function wrapping the task. This implies that every
task must be wrapped in a function in order to deal with additional versions
of the task.

In Clean, polymorphism is achieved by using function overloading. Dif-
ferent versions of a task can be defined as instances of a function class in

20

Clean. For example, a function that computes subsidy data can have mul-
tiple versions for cars and for houses. The same function can exist for both
versions by using an overloaded function. Therefore, function overloading
allows for additional versions of tasks that require different types of data.

As discussed earlier, in order to achieve Action Version Transparency, action
entities may never contain primitive types in their interface. This would vi-
olate both the theorem of Data Version Transparency and of Action Version
Transparency.

4.2.4 Separation of States

The calling of an action entity by another action entity needs to
exhibit state keeping in normalized systems.

Separation of States expresses the need for the definition of action states.
Every call to an action entity needs to exhibit state, giving an asynchronous
way of calling components. How Separation of States must be realized in a
functional language is not immediately clear. Ven et al. (2010) describe a
violation in the context of Java:

The third violation occurs when a method throws a custom ex-
ception (i.e., an exception that is not part of the default Java
environment). This constitutes a violation to the separation of
states theorem and therefore results in combinatorial effects.

The concept of exceptions is not a standard construct in Clean, however.
Error handling is usually achieved by using data structures such as Maybe.
If one wishes to also receive an error response if an exception occurs, one
could define a structure such as:

1 Exception :: Just x | Error String

However, the introduction of such a new error state in a new version of an ac-
tion entity indeed violates the theorem of Separation of States, as illustrated
in Listing A.1 and A.2 in the Appendix. Moreover, this only goes as far as
synchronous exception handling in the sense that an exception is raised
directly by the program itself. However, a handful of papers have shown
that asynchronous exceptions are possible in both Haskell (Marlow, Jones,
Moran, & Reppy, 2001) and Clean (Achten & Plasmeijer, 1994; Van Weelden
& Plasmeijer, 2002), but that will not be our focus.

4.3 NS Elements in Clean

In this section, we propose an implementation strategy for the five ele-
ments as described by Mannaert et al. (2012); Oorts, Ahmadpour, Man-
naert, Verelst, and Oost (2014). In order to reduce the complexity of this

21

analysis, we have chosen to regard smaller systems that, for example, do
not make use of external technologies. This leads to incompleteness of these
descriptions in the sense that not all elements have trivial implementations.
However, more indications are found in the analysis of iTask in Chapter 5.

4.3.1 Data elements

Data elements need to encapsulate data entities in a data version transparent
way. We disregard the use of supporting tasks on data elements for now.
As discussed earlier, using record structures already provides a large deal of
data version transparency. We show that a record structure with its defined
zero instance is stable with respect to the anticipated changes:

• Addition of a field, as discussed earlier, does not affect the rest of
the system and can be done according to theorem 2 as long as ac-
tion entities use selectors when consuming the record or use the zero
and &-function when producing one. Adding a field only requires an
addition to the record structure and to its respective zero instance.

• Addition of a data element implies defining a new record structure,
which in turn requires the addition of its respective zero instance.

• Additional action elements consuming or producing data elements
need to use selectors, the update function and their respective zero
instances, as discussed in the following subsection.

Therefore, record structures are suitable for the Clean implementation of
data entities, as they achieve Data Version Transparency. Data entities are
wrapped in their respective elements, also using record structures.

To exhibit state according to theorem 4, data elements need to somehow
be linked to a state. There are multiple ways to achieve the stable addition
of a state to a data element. An obvious option is to include the state as
a field in the record structure encapsulating the data entity. This way, the
state is stored in a data version transparent way.

The supporting task of persistency would involve automatically serializing
the data element and would have to be done on every change of the data
element. This allows the system to be accessible even after failure, using the
serialized data elements and their state to continue working. This expresses
the need for a generic way of serialization. In Chapter 5 we will see that this
can be achieved using the Shared Data Sources described in Section 3.2.

4.3.2 Action elements

As an action element represents an atomic action without any internal work-
flow, we define action elements to be functions with a single task, complying

22

to theorem 1. Examples include: the encryption of a file, the computation
of taxes, the generation of a form, etc. To achieve Action Version Trans-
parency (theorem 3), a function must always be wrapped in order to deal
with additional versions of a task. To further deal with additional versions
of tasks, one should use function overloading for action elements. This way,
a new version of a task using a different type than its original, will not affect
any existing calls to the existing action element. Action elements consuming
data elements as input must always use selectors. Action elements produc-
ing new instances of data elements must use their respective zero function
and/or the &-operation as discussed earlier.

4.3.3 Workflow elements

Workflow elements must contain the sequence of action elements to execute
a workflow. They can not have any other functional tasks beside that. In
order to exhibit state and comply to theorem 4, the calling of each action ele-
ment must be stateful. Moreover, the state must be linked to the instance of
the data element that served as argument. Nuffel, Huysmans, Bellens, and
Ven (2010) and Krouwel and Op ’t Land (2011) have demonstrated that
decision rules should be separated from the workflow to comply with the
theorem of Separation of Concerns. Therefore, a workflow element does not
evaluate the states returned by action entities. State checking and control is
explicitly done by trigger elements. We will discuss these in the next section.

Implementations of workflow elements in Clean are represented by func-
tions taking the target data element as input and applying the appropriate
actions based on its current state and transition. The way this is done must
be abstract and uniform, i.e. at the level of a workflow element, defining
a transition should be consistent with each action element that returns a
state. If this is not the case, we clearly do not comply with the theorem
of Action Version Transparency, as each version of an action element would
require a different way of handling.

Supporting tasks can be added to a workflow as necessary. Logging, for
example, can be achieved by adding the *World type to the interface of the
workflow. The *World type can provide the function with IO, making log-
ging possible. Since workflow elements are functions themselves, this needs
to happen in a stable manner. This again emphasizes the need for action
version transparent workflow elements. If we encapsulate the *World in a
data element, we can easily achieve this. Additionally, function overloading
may help to achieve polymorphism on workflow elements, thus eliminating
combinatorial effects arising from differently typed workflow elements.

23

4.3.4 Trigger elements

Trigger elements are responsible for controlling states and checking whether
an action or workflow element needs to be called. It is not immediately
apparent what the implementation of trigger elements in Clean should be.
The use of a trigger element becomes more clear in a distributed system with
human actors. Such a system often requires some sort of event handling.
We disregard the details of how these events are structured and how they
are sent and received.

As events come in, a trigger element has to react on it based on the cur-
rent state. An event may hold information about actions in the system,
or indicate some exception. The goal of the trigger element is to update
the state and indicate what action element needs to be invoked next. This
implies that a trigger element is a function that has access to the current
state and can interface with existing action elements. The instantiation of
a new trigger element then involves defining what action element should be
triggered and some rule that decides whether the action element should be
invoked, based on the state and/or the incoming event.

To achieve Action Version Transparency and to add supporting tasks, the
same rules apply as for the workflow element.

4.3.5 Connector elements

Connector elements need to ensure that data elements are exposed to (pos-
sibly external) actors. They ensure external systems are able to interact
with the system without calling elements in a stateless way. In addition,
Mannaert et al. (2012) describe user connector elements. These elements
are responsible for the user interaction of the application and exposing data
elements through a user interface. This clearly implies separation of applica-
tion logic and tasks involving user interaction. Protocol connector elements,
on the other hand, have the responsibility of sending and receiving data
messages over a certain protocol. Both connector elements need to exhibit
state by making use of the data element.

24

Chapter 5

The Evolvability of iTask

This chapter is aimed at the core subject of this thesis. We will apply the
theory of Normalized Systems to the iTask framework. To this extent, we
explore the concepts of iTask introduced in Chapter 3 and contrast them
to the Normalized Systems theory introduced in Chapter 2 and discussed
further in Chapter 4. Our goal is to compare the TOP paradigm to the NS
theory in an attempt to explore the evolvability of iTask applications.

We start this chapter by discussing three themes that cover all iTask con-
cepts (Section 5.1 to 5.3). The sections discussing these themes will start
by describing the related concepts in iTask and then listing related NS con-
cepts. The relation between both domains are then discussed in a separate
subsection. In Section 5.4 we give a summary of this chapter. We will refer
to tasks in the context of TOP to iTasks, in order to distinguish them from
tasks in the context of NS.

5.1 Data Representation

Before all else, we focus on the data representation in iTask systems. The
first form of data is identified as the task result of an iTask. The task result
is a structure TaskResult a that contains either a task value, denoted
Value a, or an exception. The iTask framework introduces functions to:

• check whether the Value structure contains a value (hasValue),

• retreive the value from the Value structure (getValue) and

• change the task value, resulting in a new task (@? and @).

In other words, the framework provides functionality similar to a getter and
setter, as well as a check for empty values, for the main data construct.

Shared Data Sources (Section 3.2) are the second notion in iTask involv-
ing data representation. SDSs makes automatic sharing of task values pos-

25

sible. Since the serialization performed by SDSs makes use of dynamics,
task values of any type can obtain an SDS. Writing a value to an SDS is
achieved by using the @> combinator on a task. This results in the reactive
behaviour of iTasks automatically (de)serializing their values. Under water
this is achieved by defining a get and set method for each SDS.

Related NS concepts identified for the following discussion involve: the Data
Version Transparency theorem, the Separation of States theorem, data ele-
ments, data entities, supporting tasks.

5.1.1 Discussion

It quickly becomes clear that instantiations of the task value type (Value a)
can be considered data entities1. The TaskResult type encapsulates this
entity and gives it a time stamp. A TaskResult can also be an exception:

1 :: TaskResult a = ValRes TimeStamp (Value a)
2 | E.e: ExcRes e & iTask e

An exception can simply be considered a form of error state. Normalized
Systems theory points out that states must be linked to or part of data
elements, but does not tell exactly how. In this case, the exception is a
variant in the data structure defining TaskResult. It can therefore be
considered as linked to the data element. This tells us that instantiations of
TaskResult can be considered data elements.

The encapsulation of values in TaskResults achieves Data Version Trans-
parency for the most part. However, this is greatly due to the generic nature
of the evaluation of Tasks. This is a rather complex process which we ab-
stract from at the specification of iTask applications. For instance, consider
a task of non-transparent type, e.g. a String. Changing the task type
from String to Int does not necessarily break the task, because it will
be handled automatically by the framework. Yet it can be troublesome
when using the step operator (>>*; Section 3.4), since the TaskStep ex-
pects something of the same type as the task it is used on. If we assume
each task only has a limed amount of steps, this effect does not grow with
the system. Therefore, we conclude that Data Version Transparency is kept.

The Shared Data Sources achieve the supporting tasks of persistency and
remote access. Persistency is done automatically, as each time the value of
an iTask changes, it gets serialized. This is implemented at the level of the
data element. On the level of an iTask definition, we are not concerned with
how serialization works internally and seems evolvable in that sense.

1There is a slight subtlety here. Since Value a also captures Stability, which can
be seen as a state, it is actually a data entity that has already been linked to a state.

26

5.2 Stateful Workflow

In this section, we focus on how iTask systems carry out workflows and
how states are kept. This includes the subject of exception handling. The
main concept that glues tasks together in iTask systems is, of course, task
composition. An iTask is recursively rewritten until it has a stable value
or an uncaught exception is raised. When an iTask has an unstable value,
it means the iTask is not finished yet, and the continuation task will be
rewritten instead.

Sequential tasks are built up using the task step operator >>*. The op-
erator takes a task and a list of possible steps (Section 3.4). Steps contain
a predicate to test the task value and a function that passes the task value
to the new task.

Parallel tasks can be constructed using the parallel operator. The -&&-
(and) and -||- (or) combinators make use of the operator and can be used
to start two tasks in parallel. Parallel tasks constructed with -&&- give a
pair of task values. Parallel tasks constructed with -||- have a stable value
if either of the individual tasks has a stable value. Otherwise it will either
be unstable or non-observable.

Related NS concepts identified for the following discussion involve: the Sep-
aration of Concerns theorem, the Separation of States theorem, workflow
elements, trigger elements, action elements.

5.2.1 Discussion

The concept of task composition in iTask systems is an obvious form of
workflow. We consider iTasks that are executed in parallel as one, because
the parallel iTask as a whole needs to be evaluated before progress in the
workflow is possible. We can then consider the step operator (>>*) with its
three cases (OnAction, OnValue and OnException). The step operator
can take one or more steps. Each time the step operator is used, it builds
up the workflow, because it represents a transition in the workflow. Each
TaskStep in the second argument of the operator represents a separate
state and a transition to the task that reacts on this state. This state re-
lates to the predicate and action given to the TaskStep. This is further
illustrated using the PlanMeeting example from (Plasmeijer et al., 2012)
in the Appendix (Figure A.1)

We notice that task composition is closely related to workflow elements
in NS. However, the line that separates the concept of such a workflow ele-
ment with the concept of an action element in iTasks is not entirely clear.

27

In the PlanMeeting example, we see this clearly in the decide task step.
This step calls the pick task, which in turn starts a (tiny) workflow, as it
calls the step operator. This leads to the idea that an iTask can fulfill both
a functional task and a task concerning the workflow of the application,
possibly violating the theorem of Separation of Concerns. For now, we will
consider iTasks purely as workflows. In Section 5.3 we will elaborate on this.

There is more to the step operator, however. The TaskSteps it takes
as argument indicate what task must be executed when something happens.
Internally, this takes place based on the state of the iTask that served as
argument. This includes how to handle exceptions. Such a construct clearly
relates to the concept of trigger elements in NS. A TaskStep controls the
task state and checks whether a certain action has to be triggered. In Nor-
malized Systems theory, this is precisely what defines a trigger element.

5.3 User Interaction and Communication

In iTask systems, user interaction is achieved using editors (Section 3.3).
Internally, one core editor function (edit) is defined. Besides that, iTask
offers a handful of predefined editors that are derived from this core edi-
tor. These are functions like updateInformation, viewInformation,
enterChoice, etc. These interactive tasks make user interaction possible
in a completely automatic way.

Custom user interaction is made possible by giving an interaction task a
views parameter. This parameter can be defined independent of the inter-
action task. The framework also offers types for user interface controls and
an annotation operator (<<@) to tweak the layout.

In addition, sending information from server to client (and vice versa) is
completely abstracted from as well. The programmer does not need to be
concerned about what protocol or format to use, as this is taken care of
by the framework. Nonetheless, third party protocols can be defined if one
wants to integrate an iTask application with another application. The code
for this can be separated from the application code.

Related NS concepts identified for the following discussion involve: the Sep-
aration of Concerns theorem, action elements, connector elements.

5.3.1 Discussion

The abstraction of user interaction by means of editors completely separates
it from the rest of the application. This indicates the presence of some user
connector element in the framework. Naturally, this connector element must

28

be implemented at the front-end level of the application. As a consequence,
the connector element and the way it is implemented are not a factor in the
evolvability at the level of the iTask specification.

The same applies for the client-server communication. There must be a
protocol connector element that ensures the data elements can be inter-
acted with externally. However, this is hidden inside the framework and
therefore not important at the level of an iTask specification.

This leaves us to discuss the role of the editors at the level of iTask specifica-
tions. Earlier, we found that iTasks can be considered workflows, but seem
to be able to introduce functional tasks. However, with the introduction
of editors (which are tasks themselves) the separation becomes more clear.
Editors do not represent a workflow, but rather something more atomic. As
they also state what can be done with a certain data element, they charac-
terize a functionality. This leads us to the idea that editors represent action
elements in iTask systems.

5.4 Summary

The iTask framework shows a lot of similarities with the Normalized Sys-
tems methodology. First off, data is handled by encapsulating task values in
TaskResults. TaskResults act as data elements in the iTask application
and offer a large deal of data version transparency. Persistency and remote
access is offered by the use of SDSs. This is an automatic process and seems
stable in that sense.

Tasks can be seen as workflow elements. However, the line between work-
flow elements and action elements is not very sharp. Editors (such as
updateInformation, enterChoice) seem the best definition of action
elements in iTask applications. Workflows are built up using the step opera-
tor (>>*) on TaskSteps. TaskSteps are obvious forms of trigger elements,
as they control state and choose what action should be taken next.

Both user interaction and communication are hidden away from the iTask
programmer. Therefore, at the level of an iTask definition, these do not
have effect on the evolvability of iTask applications.

Element Realized by

Data
element

Encapsulated task values in TaskValue. TaskValues are
wrapped in a Task and achieve data version transparency.

Workflow
element

Workflow elements are realized by Tasks. This happens in
combination with the step operator (>>*).

29

Action
element

Editors seem the best definition of action elements in iTasks.
Since editors are tasks themselves, the line between action
elements and workflow elements is not entirely clear.

Trigger
element

TaskSteps are obvious forms of trigger elements in iTask.
They control state and check what action needs to be called.

Connector
element

Connector elements are fully hidden away in iTask. The in-
ternal functionality of editors realizes user interaction. Com-
munication concerns are abstracted from.

Table 5.1: The relation between NS elements and iTask constructs

Action Version Transparency

In our discussion, we tried to explain the theorems as complete as possi-
ble. However, a theorem that got overlooked was the Action Version Trans-
parency theorem. We may argue that the mere addition of a Task does
not lead to combinatorial effects. The addition of this task to a workflow
implies defining a TaskStep using the task. Adding the step to an exist-
ing list of TaskSteps (as a new possible step) only implies adding another
value in the list. However, inserting the step into the workflow separately
(as an intermediate task), may require a change to each of the possible steps
following it. Therefore, we may argue that the theorem of Action Version
Transparency is complied to if the amount of steps is limited.

Theorem Realized by

Separation of
Concerns (SoC)

Separation of Concerns is achieved using Tasks as
workflows and editors as actions. Editors are atomic
and therefore compliant to SoC. The supporting tasks
of TaskResults are abstracted from and are of no
concern on the level of iTask definitions.

Data Version
Transparency

(DVT)

For a large part, DVT is achieved by the generic na-
ture of Tasks and only truly holds if we may assume
the amount of task steps on each task is limited.

Action Version
Transparency

(AVT)

Assuming the amount of task steps is limited, we
achieve AVT because addition of a new (version of)
a task only leads to coding changes to the task steps.

Separation of
States (SoS)

A state is linked internally to a Task. This is ab-
stracted from on the level of iTask definitions. Task
steps provide state handling in the form of triggers.

Table 5.2: The relation between NS theorems and iTask constructs

30

Chapter 6

Related Work

Despite the novelty of Normalized Systems, a fair amount of research has
been done on the theory. A mentionable related research is a master thesis
by Krouwel (2010); (Krouwel & Op ’t Land, 2011). In the research, Normal-
ized Systems theory is combined with an enterprise modelling methodology
called DEMO. Much like in our thesis, the research compares Normalized
System with another methodology and attempts to find similarities in the
two domains. However, the research does not focus on the technicalities of
implementing a stable system in a technological environement.

The feasibility study by Ven et al. (2010) can be mentioned, because it
explores the theory of Normalized Systems in a specific technology environ-
ment. This study puts focus on the Java programming language though,
and we’ve seen that not all of these findings can be put to use in functional
languages with different constructs.

Remaining in the subject of Normalized Systems, we find the work by de
Bruyn et al. (2012). They make use of the NS theory by exploring its design
patterns as an effective facilitation tool for, among others, more efficient
documentation and the development of new applications. The works above
show that the theory is general enough to work with a wide range of fields.
Similarly, this thesis describes how it can be used in functional programming.

To our knowledge, this is the first thesis that attempts to combine the theory
of Normalized Systems with functional programming (Clean, particularly)
and the novel paradigm of task oriented programming. Of course there has
been research about evolvability in functional programming, however. Ex-
amples include: (Krishnamurthi, Felleisen, & Friedman, 1998), (Lämmel &
Visser, 2002), (Lämmel & Jones, 2003), (Antoy & Hanus, 2002) and many
more. These works involve finding good design practices in functional pro-
gramming.

31

Chapter 7

Conclusions & Future Work

In this thesis, we explored the Normalized Systems theory in a functional
programming context. To this extent, we have delved into its concepts, such
as primitives, and its four theorems and described them using constructs of
the functional language Clean. Additionally, we examined the Normalized
Systems elements in an attempt to develop patterns for these elements in
Clean and functional languages in general.

The other part of this thesis focused on the evolvability of iTask systems,
using Normalized Systems theory. Interestingly, the two approaches have
a lot in common. Concepts described in Normalized Systems can be found
back in the paradigm of Task Oriented Programming and its implementa-
tion. We conclude that iTask offers a way of implementing applications in
a reasonably stable way.

Nevertheless, the iTask framework is not entirely compliant to all Normal-
ized Systems elements. Mannaert et al. (2012, p. 114) point this out, as
their design patterns were described in Java EE and Cocoon and future
efforts could focus on developing patterns for different technology environ-
ments. A similar effort has been made in this thesis, but this can benefit
from more research. The latter applies not only to the pattern descriptions
in Clean, but also to the transformation of iTask applications into systems
that fully adhere to the Normalized Systems theory. Hereto, the framework
needs to be analyzed in more detail and a solution is necessary to resolve
the previously discussed overlap of concepts.

32

References

Achten, P., Koopman, P., & Plasmeijer, R. (2015). An introduction to task
oriented programming. In V. Zsók, Z. Horváth, & L. Csató (Eds.),
Central european functional programming school: 5th summer school,
cefp 2013, cluj-napoca, romania, july 8-20, 2013, revised selected pa-
pers (pp. 187–245). Cham: Springer International Publishing. Re-
trieved from http://dx.doi.org/10.1007/978-3-319-15940
-9 5 doi: 10.1007/978-3-319-15940-9 5

Achten, P., & Plasmeijer, M. (1994). A framework for deterministically inter-
leaved interactive programs in the functional programming language
clean. In Proc. computing science in the netherlands, csn (Vol. 94, pp.
21–22).

Antoy, S., & Hanus, M. (2002). Functional logic design patterns. In
Z. Hu & M. Rodŕıguez-Artalejo (Eds.), Functional and logic program-
ming: 6th international symposium, flops 2002 aizu, japan, septem-
ber 15–17, 2002 proceedings (pp. 67–87). Berlin, Heidelberg: Springer
Berlin Heidelberg. Retrieved from http://dx.doi.org/10.1007/
3-540-45788-7 4 doi: 10.1007/3-540-45788-7 4

de Bruyn, P., Huysmans, P., Oorts, G., Nuffel, D. V., Mannaert, H., Verelst,
J., & Oost, A. (2012). Using normalized systems patterns as knowledge
management. In The seventh international conference of software en-
gineering advances (icsea) 2012, november 18-23, lisbon, portugal (pp.
28–33).

Herraiz, I., Rodriguez, D., Robles, G., & Gonzalez-Barahona, J. M. (2013,
December). The evolution of the laws of software evolution: A
discussion based on a systematic literature review. ACM Comput.
Surv., 46 (2), 28:1–28:28. Retrieved from http://doi.acm.org/
10.1145/2543581.2543595 doi: 10.1145/2543581.2543595

Krishnamurthi, S., Felleisen, M., & Friedman, D. P. (1998). Synthe-
sizing object-oriented and functional design to promote re-use. In
E. Jul (Ed.), Ecoop’98 — object-oriented programming: 12th euro-
pean conference brussels, belgium, july 20–24, 1998 proceedings (pp.
91–113). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved
from http://dx.doi.org/10.1007/BFb0054088 doi: 10.1007/
BFb0054088

33

http://dx.doi.org/10.1007/978-3-319-15940-9_5
http://dx.doi.org/10.1007/978-3-319-15940-9_5
http://dx.doi.org/10.1007/3-540-45788-7_4
http://dx.doi.org/10.1007/3-540-45788-7_4
http://doi.acm.org/10.1145/2543581.2543595
http://doi.acm.org/10.1145/2543581.2543595
http://dx.doi.org/10.1007/BFb0054088

Krouwel, M. R. (2010). Towards the agile enterprise: A method to come from
a demo model to a normalized system, applied to government subsidy
schemes (Unpublished master’s thesis). TU Delft, The Netherlands.

Krouwel, M. R., & Op ’t Land, M. (2011). Combining demo and normal-
ized systems for developing agile enterprise information systems. In
Enterprise engineering working conference (pp. 31–45).

Lämmel, R., & Jones, S. P. (2003). Scrap your boilerplate: a practical design
pattern for generic programming (Vol. 38) (No. 3). ACM.

Lämmel, R., & Visser, J. (2002). Design patterns for functional strategic pro-
gramming. In Proceedings of the 2002 acm sigplan workshop on rule-
based programming (pp. 1–14). New York, NY, USA: ACM. Retrieved
from http://doi.acm.org/10.1145/570186.570187 doi: 10
.1145/570186.570187

Lehman, M. M. (1996). Laws of software evolution revisited. In Software
process technology (pp. 108–124). Springer.

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E., & Turski, W. M.
(1997, Nov). Metrics and laws of software evolution-the nineties view.
In Software metrics symposium, 1997. proceedings., fourth interna-
tional (p. 20-32). doi: 10.1109/METRIC.1997.637156

Mannaert, H., Verelst, J., & Ven, K. (2008). Exploring the concept of sys-
tems theoretic stability as a starting point for a unified theory on soft-
ware engineering. In Software engineering advances, 2008. icsea’08.
the third international conference on (pp. 360–366).

Mannaert, H., Verelst, J., & Ven, K. (2011, December). The transformation
of requirements into software primitives: Studying evolvability based
on systems theoretic stability. Sci. Comput. Program., 76 (12), 1210–
1222. Retrieved from http://dx.doi.org/10.1016/j.scico
.2010.11.009 doi: 10.1016/j.scico.2010.11.009

Mannaert, H., Verelst, J., & Ven, K. (2012). Towards evolvable software
architectures based on systems theoretic stability. Software: Practice
and Experience, 42 (1), 89–116.

Marlow, S., Jones, S. P., Moran, A., & Reppy, J. (2001). Asynchronous
exceptions in haskell. In Acm sigplan notices (Vol. 36, pp. 274–285).

Martin, R. C. (2003). Agile software development: Principles, patterns, and
practices. Upper Saddle River, NJ, USA: Prentice Hall PTR.

Michels, S., & Plasmeijer, R. (2012). Uniform data sources in a functional
language. In Submitted for presentation at symposium on trends in
functional programming, tfp (Vol. 12).

Nuffel, D. V., Huysmans, P., Bellens, D., & Ven, K. (2010, Aug). Translating
ontological business transactions into evolvable information systems.
In Software engineering advances (icsea), 2010 fifth international con-
ference on (p. 58-63). doi: 10.1109/ICSEA.2010.16

Oorts, G., Ahmadpour, K., Mannaert, H., Verelst, J., & Oost, A. (2014).
Easily evolving software using normalized system theory: A case study.

34

http://doi.acm.org/10.1145/570186.570187
http://dx.doi.org/10.1016/j.scico.2010.11.009
http://dx.doi.org/10.1016/j.scico.2010.11.009

In The ninth international conference on software engineering ad-
vances (pp. 322–327). Retrieved from https://www.thinkmind
.org/download.php?articleid=icsea 2014 12 50 10219

Oorts, G., Huysmans, P., Bruyn, P. D., Mannaert, H., Verelst, J., & Oost,
A. (2014, Jan). Building evolvable software using normalized systems
theory: A case study. In System sciences (hicss), 2014 47th hawaii
international conference on (p. 4760-4769). doi: 10.1109/HICSS.2014
.585

Plasmeijer, R., Lijnse, B., Michels, S., Achten, P., & Koopman, P. (2012).
Task-oriented programming in a pure functional language. In Proceed-
ings of the 14th symposium on principles and practice of declarative
programming (pp. 195–206). New York, NY, USA: ACM. Retrieved
from http://doi.acm.org/10.1145/2370776.2370801 doi:
10.1145/2370776.2370801

Van Weelden, A., & Plasmeijer, R. (2002). Towards a strongly typed func-
tional operating system. In Symposium on implementation and appli-
cation of functional languages (pp. 215–231).

Ven, K., Van Nuffel, D., Bellens, D., & Huysmans, P. (2010). The automatic
discovery of violations to the normalized systems design theorems: A
feasibility study. In Software engineering advances (icsea), 2010 fifth
international conference on (pp. 38–43).

35

https://www.thinkmind.org/download.php?articleid=icsea_2014_12_50_10219
https://www.thinkmind.org/download.php?articleid=icsea_2014_12_50_10219
http://doi.acm.org/10.1145/2370776.2370801

Appendix A

Appendix

1 safeDiv :: Real Real -> Real
2 safeDiv x y = if (y == 0.0)
3 (abort "Can not divide by zero")
4 (x / y)
5

6 f1 :: Real
7 f1 = safeDiv 1.0 0.0
8 f2 :: Real
9 f2 = safeDiv 1.0 1.0

10 [...]
11 f_N :: Real
12 f_N = safeDiv 1.0 N

Listing A.1: Separation of States violation (a)

1 :: Exception x = Just x
2 | Error String
3

4 safeDiv :: Real Real -> Exception Real
5 safeDiv x y = if (y == 0.0)
6 (Error "Can not divide by zero")
7 (Just (x / y))
8

9 f1 :: Exception Real
10 f1 = safeDiv 1.0 0.0
11 f2 :: Exception Real
12 f2 = safeDiv 1.0 1.0
13 [...]
14 f_N :: Exception Real
15 f_N = safeDiv 1.0 N

Listing A.2: Separation of States violation (b): N coding changes are
necessary to deal with the new Exception state.

36

enterDate

TimeOptions

Action "Continue"

hasValue

ask users

Action "Try again"

const True

hasValue

Action "Make Decision"

pick

hasValue

Action "Continue"

StateAction

Figure A.1: the workflow of the PlanMeeting example. Actions relate to
tasks and states relate to task steps and their given predicates.

37

	Introduction
	Normalized Systems
	Lehman's Laws of Software Evolution
	Systems Theoretic Stability
	The Theorems
	Realizing Normalized Systems

	Introduction to iTask
	Tasks
	Shared data
	Generic Interaction
	Task Composition

	Applying Normalized Systems theory to Clean
	Primitives in Clean
	Implications for the NS Theorems
	NS Elements in Clean

	The Evolvability of iTask
	Data Representation
	Stateful Workflow
	User Interaction and Communication
	Summary

	Related Work
	Conclusions & Future Work
	References
	Appendix

