
Bachelor thesis
Computer Science

Radboud University

Protecting app secrets in Android

Author:
Matjah Sonneveld
s4121325

First supervisor/assessor:
Fabian van den Broek, MSc
f.vandenbroek@cs.ru.nl

[Second supervisor:]
Sietse Ringers, MSc
s.ringers@rug.nl

Second assessor:
title, name

e-mail adress

July 5, 2016

Abstract

In this paper we will look at ways to protect a secret key present in an
Android application. This could be anything a developer would want to
keep secret such as an API key but we will look at a key used in the app
of the IRMA project. This project gives us some restrictions that do not
allow us to use the standard Android solutions created for such problems.
We will look at existing alternatives and come up with our own solution
that combines these alternatives. In the end we could not find a solution
that protects us from all kinds of attackers but we do make it significantly
harder to retrieve and use our secret key.

Contents

1 Introduction 3

2 Preliminaries 4
2.1 IRMA . 4
2.2 The IRMA App . 4
2.3 Attacker Models . 5

2.3.1 Hostile Applications 5
2.3.2 Stolen devices . 5
2.3.3 Rooted devices . 6

2.4 Server-side secrets . 6

3 Research 7
3.1 Android keystore . 7
3.2 Proguard . 8
3.3 Android Native Developmentkit 8
3.4 Opensource vs Security . 9
3.5 User password . 9
3.6 Device secret . 10
3.7 Password Hashing . 10
3.8 Encryption . 10
3.9 Storage . 11
3.10 Usage of our encryption class 11
3.11 The Algorithm . 11

4 Proof of Concept 14

5 Related Work 16

6 Further Work 17

7 Discussion 18
7.1 Applications . 18
7.2 Stolen devices . 19
7.3 Rooted devices . 19

1

7.4 Users . 19

8 Conclusions 20

2

Chapter 1

Introduction

This research is about protecting app data in Android apps, in particular
the secret key used in the Android app written for the IRMA project1.
The solution in this paper is however not limited to the IRMA project, it
could be used in any app that wants to hide any form of key (for example a
cryptographic or API key). In the case of IRMA, if the secret key would be
extracted from the app it could be used, together with the stored attributes,
to transfer those attributes to another account. This could lead to people
having the over 18 attribute while they are actually 17 years old. At the
moment the key is a variable in the app and would be easily extracted
by doing a memory dump while the app is running or by looking at the
IRMA app storage. With this research we focus on app’s that want to
protect information that cannot be protected using the standard practices
for Android which gives us restrictions on which standard security measures
we can apply. Because our main focus is the IRMA app we have to deal with
some restrictions that prevent us from using security measures that would
be used otherwise. For example, a good method to protect the key would
be to encrypt it using the Android Hardware-Backed Keystore2. However
the amount of devices having this hardware encryption enabled is estimated
to be as low as 33% [9] while it is the aim of IRMA that the app should be
usable on all Android devices. Because of this we will look for a solution
that is software based and thus compatible with every Android device. There
are also other reasons for us not using the Android Keystore which will be
explained in the preliminaries. In this paper we will look a at which threats
we face when dealing with these restrictions. We will research alternative
existing methods and combining these into our own method which protects
the app data from attackers. Finally we will implement this solution into a
proof-of-concept that shows our method could be used in real world apps.

1https://www.irmacard.org/
2https://source.android.com/security/keystore/

3

Chapter 2

Preliminaries

2.1 IRMA

The IRMA project (short for I Reveal My Attributes) is a project that offers
privacy friendly authentication. This means you authenticate with a subset
of your attributes instead of revealing all of your attributes. When you have
to verify one of your attributes like name, age or nationality to a liquor store
you should not have to reveal all of your other attributes as well, which is
the case if you have to show you identity card or passport. This is where
IRMA is different as it gives you the choice of what attributes you want to
share, in the liquor store example you would only show your age and not
your name or nationality. The exact details of this project can be found on
the IRMA website1.

2.2 The IRMA App

The IRMA app is one of the ways to store your attributes and sharing
them to whomever needs to verify them. One of the ways to obtain a set
of attributes is to read the RFID chip of a document like a passport or
drivers licence with an Android phone. Because the IRMA app does a lot
of internal cryptography operations that are not relevant for this research
we will create a small model that we can use for further reference. We will
define a function Ekey(challenge) where E is the internal cryptography of
IRMA, key is the secret key we want to protect and challenge is the input
in the form of a cryptographic challenge to which we need to give correct
response. The exact content of E can differ for different actions such as
issuing and revealing an attribute but for simplicity we will just use E. In
the general case of another app wanting to protect its data this E could be
any function that app uses to verify or use that data.

1https://www.irmacard.org/irma/

4

2.3 Attacker Models

There are three different scenarios that we want to protect against. We will
discuss each one briefly. In these models we will describe how they would
affect our IRMA example where the attacker is after our key but each of
these also apply to the general case of hiding any data inside an Android
app (for example: an API key or user information). In each of these models
we assume the attacker is not trying to just use the app which would mean
to simply obtain a valid response to a challenge (Ekey(challenge)).

2.3.1 Hostile Applications

The first scenario would be a hostile application installed on a user’s device.
This could be a app that tries to gather user data from other installed apps,
including our own IRMA app. We will assume the app does not have root
access and is not specifically targeted at the IRMA app. To defend against
this threat we will have to store our key in a place that other apps cant
reach. Because we assume that the app has no root access we can trust in
the Android OS and its file system and permissions.

2.3.2 Stolen devices

The second scenario is that a user’s device gets stolen. For this scenario
we assume the attacker is not able to root the device, if he is able to do
so this is covered in the Rooted devices scenario. A big difference between
this attacker model and the other attacker models is that in this a the key
is not used by the app while the attacker is active which means it does not
need to be in a decrypted state. If the stolen device does not have password
protection or does not have disk encryption enabled the attacker could easily
root the device. We only have to protect our key while it is stored on the
file system. One possible motive for stealing a device would be that the
attacker wants to retrieve the user’s secret key so that he could then use the
attributes of the user. We would have to make sure that the data again is in
a hard to reach place and that it is not possible to extract it from a locked
device. In most cases the OS would prevent anyone from copying data of
a locked device but if Developer Debug Mode is enabled it is easy to use
recovery software that can copy any file from the password locked device2.
An even better way would be to encrypt the key to make it unusable outside
of the app. This second option should be enough on its own but making the
key harder to extract is a good layer of extra protection.

2http://www.file-recovery.com/android_recovery.htm

5

2.3.3 Rooted devices

A third and possibly the most dangerous threat is a attacker that is an IRMA
user. It is possible that he would want to retrieve his own secret key, this
would make it possible to, for example, sell his attributes to others. What
makes this model dangerous is that this attacker could easily have rooted
his device meaning he has root access to the operating system. Completely
defending against this is nearly impossible because the attacker has full
access to the file system and has the possibility to make memory dumps at
each given moment. What we can do however is make sure that the secret
is never on the file system in plain-text and make the opportunity window
for a memory dump as small as possible. The goal of this research is not to
make the secret impossible to retrieve but to make is as hard as we possible
can for an attacker. In the Discussion we will look at these models again to
see if and how we are able to protect ourselves against these threats.

2.4 Server-side secrets

A very obvious solution to the problem of protecting secrets on a client
application is to move it to a server. This makes an attack harder because
an attacker has to break into your server instead of just having an app to
play around with on his rooted Android phone. There are however a few
reasons for us to not use this approach. First of all, this goes against a
key idea of the IRMA project which is that you should have full control
over your own attributes and that the system should be fully distributed.
Another reason is that if you move the secret to the server you would still
have to authenticate to the server. To authenticate you need credentials
and that creates a new problem of securely storing those. All in all storing
the secret server-side seems like a good solution for many applications but
in our specific case of the IRMA app it does not fit. Therefore we will find
our own method of solving this problem.

6

Chapter 3

Research

In this chapter we will look into the research we have done. The first sections
are about researching known methods to help protect app data and in the
last sections we will come up with our own combination of these methods.

3.1 Android keystore

A obvious choice to store a secret key on Android would be to make use
of its integrated Keystore that is available from revision 18 of the Android
API1. The keystore is designed to store cryptographic keys in a container
which would then be difficult to extract from the device. How this is done
depends on the device hardware. In our case we do not want to depend on
the presence of certain hardware because we want the app to be usable on
all devices as described in the introduction. When this hardware is absent
the Keystore falls back on its software implementation. When the device
requires a PIN to unlock it, this PIN is used to derive a masterkey which is
then used to encrypt the keys in the Keystore. A paper that analyses storage
on Android including the software fallback of the Keystore [10] concludes
that the Android Keystore does indeed make it more difficult for an attacker
to retrieve keys from the Keystore, but does not make it impossible. For our

own solution we also know that it is probably impossible to come up with
a completely secure way of storing our own key but we want to make it as
difficult as possible. An important reason to not use the Android Keystore

is that our application uses very specific encryption and decryption function
Ekey is not in the API. This means that if we store the key encrypted in
the Keystore, each time we want to use the key for our function E, we
have to decrypt it and move it to unsecured memory, removing the most
important strength of the Android Keystore. Last but not least there are
some documented cases [6] of the Android Keystore ’forgetting’ all its stored

1http://developer.android.com/training/articles/keystore.html

7

information when the user changes it PIN or authentication method. This
could be explained by the fact that the master key is derived from this PIN
as described earlier. If this happens our IRMA app will be essentially wiped
of its attributes because we can no longer respond to any cryptographic
challenges.

3.2 Proguard

When looking for recommendations to hide and protect secrets in Android
apps one of the first suggestions often is Proguard [8]. Proguard is a tool
that among other things re-factors code to make it more compact because it
renames method, variable and class names to make them shorter2. Proguard
does this by first figuring out which labels it can rename. It then chooses new
names for these fields that have no semantic meaning. After the renaming
it checks for conflicts and then fixes these conflicts. Because the renamed
labels no longer have a semantic meaning it is a lot harder to reverse engineer
it. This wont hide any secrets but it will be harder to find them. Because
Proguard is integrated into Android we only need to set the minifyEnabled
setting to true in our Gradle build file.

3.3 Android Native Developmentkit

Another suggested way of making reverse engineering harder is by using
the Android Native Developmentkit (NDK). The NDK allows for code to
be written in C/C++. This code is harder to decompile, while there are
single click applications that can decompile Java code, decompiling C++
requires expert knowledge and time [7]. There are also obfuscation and
tamper-dectection tools available to make decompiling NDK code even more
time consuming such as the Obfucator-LLVM project [3]. This gives us a
place where we could write a library that can encrypt and decrypt our key
without someone just reversing the encryption process. In the end this can
be considered Security through Obscurity3 which is of course not something
considered good security but is does protect from a fair amount of non-
experienced attackers.

Memory management is another issue with Java in Android. We would
like to delete the decrypted key from the memory as soon as were done with
it. In C++ we have direct access to the memory so we can just overwrite
or deallocate the bytes of memory that hold our secret key while in Java
we can only dereference the key and hope that the garbage collector cleans
it up before the key is stolen making the opportunity windows smaller. A

2http://developer.android.com/tools/help/proguard.html
3https://en.wikipedia.org/wiki/Security_through_obscurity

8

disadvantage of using the NDK is that writing native code is often risky.
It is easy to make mistakes that could lead to decreased performance or
even memory leaks. Another disadvantage is that NDK projects need to
be compiled for every chipset the app is intended to run on. This gets
increasingly troublesome when including external libraries. Extra compiled
libraries also increase the final apk size of applications which is not something
we want.

3.4 Opensource vs Security

Our main focus in this research is the IRMA project. This project, including
the Android app, is a open-source project. This means that all of our source
code should be open for anyone to inspect and download to use for them-
selves. The decompiling issues we have talked about in the NDK section are
of course meaningless if the source code is publicly available. Open-source
is a great concept but it does have a big disadvantage when you want to
keep something secret. Luckily we decided in the previous section that it
would be a good idea to place our encrypting and decrypting in a separate
NDK library. This means that we can make this a kind of interface that
stays closed-source. Anyone can still download the source code of our main
Android application but has to provide his own library that replaces our
version. Alternatively a compiled binary could be shipped with the code.
It could even be implemented in the code that if there is no NDK library
present the app should default to using no encryption, that should make
for less hassle but could be dangerous if people are not aware of the lack of
security.

3.5 User password

To provide an extra layer of security it is a good idea to make use of a
piece of information that the user has to input each time he or she wants
to unlock our secret. This could be useful if the device gets stolen and
rooted. An attacker could patch our app and try to call our decryption
function to simply retrieve the original secret key. We will prevent this by
asking the user for a password the first time we generate and encrypt the
key and each time we want to decrypt the key. Note that this could be a
text-based password or a form of biometric scan (like a fingerprint) as long
as it appears a some kind of string in our app. This string could then be
used as an encryption key to encrypt our secret.

9

3.6 Device secret

In the previous section we tied the key to our user but we also want to tie
the key to our device. To achieve this we have to take a device specific
string like a serial number or the IMEI4. Both are device unique numbers
that can be requested by any app and used in its code. If we incorporate
one of these string in the encryption of our secret key this would protect
against an attacker extracting the key from the device and cracking it on a
more powerful machine. This is a weak protection mechanism when dealing
with professionals because serial- and IMEI numbers can be copied from the
device when the attacker knows he needs them. Because IMEI numbers can
be changed when an attacker has root access we will choose the device serial
in our solution.

3.7 Password Hashing

An example of a password hashing algorithm in PBKDF2 [4]. This is an
algorithm that produces a derived key from a password together with a salt.
The main purpose of this algorithm is to stretch a user given password to
a much larger string which then can be used in other cryptographic opera-
tions. A big advantage of doing this extra work is that it adds computation
time which makes it harder to brute force passwords using rainbowtable or
dictionary attacks. We picked PBKDF2 because it is a widely used algo-
rithm that is supported in most crypto libraries. In our case we will use it
to hash our password with the device serial number as salt. Adding a salt
has the benefit of also protecting against generic pre-computing attacks.

3.8 Encryption

Encryption a key had the benefit of the key being useless in its encrypted
form. An attacker could obtain the key but it will be useless until it is
decrypted. This way we have to worry less about attackers extracting the
key from our app. To actually encrypt our secret key we will use AES.
We will use the 256 bit variant with CBC cipher mode because its com-
monly used, which will help us when creating our proof-of-concept, and
generally considered secure. [5] The input of AES-256 will be the secret
key. As the 256-bit encryption key we will use the user password hashed
to a 256-bit string with the device serial number as salt. The result of
PBKDF2(user password, device secret) will be called unlock key for fur-
ther reference.

4https://en.wikipedia.org/wiki/International_Mobile_Station_Equipment_

Identity

10

3.9 Storage

After we encrypt the secret we still need a way to store it. We don’t want
other apps to have access to the key so we cannot use external storage. It
is of course true that an encrypted secret is secure on its own but any extra
layer of security is welcome. A much suggested place to store app specific and
sensitive data which has no place in the Keystore are the shared preferences
of an app [1]. Another reason for not using the Keystore for this key is
again the ’Forgetfull Keystore’ problem which would render all attributes in
the IRMA app useless. Permissions are set in a way so that only the app’s
UID has access to this file. Against someone that has root access this of
course is useless but it does keep other apps out. An app could be made
to run under the same UID which would offset the security the filesystem
permissions provide, however this would require a targeted attack against
our app and we just want to protect against data gathering apps when it
comes to picking a place to store our secret.

3.10 Usage of our encryption class

Now that we have an encryption class inside the NDK we have to make sure
that the secret key never leaves the NDK. The unlock key will be generated
inside the NDK and just necessary output will leave the NDK (this ouput
should, of course, never be the secret key). This is the case because a possible
way an attacker could try to retrieve our key is to patch the app and log the
output of our NDK library’s decrypt function. An attacker could also choose
to patch the Java side of our app to call the encrypt and decrypt function at
will, which would output our encrypted secret. To prevent this we will add a
function to our decryption method. In the case of the IRMA app these will
be the Ekey(challenge) from our model. Functions like this would also have
to be implemented on the NDK side. Each one of those functions should be
called inside the decryption function and only the output of that function
should be returned to the Java side of the app. That way the entire function
is contained inside the NDK. For any other app besides IRMA those function
could be replaced by any operation that does not output the secret itself.

3.11 The Algorithm

Combining all the previous ideas we have come to the following algorithm
The whole of this algorithm is located in inside the NDK portion of our app
and can be called from the Java side.

Encryption

This method has the user password as input parameter.

11

1. The user password is stored in temporary variable pass.

2. The device serial number is determined and stored in serial salt. This
should be done every time the algorithm runs because we want decryp-
tion to fail when the algorithm is run on a different device.

3. A password hashing algorithm is called (in this case PBKDF2). The
input in set to pass and the salt is set to serial salt. Because we
want to make this algorithm slow to prevent brute forceing we will
run multiple round of PBKDF2. This amount should be the largest
number that is still tolerable performance wise [2]. Lastpass revealed
in 2011 that it used 100,000 iterations so that is the number we will
pick for now. The final result of 100,000 round of PBKDF2(pass,
serial salt) will be a 256-bit hash called unlock key.

4. At this point the user password is no longer needed and should be
removed from memory and will be zeroed.

5. Now we have our unlock key we can call our encryption function. We
will choose AES-256 with CBC cipher mode as described in our AES
section. As input we pick our secret key (key from the IRMA model)
and we use the previously generated unlock key as encryption key.
This will output our encrypted secret keyenc.

6. The original key key and unlock key can now also be removed from
memory. After this action the original key is no longer present on the
device, we only have keyenc.

7. To make our secret key persistent we store keyenc in the Shared Pref-
erences. This way we can access the secret if we closed and reopened
the app.

Decryption

Each time the secret key is used this method should be called. This method
has again the user password as input parameter

1. Again, the user password is stored in temporary variable pass. Note
that this is required for each use of secret key. If this is too inconvenient
we could choose to store this password until the app is closed or the
device is locked.

2. Determine the device serial number and store it in serial salt.

3. Password hash using PBKDF2 with pass as input and serial salt as
salt for the exact same number of iteration used in encryption. This
results in hash.

12

4. At this point the user password is no longer needed and should be
removed from memory and will be zeroed.

5. Retrieve keyenc from the Shared Preferences.

6. Do AES-256 with CBC cipher mode using keyenc as input and hash
as encryption key resulting in key, our decrypted secret key.

7. At this point we can perform the operation we want to do with key.
In the case of IRMA this most commonly would be Rkey(challenge)
but it could be anything. We will store any result of these operations
in a variable result.

8. Now we will remove key from memory as it is no longer needed. All
other temporary variables and resources used up to this point should
also be freed except for result.

9. result is returned to the Java side of the app.

13

Chapter 4

Proof of Concept

To see if we can implement our idea in a real android app we have made a
proof-of-concept app. This is a simple android app consisting of of a simple
GUI with a java side that interacts with a NDK library that does encryption
and decryption as described in this paper.

To create our proof of concept app we used Android Studio 2.1 with its
new experimental Gradle plugin for Android NDK1. This new version of
Android studio comes with some code samples. One of these code samples
is an Android app that retrieves a string from a C++ file and displays it
on the screen. This project also includes two pre-compiled C++ libraries.
We decided to use this project and replace the provided libraries with a
pre-built version of OpenSSL2. This provides us with a working and compil-
ing Android NDK app that has access to the whole OpenSSL library which
includes AES and PBKDF2.

The example app consists of one Java file which makes a few calls to our
NDK library. First it calls an encrypt method with a string that contains the
users password. This encrypt method is a wrapper for the actual encrypt
method that is based on the OpenSSL example3. This wrapper function
converts the Java String to an unsigned char array, hashes this string with
PKBDF2 and initialises the OpenSSL library. For this proof-of-concept we
chose to hardcode the 128-bit IV used for AES-256 and the secret. In a
real-world application the IV should be random and the secret should be
initially set by the setup of the app and then immediately encrypted.

The second call of the NDK side is to the decrypt method with again
the user’s password as a parameter. The decrypt function is also a wrapper
for a decrypt function based on OpenSSL’s example. The decrypt wrapper
converts and hashes the password in an identical way to the encrypt function.

1http://tools.android.com/tech-docs/new-build-system/gradle-experimental
2https://github.com/emileb/OpenSSL-for-Android-Prebuilt
3https://wiki.openssl.org/index.php/EVP_Symmetric_Encryption_and_

Decryption

14

After that it initialises the OpenSSL library and decrypts our secret with
the hashed password. The decrypted secret is then converted back to a Java
String and returned.

15

Chapter 5

Related Work

Our particular subject is a problem encountered mainly by app designers
and programmers. Curiously there does not seem to be many scientific
sources that deal with similar problems. We have found a paper by Time
Cooijmans, Joeri de Ruiter and Erik Poll [10] that does an analysis of the
Android Keystore. This analysis proves the need for an alternative solution if
we want to secure data on a phone that does not have support for hardware-
backed cryptography.
The are however a lot of sources in the form of blog posts, stack-overflow
questions and other online articles written by people looking for solutions of
similar problems, for example the storage of API keys. A few examples of
sources used in this paper are websites like Stack Overflow1 which was a very
good resource when we needed help in programming our proof-of-concept.
Another example is http://www.androidsecurity.guru written by Simon
Judge. This websites features lots of posts about Android security including
a few directly related to our own problem.

1http://stackoverflow.com/

16

Chapter 6

Further Work

The proof-of-concept is very basic at this moment in time. A few options
to look in to are the following:

• The algorithm provides a parameter for the number of iterations of
PBKDF2 that should run. Ideally the number should be as high as
possible while the delay is still tolerable for the user. When working
with a platform that supports many devices with varying cpu power
it is difficult to pick a number of iteration that does not result in
unusable user experiences on slow devices while still begin effective in
causing a long enough delay to make brute forcing difficult. A nice
solution would be to benchmark a device on setup an determine the
iteration count dynamically.

• Read/write to the Shared Preferences. Currently the key is written to
a variable inside of the NDK class.

• Implement reference hashing- and encryption methods instead of using
external crypto libraries. This would remove the need for compiling
external libraries and reduce the final apk size.

• Research tamper-prevention possibilities1. This would allow detection
of attackers trying to decompile or debug our code and help prevent
these actions.

There are also many different password hashing algorithms besides PBKDF2.
Recent alternatives include algorithms that use a set amount of memory to
prevent using GPU-based hashing. But this could be difficult to implement
given the many variants in devices

1http://www.androidsecurity.guru/incorporate-tamper-detection/

17

Chapter 7

Discussion

In this paper we looked at the possibilities of storing secret data on an An-
droid device without using the Android Keystore. We have found numer-
ous approaches to make it a bit harder for attackers to retrieve our secret.
Among other things we found that moving our delicate code to the Android
Native Developmentkit is a way of making reverse engineering harder, espe-
cially for those who are not experts in decompiling C/C++ code. We came
across password hashing with PBKDF2 which makes it possible to use user
input and hash it into a usable 256-bit string with the device serial number
as salt. This makes it a lot harder for an attacker to extract the encrypted
secret from a device and crack it with external specialised hardware. Finally
we combined those things into an algorithm that uses the PBKDF2 hash as
the encryption key for AES-256 and stores the encrypted key in the app’s
Shared Preferences.

In the preliminaries we defined three attacker models that we want to
protect from. We will now revisit each of those and see what we have
achieved.

7.1 Applications

This scenario assumed a hostile, information gathering application on the
device that does not have root access. Because we now have our key in
an encrypted form and placed it in the Shared Preferences of our app we
have two layers of defence against such hostile applications. It can not
access our key if we can trust the OS and even if it did it has no way
of decrypting the key unless it also captured the hash generated by our
algorithm. If the hostile app is able to make memory dumps there is the
possibility of it capturing the key in its decrypted form in the small window
of it being in memory while our decryption method is running. This however
seems unlikely unless the hostile app was specially written to do so which is
something we do not assume in this scenario.

18

7.2 Stolen devices

The second scenario is that the attacker has stolen a device containing the
IRMA app. An attacker could want to extract the key to, for example, use
it on another device. We can assume the app is not running (because the
device is locked) and our decryption method will not be called and therefore
our key is only present in encrypted form on the file system of the device.
The attacker would first have to extract the key from the device, something
that is possible with Android recovery programs which enables users to
extract data when locked out of their device. The attacker still would have
to decrypt the key. Because we moved our algorithm to the NDK it is
hard to ascertain the precise steps of decryption. When an attacker has the
expertise to decompile the C++ library he still has an 256-bit encryption
key (the hash of our users password salted with the device serial key) to
crack. Using external hardware to brute force this is not feasible.

7.3 Rooted devices

Thirdly we have the threat of an attacker that has root access. This attacker
should have no problem retrieving the encrypted key but still has to perform
the decryption as described in the previous subsection. A much bigger threat
from this kind of attacker is that he is able to run our app at will and perform
memory dumps along the way. While we have made an effort to make the
opportunity window as small as possible the attacker will, given enough
time, be able to dump and read the decrypted key.

7.4 Users

Finally there is a threat of attackers that do not want to extract our key
but just want to use our function E. If an attacker is also the original user
he also has his password. It seems impossible to protect against these users.
The only thing an attacker would have to do is run E and while the function
is inside our NDK class it is still possible to run the NDK function from the
Java side of the app.

19

Chapter 8

Conclusions

While our algorithm and introduction of the NDK makes it a lot harder to
retrieve our secret key, it still is very much possible for someone with root
access to correctly time a memory dump and read the decrypted secret.
Because of limitations the key is still in plaintext in memory while the
cryptographic operations are begin performed. This does however require
specialised knowledge that lots of attacker do not have. If we look at the
added code complexity we see that it does require some work to add a NDK
side to an app but for an experienced Android developer it should not be that
hard, especially when using existing crypto libraries. Another thing worth
taking into consideration is that re-factoring an already existing project
would take much more time. When looking at a fairly complex project such
as the IRMA app it may not be worth the time and added complexity over
the added security. In that case, and any case where this is possible, looking
at server-side storage and login in with asymmetric cryptography would be
a better spending of that time.

20

Bibliography

[1] Android sharedpreference security - stack over-
flow. http://stackoverflow.com/questions/9244318/

android-sharedpreference-security. (Accessed on 05/21/2016).

[2] cryptography - recommended # of iterations when us-
ing pkbdf2-sha256? - information security stack exchange.
http://security.stackexchange.com/questions/3959/

recommended-of-iterations-when-using-pkbdf2-sha256. (Ac-
cessed on 06/02/2016).

[3] Obfuscating android applications using o-llvm and the ndk.
http://fuzion24.github.io/android/obfuscation/ndk/llvm/

o-llvm/2014/07/27/android-obfuscation-o-llvm-ndk/. (Ac-
cessed on 06/06/2016).

[4] Pbkdf2 - wikipedia, the free encyclopedia. https://en.wikipedia.

org/wiki/PBKDF2. (Accessed on 04/11/2016).

[5] pci dss - which is the best cipher mode and padding mode
for aes encryption? - information security stack exchange.
http://security.stackexchange.com/questions/52665/

which-is-the-best-cipher-mode-and-padding-mode-for-aes-encryption.
(Accessed on 05/09/2016).

[6] Dorian Cussen. Android security: The forgetful keystore – system-
dotrun – dorian cussen’s super blog. https://doridori.github.

io/android-security-the%20forgetful-keystore/, february 2015.
(Accessed on 04/06/2016).

[7] Simon Judge. Use the android ndk for security sensitive code
— android security.guru. http://www.androidsecurity.guru/

use-the-android-ndk-for-security-sensitive-code/. (Accessed
on 03/24/2016).

[8] Michael Ramirez. Hiding secrets in android apps. https://rammic.

github.io/2015/07/28/hiding-secrets-in-android-apps/. (Ac-
cessed on 06/01/2016).

21

[9] Rene Ritchie. iphone vs. android and hard-
ware encryption — imore. http://www.imore.com/

iphone-vs-android-and-hardware-encryption. (Accessed on
06/02/2016).

[10] Joeri de Ruiter Time Cooijmans and Erik Poll. Analysis of secure key
storage solutions on android. Security and Privacy in Smartphones and
Mobile Devices (SPSM’2014), pages 11–20, 2014.

22

