BACHELOR THESIS
COMPUTER SCIENCE

h

G .
é.\9 Ny |
orrer

O”IINe-‘?@

RADBOUD UNIVERSITY

Comparing Web Page Layouts
using Tree Edit Distance

Author: First supervisor/assessor:
Spaendonck, P.H.M. van Prof. dr. ir. Arjen P. de Vries
54343123 A.deVries@cs.ru.nl

p.h.m.spaendonck
@student.ru.nl

Second assessor:
Dr. Fabian Gieseke
fgieseke@cs.ru.nl

July 20, 2016

Abstract

The rapidly increasing size of the internet demands an automated solution
for retrieving data about websites. While we are already able to analyze
websites on their contents, an automated solution for analyzing and com-
paring web page layouts does not yet exist.

Thus we have designed a program that translates web page layouts into data
trees, and uses those to calculate the tree edit distance between them, so
that we are able to perform layout-analysis.

Contents

1 Introduction 2
1.1 Focusof thisresearch 3

2 Related Work 4
2.1 Preliminary knowledge Lo 4

3 Method 5
3.1 Transformation 5
3.1.1 Style sheet handling 5

3.1.2 Tree representation 6

3.2 Theanalyzer L. 6

4 Discussion 8
4.1 Evaluation of used data 8
4.2 FEvaluation by clustering 0., 9
4.3 Evaluation by similarity 9
4.4 The value of tree edit distance as a proxy 10
4.5 Futurework 10

A Appendix 13

Chapter 1

Introduction

The internet is a growing source of revenue and information. Being able
to analyze this collection of data is very useful. Most website analysis is
done by looking at the content of a website, but not at the web page layout
itself. However being able to analyze and compare web page layouts might
be more worthwhile then we think. We could for example remove redundant
backups of websites by looking if their layout has changed or use clustering
to group different websites with similar designs.

To be able to use modern analysis tools, we have to be able to quantify dis-
tance between two elements. If we are able to calculate the distance between
different web pages we can see which web pages are similar and which ones
differ the most.

A simple solution would be retrieving certain attributes about the web page’s
design and then using vector distance as a metric. However the outcome is
entirely dependent on the attributes that where chosen, and no clear guide-
lines on constructing such guidelines exist. Unfortunately, when quantifying
distance over large and complex data elements, it becomes more difficult
to find a purely objective metric. Because, while we would still be able to
say whether two web pages differ, being able to say what web page is more
different becomes more of a subjective decision.

In our research we use an adapted version of the tree edit distance algorithm,
while it is not known if this objective approach of measuring the distance
between layouts is consistent with human judgment, we assume the original
algorithm is sufficiently close to be meaningful, and we will evaluate our own
adaptation.

However to do this, we have to find a way of translating web pages into data
trees, so that we can then use our tree edit distance to analyze our data.

1.1 Focus of this research

Our research focuses on the following two questions:

e Is it possible to gain useful information about websites, while only
analyzing the web page layout?

e Is tree edit distance a good proxy for comparing web page layouts?

By answering these, we hope to be able to show that analyzing web page
layouts is possible and worth the effort.

Chapter 2

Related Work

In A Robust Algorithm for the Tree Edit Distance [3], Pawlik and Augsten
have shown that the Tree Edit Distance can be computed with a time com-
plexity of)(n?), with n = maxz(|F|,|G|). However because we want to use
a varying substitution cost, we will not be implementing this algorithm.
The volume and evolution of web page templates [2] has shown that 40 to
50% of the content on the web was template content. When we cluster our
data-set with the distance algorithm, we hope that the clusters correlate
with templates used.

In A segmentation method for web page analysis using shrinking and divid-
ing [1] web page analysis is done by using shrinking and dividing on the web
page. This research shows that it is possible to retrieve useful information
from web pages by only looking at the representation of the web page.

2.1 Preliminary knowledge

Before we dive deeper into our research, it might be useful to explain certain
aspects of the information-domains we are using.

A web page’s structure is defined by div’s. A div is basically a box in
which content (like text or an image) can be displayed. A div can also
contain another div which again can contain more content. When the web
page is loaded into a browser, the page’s div’s and its content are structured
into a Document Object Model (DOM). Since the DOM is a data tree we
can easily translate it into a tree, on which we can use our edit tree distance
algorithm.

The elements of the websites we will be studying, have style properties
assigned to them, either using a style-sheet or using inline attributes. These
rules explain how they should be displayed, and this is what we will be using
to calculate the attributes we want to be stored.

Chapter 3

Method

3.1 Transformation

The DOM model contains a lot of information, however a large part of this
information is not needed. The DOM also does not directly contain all the
information we do need. Because of this, we need to be able to transform
the DOM into a data tree that contains only the information we need.

The first component is the part of the program that is responsible for trans-
forming web pages into data elements. This is done by opening a virtual
browser window using the Ghost.py library for python. The window we have
use, has a resolution of 1920x1080; while different resolutions can be used
when needed, we have chosen to use this resolution, because it is one of the
most used resolutions on newer computers.

3.1.1 Style sheet handling

Once the window is generated, a web page can be loaded in. On every web
page we use two pieces of JavaScript code. The first, pre.js is used to
make XMLHttpRequests to load in style-sheets from external domains, and
turning them into style-nodes. This is done because because the Same-origin
policy does not not allow scripts to acces data from a domain different from
the one it is executed at.

However it is worth noting that, this is only possible if the external domain
has CORS enabled. Thus the problem could arise that it is no longer possible
to correctly retrieve the css-information via the current method.

When all external style-sheets have been converted core.js, the second
piece of JavaScript, is executed. First all the internal style-sheet rules are
assigned to their corresponding elements, by making them inline. This is
done so that we do not have to look through all the css-rules every-time we
want to look up one of the style properties of an element.

3.1.2 Tree representation

When all of the style attributes have been made in-line, we only have to
concern ourselves with the inline style attributes of each element of the
DOM tree.

For every element we want to keep the following information:

e the elements width

the elements height

e the elements horizontal offset, relative to its parent

the elements vertical offset, relative to its parent

the children (and their values) belonging to this element

We do this by recursively calculating the width and height of every element,
and their placement relative to their parent element. We also have an extra
slot we use to save information that we can use for debugging. This value
is however never used later.

When calculating these values another problem arises. Auto generated val-
ues that are created when the ’auto’ keyword is used, are not always correct.
Since the specific implementation of this is browser specific, the exact re-
sult depends on the browser that is used. Because we are using a custom
browser, these values are not always computed as we want. For example
‘margin auto’ does not center elements in our browser, while it would do so
in others. Because of this we do not use the '"Window.getComputedStyle()’
method, but we calculate the values ourselves.

Once calculated, the elements and their values are saved to our local database,
so that they can be used for analysis.

3.2 The analyzer

The second component of the program can then be used to analyze the
new data elements using our own adaption of the tree edit distance metric.t
When we look at an element in our tree, we can simplify it to having two
properties, the four values (width, height, vertical offset and horizontal off-
set) and its possible children. The way we calculate the distance between
two branches is by looking at these two properties. We can project the four
values to two vectors, and then calculate the normalized distance between
the original vector and the vector of the other branch, this gives us the cost
of substituting the original element with the other one.

Then we calculate the distance between all the children of our element and

!The adaption of the tree edit distance algorithm can be found in the
LooseEditComparer. java class.

all of the children of the other element. We use the shortest distance found,
or use the cost of creating the specific child if it is smaller than the shortest
distance. The distance between two branches equals the total of these two
costs.

For calculating the average we do a similar thing. Since the four values are
actually vectors we can calculate these averages via conventional mathemat-
ical means. For the children, we try to find the closest pairs again, and then
calculate the averages of those pairs.

function GETDISTANCE(nodeg,node;)
subCost < GETVECTORDISTANCE(nodeg.vector, nodey.vector)

Clarge := the set of children of the node with the most children.
Coman = the set of children of the node with the least children.
leavesCost < 0
for Veg € Clyrge do
min <— getCost(co)
for Ve, € Cypqn do
min < min(min, GETDISTANCE((co, ¢1)))
end for
leavesCost + leavesCost + min
end for
return subCost + leavesCost
end function

function GETVECTORDISTANCE(vg,v1)
vector Distance < |(vg) — (v1)]
[+ min(|vo|, |v1])

return (vectorDistanc/l)

end function

function GETCOST(node)
cost + GETVECTORDISTANCE (node.vector, node.parent.vector)
for Vc € node.children do
cost <+ cost + GETCOST(c)
end for
return cost
end function

Chapter 4

Discussion

In this chapter, we evaluate to what extent the comparison of web page
layout structure using weighted tree edit distance, captures the right infor-
mation.

4.1 Evaluation of used data

During the development-process, we have used the top 25 most-visited web-
sites in the US, taken from Alexa.com, to test our software. These websites
have been chosen, because not only are they widely used, they also use
varying design principles. For example, Google.com uses mostly inline css
declaration while live.com uses almost no inline css and refers to an external
domain for style declaration.

We have left out two websites: Twitter.com and Reddit.com. Because of the
infinite scrolling capabilities of these pages, they were too big to be handled
by our software. However if the html-parser were to be made more efficient,
then these websites would also be able to be parsed.

Our current parser, also does not handle every css-attribute, however the
current parser is able to retrieve the css-attributes, thus a future version
would be able to handle these. This means that while our solution is incom-
plete, it is still a valid proof of concept, since it still shows us that there is
information inside the websites layout.

This leaves us with the following data set.

Parsed websites (the websites where parsed on the 20" of May 2016)

google.com Facebook.com Amazon.com Wikipedia.org Ebay.com

Netflix.com Linkedin.com Craigslist.org Pinterest.com Live.com

Imgur.com Go.com Bing.com Chase.com Instagram.com

Paypal.com Tumblr.com Diply.com cnn.com Espn.go.com
Msn.com

Before we start assessing the usefulness of analyzing our data, we have to
take into account that due to the size of this research we are only using
a small set of data. Thus some properties and correlations might not be
apparent with our current set and some might not be there once a larger set
is used.

4.2 FEvaluation by clustering

The second component of our program is able to do nearest-neighbor clus-
tering using the tree edit distance as distance metric. Using this on the 23
websites we have, results in the following clusters:

e Cluster 0 Pinterest.com, Facebook.com and Paypal.com

e Cluster 1 Instagram.com, Live.com, google.com, Amazon.com, Net-
flix.com, Craigslist.org, Bing.com and Chase.com

e Cluster 2 cnn.com and Go.com

e Cluster 3 Msn.com , Linkedin.com , Wikipedia.org, Imgur.com, Espn.go.com,
Tumblr.com and Ebay.com

If the layout structure can convey the function of a website, clustering
should group similar sites together. Unfortunately the clusters do not seem
to correlate with the purposes of the parsed websites; socialmedia and news-
sites are divided over different clusters. While only online advertisement
platforms (Craigslist and Ebay) are in the same cluster.

4.3 Evaluation by similarity

An alternative analysis evaluates the result of the similarity measure per
site. This is done by generating a directed graph, in which every vertex
represents one of the web pages. From every vertex a directed edge is cre-
ated towards their nearest neighbor. The resulting graph is able to show us
which sites are generic. A generic site is a site with the a large amount of
edges going towards it.

When the similarity graph of our 23 websites is generated!, we notice that
Google.com and Live.com have the 'most generic’ web pages. when we take
a look at the design of these two websites, we notice that these websites
consist of mostly empty space and very few displayed content.

When we look at their neighbors (which are the other members of Cluster
1), we notice that except for Amazon.com, all of these share a similar grade
of complexity. This is because the similarity graph has the property that

!a figure of this graph can be found in the Appendix

the complexity of a web pages design correlates with the amount of edges
going toward its vertex.

We can count the amount of vertexes leading (either directly or indirectly)
to a web page, and rank the pages according to this sum. The result is a
ranking showing how generic each web page is. We hope that the highest
ranking pages could serve as design templates, because they are the most
generic according to our ranking.

According to this measure, Google.com (with 4 direct neighbors) and Live.com
(with 5 direct neighbors) are the most generic web pages in our study.
Google.com is also similar to Live.com.

4.4 The value of tree edit distance as a proxy

Our current adaptation of tree edit distance seems to be a good basis for
design distance metrics for websites. Because its weighting prefers less com-
plex websites, we can use it to rank websites on their simplicity in layout
and possibly to generate templates.

However the original tree edit distance algorithm is only able to asses whether
a node in the tree is equal to another node or not. Because of this we have
to come up with our own way of calculating the difference between different
nodes, bringing us back to our original problem, but only smaller.

And while it is possible, calculating the distance between different nodes
using our algorithm can be time consuming. Thus our adaptation of the
tree edit distance may need to be improved before it can be applied to a
larger data set.

4.5 Future work

An unfortunate issue of trying to analyze data-sets that have not been an-
alyzed before, is the lack of a frame of reference for measuring its validity,
because of this most of the validity comes from further usage of the methods,
that we have designed.

One of the most prominent things of continuing on this research will be
analyzing a bigger collection of websites. Due to time constraints and the
large time-complexity of our algorithm, we were only able to use a small set
of websites. However, now that we are capable of transforming web pages,
we should be able to use a larger set in following research.

In our current research we have not looked at human interpretation. It
would be an interesting extension of our work to use surveys to test the
validity of our current implementation choices.

A possible usage of the similarity graph, would be creating a directed graph
using a lot more websites, one edge coming from every node and going into
their respective nearest neighbor. If the bigger graph maintains the same

10

property, we can see how complex a website is, by counting how few edges
go into the website’s node.

Further research could then be conducted to whether this complexity corre-
lates with the usability of a website.

11

Bibliography

[1] Jiuxin Cao, Bo Mao, and Junzhou Luo. A segmentation method for
web page analysis using shrinking and dividing. International Journal
of Parallel, Emergent and Distributed Systems, 25(2):93-104, 2010.

[2] David Gibson, Kunal Punera, and Andrew Tomkins. The volume and
evolution of web page templates. In Special Interest Tracks and Posters
of the 14th International Conference on World Wide Web, WWW 05,
pages 830-839, New York, NY, USA, 2005. ACM.

[3] Mateusz Pawlik and Nikolaus Augsten. Rted: A robust algorithm for the
tree edit distance. Proc. VLDB Endow., 5(4):334-345, December 2011.

12

Appendix A

Appendix

The written code can be found at https://github.com/VizuTheShaman/Parsie

Similarity graph of cluster T.

@
e

Bing

)

o

Similarity graph of cluster 2.

Similarity graph of cluster 3.

13

o ©
(o)

Espn

Similarity graph of cluster 4.

14

