BACHELOR THESIS
COMPUTER SCIENCE

Fia:

a
é\9 Ny
S
orrer

MiNe €

RADBOUD UNIVERSITY

Automated state machine learning
of IPsec implementations

Author: First supervisor/assessor:
Bart Veldhuizen Dr. ir. , Joeri de Ruiter
54492765 joeri@cs.ru.nl

Second assessor:

Paul Fiterau-Brostean, Msc.
P.Fiterau-Brostean@
science.ru.nl

August 29, 2017

Abstract

As the internet becomes a bigger and bigger part of our daily life we need to
be sure that our communication is secure. IPsec ensures this by encrypting
messages and authenticating different parts of the communication. Because
IPsec operates on the Internet Layer it is able to secure all data packets using
the Internet Protocol. The global working of the IPsec protocol is specified in
its RFC [7]. However, before IPsec can be used, somebody needs to translate
these formal specifications into actual software. These specifications can be
very big, complex and sometimes even ambiguous. This makes the manual
translation of specification to software a very complex and error prone task.

In this research we will show a way of automatically inferring finite-state
machines of IPsec implementations. This serves to give a better insight in
how strict these implementations follow their specifications. We will not try
to proof that a certain implementation/IPsec itself is safe or give a complete
state machine of the IPsec protocol itself.

For our learning process we use the L* learning algorithm, the random-
words equivalence algorithm and a self-made mapper to translate between
these algorithms and the implementations. Although this set up can be used
to model every IPsec implementation supporting IKEv2, we will limit our
scope to the Strongswan and Libreswan implementations.

We will show that our state machine models can be used to analyze the
working of a specific IPsec implementation and compare different implemen-
tations. We We do this by describing examples of expected and interesting
behaviour for each model.

Contents

1 Introduction 3
2 TIPsec Background 5
2.1 IPsec. e)
2.1.1 General 5

21.2 AH&ESP 5

2.1.3 Tunnel & Transport mode 6

2.1.4 Security Associations, 6

2.2 IKEV2 7
221 General 7

2.2.2 Imitializing Lo o 7

2.2.3 Authenticating 8

2.24 Other Messages, 8

3 Automated Modelling 10
3.1 Mealy Machines L 0oL, 10
3.1.1 Characteristics L. 10

3.1.2 Working 10

3.2 State machine learning L L oL 11
3.2.1 Learning Process 11

3.2.2 Implementing L. 12

4 Implementation 14
4.1 Scopeofmodelling 14
4.1.1 IPsec. e 14

4.1.2 IKEvV2 . ..o 15

4.2 Mapper 17
421 Generalo 17

4.2.2 SCADY . . . o e e e 18

4.2.3 Security Serviceso 18

43 Finalsetupo 18

5 Analysis
5.1 Strongswan
5.1.1 Expected behaviour
5.1.2 Interesting behaviour
5.1.3 Conclusion
5.2 Libreswan L
5.2.1 Expected behaviour,
5.2.2 Interesting behaviour.
5.2.3 Conclusion
5.3 Related specifications
53.1 OpeningalKESA
5.3.2 Deleting a IKE SA afterarekey
5.3.3 Responding on the new IKE SA
5.3.4 Sending outside of the IKE SA
5.4 Comparison

6 Related Work
6.1 Automated state model inferring
6.2 IPsec.

7 Future Work
8 Conclusions

A Appendix

20
20
20
21
21
22
22
22
23
23
24
24
24
25
25

26
26
26

28

30

33

Chapter 1

Introduction

In the last decade we have drastically increased the time we spend on our
computers, mobile phones and televisions. To properly use these devices we
constantly send data over the internet. This data can reveal a lot about
someones personal life and needs to be protected from unwanted access.
Therefore we have security protocols, standardized and secure ways for com-
puters to communicate with each other. IPsec is one of these protocols. It
provides end-to-end security and operates on the Internet Layer. This means
that IPsec can protect all other applications and protocols which run on top
of the Internet Layer. IPsec ensures security by encrypting messages and
authenticating both the sender and the message itself. The specifications
describing IPsec and its underlying mechanics have been updated several
times and are currently described in RFC 4301 [7].

You would assume that having a secure protocol means having a secure
way of communicating. However, a protocol has to be implemented before
it can be used. This has proven to be an error-prone step, as a lot of vulner-
abilities are caused by a wrong implementation of a correct protocol. This
can have several causes, sometimes the protocol itself is not clear enough,
often it is a simple mistake caused by the sheer size and complexity of these
specifications. Both can result in unreliable, incompatible or insecure soft-
ware. Therefore it is important to review how much the implementations
follows the specifications. We did this by automatically inferring a state ma-
chine from IPsec implementations and comparing this to the corresponding
specifications. This does not mean that we can prove an implementation to
be safe or correct. But it does give us more insight in the way IPsec is im-
plemented and how strictly these implementations follow the specifications.

We will use the L* algorithm to learn the IPsec state machines. Then
we will use the randomwords equivalence algorithm to check the inferred
state machine. The translation between these algorithms and the actual
IPsec messages will be handled by our self-made mapper. In this thesis we
will first describe the necessary parts of IPsec and the protocols it relies

on. Subsequently we will explain state machines and how we automatically
infer them. We will explain which part of the IPsec protocol we decided to
model and what our final set up looks like. Finally we will discuss the state
machines inferred by our Learner.

Chapter 2

IPsec Background

2.1 IPsec

2.1.1 General

IPsec is a security protocol used to create a secure two-way communication
between two endpoints, which can either be a single host or a whole network.
Depending on the configuration it can offer confidentiality, data integrity,
access control, and data source authentication.

It offers many different modes and supports virtually every cryptographic
algorithm, which makes it suitable for a lot of different tasks. These can
range from connecting whole networks to the tunneling of one program.

Because IPsec operates on the Internet Layer, it also secures data send
over the transport and application layer.

The IPsec specification specifies a list of cryptographic algorithms which
have to be supported by every implementation. Implementers are free to
extend these algorithms to suit their own needs. This makes [Psec a very
versatile protocol which can be used in very different scenarios.

2.1.2 AH & ESP

IPsec provides two different security protocols, AH and ESP, to secure an
IP datagram. These protocols specify which data is protected and how this
data is protected. The choice between these security protocols influences
the security services provided by IPsec.

The Authenticated Header format (AH) provides data integrity and data
origin authentication with optionally anti-replay protection being optional.
This ensures that only the sender can send, re-send or edit a valid message.
The messages can however be delayed and read, which can be necessary for
the proper functioning of, for example, a firewall. Because AH authenticates
an actual IP datagram it can only authenticate fields which are not altered
during normal propagation of the datagram. This means that AH does not

support the changing of IP-addresses and/or ports and therefore does not
support standard Network Address Translation (NAT), but instead relies on
UDP encapsulation of the whole message.

The Encapsulating Security Payload format (ESP) provides confiden-
tiality, data-origin authentication, data integrity, anti-replay protection and
limited traffic-flow confidentiality. ESP supports encryption and/or authen-
tication mode. Only using encryption enables an attacker to change the
unencrypted part of a message and is therefore strongly discouraged. The
key difference between ESP and AH is confidentiality, ESP uses encryption
to make the message unreadable for third parties. In transport mode, ESP
only provides integrity and authentication for the payload and not for the
whole packet. UDP encapsulation needs to be enabled in order to use TCP
or UDP combined with NAT.

If necessary AH and ESP can be combined to serve specific security
goals. This is done by nesting the connections. For example, we could first
encrypt a packet with ESP after which we authenticate it with AH. The
receiver does this the other way around.

2.1.3 Tunnel & Transport mode

IPsec also offers two different modes of operation, which determine how the
protected data is send.

Tunnel mode is used to create virtual private networks (VPNs). The
original packet is taken and used as the payload for a new IP packet. This
means that the whole inner (original) packet is authenticated and/or en-
crypted, depending on whether AH, ESP or both are used. The outer (new)
packet is sent over the network with possibly a new destination. This means
that the newly created packet will first arrive at the IPsec tunnel endpoint
and from there the inner (original) packet will traverse the network to its
final destination.

In transport mode only the payload of the original message is encrypted
and/or authenticated. For AH this means that it can only authenticate the
payload and several header fields which are not altered during transit. For
ESP this means that it provides confidentiality when encryption is enabled
and integrity when authentication is enabled. ESP only protects the payload
of the message.

2.1.4 Security Associations

Security Associations (SAs) are one-way secure tunnels with specified cryp-
tographic algorithms and corresponding keys. This means that we need at
least two SAs to set up a two-way communication. In the Security Associa-
tion Database, which stores all the cryptographic keys, all SAs are uniquely
identified by the Security Parameter Index (SPI) and destination address.

This means that multicasting is possible by multiple database entries and
multiple SAs can be used for the same parties. This enables different data
to be protected by different algorithms and/or different modes like AH/ESP
and Tunnel/Transport mode.

2.2 IKEv2

2.2.1 General

IPsec uses the Internet Key Exchange (IKE) protocol to safely set up Se-
curity Associations between multiple parties. We will be using the latest
version of the protocol, IKEv2 [6]. IKEv2 is a combination of the older
IKEv1, ISAKMP and Oakley protocols. IKEv1 and ISAKMP specified the
way two parties set up a Security Association. Oakley provides perfect for-
ward secrecy by using the Diffie-Hellman key exchange algorithm. IKEv2
parties can identify themselves with either certificates, the extensible au-
thentication protocol or pre-shared keys. We will be using pre-shared keys
in the form of a simple password known by both sides. IKEv2 works in
message exchanges, each valid request message will have one corresponding
reply message. FEach IKE SA has an Initiator and a Responder. The Ini-
tiator role is given to the party sending the Initialization request. An IKE
session begins by exchanging the Initialization and Authentication messages.
After setting up the IKE SA we can create more SAs or start transferring
information.

2.2.2 Initializing

The Initialization exchange (called IKE_SA INIT) is used to negotiate cryp-
tographic algorithms, nonces and Diffie-Hellman values. The IKE_SA_INIT
consists of four parts which are the same for the Initiator and the Responder.

e The Header: This contains the SPI (used to identify the session),
version numbers and some flags describing the role of the sender (Ini-
tiator/Responder) and message (request/reply).

e The SA1 payload lists all the supported cryptographic algorithm of
the initiator and the chosen cryptographic algorithm of the responder.
These algorithms are used to secure the IKE SA.

e The KE field defines the public Diffie-Hellman value used by the sender
of the message in this session.

e The Nonce field defines the nonce used by the sender in this session.

This exchange is sent in plain and will later be authenticated by the Au-
thentication exchange. Now each party can generate SKEYSEED which is

generated from the exchanged nonces and Diffie-Hellman keys. SKEYSEED
is used to generate all encryption, authentication and child (see ‘Other Mes-
sages’) keys. Each direction of messages has its own key.

2.2.3 Authenticating

The authenticating exchange authenticates both the current and previous
exchange. It also negotiates the SA used by IPsec. This exchange is en-
crypted and authenticated by the agreed upon security suite of the Initial-
ization step. A basic authentication message consists of at least 5 parts.

e The Header: This contains the SPI (used to identify the session), ver-
sion numbers and some flags describing the role of the sender (Initia-
tor/Responder) and message (request/reply). From here on the other
fields are encrypted and authenticated.

e Identification Payload: Used to identify the sender of the message.
Enables a single server to have multiple identities.

e Authentication Payload: Authenticates the initialization exchange us-
ing a special authentication key derived from SKEYSEED.

e SA2 Payload: This is used to negotiate the security protocol (AH or
ESP) and corresponding cryptographic algorithms used by IPsec. The
Initiator offers a list of supported algorithms and the Responder selects
one of them.

e Traffic Selectors: These determine the IP-addresses and ports which
will be forwarded through the [Psec SA. There is a separate Traffic Se-
lector for each side of the IPsec SA. Parties send both Traffic Selectors
to be sure the correct information is forwarded.

The receiver of an authentication message must verify whether all En-
cryption and Authentication is done correctly. If so, the party knows they
communicate with the right person. If anything went wrong during the ex-
change, a Notify message has to be sent describing the problem and the SA
of the IKE remains unchanged.

2.2.4 Other Messages

There are two other types of message exchanges, one for the agreement of
further SAs and one for the passing of control messages.

The CREATE_CHILD_SA message exchange is needed for rekeying cur-
rent SAs and creating new SAs. This means that a IKEv2 session can
produce multiple SAs for [Psec tunnels and itself. The new SA uses a differ-
ent nonce and SPI, possibly using different cryptographic algorithms and/or
different Diffie-Hellman groups.

Informational messages should be send in the secure IKE SA tunnel so
they are authenticated and encrypted. Each message can contain any num-
ber of Notification, Delete and Configuration payloads. There may be mes-
sages send outside of the IKE SA in case of unknown SPIs or incompatible
IKE versions.

Chapter 3

Automated Modelling

3.1 Mealy Machines

We will use Mealy machines to model the implementations we learn in this
research.

3.1.1 Characteristics

A Mealy machine is a deterministic finite-state machine where for every
state and input combination there is at most one corresponding transition
and output [9]. It has some key characteristics which are useful for our state
machine modelling;:

e Deterministic: This means that the same input sequence will always
lead to the same output sequence. This represents the working of
IPsec implementations which reply to the same message sequence in
the same way.

e Finite set of states: We want to end up with a finite-state machine
which models every input sequence. A finite amount of states repre-
sents the limited number of different states in which an IPsec imple-
mentation can be.

e Transition function: Mealy machines take both the current state and
input to generate an output. This is important because the previous
message sequence influences the reply of an IPsec implementation.

Mealy machines also have a limited input and output alphabet, just like we
are limited in our messages by the IPsec specifications.

3.1.2 Working

Mealy machines always start in the same initial state. When given an input
it will follow the corresponding outgoing transition. This transition is deter-

10

00

0/

0A

Figure 3.1: Example Mealy Machine

mined by the current state and input symbol. Each transition has an output
which will be returned after following this transition. The state where the
transition points to becomes the new current state. These steps can be re-
peated when the input consists of more than one symbol. To illustrate this,
we give an example with the input 101 for the state machine given in Figure
3.1. The start state is S; and both the input and output alphabet consist
of the symbols 1 and 0.

e S5; with input 1 brings us to S; with output 0 and remaining input 01
e S1 with input 0 brings us to Sy with output 1 and remaining input 1
e Sp with input 1 brings us to S; with output 1 and no remaining input

Thus the output of this example is 011.

3.2 State machine learning

3.2.1 Learning Process

Teacher

Our learning process requires a so-called teacher. The teacher is assumed
to know the full state machine and can answer simple questions about the
state machine. This is used by the algorithms explained below. Given
a certain input sequence the teacher is able to return the corresponding
output sequence. Because we are inferring the state machine for the first
time we need to implement something that can simulate the teacher. We will
therefore send these input sequences directly to the IPsec implementation.
This is done by our mapper which is explained in section 4.2. Although the

11

IPsec implementation itself is not explicitly aware of its own state machine,
it can obviously answer which output it returns given a certain input.

Learning Algorithm

The L* algorithm [2] is used to learn the finite-state machine correspond-
ing to the System Under Learning (SUL)!, which has often been used in
black-box scenarios. This means that we can see the output given an input,
but we cannot see anything that is happening in between. In our case this
means that we send an IPsec message sequence to the SUL and learn the
state machine based on the returned IPsec message sequence. Once the L*
algorithm completes its hypothesis of the state machine it passes this to the
equivalence algorithm.

Equivalence Algorithm

The equivalence algorithm checks whether the inferred state machine cor-
responds to that of the SUL. We will use the randomwords algorithm for
this. It checks the model by generating a random input sequence and check-
ing the answer of the SUL against the inferred model. In our research we
set the minimum length of these random input sequences to 5 and the max-
imum length to 11. If the SUL and inferred model return the same output
string the algorithm continues with a different input string. After a certain
amount of successful tries the algorithm will conclude it can not find a coun-
terexample, in our research we require 5000 successful tries. However, if the
output sequences differ, the algorithm will give this counterexample to the
learning algorithm to show that its inferred state machine is incorrect. The
learning algorithm will then continue to search for the state machine of the
SUL.

3.2.2 Implementing

We will use existing implementations of these algorithms rather than imple-
menting them ourselves. Both of the tools have been used before in related
research as described in section 6.1.

LearLib is an open java implementation of existing state machine infer-
ring algorithms 2. We will use their implementation of the L* star learning
algorithm and the ‘randomwords’ equivalence algorithm for our state ma-
chine learning.

'From now on we will refer to the IPsec implementation we are trying to model as
SUL.
*Learnlib. https://learnlib.de/

12

StateLearner will serve as a interface between the mapper and the algo-
rithms implemented in Learnlib 3. This enables us to easily send and receive
queries to/from these algorithms.

3Joeri de Ruiter. Statelearner. https://github.com/jderuiter/statelearner

13

Chapter 4

Implementation

4.1 Scope of modelling

In this section we will discuss which aspects of IPsec and IKEv2 we are
going to model. Since IPsec is a very modular protocol it enables the user
to configure it in many different ways. The goal of our research is to auto-
matically extract a state machine from various IPsec implementations. We
will therefore implement a minimal amount of different IPsec settings while
still trying to extract the full state machine of the SUL. For our input al-
phabet we will only use valid IPsec messages, although these valid messages
may be part of invalid sequences of messages. This means that we can, for
example, send messages over already closed SAs, repeat messages twice or
skip necessary messages. We will discuss IKEv2 separately from [Psec since
this part of the protocol is the most interesting for state machine learning.

4.1.1 IPsec

In our set up we will only configure the IPsec SA to use ESP. The difference
between setting up a AH or a ESP SA is simply a protocol number in the
initialization message and optionally choosing different types of algorithms.
Once the TPsec SA is set up there will be no state changes in that particular
SA unless messages are sent over the corresponding IKEv2 SA. We choose
ESP because it enables both confidentiality and integrity and thus provides
the security of AH and more in transport mode.

In IPsec we have two main modes of operation, tunnel and transport
mode. Tunnel mode secures the whole IP datagram while the security fea-
tures of transport mode only affect part of the IP datagram. Just like the
previously chosen security architecture, the difference between the two while
setting up a SA for IPsec is minimal. In this case it is a matter of adding
a notify message in the [Psec SA set up. Because the mode of operation
only has influence on the way a packet is encrypted and/or authenticated we
will only implement one. We choose tunnel mode because it can protect the

14

whole IP datagram and is strongly recommended by the RFCs describing
it.

The cryptographic algorithms we choose to encrypt and authenticate our
IP datagrams with do not have any consequences for the way the [Psec SA
is set up. It will only result in the use of a different algorithm while encrypt-
ing/authenticating an IP datagram. We will use the following cryptographic
algorithms:

e Encryption algorithm: AES-CBC 128-bit
e Integrity algorithm: HMAC_SHA1.96

We will not use extended sequence numbering. Enabling this would result
in using 64-bit sequence numbers instead of the original 32-bit.

4.1.2 IKEv2

IPsec relies on IKEv2 for setting up SAs and the associated keys and algo-
rithms. Since initializing, authenticating, re-keying and notifying is handled
by IKEv2 the majority of our learned state machine will probably model
IKEv2. Because we are interested in learning a state machine, we imple-
ment the messages which we expect to change or influence the state of the
SUL. This results in the following list of supported IKEv2 messages. The
first row is the exchange type as described in Section 2, the second row
describes the actual message.

e [KE_SA_INIT: Initialization message

e IKE_AUTH: Authentication message

e CREATE_CHILD _SA: Rekey IKE SA

e CREATE_CHILD SA: Rekey ESP SA

e INFORMATIONAL: Delete current IKE

e INFORMATIONAL: Delete old IKE

e INFORMATIONAL: Delete current ESP (over old IKE)
e INFORMATIONAL: Delete old ESP (over old IKE)

e INFORMATIONAL: Delete current ESP (current IKE)
e INFORMATIONAL: Delete old ESP (current IKE)

e INFORMATIONAL: Test current IKE

o INFORMATIONAL: Test old IKE

15

e [Psec: Test current ESP
e [Psec: Test old ESP

Here we will discuss per exchange type which messages we choose to
implement, which not and why we made this choice. In general we will not
implement optional payload defined outside the IKEv2 RFC [6].

Initialization exchange

Here the cryptographic algorithms, nonces and Diffie-Hellman values will
be exchanged. Since this is the first message and we use the same encryp-
tion algorithms for each exchange we will just implement one Initialization
message. This message will contain the necessary payloads SA, nonce and
Diffie-Hellman values. We will not include optional notify payloads like
"NAT_DETECTION_SOURCE_IP” or ’"NAT_DETECTION_DESTINATIO
N_IP”. These payloads serve to detect network configurations, but once an
SA is established should have no effect on message flow of our learned state
machine.

Authentication exchange

Just like in the initialization exchange there is just one possible message.
Our Authentication message will contain the Identification, Authentication,
SA, Traffic Selector;pitiator and Traffic Selector,esponder payloads. Since we
use pre-shared keys we will not use any extra authentication payload using
certificates.

Create Child SA exchange

There are three different types of Create Child SA exchanges. The first
one takes care of rekeying the IKE SA. This means that the IKE will get new
SPIs, new nonces, new Diffie-Hellman values and possibly different crypto-
graphic algorithms. The IKEv2 RFC [6] describes only one possible imple-
mentation of this message, which we will follow.
The second message takes care of rekeying an existing IPsec SA, which is
of the type ESP or AH. The old IPsec SA will be deleted if the new SA
is correctly set up. Since we only use ESP we will only implement this
message for ESP rekeying. We will only include the necessary payload and
the optional Diffie-Hellman payload will be omitted. Difie-Hellman values
influence the concrete values of the cryptographic keys and therefore do not
influence the state machine. Finally we can use the Create Child SA to
create a new IPsec SA, which can be either ESP or AH. This new IPsec SA
will exist alongside the old IPsec SA. Because we only use ESP we will only
implement this message to set up a new ESP SA. Since having either one

16

or two ESP SAs can influence the learned state machine we will implement
both. For the same reasons as described above we will omit the optional
Diffie-Hellman exchange.

Informational exchange

An informational exchange can consist of any combination of Delete, No-
tify and Configuration payloads. An empty informational exchange is used
to either test an IKE SA or acknowledge the closing of that IKE SA. We will
implement the Delete and the empty payload. The empty message should
not change the state of the connection but can determine whether it is open
or not. This can be useful for determining the current state. The Delete
payload can either close the IKE SA it is sent over or any of its Child ESP
SAs. We implement the Delete payload because it closes connections and
thus changes the state of the connection. We implement six types of Delete
messages, two for the IKE SAs and four for the ESP SAs. We decided to
send the Delete ESP messages over both the old and new IKE SA. The
specifications state that Delete ESP messages should be send over the new
IKE. But because sending a Delete ESP message over the old IKE once was
a valid message (before rekeying the IKE SA), we still want to see whether
it influences the state of a connection.
The notify payload is used to exchange error and status information. The
error messages can give information about a connection but do not effect
the connections themselves. We already have multiple ways of determining
the state of a connection which makes this exchange redundant. Of the sta-
tus types only REKEY_SA has direct influence over the connection and we
therefore did implement it. It determines whether we create a new Child
ESP SA or rekey the current ESP SA.
Configuration payloads are used to exchange information which would nor-
mally be provided by the Dynamic Host Configuration Protocol (DHCP).
This enables an IKE peer to use the Local Access Network (LAN) of the
other peer like their own. While this information can influence the fields of
the ESP messages it should not affect the state of the implementation. We
will therefore not implement this payload.

4.2 Mapper

4.2.1 General

Our mapper will translate packets back and forth between the learner and
the IPsec implementation. It will receive instructions from the learner in
the form of packet names, as described above, and will translate these into
valid IKEv2 messages sent to the server. Once the server answers, either

17

by sending a message or not answering at all, it will decode this message
and update local variables where necessary. We keep track of identification
information (SPIs), nonces, Diffie-Hellman keys and the actual keys used for
encryption, authentication and key derivation. These variables are necessary
for future exchanges and must be stored. Besides this absolutely necessary
information we keep our mapper stateless. This is important as having states
in the mapper could result in having the learner infer the mapper states as
well as the SUL states. Once all values are extracted we send the type of
the reply back to the learner.

4.2.2 Scapy

Scapy is a packet manipulation tool often used in the field of information
security. It allows the user to easily craft, send, receive and parse packets
while still maintaining the raw packet. We will use Scapy as our main tool
for communicating with the IPsec implementations. Scapy enables us to eas-
ily create messages and payloads as described in the RFC. We will also use
it to decode IP datagrams received from the IPsec implementation. Because
Scapy 3.0.0 does not have IPsec/IKE/ISAKMP as fully tested modules and
we wanted some extra freedom while crafting packets, we decided to imple-
ment the Transform, Authentication, Identification, Traffic Selector, Delete
and Notify payloads ourselves. Since a lot of values are different between
IKE SAs we also needed to write functions around all existing payloads in
order to properly fill the fields. These payloads are still send inside a Scapy
message and also decodable by Scapy.

4.2.3 Security Services

We implemented the majority of the cryptographic procedures. This consists
of the key derivation algorithm, Diffie-Hellman shared secret calculation,
Message encryption/decryption, Message authentication and Authentication
payloads. This is done for both IKE and ESP. For the actual implementation
of cryptographic algorithms used in these procedures we use the PyCrypto
library .

4.3 Final set up

Our final set up looks like Figure 4.1, on the left side we have the L* algo-
rithm which is implemented by LearnLib and wrapped by the StateLearner.
This is the part which does the actual state machine learning. It sends the
names of the messages it wants to send to the mapper. The mapper will take
these names and translate them to actual IP datagrams. After receiving the

'"Dwayne Litzenberger. Pycrypto. https://pypi.python.org/pypi/pycrypto/2.6.1

18

IKE_SA_INIT_I 11001010...

L* Algorithm | Mapper IPsec Server

IKE_SA_INIT R 00110101...
IKE_SA_INIT | =

IKE_SA_INIT_R
IKE_AUTH_|
IKE_AUTH_R

CREATE CHILD SA |
CREATE_CHILD SA R

Figure 4.1: Final Set Up

reply it updates local values, translates the datagram back to a message
name and sends this to the learning algorithm. The Learner will use these
replies to infer the state machine of the SUL. This back and forth translating
continues until our Learner finds a acceptable model of the SUL.

19

Chapter 5

Analysis

We learned models for two implementations, to be precise Strongswan 5.3.5
and Libreswan 3.20 (netkey). We wanted to learn the state machine of
implementations which everybody could use in practice, which resulted in
the following criteria. First of all, the implementation has to be publicly
available and free to use. Secondly, it has to implement the latest version
of IPsec. This means that we do not model combinations of protocols like
L2TP/IPsec or IPsec with IKEv1. Thirdly, it has to have some source code
change in the last 6 months. This ensures that we model an implementation
which is still actively being managed. These criteria resulted in the selec-
tion of Strongswan and Libreswan. The inferred models can be found in
Appendix A, as well as their cleaned versions. In the cleaned versions every
transition that does not cause a state change is removed.

5.1 Strongswan

Strongswan was originally based on the FreeS/WAN project but is com-
pletely rewritten and does therefore not share any code with its ancestor. It
currently supports Linux, Android, FreeBSD, Mac OS X, Windows and iOS.
The original inferred model for Strongswan 5.3.5 can be found in Figure A.1
and the cleaned version can be found in Figure A.2.

5.1.1 Expected behaviour

e The transition from state 0 to state 1 is the 'IKE_AUTH’ exchange.
All other transitions originating in state 0 result in an 'TERROR’ and
cause no state change. This is what we expect as the 'TKE_INIT’
followed with a IKE_AUTH’ message is the specified way to open a
new IKE SA as stated by the specifications [6]. There is one exception
which we will discuss later.

e We can see that opening and then closing a ESP SA result in the

20

same state. The messages included are 'CREATE_NEW _ESP’, which
creates a new ESP, and 'DEL_NEW_ESP_NEW _IKE’, which closes the
last opened ESP SA over the last opened IKE SA. This behaviour can
be seen in states 2 and 7, 3 and 9 and finally 1 and 4.

e State 5 has no outgoing transitions. All incoming transitions are
'DEL_NEW _IKE’, which is expected as this is the designed way of
closing a IKE SA. There is one exception which we will discuss later.

e All state changes are caused by transitions which return a non-error
value as output. This is expected as an error indicates a time-out and
should therefore not result in a state change. There is one exception
which we will discuss later.

5.1.2 Interesting behaviour

o If we send a test message over a just initialized IKE SA it is im-
mediately closed. This test message needs to be send authenticated
and encrypted and can therefore only be send by the one of the com-
municating parties. Although the RFC [6] states that the first two
messages should be 'IKE_INIT’ and 'IKE_AUTH’, it does not spec-
ify what should happen if it receives another message, the relevant
specification is discussed in 5.3.1. Since this message causes the only
outgoing transition from state 0, except for IKE_AUTH’, it might be
interesting to find out why.

e We can see that the 'REKEY _IKE’ messages result in a loop between
two states. The implementation does not respond to any message on
the new IKE SA until a valid message is send over the old IKE SA. This
might be because the developers interpreted the specification described
in 5.3.2 as saying that the old IKE SA needs to be closed immediately
after opening a new IKE SA. However, this behaviour does seem to
be contradictory to the specification described in 5.3.3, which states
that when the initiator sends a valid message over the new IKE SA,
the responder is assured that the initiator wants to communicate over
that IKE SA. The behaviour can be seen in states 1 and 6, 4 and 10,
2 and 8 and finally 7 and 11.

5.1.3 Conclusion

The Strongswan implementation is very small and consists of building blocks
which are repeated multiple times, as described above. It seems interesting
that only a test message can interfere with the usual opening exchanges,
while all other messages do not. It is not possible to send any messages over
the new IKE SA after a 'REKEY_IKE’, which is contradictory to 5.3.3, but

21

this behaviour seems to be caused by prioritizing a strict interpretation of
5.3.2. It might be interesting for the developers of Strongswan to look at
both interesting behaviours and see whether it was intended like this or not.

5.2 Libreswan

Just like Strongswan, Libreswan is based on the FreeS/WAN codebase. How-
ever, instead of rewriting all the code, it uses the existing codebase and only
includes extra features which FreeS/WAN did not have. The original in-
ferred model for Libreswan 3.20 (netkey) can be found in Figure A.3 and
the cleaned version can be found in Figure A.4.

5.2.1 Expected behaviour

e The transition from state 0 to state 1 is the IKE_AUTH’ exchange.
Because this is the only transition outward from state 0 we can con-
clude that the other messages fail on an uninitialized IKE SA. This
behaviour follows the specification as described in 5.3.1.

e State 5 has no outgoing transitions. All messages sent result in a
"ERROR’ reply. This means that the connection is completely closed
in this state.

e We can see that opening and then closing a ESP SA results in the
same state. The messages involved are 'CREATE_NEW_ESP’, which
creates a new ESP, and 'DEL_NEW _ESP_NEW IKE’, which closes the
last opened ESP SA over the last opened IKE SA.

5.2.2 Interesting behaviour

e States 5, 26, 38, 41, 43, 49, 61 and 74 all act as final states. These states
just differ in the fact that they either reply a ’NOTIFY’ or an 'ERROR’
to a specific message. To be precise, the Libreswan sends back a
'INVALID _IKE_SPTI’ notification, telling our mapper that the used SPI
no longer corresponds to a open IKE SA. The relevant specification
for this behaviour is discussed in 5.3.4.

e States 2, 7, 19, 21, 27 and 67 all act as ’pass-through’ states to
the fully closed final state 5. This means that the connection does
not immediately end in the final state 5 when a 'DEL_OLD _IKE’ or
'DEL_NEW_IKE’ message is send, but instead first passes through
one of these states. These states only differ from state 5 in the fact
that they return a 'NOTIFY’ in response to some messages instead of
a error. This 'NOTIFY’ message is of the type 'INVALID _IKE_SPT’
which notifies the sender that the used SPI does not correspond to

22

a open IKE SA. The relevant behaviour is discussed in 5.3.4. When
a ’'REKEY_ESP’, 'CREATE_NEW _ESP’ or '/REKEY _IKFE’ message is
send to any of these states, it is answered by a '"ERROR’ and the state
changes to the final state 5. This behaviour is not discussed anywhere,
but seems a unusual way to reach a final state.

There are several transitions with an 'TERROR’ response. This seems
strange as you would expect a response for a message which causes a
state change. All of these ’'ERROR’ transitions result from an earlier
'REKEY _IKE’ combined with a message send over the old IKE SA.
This indicates that when we are re-keying a IKE SA and we send
something over the old IKE SA the Libreswan implementation sees this
as a sign that the old IKE SA needs to remain open. This behaviour
does not seem to be contradictory to the relevant specifications as
described in 5.3.2.

States 32, 34, 37, 40, 42, 46, 47, 48, 53, 60, 65, 66, 70, 71 and 75
only allow 'DEL_OLD_ESP_OLD_IKE’, ' DEL_NEW_ESP_OLD_IKE’
and/or 'DEL_OLD_IKE’ messages to be send. This is the result from
sending a 'REKEY_IKE’ over the same IKE SA twice. The second
time a 'REKEY_IKE’ is send over such a connection the Libreswan
implementation only responds to delete messages related to the old
IKE SA, including ESP SAs opened on that IKE SA, until it is closed.
This seems to be contradictory to the specification described in 5.3.3.
However, when a '/REKEY _IKE’ is send the first time, Libreswan does
not force the old IKE SA to be closed. Although both behaviours seem
to be in line with 5.3.2, the inconsistency might be a reason to look
further into this behaviour.

5.2.3 Conclusion

The Libreswan implementation has a lot of interesting behaviour. Just like
with Strongswan, not answering a valid message over the new IKE SA af-
ter receiving a 'REKEY _IKE’ message seems to be contradictory to 5.3.3.
Besides this, Libreswan has inconsistent behaviour, messages with an "ER-
ROR’ response which still cause a state change and multiple final states. It
might be interesting for the developers of Libreswan to find out what causes
this behaviour.

5.3 Related specifications

In this section we will quote and discuss the specifications most relevant to
our observed behaviour.

23

5.3.1 Opening a IKE SA
The IKEv2 RFC [6] chapter 1.2 states the following:

Communication using IKE always begins with IKE_SA _INIT and
IKE_AUTH exchanges (known in IKEv1 as Phase 1). . . . The
first pair of messages (IKE_SA_INIT) negotiate cryptographic
algorithms, exchange nonces, and do a Diffie-Hellman exchange
[DH]. The second pair of messages (IKE_AUTH) authenticate
the previous messages, exchange identities and certificates, and
establish the first Child SA.

From this we can conclude that a IKE SA should be opened by a TKE_INIT’
exchange followed by a 'IKE_AUTH’ exchange. However, the specifications
do not discuss what should happen if there is a different message involved.

5.3.2 Deleting a IKE SA after a rekey
The IKEv2 RFC [6] chapter 2.8 states the following:

After the new equivalent IKE SA is created, the initiator deletes
the old IKE SA, and the Delete payload to delete itself MUST
be the last request sent over the old IKE SA.

This makes it clear that the last request send over a IKE SA must be the
Delete payload. It is however unclear whether the old IKE SA needs to be
closed immediately after opening a new IKE SA or whether the initiator can
wait and close it later on.

5.3.3 Responding on the new IKE SA
The IKEv2 RFC [6] chapter 2.8 states the following:

The responder can be assured that the initiator is prepared to
receive messages on an SA if either (1) it has received a crypto-
graphically valid message on the other half of the SA pair, or (2)
the new SA rekeys an existing SA and it receives an IKE request
to close the replaced SA. When rekeying an SA, the responder
continues to send traffic on the old SA until one of those events
occurs.

So the responder, in this case the IPsec implementation, knows that the
initiator will answer on the new IKE SA if it received a cryptographically
valid message on the new IKE SA or when the old IKE SA is closed. This
means that if the old IKE SA is still open but there is a valid message
send over the new IKE SA, the responder knows that the initiator wants to
communicate over the new IKE SA.

24

5.3.4 Sending outside of the IKE SA
The IKEv2 RFC [6] chapter 1.5 states the following:

There are some cases in which a node receives a packet that it
cannot process, but it may want to notify the sender about this
situation.

o If an ESP or AH packet arrives with an unrecognized SPI.
This might be due to the receiving node having recently crashed
and lost state, or because of some other system malfunction or
attack.

o If an encrypted IKE request packet arrives on port 500 or
4500 with an unrecognized IKE SPI. This might be due to the
receiving node having recently crashed and lost state, or because
of some other system malfunction or attack.

o If an IKE request packet arrives with a higher major version
number than the implementation supports.

Although a closed connection is not explicitly listed as being a reason to
send a notify message, not recognizing a SPI in itself can be a reason to
send a notify message.

5.4 Comparison

Based on the discussed expected behaviour, the models look quite alike.
However, the Libreswan model has a lot more states than the Strongswan
model. This is due to the superfluous final states, ’pass-through’ states
and states which force you to close a specific IKE SA. This makes the Li-
breswan model a lot harder to understand and too large to easily grasp.
The Libreswan model responds with a lot of INVALID_IKE_SPI’ messages
when the connection is already closed. Both Strongswan and Libreswan ig-
nore messages send over the new IKE SA after receiving a 'REKEY _IKE’,
although Libreswan only does this after receiving this message twice.

25

Chapter 6

Related Work

This section covers two different fields of research, to be precise automated
state model inferring and the analysis of [Psec. Since these two topics rarely
overlap they are discussed separately.

6.1 Automated state model inferring

Several papers use the same set up for automatically inferring state ma-
chines as described in this thesis. The L* algorithm is used to learn the
state machines and some kind of automated translation is done between
this algorithm and the protocol that it is trying to model. This set up has
been used to model security protocols like SSH [11], but also very basic
internet protocols like TCP [8]. A paper describing a similar set up for
modelling smart cards used in banking serves to show that this process can
also be used on real world objects [4]. Similar research relied on passively
examining message exchanges to create probabilistic protocol state machines
[13], instead of actively sending messages. Although this set up differs from
ours in an important way, it serves to show that state machines can be
automatically inferred by merely looking at message exchanges.

6.2 IPsec

A relevant study was done by the Oulu University Secure Programming
Group, in which they tested the robustness of IPsec implementations by
sending both valid and invalid messages in varying sequences. This research
was limited to IKE phase 1, which means that it only involves the IKE SA.
The research was conducted in 2005 and is based on now outdated RFCs. It
concluded that many implementations failed to perform in a robust manner
and multiple vulnerabilities were found [12]. These vulnerabilities were all
found after sending invalid messages and were related to the implementations
themselves.

26

Another paper describes a way to extract passwords from people using
IKE aggressive mode. This involves sniffing a hash of the pre-shared secret
and brute-forcing the corresponding password offline [10]. Although this
attack is very costly and IKE aggressive mode is not specified in the latest
IKE RFC, it could still be used on outdated systems with poor passwords.

IPsec makes use of default Diffie-Hellman groups to secure the connec-
tions. There has been research on the dangers of using a small prime for
Diffie-Hellman groups. When enough servers use the same small prime it can
become appealing for an attacker to ’break the prime’ of the Diffie-Hellman
group used. It is argued that a nation state could perform such a attack
on a 1024-bit prime [1]. The RFC [6] specifies both a 768-bit and 1024-bit
prime. IKEv2 is however extended to use up to 8192-bit primes [5].

27

Chapter 7

Future Work

This research can be extended in several ways. We will discuss the main
possibilities here.

It can be interesting to use the set up of this thesis to model other IPsec im-
plementations. This could provide more insight in the way and strictness of
which they were implemented. It could also help in determining differences
between implementations and versions of implementations. This informa-
tion can be useful for developers of IPsec software to get a clearer view of
the working of their own and other people’s software.

The models generated in this research could also be combined with a model-
based tester to validate certain security properties of IPsec. Model-based
testing has already been implemented for SSH [3]. A successful check could
give more confidence in the security of IPsec while an unsuccessful run can
help in improving the software. If the checking of IPsec models could be
automated we could combine this with our own research. This would enable
completely automated testing of IPsec implementations which first infers
the state machine and then determines if the implementation follows cer-
tain security requirements.

The current research could also be extended by adding fuzzing to the map-
per. This means that we change values in the messages send. This could
be anything from sequence numbers to keys used for certain cryptographic
algorithms. These messages could potentially uncover more states and even
serve to find security bugs.

IPsec has several messages and extensions that we did not implement in this
research. This enables further research to create a more complete model of
IPsec implementations. It can also be interesting to implement different
forms of authentication and or encryption. Comparing the state machines
inferred with the use of different cryptographic algorithms and or protocol
extensions could also give more insight in the way IPsec is implemented.
The technique used in this thesis can also be used to model other protocols.
These could be similar security protocols like L2TP or any other state-full

28

protocol like HTTP or FTP. Only the mapper would need to be modified in
order to support the messages specified by these protocols.

29

Chapter 8

Conclusions

Our research has shown that we can automatically infer state machines from
IPsec implementations. This serves as evidence that the techniques used in
this research are useful in modeling security protocols. Analyzing these
models proved to be useful in determining whether the implementations we
tested adhered to the corresponding specifications. The learned models also
showed to be effective in comparing different implementations and it has
given us a better insight in the working of these implementations. To be
more precise, these models helped us in finding inconsistent behaviour, be-
haviour which possibly deviated from the specifications, superfluous states,
ERROR transitions and unusual closing sequences of the selected imple-
mentations. All of this combined shows us that automated state machine
inferring can provide us with a much better understanding of the working
of security protocols, in our case IPsec.

30

Bibliography

1]

David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick
Gaudry, Matthew Green, J. Alex Halderman, Nadia Heninger, Drew
Springall, Emmanuel Thomé, Luke Valenta, Benjamin VanderSloot,
Eric Wustrow, Santiago Zanella-Béguelin, and Paul Zimmermann. Im-
perfect forward secrecy: How Diffie-Hellman fails in practice. In 22nd
ACM Conference on Computer and Communications Security, October
2015.

Dana Angluin. Learning regular sets from queries and counterexamples.
Inf. Comput., 75(2):87-106, November 1987.

Erik Boss. Evaluating implementations of SSH by means of model-based
testing. Bachelor Thesis. Radboud Universiteit, 2012.

Georg Chalupar, Stefan Peherstorfer, Erik Poll, and Joeri de Ruiter.
Automated reverse engineering using Lego®. In 8th USENIX Work-
shop on Offensive Technologies (WOOT 14), San Diego, CA, 2014.
USENIX Association.

Internet Engineering Task Force. More Modular Exzponential (MODP)
Diffie-Hellman groups for Internet Key Exchange (IKE), 2003.

Internet Engineering Task Force. Internet Key Exchange Protocol Ver-
ston 2, 2005.

Internet Engineering Task Force. Security Architecture for IP, 2005.

Ramon Janssen. Learning a State Diagram of TCP Using Abstraction.
Bachelor Thesis. Radboud Universiteit, 2014.

G. H. Mealy. A method for synthesizing sequential circuits. The Bell
System Technical Journal, 34(5):1045-1079, Sept 1955.

Michael Thumann and Enno Rey. PSK Cracking using IKE Aggressive
Mode. Enno Rey Netzwerke GmbH, 2003.

31

[11] Max Tijssen. Automatic modeling of SSH implementations with state
machine learning algorithms. Bachelor Thesis. Radboud Universiteit,
2013.

[12] Universit of OULU. PROTOS Test-Suite: c09-isakmp, 2006.

[13] Yipeng Wang, Zhibin Zhang, Danfeng (Daphne) Yao, Buyun Qu, and
Li Guo. Inferring protocol state machine from network traces: A prob-
abilistic approach. In Applied Cryptography and Network Security - 9th
International Conference, ACNS 2011, Nerja, Spain, June 7-10, 2011.
Proceedings, 2011.

32

Appendix A

Appendix

S— e - .

i

Figure A.1: Original Strongswan Model

<L

|
1

|

ANTAIN I/ AN AAN T

dSEELVAND / dST AN

AN TIA /TN TG

DI NN TG/ TN AAN THA

SN0/ S AN dST 107 THa

N4O™INI IO/ AN 07 dST 010 T N0 HNI 010/

AT A0/ N a0 dsT e Eé

AN TTHC /AN AAN AT

NAJOTANI 10 /2

B N——
ASTILYAND / 4STAVIN ALV, G0 107 DA dST 10 N

IO /T 10T NFO NI IO / I G110 dsT WAN - THCK A0 3T 10 /AT ar10 1L

dsE AN T/

HLOV I/ NV 3T

MOWA /AN LS|

Cleaned Strongswan Model

Figure A.2

8l

I

T
—

—_—

———

Figure A.3: Original Libreswan Model

Figure A.4: Cleaned Libreswan Model

