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Abstract

The Thumb-2 instruction set combines the best features of the ARM and Thumb instruc-
tion sets (speed and small code size, respectively). We discuss the differences between the
ARM and Thumb-2 instruction sets, and their influences on code generation. Specifically,
we look at code generation for the purely functional programming language Clean. The
code generator proposed here can be used in situations where small code size is important,
and on devices where the ARM instruction set is not available, like the Cortex-M series. It
produces on average 20% smaller code than the ARM code generator, which is only around
4% slower.
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1 Introduction

1.1 ARM, Thumb and Thumb-2
ARM is a RISC architecture1 with several enhancements to a basic RISC architecture allowing
ARM processors to ‘achieve a good balance of high performance, small program size, low power
consumption, and small silicon area’ [1, A1.1].

Several instruction sets were designed for the ARM architecture. First of all, the 32-bit ARM
ISA allows the programmer to easily make full use of all the architecture’s features. The Thumb
instruction set provides a 16-bit alternative to the ARM ISA, giving in on performance to achieve
improved code density. Starting from ARMv6T2, an extension to the Thumb instruction set,
known as Thumb-2, adds 32-bit instructions to Thumb to ‘achieve performance similar to ARM
code, with code density better than that of earlier Thumb code’ [1, A1.2]. This gives the ARM
and Thumb instruction sets ‘almost identical functionality’ [1, A1.2], whereas Thumb gives a
smaller code size.

In this thesis, we will usually use ‘Thumb’ where the Thumb-2 extension is meant. Only
when the distinction with pre-ARMv6T2 Thumb is important will we distinguish between (early)
Thumb and Thumb-2. As for ‘ARM’, it should be clear from the context whether the architecture
or the instruction set is meant.

Using the Unified Assembler Language (UAL), one can write assembly code for both the
ARM and the Thumb instruction set and fix the target ISA only at assemble-time [2, A4.2].

The main differences between ARM and Thumb-2 are the following:

1.1.1 Conditional execution

In ARM, every instruction has a 4-bit conditional field that allows for conditional execution.
In the Thumb instruction set, all conditional instructions except branches have to be in an ‘IT
block’. A first it instruction gives the base condition and a then-else pattern. The statements
after the it instruction are executed conditionally. For example:
itte gt @ tte: then, then, else
movgt r2,r3 @ mov if gt
movgt r0,r1 @ mov if gt
movle r0,#0 @ mov if le (= not gt)

This is UAL syntax. When assembling for Thumb, an it instruction with three mov instruc-
tions (without conditional field) is generated. For ARM, the it instruction is ignored and three
conditional mov instructions are generated.

ARMv8-A deprecates some uses of the it instruction for performance reasons [3, J5.2].

1.1.2 Register usage

ARM processors have sixteen registers. ARM instructions have 4-bit register fields to address
them. Some 16-bit Thumb instructions have 3-bit register fields that can only address the lowest
eight registers. For these instructions there exist 32-bit variants that can address all sixteen
registers.

1RISC stands for Reduced Instruction Set Computing. RISC architectures provide relatively few, basic in-
structions that can be executed fast to improve performance compared to large, slow architectures.
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1.1.3 Interworking

The ARM and Thumb instruction sets are designed to interwork: different parts of a program
can be assembled for different instruction sets and it is possible to switch instruction set when
an instruction writes to the program counter [1, A4.1].

The Thumb-2 code generator proposed in this thesis does not produce ARM code, though
the existence of the interworking facility has effects on the techniques that can be used in it.
This will be covered in section 3.

1.2 Clean

Clean is ‘a general purpose, state-of-the-art, pure and lazy functional programming language
designed for making real-world applications’ [4]. It evolved from LEAN, an intermediate language
based on graph rewriting [5]. A Clean program consists of a list of rewrite rules, for example:

fac 0 = 1
fac n = n * fac (n - 1)
Start = fac 4

Executing a Clean program means rewriting the Start rule until no rewriting is possible any
more. The first rewriting steps of the above program are shown in figure 1.

1.2.1 The ABC-machine

A Clean program is compiled to ABC-code, a platform-independent language for the ABC-
machine, an abstract graph rewriting machine [6]. A code generator is used to generate machine
code equivalent to the ABC-code for concrete machines. This, again, is done in several steps, so
that only a relatively small part of the compilation process is target-dependent.

The ABC-machine is ‘an imperative abstract machine architecture for graph rewriting’ [6]. It
consists of three stacks: for arguments (A), basic values (B) and control information like return
addresses (C). It also has a program store containing the graph rewriting rules that make up the
program, a graph store that contains the graph to be rewritten, and several other elements that
we need not mention here.

We do not discuss the internals of the ABC-machine in much depth here — they have been
described in [6] and [7]. However, to get a better idea of the working of the ABC-machine, we
consider the ABC-code for the factorial example above briefly.

The two rules for fac 0 and fac n are translated to the following ABC-code2:
2The actual code generated by the compiler is slightly larger, since it uses some unnecessary instructions. They

are removed automatically by the code generator and are not considered here for brevity.

Start

(a) Initially.

fac

4

(b) Applying Start.

*

4

fac - 1

(c) Applying fac n.

*

4

fac

3

(d) Applying -.

Figure 1: Rewriting a Clean node.
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sfac.1
eqI_b 0 0 | Is argument on B-stack 0?
jmp_true case.1 | Jump to first alternative
jmp case.2 | Jump to second alternative

case.1 | First alternative (fac 0)
pop_b 1 | Pop argument from B-stack
pushI 1 | Push result to B-stack
rtn | Return

case.2 | Second alternative (fac 1)
pushI 1 | Push 1 to B-stack
push_b 1 | Copy argument to B-stack
subI | Subtract on B-stack
jsr sfac.1 | Call factorial
mulI | Multiply two stack elements
rtn | Return

The code under sfac.1 is for the pattern match on the first argument. In case.1, we handle
the case that it is zero. We only need to remove it from the stack and push the return value 1. In
case.2, we copy the argument, decrement it and recursively call sfac.1. After the jsr instruction,
we will have two elements on the stack: the result of the recursive call and the original argument.
We can the multiply them and return.

This function uses the B-stack, for basic values, for its arguments and return values, because
it uses only integers. More complex types would be passed on the A-stack.

The Start rule compiles to3:
__fac_Start

build _ 0 nStart.2 | Build the Start node
jmp _driver | Jump to the RTS

nStart.2 | The Start node entry
jsr eaStart.2 | Jump to actual code
fillI_b 0 0 | Copy result to A-stack
pop_b 1 | Pop B-stack
rtn | Return

eaStart.2 | Actual code
pushI 4 | Push 4 to B-stack
jmp sfac.1 | Call factorial

When the program starts and __fac_Start is executed, a node for Start is created in the graph
store. We then jump to the run-time system (discussed in section 1.2.3), where the _driver

subroutine will make sure that this node is reduced and printed. In nStart.2, we call eaStart.2.
This subroutine will execute fac 4 and return the result on the B-stack. Since nStart.2 is expected
to return its result on the A-stack, we need to copy it and clean up the B-stack. In eaStart.2,
we only need to set the argument for the factorial, 4, on the stack, and we jump to sfac.1 to let
it do the rest.

1.2.2 The code generator

The code generator translates the abstract ABC-code into concrete machine code. While the
ABC-machine can be implemented in a straightforward manner using macro expansion, Clean’s
code generator does more than that: it introduces several optimisations, some of which are
target-dependent.

The ARM code for the factorial example is as follows4:

3The code has been shorted insignificantly for brevity.
4Some irrelevant peculiarities have been removed for brevity.
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sfac_P1:
cmp r4,#0 @ Is argument 0?
bne case_P2

case_P1:
mov r4,#1 @ Return 1
ldr pc,[sp],#4

case_P2:
str r4,[sp,#-4]! @ Copy argument
add r4,r4,#-1 @ Decrement argument
str pc,[sp,#-4]!
bl sfac_P1 @ Call factorial
ldr r12,[sp],#4 @ Multiply with own argument
mul r4,r12,r4
ldr pc,[sp],#4

We see that the argument is passed in r4, and that register is also used for the result. In
ARM, r4 through r0 are used for the top of the B-stack. The machine stack pointer sp is used as
the B-stack pointer. For intermediate results, r12 is used as a scratch register. When a reduction
has finished, control is passed back to the callee by loading the program counter from the stack
(ldr pc,[sp],#4).

The Start rule translates roughly to:
____fac__Start:
ldr r12,=nStart_P2 @ Store Start node on the heap
str r12,[r10]
mov r6,r10 @ Save node pointer on A-stack
add r10,r10,#12 @ Reserve heap space
b __driver @ Jump to RTS

nStart_P2:
str r6,[r9],#4 @ Save node entry
str pc,[sp,#-4]! @ Save return address
bl eaStart_P2 @ Jump to actual code
ldr r6,[r9,#-4]! @ Restore node entry
ldr r12,=INT+2 @ Make an Int node on A-stack
str r12,[r6]
str r4,[r6,#4] @ Give that node value r4
ldr pc,[sp],#4 @ Return to callee

eaStart_P2:
mov r4,#4 @ Push 4 to B-stack

sfac_P1 @ A jump to sfac_P1 is not
@ ... @ needed as it is right below

For the A-stack, r6 through r8 and r11 are used, and r9 is the A-stack pointer. Nodes (the
graph store of the ABC-machine) are stored on a heap which uses r10 as a pointer. To store
the Start node on the heap, we need to write its address and then increase r10 to reserve the
space. The __driver subroutine will reduce the top of the A-stack, so saving the pointer to the
Start node in r6, the top of the A-stack, makes sure that __driver jumps to nStart_P2. There, we
do some administration and jump to eaStart_P2. In that routine, the literal 4 is pushed to the
B-stack and we ‘jump’ to sfac_P1 — the code generator optimises this by placing sfac_P1 right
below and removing the branch instruction. When sfac_P1 returns, we continue in nStart_P2.
There we need to copy the result from the B-stack to the A-stack. Since the B-stack is untyped
(the compiler makes sure that it is safe), while the A-stack is typed, we need to create a node
on the heap with the INT+2 entry address.

Note that ABC instructions like pushI 4 (push 4 to the B-stack) are translated to ARM code
like mov r4,#4: the content of the B-stack is not moved down, as one might expect. This is
possible because the code generator knows that the B-stack will be empty at this point. Had it
not been empty, but had one element, for example, a mov r3,r4 instruction would have preceded
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to move it down. The actual ABC-code contains annotations that tell the code generator how
many elements the stacks hold, so that these optimisations can be made.

1.2.3 The run-time system

After compilation, a Clean program is linked together with the Clean run-time system (RTS).
The RTS ensures that that the Start node is reduced and printed and takes care of garbage
collecting. This system is written in Clean, C and assembly, so making Clean available on
Thumb-2 inherently means adapting the platform-dependent parts of the RTS as well.

1.3 A Thumb backend for Clean
In this thesis, we propose a Thumb backend for Clean. The ARM code generator and RTS were
taken as a starting point. Thanks to the Unified Assembler Language, only little time was needed
to make these systems assemble for the Thumb instruction set.

The proposed backend does not use ARM and Thumb interworking. The reason for this is
threefold. First, there are several processors, like the ARMv7-M series [2, A4.1], that do support
Thumb instructions but cannot run ARM code. By only using Thumb, we target the widest
possible range of devices. Second, we doubt that using interworking can be done efficiently. In
the run-time system, only minimal time overhead is introduced by using Thumb instructions.
For generated code it would be complicated to detect if the ARM or Thumb instruction set
would give better results, and this would give significantly better results only in specific cases.
Third, the problem discussed in section 3 could be solved efficiently only without interworking.
Using interworking would introduce overhead at every branch instruction, since the solution to
this problem would have to be adapted.

1.4 Organisation
In much of the rest of this thesis we discuss differences between ARM and Thumb, their influences
on code generation, and the way they were dealt with in the Thumb backend for Clean proposed
in this thesis. In section 2, we consider an issue arising from halfword-aligned instructions and
the way a read of PC is interpreted under Thumb. Section 3 discusses problems related to the
fact that Thumb instruction addresses use bit 1 and should have bit 0 set for interworking,
while under ARM a branch will automatically clear both these bits. For some instructions, the
constants in the ARM variant can be larger than those in the Thumb variant. Section 4 deals
with related issues in the ldr instruction.

Moving to Thumb introduces a number of interesting optimisation vectors. One of them,
register allocation, is discussed in section 5.

We benchmark the Thumb backend for code size and running time in section 6. The results
are discussed in section 7, where we also look at ideas for further research.

For an overview of the current status of the Thumb backend, see appendix A. Our testing
environment is described in appendix B.
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2 Storing the program counter

2.1 Introduction

Storing the program counter on the stack is something done commonly in many languages during
a function call. Usually, an offset to the actual program counter at the moment of the store
instruction is stored, to allow for a branch after that instruction, and have the callee return
to the address after that branch. The ARM architecture accommodates for this: an ARM
instruction that reads the program counter, actually reads ‘the address of the current instruction
plus 8’ [1, A2.3]. The following ARM assembly example illustrates this (armstartup.s:540-2, [8]):

str pc,[sp,#-4]! @ 0x20
bl init_clean @ 0x24
tst r4,r4 @ 0x28

Dummy addresses have been indicated in comments. When execution arrives at 0x20, the
program counter is set to 0x20. Per the above documentation, str stores 0x20+8 on the stack
(to be precise: to the address indicated by the stack pointer with pre-indexed offset -4). The
processor branches to init_clean, which loads the value from the stack back into the program
counter to return to the caller. The program counter is then 0x28. For the next instruction cycle,
the tst command is executed.

There are two reasons why the above cannot be used in Thumb-2 code. First, pc is not
allowed as the first operand of a str instruction.

The second problem we meet is that the instruction to store the program counter may be
halfword-aligned rather than word-aligned. We saw above that a read of the program counter in
ARM mode reads as PC+8. In Thumb mode this is more complicated. In this case, we ‘[r]ead
the word-aligned PC value, that is, the address of the current instruction + 4, with bits [1:0]
forced to zero’ [2, A5.1.2]. This means that when the add instruction above is at 0x22, we will
still store 0x2d on the stack, since the word-aligned program counter is 0x20 as before. However,
in this case bl is located at 0x2a, and since this is a 32 bits instruction we point to the middle of
that instruction.

2.2 Usage in Clean

Storing the PC is required for jumping to subroutines. We see a clear example of this when a
Clean function definition uses pattern matching. Consider the following example:

isEmpty :: [a] -> Bool
isEmpty [] = True
isEmpty _ = False

The generated ABC-code looks as below5. Since isEmpty pattern matches on its first argument,
it needs to be evaluated to head normal form. This is done with jsr_eval 0. Only after that can
we check if its constructor is _Nil (the empty list), which is done with eq_desc _Nil 0 0.

5The current Clean compiler misses the jsr_eval 0 line: the strictness analyser recognises that isEmpty is
strict in its first argument, so evaluating the argument to head normal form is not needed any more. In cases
where the strictness analyser cannot derive strictness, code similar to this example is generated. The code given
here can be reproduced with clm -nsa.
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sisEmpty.1
jsr_eval 0 | Evaluate argument
eq_desc _Nil 0 0 | If it equals []
jmp_true case.1 | .. jump to case.1
jmp case.2 | [else] to case.2

case.1
pop_a 1 | Pop argument
pushB TRUE | Return True
rtn

case.2
pop_a 1 | Pop argument
pushB FALSE | Return False
rtn

Evaluating the argument is done by jumping to the subroutine indicated by the node entry of
that argument. Hence, we store the PC, jump to that address, and continue with eq_desc _Nil 0 0

when the node has been evaluated to head normal form. The ARM code for the pattern match
is:
sisEmpty_P1:

ldr r12,[r6] @ Load node entry point
tst r12,#2 @ If in HNF already
bne e_0 @ Skip evaluation
str pc,[sp,#-4]! @ Store PC
blx r12 @ Evaluate argument

e_0:
ldr r12,[r6] @ If it does not equal []
ldr r14,=__Nil+2
cmp r12,r14
bne case_P2

We can see here that evaluating a node requires a jsr_eval ABC instruction, and that jsr

ABC instructions require storing the PC in ARM assembly.
Of course, evaluating nodes is something that happens throughout the source code and has

to be done all the time during the execution of a Clean program. We therefore need a fast, small
Thumb alternative for the ARM code.

2.3 Solution
Recall from section 2.1 that we meet two issues when generating Thumb code. First, that pc

cannot be the first operand of a str instruction; second, that the value read for the program
counter is word-aligned while the read instruction may be halfword-aligned.

To solve the first problem, we need to first move pc to an auxiliary register, and then push
that on the stack. We then get, for the example from armstartup.s:540-2:
add lr,pc,#9 @ 0x20
str lr,[sp,#-4]! @ 0x24
bl init_clean @ 0x28
tst r4,r4 @ 0x2c

We store the value 0x2d. This address points to the tst instruction as before, with the LSB
set to 1 to indicate Thumb mode.

The offset, 9, is calculated as the number of bytes to the instruction after the branch plus one
for Thumb mode. For b and bl instructions, this means an offset of 9, since these instructions
are 32-bit. The bx and blx instructions are 16-bit, and require an offset of 7.

The second problem is that when the add instruction is located at the start of a halfword
(e.g. 0x22), the value that is read for PC will still be 0x20, as it is word-aligned [2, A5.1.2] When

13



generating object code, we need to keep track of the current alignment and add either 7, 9 or
11 to the read program counter, depending on both the alignment and the size of the branch
instruction. When generating assembly code, we are less concerned with efficiency. In this code
generator, we simply force-align the add instruction (by adding an .align directive, which will
insert a nop if necessary).

2.4 Implementation details

A jump always jumps to either a label (with b or bl) or a register (with bx or blx). The latter
occurs for example in the case of a jsr_eval ABC instruction. This instruction is used to evaluate
a node on the A-stack. First, the node entry address has to be fetched; then we jump to that
address.

In the first case, we need one scratch register to store the PC temporarily. In the second
case, we need two scratch registers: also one for the address we are jumping to. For the ARM
instruction set we needed zero and one scratch register(s), respectively. The ARM backend uses
two scratch registers, S0 and S1 (for more details, see section 5.2). The latter is used only when
two scratch registers are needed, so S0 is used in this case.

The Thumb-2 code generator uses S0 to store the PC temporarily in the first case, and S1 in
the second case (where S0 is still used for the address we are jumping to). This makes sure that
S0 is used as much as possible. The slightly easier implementation would use S1 in both cases.
However, in Thumb-2 it is convenient to have great variation in register usage: this allows for a
massive code size optimisation (see section 5). For this reason it is better to use S0 whenever
possible.

2.5 Comparison

Assuming the worst case, that all instructions in the jump block are wide, we need four more
bytes in Thumb than in ARM. As a benchmark, the Clean compiler has 41,006 jumps of this
kind in 1,253,978 instructions, or approximately 3.27%. The four extra bytes in Thumb mean a
size increase of 41006 · 4 ≈ 160KiB on the 5.3MiB file, an increase of 3.00%.

As for the time complexity: every subroutine call requires an extra instruction cycle. In
particular, every reduction needs an extra cycle. It is hard to tell what effect this has on Clean
programs in general, and it may well be very dependent on the kind of program. A general
comparison of running time under ARM and Thumb is made in section 6.3.

2.6 Other solutions

Another solution than the one we have considered here makes use of the link register. Some
branch instructions, like bl, store the address of the next instruction in the link register. We
could therefore imagine a setup where the callee gets the return address from that register rather
than from the stack. This is the approach taken by GCC. The code of a typical C subroutine
starts with push {...,lr} and ends with pop {...,pc}.

When generating code for a functional language, it is not straightforward to do this, due to
tail recursion. An example of this can be found in the following basic function:
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length :: !Int ![a] -> Int
length n [] = n
length n [_:xs] = length (n+1) xs

The current Thumb backend generates the following code:
slength_P2:

ldr r0,[r6] @ Load top of A-stack (the list)
ldr r14,=__Nil+2 @ Check if it is Nil
cmp r0,r14
bne case_P2

case_P1: @ If the list is Nil
ldr pc,[sp],#4 @ Simply return
.ltorg

case_P2: @ If the list is not Nil
ldr r6,[r6,#8] @ Load the Cons part of the list
ldr r0,[r6] @ Check if it has been evaluated already
tst r0,#2
bne e_0
str r4,[sp,#-4]! @ If the Cons part has not been evaluated
.align
add.w r14,pc,#7 @ Evaluate the cons part
str.w r14,[sp,#-4]!
blx r0
ldr r4,[sp],#4

e_0: @ If / after the Cons part has been evaluated
add r4,r4,#1 @ Increase counter
b slength_P2 @ Tail recursively jump back to start of function
.ltorg

In this setup, it is not easily possible to let the callee store the return address, since we enter
the function as many times as there are elements in the list, while we only return from it once,
in case_P1. A more straightforward solution to have the caller responsible for storing the return
address, which is why this approach is taken in Clean’s ARM code generator [9] and why we
continue along these lines for the Thumb backend.
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3 Code addresses

3.1 Introduction

The ARM ISA only has 32-bit instructions, meaning that the two least significant bits of a code
address are always zero. When a branch is attempted to an address which has one or both of
these bits set, the processor will automatically align the address by clearing these bits.

Thumb mixes 32 and 16-bit instructions. Instructions are halfword-aligned, so bit 1 is part
of the address. Additionally, bit 0 is used to facilitate ARM and Thumb interworking. When
the PC is written to with a value where the LSB is cleared, the processor jumps and switches to
ARM mode. When the LSB is set, it switches to Thumb mode [1, A2.3.2].

3.2 Usage in Clean

The fact that in ARM mode the two lowest bits of a value written to the PC are cleared
automatically has been exploited in the ARM code generator: these two bits are used to store
information. Bit 1 is used to mark a node as having reached head normal form6 (HNF). Bit 0
is used in Clean’s default garbage collector, the copying collector, to record whether a node has
been copied to the other semispace already: when cleared (the normal state of an address as
stored on the heap), it has not been copied yet.

Porting to Thumb, we need to find a way to store this information without jumping to the
middle of an instruction or accidentally switching to ARM mode.

3.3 Solution

The solution for bit 1 is straightforward. By aligning all code addresses that we will ever want
to jump to (the node entry addresses) on words rather than half-words, we ensure that bit 1 is
always cleared. When a node has reached head normal form, setting bit 1 will give a corrupt
address. Jumping to it would either jump after the first instruction (if it is 16-bit) or to the
middle of the first instruction (if it is 32-bit). However, when a node is in HNF, there is no
pointing in jumping to its entry address, so the corrupted address is not a problem.

The Thumb backend for Clean proposed in this thesis does not use interworking. However,
we do need to make sure that whenever the PC is written to, the LSB is set. To that end, we
store node entry addresses with the LSB on heap and stack. This only introduces problems in
the copying collector, which will then not copy any node (since having bit 0 set means having
been copied already). Flipping the meaning of the LSB in the copying collector fixes this issue.

3.4 Comparison

Flipping the meaning of the LSB in the garbage collector amounts to swapping bne and beq and
similar changes that do not effect the program’s efficiency or size.

By word-aligning all node entry addresses we lose one alignment byte per node entry address
on average (assuming that half of the node entry points are word-aligned already). This increases
code size slightly, but since many instructions that were 32-bit in ARM are now 16-bit, the overall

6A node is in head or root normal form when it cannot be rewritten itself (though its children may).
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code size is still smaller. Aligning node entries has no effect on the program’s efficiency since the
nop instruction that is inserted above the entry is never executed.

3.5 Other solutions
The solution described above is Clean-specific, since it exploits the fact that bit 0 of a code
address is only used inside the garbage collector. The solution for bit 1, however, is not specific
to the Clean RTS. Therefore, a general solution to the problem that the two LSBs of a code
address cannot be used to store information in Thumb mode would be to align all addresses that
we need to store info of on double-words, that is, ensuring the three LSBs are always zero. That
way, the LSB can be used for ARM and Thumb interworking, and bit 1 and 2 can be used to
store information.

Of course, whether this is a viable solution depends on the density of code addresses that
should then be aligned. If every second instruction needs to be aligned, it would introduce so
many padding instructions that code size will increase dramatically (even compared to ARM)
and that performance degrades significantly.

Then again, in many programs the issue we have explored in this section will not be a problem
at all, because the two LSBs of code addresses are not commonly used.

17



4 Reduced offset space for memory load instructions

4.1 Introduction

The LDR (immediate) instruction loads a word from memory into a register. The address is
specified by a base register and an offset (which can possibly be added to the base register before
or after the load). On ARM, this offset is encoded in twelve bits, and one bit is used for its sign.
That allows for any offset between −4095 and 4095 bytes. For details, see [1, A8.8.63].

The Thumb instruction set defines four different variants of the immediate LDR instruction [2,
p. 6.7.42]:

• 16-bits, any base register, offsets between 0 and 124; 0 modulo 4.

• 16-bits, SP as base, offsets between 0 and 1020; 0 modulo 4.

• 32-bits, any base register, offsets between 0 and 4095.

• 32-bits, any base register, offsets between −255 and 255.

Only the last variant can add the offset to the base register, either before or after the load
instruction.

While in some cases a narrow LDR instructions can be used in Thumb, some uses in ARM
cannot be used directly in Thumb: the offset can now only be between −255 and 4095 bytes.

4.2 Usage in Clean

For most Clean programs, the generated code will not attempt to load memory with large
negative offsets. However, there are some modules with exceptionally large right hand sides, for
which large negative offsets are generated. The largest in the Clean compiler is −600, in the
frontend/predef module.

It is worth noting that the ARM code generator attempts to use as few clock cycles as possible
to modify the A-stack. Instead of updating the A-stack pointer every time a load is done, the
code generator keeps track of the difference between the stored A-stack pointer and the actual
top of the stack. So, when three arguments are popped off the A-stack, we do not generate this
code7:
ldr r0,[r9,#4]!
ldr r1,[r9,#4]!
ldr r2,[r9,#4]!

Instead, the code is optimised to:

ldr r0,[r9,#4]
ldr r1,[r9,#8]
ldr r2,[r9,#12]!

Instead of updating r9, the A-stack pointer, after every pop, the code generator modifies the
offset and updates r9 only after the last load.

7This is a hypothetical example, so we do not show ABC-code here.
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4.3 Solution
We extend the optimisation scheme described in the previous paragraph to ensure no large
negative offsets are generated. When generating code for a basic block, we now compute the
minimum offset to the A-stack. If it is lower than −255, a sub instruction is added to modify the
A-stack pointer before the load is executed.

In this case, we optimise the offset for code size. Let O be the set of offsets used in the basic
block and omin ∈ O the lowest offset in that set. If we call the offset used in the sub instruction
ostart , this expression gives the total size in bytes of all load instructions:

h (ostart) =
∑
o∈O

s(o− ostart),

where

s(x) =
{

16 if 4 | x and 0 ≤ x ≤ 124;
32 otherwise.

We therefore want to calculate

min
omin−3≤ostart≤omin+255

h (ostart) .

There is no reason to go lower than omin − 3. In this case, all load offsets are positive, and
decreasing ostart further will make less instruction fall into the first 16-bit variant listed above.
We cannot go higher than omin +255, because we would then need a load offset lower than −255.

The sub instruction is inserted right before the first ldr instruction with a too large negative
offset. This way, as many instructions as possible before the sub instruction fall into the 16-bit
variant.

For example, if we have to load data with the offsets 0, 4, 8, 12,−512, 16, 20, 24, 28, the fol-
lowing code is generated:
ldr ..,[r9]
ldr ..,[r9,#4]
ldr ..,[r9,#8]
ldr ..,[r9,#12]
sub r9,r9,#-512
ldr ..,[r9]
ldr ..,[r9,#528]
ldr ..,[r9,#532]
ldr ..,[r9,#536]
ldr ..,[r9,#540]

The first four loads are 16-bit, while putting the sub instruction at the start of the block
would make them 32-bit.

4.4 Comparison
We have assumed that the largest difference between A-stack offsets used in one basic block is at
most 4095. If it would be more, we would have to modify the A-stack pointer not only to avoid
large negative offsets, but also to avoid large positive offsets. We have not found any module
that uses large positive offsets, so the assumption is reasonable for the moment.

This assumption allows us to add only one sub instruction per basic block. With this, we
lose one clock cycle. In the worst case, all ldr instructions are 32-bit. In that case we also lose 4
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bytes of code size. However, in practice, at least some of the ldr instructions will be 16-bit, and
we will in fact save some space.

Negative offsets occur so infrequently that they do not influence the overall results signifi-
cantly.

4.5 Other solutions
Note that the solution proposed here makes a rigorous choice to minimise clock cycles. In the
above example, we could optimise for code size by restoring r9 when the offset is not needed any
more:
ldr ..,[r9]
ldr ..,[r9,#4]
ldr ..,[r9,#8]
ldr ..,[r9,#12]
sub r9,r9,#-512
ldr ..,[r9]
add r9,r9,#-512
ldr ..,[r9,#16]
ldr ..,[r9,#20]
ldr ..,[r9,#24]
ldr ..,[r9,#28]

Here, all ldr instructions are 16-bit, at the cost of one extra add instruction. We choose to
optimise for speed, because it is easier to implement and this situation is so rare that a different
scheme would not give significantly smaller code.
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5 Optimising register allocation

5.1 Introduction

In Thumb-1, i.e., the 16-bit subset of Thumb-2, register fields are 3 bits wide, allowing the
programmer to access r0 through r7. Special encoding variants are defined to access sp (r13)
and pc (r15), though these instructions have limited functionality compared to those working on
the eight low registers. The 32-bit instructions defined by Thumb-2 have access to all sixteen
registers.

This introduces an interesting code size optimisation vector. If we put the most-used registers
in the eight low registers, we may save code size.

5.2 Usage in Clean

In Clean programs, the ARM registers are used as follows [9, armstartup.s]:

• Five registers for the top of the B-stack, which we call B0 through B4.

• Four registers for the top of the A-stack, A0 through A3.

• Three registers for the A-stack, B-stack and heap pointers: A ptr., B ptr., Heap ptr.,
respectively. The B-stack is interleaved with the C-stack and uses SP as its pointer.

• One register for the number of free words on the heap, Heap ctr.

• Two scratch registers S0 and S1.

• The program counter PC.
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(a) In the Clean compiler.
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Figure 2: Register usage with the Thumb-2 backend.
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In figure 2, we count for each register the number of instructions it occurs in, in the code
generated for the Clean compiler [10]. When a register is used multiple times in the same instruc-
tion, this counts as one occurrence. The vertical line at indicates the number of occurrences that
a variable should have to justify putting it in the lower registers, if we were to put the most-used
variables in the lower registers (e.g., there are eight registers with over 85,000 occurrences in the
Clean compiler).

The RTS shows an entirely different pattern (figure 2b), because many registers have another
meaning in the RTS than in generated code. For large programs, register usage in the RTS is
negligible. For small programs it may not be negligible, but these programs are not likely to
need rigorous optimisation for code size, considering that they will be small anyway.

The counting method used here is rather simplistic: basing a register allocation on these
counts alone means assuming that every instruction has a 16-bit variant, which is not the case.
A more accurate method would be to only count those instructions where using a high or low
register actually makes a difference. This is much more complicated, and for a rough estimate
the simplistic method used here will already allow us to shrink down the code size.

5.3 Optimisation

The register allocation used in the ARM backend is inefficient for Thumb-2 on several points
(table 1). A number of often-used registers (the main scratch register, the A-stack pointer and
the heap pointer) are in the upper half, while registers that are used less often are in the lower
half (the heap counter and B2 through B4).

Figure 2 suggests that we put all variables that occur more than 85,000 times in the low
registers. However, the B-stack pointer has to be SP: the B- and C-stacks are combined into one
and the C-stack pointer should be the system pointer to allow for an efficient foreign function
interface.

The third column in table 1 shows the proposed allocation for Thumb. The heap counter and
the A-stack pointer are swapped, as are A2 and B2. The registers for S0, B4, the heap pointer,
B3 and A3 have been rotated. This way, all eight most often used registers are in the lower half
except the B-stack pointer.

Register ARM Thumb-2
A3 r11 r12

Heap counter r5 r9

B4 r0 r10

B3 r1 r11

B2 r2 r8

S1 r14 r14

B1 r3 r3

Register ARM Thumb-2
B pointer sp sp

A2 r8 r2

B0 r4 r4

A1 r7 r7

Heap pointer r10 r1

A0 r6 r6

A pointer r9 r5

S0 r12 r0

Table 1: Register allocation in the ARM and Thumb backends.

22



5.4 The foreign function interface
Changing the register allocation has its impact on the foreign function interface. Clean provides
mechanisms to export Clean functions, so that they can be called from other software, and
to call other functions from Clean, as long as the other software respects a certain high-level
infrastructure [11, chp. 11].

The low-level interface (which registers are used, for example) is platform-dependent. For
ARM, it is defined in [12].

Some registers have a special function: r15 is the program counter; r13 the stack pointer. The
Clean backend cannot use these registers in another way. There are four argument / result /
scratch registers, r0 through r3. These are not guaranteed to be preserved upon a function call.
The link register, r14, and r12, cannot be used freely either: a subroutine jumps to the address
in the link register when it is done (and can use r14 as a local variable if it stores its value upon
entering on the stack); and r12 can be used by the linker when extra instructions are needed
when a branch instruction attempts to jump to a label so far away that it does not fit in the
instruction any more [12, p. 5.3.1.1]. For local variables, r4 through r8, r10 and r11 can be used:
these have to be preserved by subroutines. The last register, r9, is platform-dependent. Some
quick tests indicate that it is callee-saved on our test setup (see appendix B).

The register allocation in the ARM backend is optimised for the foreign function interface:
the B-stack registers are in the argument registers, because the B-stack is usually empty during
function calls. The link register r14 and r12 are used as scratch registers, because they are only
used for short term storage. All other variables have to be kept over subroutine calls and are
kept in the other registers, which are callee-saved.

Changing the register allocation in the way proposed above means that this foreign function
interface will be less efficient. Whenever a foreign function needs to be called, the caller-saved
registers that need to be preserved have to be saved. With the allocation as proposed in table 1,
these are the heap pointer (r1), A2 (r2) and A3 (r12). Before every call, a wide push instruction
needs to be inserted; after every return, a wide pop instruction. This introduces an 8-byte
overhead per foreign function call and also means that every call will be slightly slower. We
deem the foreign function interface to be less important than the actual Clean code, so this is
acceptable.

5.5 Results
To measure the code size improvement introduced by this optimisation, we again take the Clean
compiler and compile it in three different ways:

• With the existing ARM backend [9].
• With the new Thumb backend, leaving the register allocation as in the ARM backend.
• With the new Thumb backend, with the optimised register allocation as in the third column

of table 1.
• With the new Thumb backend, with the optimised register allocation and leaving out any

.align directives to approximate object-code level efficiency.

The object code generator has not been finished yet at the moment these measurements were
done, so we can only estimate its efficiency. A modification described in section 2.3 required us
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to add .align to jump instructions, adding a nop instruction in approximately half the instances.
In the last measurement, we approximate object-code level efficiency by leaving out these .align

directives, as they will not be needed in the object code generator.
We only measure the size of generated code, that is, all .text segments except those that

belong to the RTS or external libraries. These measurements were done on the system described
in appendix B. One may argue that the Clean compiler is not representative code because of some
peculiarities like large lookup tables and arrays that are rarely used in practice. For this reason,
we compare both the total code size and the size of a part of the lexer [10, frontend/scanner.icl],
which can be considered representative. The results are in figure 3.

We see that even without the optimisation discussed in this section, some code size is saved.
After all, at least some instructions can be made 16-bit, and in the sections above we have
hardly ever had to add extra instructions. However, optimising register allocation allows us to
save much more, up to almost 20%.
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Figure 3: Code size for different backends.
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6 Results

6.1 Test suite
We use a standard set of Clean programs to compare ARM and Thumb performance. These
programs are included in the examples directory of every Clean release [4]. They are:

Ack A(3, 10), where A is the Ackermann function.

E The approximation of e to 2000 digits.

Fib Computing the 35th Fibonacci number using naive recursion.

FSve The sieve of Eratosthenes (optimised), computing the first 50,000 primes.

Ham The Hamming function, computing the first 300 numbers with only 2, 3 and 5 as prime
factors.

LQns Computing the possibilities to place 11 queens on an 11×11 ‘chess’ board (not optimised).

Mat Multiplying two 6× 6 matrices.

Perm Inverting a permutation of [1..16].

Psc Pretty-printing the first 18 rows of the triangle of Pascal.

Rev Reversing a 10,000-elements list, 10,000 times.

RevTw Reversing a list of 500 elements 65,536 times using the higher-order function twice (with
a heap size of 500M8).

RFib Computing the 35th Fibonacci number using naive recursion and Reals instead of Ints.

SQns Computing the possibilities to place 11 queens on a 11× 11 ‘chess’ board (optimised).

Sve The sieve of Eratosthenes (not optimised), computing the first 3,000 primes.

STw Incrementing an integer 65,536 times using the higher-order function twice (optimised).

Tak τ(32, 16, 8), where τ is the Takeuchi function.

Tw Incrementing an integer 65,536 times using the higher-order function twice (not optimised).

WSeq A sequential version of Warshall’s shortest path algorithm on a 6× 6 matrix.
8The large heap size is needed to prevent switching to another garbage collector, which had not yet been

finished at the moment of writing.

Ack E Fib FSve Ham LQns Mat Perm Psc Rev RevTw RFib SQns Sve STw Tak Tw WSeq

Size
ARM (b) 188 2388 164 1036 1576 2708 4452 1756 2940 796 820 248 1660 1200 340 232 360 2628
Thumb (b) 164 1944 148 840 1200 2196 3392 1332 2452 636 632 248 1328 936 304 204 312 2020
Diff. (−%) 12.8 18.6 9.8 18.9 23.9 18.9 23.8 24.1 16.6 20.1 22.9 0.0 20.0 22.0 10.6 12.1 13.3 23.1

Time
ARM (s) 0.59 1.39 0.59 1.18 — 1.64 — — — 4.09 1.07 1.15 1.16 0.99 — 0.87 — —
Thumb (s) 0.66 1.44 0.62 1.11 — 1.70 — — — 4.31 1.08 1.18 1.22 0.99 — 0.94 — —
Diff. (%) 11.9 3.6 5.1 5.9 — 3.7 — — — 5.4 0.9 2.6 5.2 0.0 — 8.0 — —

Table 2: Code size and running time comparison for ARM and Thumb-2.
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6.2 Code size
We compared the code size for the code generated by the ARM and Thumb backends for all
programs in the test suite. This does not include the run-time system, but does include parts of
Clean’s standard library, StdEnv, that are necessary for the program. The results are in table 2.

The Thumb backend produces on average 17.3% smaller code, with a standard deviation of
6.3pp. If we ignore those programs for which the ARM code size is less than 1,000 bytes, this
is 21.0%, with a standard deviation of 2.6pp., comparable to the 19.3% found for the Clean
compiler in section 5.5. Small programs with short function blocks skew the data, because they
contain relatively many jumps which are longer in Thumb than in ARM (see section 2).

6.3 Running time
For the same programs, we compare the running time. Some of the examples as provided in the
Clean releases have a too short running time to be able to compare them, so the parameters had
to be tweaked. In this case, the new parameters are mentioned in section 6.1. For some examples
it was not possible to increase the running time enough. Table 2 lists ‘—’ for these programs.

The increase in running time is relatively low compared to the decrease in code size: 4.8%
on average with a standard deviation of 3.1pp. For the larger programs, this is 3.7% with a
standard deviation of 2.04pp. (though this is based on only five programs).
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7 Discussion
In this section, we discuss three optimisation vectors that are not yet considered. First, we
look at subroutine calls, which are expensive in Thumb, compared to ARM. In section 7.2,
we consider branch optimisation, which concerns moving code blocks around to make as many
branch instructions narrow by minimising their offsets. The last optimisation vector is about
instructions that exist in Thumb but not in ARM. These are discussed in section 7.3.

We also look at the results from section 6 in more detail, in section 7.4.

7.1 Optimising subroutine calls
In section 2, we saw that subroutine calls are slower and larger in Thumb than in ARM, because
an extra add instruction has to be inserted. We discussed that a more efficient solution would
exploit the link register: upon a bl and blx instruction, the link register is loaded with the address
of the instruction after the branch. If the callee would be responsible for saving this address,
rather than the caller, we could delay storing the return address and exploit these instructions to
eliminate the add instruction. However, we also mentioned that tail recursion makes this difficult
(see section 2.6).

7.1.1 Tail recursive entry points

To improve on this, two things can be done. First, we could add a tail recursive entry point to
function blocks. The code for the length function from section 2.6 could then look like this:
slength_P2:

str lr,[sp,#-4]! @ Store the return address
slength_P2_tr: @ The tail recursive entry point

ldr r0,[r6] @ Load top of A-stack (the list)

@ ... etc

e_0: @ If / after the Cons part has been evaluated
add r4,r4,#1 @ Increase counter
b slength_P2_tr @ Tail recursively jump back to start of function
.ltorg

This way, the code to store the return address is only executed once. The return address is
saved on the stack, as before. To call the subroutine, the following block can be used:
bl slength_P2

This is an improvement of between two and six bytes per subroutine call: in any case, we win
two bytes since the add instruction is eliminated. In the minimal case that a function is called
only once, we save only these two bytes. If the function is called often, many str instructions
can be removed at the cost of one extra str instruction in the function itself, and the space saved
per subroutine call asymptotically approaches six bytes.

As for running time, we win one instruction cycle per subroutine call. The add instruction
is removed, but the str instruction is still executed (whether it is placed in the caller’s or the
callee’s block does not matter).

In the current code generator, branches are often removed by putting the callee direct behind
the caller. Adding a tail recursive entry point before the callee complicates this: we would need
to jump behind that entry point or place the entry point somewhere else and jump from the tail
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recursive entry point to the start of the function. It should be tested if any of these options is
an improvement over the current slow subroutine calls.

To implement tail recursive entry points, one would need to be able to recognise tail recursion
such that the tail recursive entry point is used only for these subroutine calls, but not for the
‘plain’ recursive subroutine calls. Also, more research is needed to see if a tail recursive entry
point is sufficient in all cases.

7.1.2 Mixed calling convention

A second possibility would be to have a mixed calling convention. Currently, in every subroutine
call, the caller is responsible for storing the return address on the stack. In a mixed calling con-
vention, the callee would be responsible for this, except for functions that exploit tail recursion
or that are not always called but also jumped to (as described above). Recognising tail recur-
sion can be done on a relatively high level of abstraction, so annotations can be added to the
intermediate ABC-code to indicate what calling convention should be used for a certain function.

An advantage of this approach might be that there are less cases to consider. The obvious
disadvantage is that it makes the calling convention overly complex.

7.2 Branch optimisation
A second optimisation vector that is yet to be considered is branch optimisation. The Thumb
instruction set has four variants of the simple branch instruction b [2, A6.7.12]:

• 16-bits, conditional, with an offset between −256 and 254.
• 16-bits, not conditional, with an offset between −2, 048 and 2, 046.
• 32-bits, conditional, with an offset between −1, 048, 576 and 1, 048, 574.
• 32-bits, not conditional, with an offset between −16, 777, 216 and 16, 777, 214.

By reorganising the code, the code generator could make as many branch instructions as
possible 16-bit.

This optimisation is restricted to the b instruction: the branch with link (bl) is always 32-
bit; the branch and exchange (bx) and branch with link and exchange (blx) instructions always
16-bit. Since the b instruction is used relatively little by the code generator, we cannot hope for
much improvement. The Clean compiler, with a code size of 3,827,868 bytes (Thumb optimised,
figure 3), counts 56,009 simple branches, of which 13752 (25%) are already narrow. In the best
case we can make all the wide branches narrow and win (56, 009 − 13, 752) · 2 = 84, 514 bytes,
that is 2.2%. The bl, blx and bx instructions are used 42, 436, 23, 070 and 374 times in the Clean
compiler, respectively.

7.3 Thumb-only instructions
The Thumb instruction set introduces some instructions that are not available on ARM. These
include:

• cbz and cbnz, ‘Compare and Branch on (Non-)Zero’ can conditionally branch forward an
even number of bytes between 0 and 126 when a register is (un)equal to zero [2, A6.7.21].
This is an improvement over combining a tst and a beq or bne instruction.
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• tbb and tbh, ‘Table Branch Byte’ and ‘Table Branch Halfword’ can branch forward using a
table of single byte or halfword offsets, when given a pointer to and an index in the table [2,
A6.7.139].

Where they are applicable, using these functions will be more efficient than the equivalent
ARM code, which is being used now. There do not seem to be direct use cases for tbb and tbh,
but cbz and cbnz can improve performance. It has not been checked yet how much can be won.

The it instruction allows for conditional execution in the Thumb instruction set. It does not
exist in the ARM instruction set, which has a four-bit conditional field in every instruction (see
section 1.1.1). As such, the it instruction is new in Thumb. However, it does not introduce a
performance optimisation, as there is no slower alternative to it blocks.

7.4 Matching programs and instruction sets
If we compare the code size decrease with the running time increase, we get the plot in figure 4. It
seems that code size decrease correlates negatively with increase in running time, suggesting that
Thumb is more suitable for some programs than others. However, we do not have enough data
to see if this is significant. More research is needed to see if there actually is such a relationship,
and if so, what programs are more suitable for Thumb.

The outliers in figure 4 are RFib (0.0, 2.6), Ack (12.8, 11.9), Fib (9.8, 5.1) and Tak (12.1, 8.0),
all small programs that rely heavily on recursion (for a description of the programs, see section 6.1
above). This is explained by the relatively high number of jumps: in Thumb we had to add several
instructions, introducing extra code size and running time (see section 2).
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Figure 4: Comparison of code size decrease and running time increase. Grey crosses indicate
programs that are smaller than 1000b in ARM; black pluses correspond to larger programs.
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A Current status

In this section, we briefly discuss the current status of the Thumb backend for Clean.

A.1 Run-time system

The latest version of the RTS can be found at https://git.camilstaps.nl/clean-run-time-system.

git/. The Thumb backend is located in the thumb2* files and can be built with Makefile.linux_thumb2.
Register aliases have been used to ease changing the register allocation. The current allocation

is set in thumb2regs.s.
The Clean RTS has three garbage collectors: a copying, a compacting and a marking collector.

At this point only the first works. The expectation is that the others can be fixed rather easily
and that only a few bits need to be flipped. We don’t expect any problems other than the ones
encountered in the copying collector (which has been discussed in section 3).

A.2 Code generator

The latest version of the code generator can be found at https://git.camilstaps.nl/clean-code-generator.
git/. The Thumb-specific part is in the cgthumb2* files and throughout other files in a few #ifdef

blocks. It can be built with Makefile.linux_thumb2.
There are two code generators: one that generates readable assembly code (thumb2was.c) and

one that generates object code (thumb2as.c). At the moment of writing, only the first has been
adapted to work for Thumb — the second is the same as the ARM code generator.

A.3 Building programs

To build a file mymodule.icl for a Thumb target, the following workflow can be used:

# Build _system, needed only once
cg _system -s _system.s
as -o _system.o _system.s -march=armv7-a

# Build cgopts, needed only once
as -o cgopts.o cgopts.s -march=armv7-a

# Build actual program
clm -ABC mymodule
cg Clean\ System\ Files/mymodule -s mymodule.s
as -o mymodule.o mymodule.s -march=armv7-a
cc -o mymodule \

/path/to/rts/_startup.o \
/path/to/_system.o \
cgopts.o \
mymodule.o \
-lc -lm \
-march=armv7-a

The _system.abc that is needed can be taken from any Clean distribution [4].
In cgopts.s, some variables are set that are normally added by the Clean make tool clm. The

file may look like this:
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.data

.global ab_stack_size

.global flags

.global heap_size

.global heap_size_multiple

.global initial_heap_size

heap_size: .word 0x00200000
ab_stack_size: .word 0x00080000
flags: .word 0x00000008
heap_size_multiple: .word 0x00001400
initial_heap_size: .word 0x00019000

Another option to build Clean programs using the Thumb backend is to get the Clean make
tool clm from https://svn.cs.ru.nl/repos/clean-tools/trunk/clm/ and build it so that NO_ASSEMBLE

is not defined (which will cause it to execute the readable code generator instead of the object
code generator).

B System setup
Tests were run on a Raspberry Pi 3, Model B with 1GB RAM. Its processor is listed in
/proc/cpuinfo as an ‘ARMv7 Processor rev 4 (v7l)’, although the Hardware field is ‘BCM2709’,
which is an ARMv8 chip.

To build programs, we used the following suite:

• gcc (Raspbian 4.9.2-10) 4.9.2
• GNU assembler (GNU Binutils for Raspbian) 2.25
• GNU ld (GNU Binutils for Raspbian) 2.25
• A Clean compiler built from intermediate ABC files retrieved on December 7, 2016 [10],

built with the ARM code generator revision 295 [9] and the ARM RTS revision 387 [8].

These programs are given -march=armv7-a when applicable to optimise for the ARMv7 ar-
chitecture. The Thumb backend proposed in this thesis uses features that are deprecated by
ARMv8-A (see section 1.1.1).
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