
Bachelor thesis
Computer Science

Radboud University

Parsing expression grammars,
constructing a linear-time parser

Author:
Jan Martens
s4348435

First supervisor/assessor:
Herman Geuvers

herman@cs.ru.nl

Second assessor:
Freek Wiedijk

freek@cs.ru.nl

January 23, 2017

Abstract

Parsing is the process of analysing a string of symbols. Within parsing looka-
head is a very useful concept. However, unlimited lookahead often causes the
time complexity of a parser to increase significantly. Bryan Ford has intro-
duced a recognition-based grammar called parsing expression grammars[6].
With parsing expression grammars one has unlimited lookahead and one can
write a linear-time parser for every language that can be described using a
parsing expression grammar.

In this thesis we will show how these parsing expression grammars work
in practice and how one can construct a linear-time parser.

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Formal Languages . 3
2.2 Regular expressions . 4
2.3 Context free grammars . 5

3 Parsing Expression Grammars 7
3.1 Parsing expressions . 7
3.2 Grammar . 8
3.3 Syntactic sugar . 10
3.4 Behaviour . 10
3.5 Properties . 12
3.6 Well-formedness . 16
3.7 Expressive power . 17

3.7.1 Failure behaviour . 18

4 Language definitions 19
4.1 Ford’s definition . 19

5 Reducing the grammar 21
5.1 Repetition elimination . 21
5.2 Predicate elimination . 22

6 Linear time parser 24
6.1 Parsing . 24
6.2 Intuitive parsing . 24

7 TDPL 27
7.1 grammar . 27

8 Conclusions & related work 31
8.1 Related work . 31
8.2 Conclusions . 31

A Intuitive PEG parser 33

1

Chapter 1

Introduction

Since the introduction of Chomsky’s generative system of grammars[4]. It
is very popular to use generative grammars such as context-free grammars
(CFG’s) and regular expressions, to express syntax and programming lan-
guage languages. Because these generative grammars are non-deterministic
it is hard to create an efficient parser for these grammars.

Minimal recognition schemas such as TDPL [2] provide linear time pars-
ing. They are very minimal, and provide little tools for software engineers,
and are very impractical to use. Based on the ideas of TDPL, Ford[6] cre-
ated parsing expression grammars. Parsing expression grammars(PEGs)
look very much like context-free grammars, while still being deterministic.
This is caused by using prioritized-choice instead of the non-deterministic
choice in context free grammars.

In this paper we will introduce parsing expression grammars, showing
the power but also the differences with CFGs. We will also show that it
is not trivial that we can parse any PEG in linear time. After that we
will explain how one can reduce parsing expression grammars to a more
minimal form, and finally we will show how a PEG can be reduced to a
minimal recognition schema with guaranteed linear-time parsing.

2

Chapter 2

Preliminaries

2.1 Formal Languages

A formal language is a set of words that consists of symbols out of an
alphabet.

Definition 2.1. Alphabet: An alphabet is a finite set, often denoted as Σ.
Elements of an alphabet we call symbols, or letters.

Definition 2.2. Word: A word is a combination of letters in an alphabet.
We call ε the empty word and is the combination of zero elements over an
alphabet Σ. We call Σ∗ the set of all possible words over Σ. This set is
inductively defined by:

• ε ∈ Σ∗

• wa ∈ Σ∗ if w ∈ Σ∗ and a ∈ Σ

Definition 2.3. Language: Given an alphabet Σ, the language L is a
subset of all the possible words in that alphabet. Formally that is, L ⊆ Σ∗.

We can define operations such as concatenation or reverse on words, this
can be very useful if we want to formally describe languages.

Definition 2.4. Concatenation: We can define concatenation inductively
as an operation: Σ∗ × Σ∗ → Σ∗.

• w · ε = w

• w · (va) = (w · v)a

Definition 2.5. Length: We define the length of a word |.| : Σ∗ → N
inductively as follows.

• |ε| = 0

3

• |wa| = |w|+ 1

Example 2.6.

1. We define Σ = {a, b}, now Σ∗ contains the words with only a’s and
b’s.

2. {w|w does not contain aa} is a language over Σ.

3. {anbncn|n ∈ N} is a language over the alphabet {a, b, c}

2.2 Regular expressions

A well known formalism to describe languages are regular expressions. Reg-
ular expression are widely used in modern day programming languages and
are very useful to quickly recognize and find patterns in strings. Languages
which can be described using a regular expression are called the regular
languages[4].

Definition 2.7. Regular expressions: Given a finite alphabet Σ the set
of regular expressions over Σ are defined inductively as follows.

1. The following base cases are regular expressions over Σ:

• ∅, representing the empty set.

• ε, representing the language containing only the empty word ε.

• a ∈ Σ, representing the language containing only the word a.

2. Let R and S be regular expressions over Σ. Then,

• R + S

• RS

• R∗

are also regular expressions

Now we define the language L(e) of regular expression e over alphabet Σ
as:

1. L(∅) = ∅

2. L(ε) = {ε}

3. L(a) = {a}, with a ∈ Σ

4. L(e1 + e2) = L(e1) ∪ L(e2) with e1 and e2 regular expressions

4

5. L(e1e2) = L(e1)L(e2) with e1 and e2 regular expressions

6. L(e∗) = (L(e))∗ with e regular expressions

Example 2.8. With Σ = {a, b}, the following are regular expressions.

• L1 = {an| n ∈ N} L1 = L(a∗)

• L2 = {w| |w| is even} L2 = L(((a + b)(a + b))∗)

• L3 = {anbn| n ∈ N} is not a regular language since one can’t make a
regular expression describing the language.[4]

2.3 Context free grammars

The language {anbn| n ∈ N} is not regular. However it belongs to another
widely used language class called the context-free languages. Context-free
languages are all languages that can be described with a CFG (context-free
grammar). We will now define the notation of context-free grammars to
formally describe context-free languages.

Definition 2.9. Context-free grammars A CFG G is given by a 4-tuple
(V,Σ, R, S) where

• V is a finite set of non-terminals

• Σ is the finite alphabet also called terminals. We chose Σ ∩ V = ∅,
there are no symbols both non-terminal and terminal.

• R is a relation R : V → (V ∪ Σ)∗, these relations are called the pro-
duction rules, and are written in the form A → w, where A ∈ V and
w ∈ (V ∪ Σ)∗.

• S is the start expression and S ∈ V

Example 2.10. Context free grammars
Let CFG G = (V,Σ, R, S), where:

• V = S,B

• Σ = {a, b}

• R = {S → aSb| ε}

• S = S

This CFG has two production rules, S → aSb and S → ε. We can now
use these production rules to replace any non-terminal symbol A ∈ V with
the right hand side of a rule. For example , if we have A → w ∈ R than
xAz → xwz. We denote a derivation path w → w1 → w2 → ... → wn by
w ⇒ wn

5

Definition 2.11. Context-free languages The language of CFG G =
(V,Σ, R, S) is defined by L(G) = {w| S ⇒ w}. That is, there is a derivation
path from the start expressions to the given word w.

Example 2.12. Using the CFG from example 3, we can see that ab is part
of the language since:

S → aSb→ aεb→ ab
aabb is also part of the language generated by G since:

S → aSb→ aaSSbb→ aaSSbb→ aabb

Note that the order of replacing non-terminal symbols does not matter.

We can see that the language we made is in fact L(G) = {anbn| n ∈ N}.
You can’t construct all languages with context-free grammars. A well-known
language which is not context-free is L = {anbncn|n ∈ N}

6

Chapter 3

Parsing Expression
Grammars

3.1 Parsing expressions

In this chapter we introduce the concept of parsing expression grammars
introduced by Bryan Ford[6]. We also will provide an alternative syntax to
simplify the derivation of parsing expression grammars.

Definition 3.1. A Parsing expression grammar (PEG) is a tuple G =
(VN , VT , R, es), where:

• VN is a finite set of non terminal symbols.

• VT is a finite set of terminal symbols.

• R is a set of tuples (A, e). Where A ∈ VN and e is a parsing expression.
R must be deterministic, so there are no two pairs (A, e), (A, e′) ∈ R.
The set R forms the production rules. If (A, e) ∈ R we write A→ e.

• es is the start expression.

Definition 3.2. Given the set of terminals VT and a set of non terminals
VN . The set of parsing expressions E, is defined inductively with the follow-
ing seven rules.

Rule Meaning

1. ε ∈ E Parse nothing.

2. a ∈ VT , a ∈ E Parse terminal a.

3. A ∈ VN , A ∈ E Non terminal A.

4. If e1, e2 ∈ E, than e1e2 ∈ E Concatenate two expressions.

5. If e1, e2 ∈ E, than e1/e2 ∈ E Prioritized choice.

6. If e ∈ E, than e∗ ∈ E Zero or more repetitions of e.

7. If e ∈ E, than !e ∈ E Not-predicate e.

7

3.2 Grammar

In this section we will introduce rules which define the syntactic meaning of a
parsing expression grammar G = (VN , VT , R, es). This definition is slightly
different from Ford’s original definition[6] in the sense that it uses a tree
syntax, and the step counter is omitted. We define a relation →G between
pairs in the form (e, x) and output o where e is a parsing expression, x ∈ V ∗T
is the input string and o ∈ V ∗T ∪{fail} is the output. The output o is either
a string or the representation for a fail: fail /∈ VT .

The relation →G is defined inductively using derivation rules. This
means we will write rules in the form of If (e, x)→G o, than (e′, y)→G u as
a derivation tree, that is:

(e, x)→G o

(e′, y)→G u

For the pairs ((e, x), o)) ∈→G we will write (e, x) → o omitting the
reference to G for readability.

1. Parse nothing:

(ε, x)→ ε

2. Terminal (success): Parse a ∈ VT from the begin of the word.

(a, ax)→ a

3. Terminal (failure): Try to parse a ∈ VT but find b ∈ VT with a 6= b,
a can’t be matched so return fail.

(a, bx)→ fail

4. Non-terminal: Replace non-terminal A ∈ VN with e, if (A, e) ∈ R.

(e, x)→ o

(A, x)→ o

5. Concatenation(success) : Match e1 and e2 in that order. If both
succeed consuming x1 and x2 consecutively, the concatenation suc-
ceeds consuming x1x2.

(e1, x1x2y)→ x1 (e2, x2y)→ x2

(e1e2, x1x2y)→ x1x2

8

6. Concatenation(failure 1) : If e1 results in a fail, the concatenation
fails without trying to match e2.

(e1, x1x2y)→ fail

(e1e2, x1x2y)→ fail

7. Concatenation(failure 2) : If e1 succeeds consuming x1 and e2
results in fail, the concatenation results in fail.

(e1, x1x2y)→ x1 (e2, x2y)→ fail

(e1e2, x1x2y)→ fail

8. Prioritized choice(case 1): If choice e1 succeeds on the input string
consuming x. Choice e2 will not be matched and the expression will
succeed consuming x.

(e1, xy)→ x

(e1/e2, xy)→ x

9. Prioritized choice(case 2) : If choice e1 is matched on input xy but
fails. Match e2 on the same input and return its output. Note that e2
can either fail or succeed consuming a part of the input.

(e1, xy)→ fail (e2, xy)→ o

(e1/e2, xy)→ o

10. Repetition(base case) : If e fails, e∗ will succeed without consuming
any input.

(e, x)→ fail

(e∗, x)→ ε

11. Repetition(recursive case) : e succeeds consuming x1 and call e∗

recursively on the remaining part.

(e, x1x2y)→ x1 (e∗, x2y)→ x2

(e∗, x1x2y)→ x1x2

12. Not-predicate(success) : If e fails on the input string, !e will succeed
without consuming any input. This is parsing zero repetitions of e.

(e, x)→ fail

(!e, x)→ ε

13. Not-predicate(failure) : If e succeeds on the input !e will result in
fail.

(e, xy)→ x

(!e, xy)→ fail

9

3.3 Syntactic sugar

For readability of our parsing expressions we introduce syntactic sugar.

Definition 3.3.

1. We consider . as any character in VT . If VT = {a1, a2, ..., an}. We
can denote . by a1/a2/.../an.

2. We define &e =!(!e). Which will behave like an and-predicate. If e
succeeds continue and consume nothing, if e fails return fail.

3.4 Behaviour

In this section we will show some example parsing expression grammars de-
scribing key languages and we will highlight the differences with Chomsky’s
generative way of describing formal languages.

Definition 3.4. Given a PEG G = (VN , VT , R, es), we define the language
produced by G as L(G) = {w ∈ V ∗T | (es, w) →G w}. This is a different
definition as explained in [6] but we will show their equivalence in Chapter
4.

This means that a word is only accepted when the derivation does not
result in fail and the word is consumed. In Chapter 4 we will show some
alternative language definitions.

Example 3.5. We formally describe the language shown in Example 2.10
that is L = {anbn|n ∈ N},using a parsing expression grammar. We define
the peg G = ({a, b}, {A}, R,A) where the set of production rules R consists
of one rules:

• A→ aAb/ε

The derivation of aabb ∈ L is:

(a, aabb)→ a

(a, ab)→ a

(a, b)→ fail

(aAb, b)→ fail (ε, b)→ ε

(aAb/ε, b)→ ε

(aAb/ε, b)→ ε

(A, b)→ ε (b, b)→ b

(Ab, b)→ b

(aAb, abb)→ ab

(aAb/ε, abb)→ ab

(A, abb)→ ab (b, b)→ b

(Ab, abb)→ abb

(aAb, aabb)→ aabb

(aAb/ε, aabb)→ aabb

(A, aabb)→ aabb

10

Note that A parses anbn in a similar way as the CFG in Example 2.10.
The derivation tree of aab /∈ L would be as follows, where the derivation

ending with I should be plugged onto the top of place I:

I
(aAb, aab)→ fail (ε, aab)→ ε

(aAb/ε, aab)→ ε

(A, aab)→ ε

(a, aab)→ a

(a, ab)→ a

(a, b)→ fail

(aAb, b)→ fail (ε, b)→ ε

(aAb/ε, ab)→ ε

(A, b)→ ε (b, b)→ b

(Ab, b)→ b

(aAb, ab)→ ab

(aAb/ε, ab)→ ab

(A, ab)→ ab (b, ε)→ fail

(Ab, ab)→ fail

(aAb, aab)→ fail

I

We see that aab is not accepted since it is not parsed fully.

Example 3.6. Although The form of the production rules in this example
may look like the form of the production rules in 2.10, it is important to see
that the syntax has some important differences.

In the following example we will show a more practical example to show
the difference between the non-deterministic choice in context free grammar
rules and the prioritized choice with parsing expression grammars. Let’s take
this small edited part out of the declaration of the C-syntax[3].

<if-statement> ::= if <expression> then <statement>

| if <expression> then <statement> else <statement>

Note this is in Backus-Naur form (BNF)[5] which is a well known way of
formally defining the syntax of a programming language. We can translate
this statement to a CFG G = ({IF}, {if, else, then, e, s}, R, IF}.

• V = {IF}

• Σ = {if, else, s, e, then}

• R = {IF → if e then s |if e then s else s }

• V = {IF}

11

We see that this would actually parse either an if statement or an if-
else statement. If we straightforwardly translate this in a parsing expression
grammar without paying attention to the prioritized choice difference, we
would make PEG G′ = {VN , VT , R, es}, where:

• VN = {IF}

• VT = {if, else, s, e, then}

• R = {IF → (if e then s)/(if e then s else s) }

• es = IF

Parsing an if-else statement using this PEG would not result in the correct
parsing.

· · ·
(if e than s, if e than s else s)→ if e than s

((if e than s)/(if e than s else s), if e than s)→ if e than s

(IF, if e than s else s)→ if e than s

As seen in the derivation tree this example would only parse the if state-
ment, because the first choice of the prioritized choice is always parsed first.
The effect that a part of the grammar is not reached because the deterministic
choice is called grammar hiding.

3.5 Properties

We define a function which calculates the number of steps needed to parse
a word. This comes in handy if we want to talk about properties such as
parse time.

Definition 3.7. Assume that (e, x)→ o is derivable. We define the length
of a derivation as the total number of nodes in the derivation tree. We
denote this length by |(e, x)|, but note that this is only defined if (e, x) → o
exists for some o. We define the length of a derivation inductively as follows.

• |(ε, x)| = 1

• |(a, ax)| = 1, a ∈ VT

• |(b, ax)| = 1, a, b ∈ VT

• |(A, x)| = |(e, x)|+ 1 with A→ e ∈ R

•

|(e1e2, xy)| =

|(e1, xy)|+ 1 if (e1, xy)→ fail

|(e1, xy)|+ |(e2, y)|+ 1 if (e1, xy)→ x

12

•

|(e1/e2, x)| =

|(e1, x)|+ |(e2, x)|+ 1 if (e1, x)→ fail

|(e1, x)|+ 1 otherwise

•

|(e∗, xy)| =

|(e, xy)|+ 1 if (e, xy)→ fail

|(e, xy)|+ |(e∗, y)|+ 1 if (e, xy)→ x

• |(!e, x)| = |(e, x)|+ 1

A property of pegs is that they only parse a prefix of the input word. If
a word with a given parsing expressions gives a result which is not fail it is
a prefix of the input word.

Theorem 3.8. Given parsing expression e, if the parsing expression does
not fail on given word x ∈ V ∗T it results in a prefix of x.

If (e, x)→ y where y 6= fail, then x = yz for some z ∈ V ∗T

Proof. We will prove this by using induction on the the derivation, distin-
guishing cases according to the last derivation rule used.

Base cases are the cases which are single rules. We only have three base
rules.

(ε, x)→ ε, x = εz for z = x
(a, ax)→ a, ax = az for z = x

(b, ax)→ fail, correct since the assumption fails to hold.

Now we apply case distinction on the last rule used. We assume that for
every rule the proposition holds, in all but the last derivation rule used, this
is our induction hypothesis. Now we prove for every rule that if the rule is
last used our proposition holds.

(e, x)→ y there exists a z such that x = yz, we proof this for every rule
in our syntax:

1. (A, x)→ o, (A, e) ∈ R

According to the rules we get this derivation tree.

(e, x)→ o

(A, x)→ o

In the derivation (e, x) → o we can apply our induction
hypothesis, so if o 6= fail we know x = oz for some z ∈ V ∗T

2. Concatenation(success)

According to the rules we get this derivation tree.

13

(e1, x1x2y)→ x1 (e2, y)→ x2

(e1e2, x1x2y)→ x1x2

By the definition of this rule our proposition holds since
x1x2y = x1x2z for some z ∈ V ∗T , that is z = y

3. Concatenation(failure 1)

By construction e is formed as e = e1e2. We get this deriva-
tion if this is the last rule used:

(e1, x)→ fail

(e1e2, x)→ fail

Since this derivation results in fail, our proposition holds.

4. Concatenation(failure 2)

Using this as last rule we get this derivation

(e1e2, xy)→ x (e2, y)→ fail

(e1e1, xy)→ fail

Since the assumption fails, our proposition holds.

5. Prioritized choice(case 1)

(e1, xy)→ x

(e1/e2, xy)→ x

By construction, our proposition holds.

6. Prioritized choice(case 2)

(e1, x)→ fail (e2, x)→ o

(e1/e2, x)→ o

By the induction hypothesis we know that x = oz so our
proposition holds.

7. Repetition(base case):

(e, x)→ fail

(e∗, x)→ ε

Our proposition holds since ε is always a prefix x = εz for
z = x.

14

8. Repetition(recursive case):

(e, x1x2y)→ x1 (e∗, x2y)→ x2

(e∗, x1x2y)→ x1x2

Our proposition holds by construction. x1x2y = x1x2z for z = y.

9. Not-predicate(success):

(e, x)→ fail

(!e, x)→ ε

By construction is ε a prefix of x.

10. Not-predicate(failure):

(e, xy)→ x

(!e, xy)→ fail

This results in fail so our proposition holds.

We have proven that for every rule, if it is the last rule applied and
the property holds for its precedents the proposition hold. We have
also proven all base cases, so we have proven our theorem. That is:
if a derivation is successful, the result is a prefix of its input word,
(e, x)→ y if y 6= fail, that x = yz for some z ∈ V ∗T .

Another property we can prove about parsing expressions is the ∗-loop
condition. The derivation of (e∗, x) is impossible if (e, x)→ ε.

Theorem 3.9. For any x ∈ V ∗T , if (e, x)→ ε, then there exists no derivation
(e∗, x)→ o, that means that for any o: (e∗, x) 9 o.

Proof. We can try to construct the following derivation tree, and we see it
will loop until infinity.

(e, xy)→ ε

(e, xy)→ ε
(e, xy)→ ε

. . .
(e∗, xy)→

. . .

(e∗, xy)→
(e∗, xy)→

Formally we would prove this by assuming there is such a derivation tree.
so assume the following derivation is valid:

(e, xy)→ ε (e∗, xy)→ o

(e∗, xy)→ o

15

We can show a contradiction by calculating the derivation length of this
derivation.

|(e∗, xy)| = |(e, xy)|+ |(e∗, xy)|+ 1

|(e, xy)| = −1

Derivation length can only be a positive number, hence the derivation of
(e∗, xy) can’t exist, since this would result in a contradiction.

Example 3.10. Define PEG G = ({A}, {a, b}, {A → Ae}, A). Where e is
an arbitrary parsing expression. Note that a derivation of (A, x)→ o would
also be impossible on a given input x since it would look like this.

· · ·
(Aee, x)→ · · ·
(Ae, x)→ · · ·
(A, x)→ · · ·

As a corollary in addition to the *-loop condition parsing expressions
that have rules in the form of A → Ae, also can’t be parsed since there is
no derivation possible.

3.6 Well-formedness

As shown in the above example, not all parsing expressions have a derivation.
In this section we introduce the concept of well-formed grammars as in [6].
Removing the parsing expressions that have no derivation, according to the
*-loop condition, and all the rules in the form of A→ Ae. This way we have
a set called the well-formed grammars.

Definition 3.11. We define a set of well-formed parsing expression gra-
mamrs inductively as follows. We denote a grammar is well-formed as
WFG(e), the meaning is that parsing expression e is well-formed under PEG
G = (VN , VT , R, es).

• WFG(ε)

• WFG(a), a ∈ VT

• WFG(A) if WFG(e) where A ∈ VN and A→ e ∈ R

• WFG(e1e2) if WFG(e1) and if (e1, x)→ ε implies WFG(e2)

• WFG(e1/e2) if WFG(e1) and WFG(e2)

• WFG(e∗) if WFG(e) and (e, x) 9 ε (the *-loop condition)

• WFG(!e) if WFG(e)

16

Example 3.12. Given this definition we can see the following:

• the expression ε∗ is not well-formed since (ε, x)→ ε.

• the expression A with R = {A→ Aa/ε} is not well-formed since A is
only well-formed if Aa/ε is well-formed and that is only well-formed
if A is well-formed, leaving an endless loop.

Since grammars that are not well-formed have little use, we will restrict
our research to well-formed grammars. We see that well-formed grammars
are complete.

Definition 3.13. We call a parsing expression grammar G = (VN , VT , R, es)
complete, if for every input word x ∈ V ∗T there exists a derivation (es, x)→ o
and o ∈ V ∗T ∪ {fail}

3.7 Expressive power

Parsing expression grammar are capable of parsing languages that are not
context-free. In this section we will demonstrate how to construct a parsing
expression grammar G so that L(G) = {anbncn|n ∈ N} which is a well-
known example of a language that is not context-free.

Example 3.14. The set of languages constructed by parsing expression
grammars, contain languages that are not context-free. The language L =
{anbncn|n ∈ N} is recognized with PEG G = ({A,B, S}, {a, b, c}, R, S) where
R has the following production rules:

• A→ aAb/ε

• B → bBc/ε

• S → &(A!(a/b))a∗B

Given n ∈ N you get the following derivation tree:

Shown in Example 3.5

(A, anbncn)→ anbn

(a, cn)→ fail (b, cn)→ fail

(a/b, cn)→ fail

(!(a/b), cn)→ ε

(A!(a/b), anbncn)→ anbn

!(A!(a/b)), anbncn)→ fail

!!(A!(a/b)), anbncn)→ ε
desugar

&(A!(a/b)), anbncn)→ ε

Shown in Example 6.3

(a∗, anbncn)→ an
Shown in Example 3.5

(B, bncn)→ bncn

(a∗B, anbncn)→ anbncn

(&(A!(a/b))a∗B, anbncn)→ anbncn

(S, anbncn)→ anbncn

17

3.7.1 Failure behaviour

When constructing these grammars one should be very careful when parts
of the expression result in fail or ε. In [6] Ford included a PEG that should
accept language {anbncn|n ∈ N}, however this had some tricky behaviour
with ε results. We will show this in following example

Example 3.15. Let PEG G = ({A,B,D}, {a, b, c}, R,D), where R consists
of the following rules:

• A→ aAb/ε

• B → bBc/ε

• D → &(A!b)a∗B

Note that this PEG looks pretty similar as in Example 3.14. With the
only difference in the start expression being &(A!b)a∗B while our definition
was &(A!(a/b))a∗B

This results in the following parsing behavior on the word an+mbncn given
n,m ∈ N.

Interesting failure behaviour

(A, an+mbncn)→ ε

(b, an+mbncn)→ fail

(!b, an+mbncn)→ ε

(A!(a/b), an+mbncn)→ ε

!(A!(a/b)), an+mbncn)→ fail

!!(A!(a/b)), an+mbncn)→ ε
desugar

&(A!(a/b)), an+mbncn)→ ε

Shown in Example 6.3

(a∗, an+mbncn)→ an+m

Shown in Example 3.5

(B, bncn)→ bncn

(a∗B, an+mbncn)→ an+mbncn

(&(A!(a/b))a∗B, an+mbncn)→ an+mbncn

(D, an+mbncn)→ an+mbncn

We will show this interesting failure behaviour with an example deriva-
tion on (es, aabc)→ aabc.

See Example 3.5 with aab

(A, aabc)→ ε

(b, aabc)→ fail

(!b, aabc)→ ε

(A!(a/b), aabc)→ ε

!(A!(a/b)), aabc)→ fail

!!(A!(a/b)), aabc)→ ε
desugar

&(A!(a/b)), aabc)→ ε

Shown in Example 6.3

(a∗, aabc)→ aa

Shown in Example 3.5

(B, bc)→ bc

(a∗B, aabc)→ aabc

(&(A!(a/b))a∗B, aabc)→ aabc

(D, aabc)→ aabc

18

Chapter 4

Language definitions

4.1 Ford’s definition

When Ford introduced pegs he defined the language of a PEG G as the
set of strings w ∈ V ∗T for which the start expression matches w, that is the
derivation does not result in fail.

Definition 4.1. Start expression es matches input string w if (es, w)→ x.
Where x 6= fail.

Formally we define this as L1, the alternative definition of a language
given a PEG.

Definition 4.2. We define the alternative definition of the language of given
PEG G = (VN , VT , R, es) as L1(G) = {w ∈ V ∗T |(es, w) →G x for some x ∈
V ∗T }

Note that in this definition a word is accepted when the PEG does not
fail on the word. The word does not necessarily have to be consumed as we
defined in our Definition 3.4. This results in some interesting behaviour at
the ending of a word. You can use the not-predicate to look ahead and it
does not need to consume that part of a word.

In this section we will talk about the equality of our definition and Ford’s
definitions and see that we can prove their equivalence. At first sight this
looks like an easy problem, however this is not as easy as it looks since
predicates provide the possibility for a PEG to look ahead in a word.

Theorem 4.3. Given a PEG G = (VN , VT , R, es) we can construct G′ =
(V

′
N , V

′
T , R

′
, e

′
s) such that L1(G) = L(G

′
)

Proof. Given PEG G = (VN , VT , R, es) we construct G′ = (VN , VT , R, es(.∗)).
By construction (e, w) →G v ⇐⇒ (e, w) →′G v since the start expression
es has no influence on the relation →G. we prove L1(G) ⊆ L(G′) and
L(G′) ⊆ L1(G) which implies L1(G) = L(G′).

Given xy ∈ L1(G) we can make the following derivation tree.

19

(es, xy)→G′ x (.∗, y)→G′ y

(es(.
∗), xy)→G′ xy

• (es, xy)→G′ x holds because we constructed G′ to only differ from G
in the start expression. This implies that →G and →G′ act identical.
We know (es, xy)→G x because we chose xy ∈ L1(G).

• (.∗, y)→G′ y holds by construction, since y ∈ v∗T .

Thus xy ∈ L(G
′
), and L1(G) ⊆ L(G

′
).

Given x1x2 ∈ L(G
′
) we can make an similar looking derivation tree.

(es, x1x2y)→G′ x1 (.∗, x2y)→G′ x2

(es(.
∗), x1x2y)→G′ x1x2

We know by construction that (.∗) will consume anything so y = ε.
Given that y = ε we can conclude that x1x2 = x1x2y. With this derivation
tree, we know (x1x2y, es) →G′ x where x is not a fail. This implies that
x1x2y ∈ L1(G) and because x1x2 = x1x2y this implies x1x2 ∈ L1(G) =⇒
L(G′) ⊆ L1(G).

Theorem 4.4. Given a PEG G = (VN , VT , R, es) we can construct G′ =
(V

′
N , V

′
T , R

′
, e

′
s) such that L(G) = L1(G

′
)

Proof. Out of the PEG G = (VN , VT , R, es) we construct G′ = (VN , VT , R, es(!.)).
Since start expression has no influence on the relation →G and →G′ we will
omit this reference and write the derivation as →. we prove L(G) ⊆ L1(G

′)
and L(G′) ⊆ L1(G) which implies L1(G) = L(G′).

Given w ∈ L(G) by definition we know there exists a derivation such
that (es, w) → w. Given this derivation we can construct the derivation
under G′.

Holds by construction

(es, w)→ w

(., ε)→ fail

(!., ε)→ ε

(es(!.), w)→ w

This means w ∈ L1(G
′
), and L(G) ⊆ L1(G

′
).

Given x ∈ L1(G
′
) we know there exists a derivation such that.

(es, xy)→ x (!., y)→ ε

(es(!.), xy)→ x

We know that (!., y) → ε only holds if and only if y = ε. This makes
the derivation (es, xy) = (es, xε) = (es, x) → x that gives x ∈ L(G). That
rounds up our proof because L1(G

′
) ⊆ L(G) and L(G) ⊆ L1(G

′
) so L(G) =

L1(G
′
)

20

Chapter 5

Reducing the grammar

In this chapter we will show how one reduces a parsing expression grammar
into more basic form. First we show how one can reduce expression gram-
mars to a form where the repetition operator is eliminated, than we will
eliminate the predicate operator.

5.1 Repetition elimination

While easy to read, repetition operators can be eliminated from parsing ex-
pression grammars pretty easily. Repetition operators can be eliminated by
converting them into recursive non-terminals. Simply rewrite every expres-
sion e∗ to a new non-terminal A with production rule A→ eA/ε.

Example 5.1. Given the PEG G = ({A,B, S}, {a, b, c}, R, S) from Example
3.14 with R consisting of these production rules:

• A→ aAb/ε

• B → bBc/ε

• S → &(A!(a/b))a∗B

We remove the repetition operator by constructing PEG G′ = ({A,B, S,C}
, {a, b, c}, R, S), adding the new non-terminal C to eliminate the a∗ expres-
sion. We add the new production rule for C to the set R, and we replace
every occurence of a∗ with C. The set of production rules R now consists of
these rules.

• A→ aAb/ε

• B → bBc/ε

• S → &(A!(a/b))CB

• C → aC/ε

21

5.2 Predicate elimination

Predicates are one of the key concepts of parsing expression grammars. How-
ever they can be really tricky if you try to prove the equality in language def-
initions or try to reduce a parsing expression grammar to other formalisms.
That’s why we will show how one can eliminate predicates from a PEG. Ford
showed how this is done and in this section we will show how this process
works.

In order to reduce a PEG to a different formalism it is very useful to
eliminate both predicate and repetition operators. For this reason we will
not use any repetition operators while eliminating predicate operators.

We start to add a non-terminals to help us in the proccess. We add Z to
VN and the rule Z → .Z/ε. This way Z will match and consume everything
left of the input.

Lemma 5.2. (Z,w)→ w for any w ∈ V ∗T

Given a expression !e1e2 one can eliminate the predicate by rewriting
the expression to (e1Z/ε)e2. For this to work e2 must not accept ε.

Example 5.3. Given a PEG G = (VN , VT , R, !e1e2) and ε /∈ L(G) than
G′ = (VN∪{Z}, VT , R∪{Z → .Z/ε}, (e1Z/ε)e2) describes the same language.
We show the derivation on input w ∈ V ∗T given (e2, w) → y. We will show
both the cases (e1, x)→ fail and (e1, x) 9 fail.

In the case that e1 fails to match on input w, (e1, w)→ fail.
Derivation under G:

(e1, w)→ fail

(!e1, w)→ ε (e2, w)→ y

(!e1e2, w)→ y

Derivation under G′:

(e1, w)→ fail

(e1Z,w)→ fail (ε, w)→ ε

(e1Z/ε)→ ε (e2, w)→ y

((e1Z/ε)e2, w)→ y

In the case that e1 does not fail, let w = xy, than (e1, xy) → x. Than
the expression !e1e2 should fail.

Derivation under G:

(e1, xy)→ x

(!e1, xy)→ fail

(!e1e2, xy)→ fail

Derivation under G′:

22

(e1, xy)→ x
Lemma 5.2
(Z, y)→ y

(e1Z, xy)→ xy

(e1Z/ε, xy)→ xy (e2, ε)→ fail

((e1Z/ε)e2, xy)→ fail

Note that for this method to work it is important e2 fails on ε. This is
the reason you can’t eliminate a predicate out of a PEG that accepts ε.

Example 5.4. Using the PEG G from Example 3.14, we will construct a
repetition- and predicate-free PEG G′ which has similar behaviour. Only
because the ε limitation we won’t be able to parse a0b0c0, our language will
become L(G′) = {anbncn|n ∈ N, n ≥ 1}. As a first step we will alter the
grammar to fail on ε. We get our new PEG G = ({A,B, S}, {a, b, c}, R, S)
where R has the following production rules:

• A→ aAb/ε

• B → bBc/ε

• C → aC/ε

• S →!!(Ac)aCB

We changed non-terminal S changing A!(a/b) to Ac, meaning non-terminal
A parses a1b1 or more. We also changed C to aC, so it guarantees to parse
something. We also desugared the &-operator into two not-predicates. We
add the non-terminal Z and corresponding production rule to the PEG and
than start altering non-terminal S to eliminate both not-predicates.

1. S →!!(Ac)aCB

2. S → (!(Ac)Z/ε)aCB

3. S → ((AcZ/ε).Z/ε)aCB

Z allows ε so we change it to .Z so it has to parse a minimum of one
terminal. The reason we do this is because that part has to trigger a fail if
AcZ succeeds.

23

Chapter 6

Linear time parser

6.1 Parsing

Definition 6.1. We define a parsing algorithm for any PEG G as any algo-
rithm that given a pair (e, x) computes P ((e, x)) = y if (e, x)→G y. We call
the number of computations the algorithm needs, the run-time complexity.

Ford claimed in his paper that for every PEG one can construct a linear-
time parser. In this chapter we will introduce a simple form of parsing and
show it is not linear-time. After that we will show how we can use predicate
elimination to construct a linear-time parser.

6.2 Intuitive parsing

Definition 6.2. We define our parsing algorithm P, to simply make the
derivation tree according to the derivation rules explained in 3.2. Our num-
ber of computations are given by the length of the derivation, defined in
Definition 3.7. We have implemented our own version of this parsing algo-
rithm given in Appendix A.

First we look at how a derivation tree looks when you have the pars-
ing expression e = a∗. With the PEG G = (∅, {a, b}, ∅, a∗). This simply
describes the language L(G) = {an|n ∈ N}

Example 6.3. The derivation tree with a3 looks like follows. We see |(a∗, aaa)| =
8 since the derivation has 8 computation, and we can calculate it using the
definition in Definition 3.7.

(a, aaa)→ a

(a, aa)→ a

(a, a)→ a

(a, ε)→ fail

(a∗, ε)→ ε

(a∗, a)→ a

(a∗, aa)→ aa

(a∗, aaa)→ aaa

24

We can see that the derivation of (a∗, aa) is right above the derivation
of a3, and so is (a∗, a) above (a∗, aa). So given the derivation of (a∗, aaa)
we can construct (a∗, aaaa) as follows:

(a, aaaa)→ a (a∗, aaa)→ aaa

(a∗, aaaa)→ aaaa

The derivation length, |(a∗, a4)| = |(a∗, a3)|+ |(a, a4)|+1 = |(a∗, a3)|+2.
As a corollary we can see our derivation length is given as a recursive formula.

Theorem 6.4. The derivation length of the derivation (a∗, an) → an is
given by the following formula

• |(a∗, a0)| = 2

• |(a∗, an+1)| = |(a∗, an)|+ 2

Rewritten into a direct formula it gives |(a∗, an)| = 2∗n+2, so our intuitive
parser on this PEG is linear, P(G) runs in linear-time.

Example 6.5. If we take the concept of Example 6.3 and obfuscate it a bit
more we get the parsing expression e = (!(a∗b)a), now e∗ is: check if the
input word contains b, parse one a and repeat this process.

PEG G′ = (∅, {a, b}, ∅, (!(a∗b)a)∗), makes our intuitive parser P run in
quadratic time complexity. The derivation of ((!(a∗b)a)∗, a) is:

• (e∗, ε)→ ε and the derivation length |(e∗, ε)| = 8

(a, ε)→ fail

(a∗, ε)→ ε (b, ε)→ fail

((a∗b), ε)→ fail

(!(a∗b), ε)→ ε (a, ε)→ fail

(!(a∗b)a, ε)→ fail

(e∗, ε)→ ε

• (e∗, a)→ a and the derivation length |(e∗, a)| = 5+|(a∗, a)|+|(e∗, ε)| =
5 + 4 + 8 = 17

see Example 6.3

(a∗, a)→ a (b, ε)→ fail

(!(a∗b), a)→ ε (a, a)→ a

(e, a)→ a

See previous

(e∗, ε)→ ε

(e∗, a)→ a

• (e∗, aa) → aa and the derivation length |(e∗, aa)| = 5 + |(a∗, aa)| +
|(e∗, a)| = 5 + 6 + 17 = 28:

25

see Example 6.3

(a∗, aa)→ aa (b, ε)→ fail

(!(a∗b), aa)→ ε (a, aa)→ a

(e, aa)→ a

See previous

(e∗, a)→ a

(e∗, a)→ a

Note that since the length of the derivation (a∗, an) → an increases as
n increases. The run time complexity of (e∗, an)→ an increases more. The
formula of the derivation length would be given by:

• |(e∗, a0)| = 8

• |(e∗, an+1)| = |(e∗, an)| + |(a∗, an+1)| + 5 That is our expression is
recursive and the length is the sum of the predecessor, the derivation
of an and some constant time computations.

We know that |(a∗, an)| = 2n + 2 as seen in Theorem 6.4.

Theorem 6.6. The derivation length of the derivation (e∗, an)→ an is:

• |(e∗, a0)| = 8

• |(e∗, an+1)| = |(e∗, an)|+ 2n + 9

Rewritting this as a direct formula we get: |(e∗, an)| = n(n + 8) + 8 =
n2 + 8n + 8

We see that in this example the intuitive parser P(G′) does not parse in
linear-time.

26

Chapter 7

TDPL

7.1 grammar

TDPL is a basic formalism developed by Alexander Birman[1] under the
name the TMG Scheme(TS). Later it was named ”Top-Down Parsing Lan-
guage” (TDPL) by Aho and Ullman[2]. In [2] it is shown how one can
construct a lineair time parser for a TDPL, so in this chapter we will show
you how to reduce a parsing expression grammar to a TDPL.

Definition 7.1. A TDPL T is a tuple containing these elements:

• A finite set of non-terminals VN

• A finite set of terminals VT with the limitation VN ∩ VT = ∅

• A finite set of production rules P where all production rules have one
of these forms:

– A→ ε, always succeed

– A→ a, where a ∈ VT

– A→ f , unconditional fail.

– A→ BC/D, where B,C,D ∈ VN

• A non-terminal S representing the start symbol.

One can already see that a TDPL is a very limited form of a PEG. The
/ operator in the production rule A→ BC/D has the same behaviour as in
parsing expressions.

We will now show how a predicate-free and repetition-free PEG G =
(VN , VT , R, es) can be reduced to a TDPL T = (V ′N , VT , R

′, S).
We start by adding non-terminals E, F and S and corresponding rules

to PEG G

27

• S → es , the start expression. Note that this might be illegal syntax
for a TDPL but it will be fixed in the next step.

• F → f , representing failure.

• E → ε, representing success.

Now we rewrite every rule A making a distinction on the form of the
rule. Read the following rules as A being the rule to be rewriten B,C
non-terminals who might be newly added to VN .

Rule New rules

1. A→ B A→ BE/F

2. A→ e1e2 A→ BC/F

B → e1

C → e2

3. A→ e1/e2 A→ BE/C

B → e1

C → e2
Now rewrite all the rules in R which are not in the form of a TDPL-rule,

and repeat that process until all the rules are valid TDPL-rules.

Example 7.2. Recall Example 5.3 Where we constructed a predicate- and
repetition-free PEG G which produces the language L = {anbncn|n ∈ N, n ≥
1}. We start by adding the rules according the first step now we got PEG
G1 = ({A,B,C, S,E, F}, {a, b, c}, R, S) with R initialy consiting of:

• A→ aAb/ε

• B → bBc/ε

• C → aC/ε

• S → ((AcZ/ε).Z/ε)aCB

• Z → (a/b/c)Z/ε

• F → f

• E → ε

We will now rewrite every rule in order to create a valid TDPL.

28

Rewritten Rule New rules added in R

1. A→ aAb/ε A→ A1E/A2

A1 → aAb

A2 → ε

2. A1 → aAb A1 → A3A4/F

A3 → a

A4 → Ab

3. A4 → Ab A4 → A5A6/F

A5 → A

A6 → b

4. A5 → A A5 → AE/F

Now we have successfully rewritten the rules corresponding to non-terminal
A to valid TDPL syntax, we repeat this process with every rule left which is
not valid. Since the rewriting of rules B,C and Z go in a similar way we
leave out intermediate steps.

Rewritten Rule New rules added in R

1. B → bAc/ε B → B1E/B2

B1 → B3B4/F

B2 → ε

B3 → b

B4 → B5B6/F

B5 → BE/F

B6 → c

2. C → aC/ε C → C1E/C2

C1 → C3C4

C2 → ε

C3 → a

C4 → CE/F

3. Z → (a/b/c)Z/ε Z → Z1E/Z2

Z2 → ε

Z1 → Z3Z/F

Z3 → Z4E/Z5

Z4 → a

Z5 → Z6E/Z7

Z6 → b

Z7 → c

29

While rewriting S looks a bit more complicated since the expression is
longer, the idea is the same.

Rewritten Rule New rules added in R Rules not yet valid

1. S → ((AcZ/ε).Z/ε)aCB S → S1S2/F S1, S2

S1 → (AcZ/ε).Z/ε

S2 → aCB

2. S1 → (AcZ/ε).Z/ε S1 → S3E/Se S2, S3

Se → ε

S3 → (AcZ/ε).Z

3. S2 → aCB S2 → S4S5/F S3

S4 → a

S5 → CB/F

4. S3 → (AcZ/ε).Z S3 → S6S7/F S6, S7

S6 → AcZ/ε

S7 → .Z
desugar−−−−−→ (a/(b/c))Z

5. S7 → (a/(b/c))Z S7 → S8Z/F S6, S8

S8 → (a/(b/c))

6. S8 → (a/(b/c)) S8 → SaE/S9 S6

S9 → SbE/Sc

Sa → a

Sb → b

Sc → c

7. S6 → AcZ/ε S6 → S10E/Se S10

S10 → AcZ

8. S10 → AcZ S10 → AS11/F

S11 → ScZ/F
If we combine these new rules we have a valid TDPL T , which parses

language {anbncn|n ∈ N, n ≥ 1}

The TDPL we created in this example can be parsed in linear-time using
the tabular parsing technique described in [2]. We will not go into further
detail on this, as it falls out of the scope of this thesis.

30

Chapter 8

Conclusions & related work

8.1 Related work

The definition of the language of a parsing expression grammar given in
definition 3.4, is inspired from the definition given by Medeiros et al[8]. We
think that our definition and the definition given in [8] are equivalent.

The idea of using a derivation system for PEGs comes is inspired by
Koprowski & Binsztok [7].

8.2 Conclusions

Parsing expression grammars are a relatively new way to formally describe
languages, and construct parsers. In this paper we explained the way parsing
expression grammars work and discussed the semantics.

While discussing the expressive power of parsing expression grammars,
we showed that operators which seem to add computational power can in
fact be eliminated. We showed this by first reducing a PEG to a form where
it has no repetition-operator. After that we showed how one can eliminate
the predicate-operator from parsing expressions.

In Chapter 6 we introduced the concept of parsing and showed that
linear-time parsing is not a trivial property of parsing expression grammars.
We also implemented our own intuitive PEG parser included as Appendix A
and computed all examples in this thesis using this implementation. Using
this intuitive way of parsing we could construct a PEG that had non-linear
time-complexity.

Using the reduced grammars from Chapter 5 we showed how a PEG can
be reduced to the minimalistic recognition schema TDPL. Without pred-
icates and repetition this was a fairly straightforward process, but it did
greatly increase the number of production rules used. Having a TDPL we
can use tabular parsing explained in [2] to create a linear-time complexity
parser.

31

Bibliography

[1] Alexander Birman. The TMG Recognition Schema. PhD thesis, Prince-
ton University, 1970.

[2] Jeffrey D. Ullman Alfred V. Aho. The theory of Parsing, Translation
and Compiling - Vol. 1. Prentice Hall, 1972.

[3] Dennis M. Ritchie Brian W. Kernighan. The C programming language.
1988.

[4] Noam Chomsky. On certain formal properties of grammars. Information
and Control, 1959.

[5] Edwin D. Reilly Daniel D. McCracken. Encyclopedia of Computer Sci-
ence. 2003.

[6] Bryan Ford. Parsing expression grammars: A recognition-based syntac-
tic foundation. 2004. POPL Venice.

[7] Adam Koprowski and Henri Binsztok. Trx: A formally verified parser
interpreter. Programming Languages and Systems, 2010. Springer.

[8] Roberto Ierusalimschy Sérgio Medeiros, Fabio Mascarenhas. From
regexes to parsing expression grammars. 2012.

32

Appendix A

Intuitive PEG parser

def match (e, w):

if e == "E":

e=""

if len(e) == 0:

return (1,"")

if len(e) == 1 and e[0] in terminals:

if len(w) > 0 and e == w[0]:

return (1, e)

else:

return (1, FAIL)

if len(e) == 1 and e[0] in nonterminals:

rule = rules[e[0]]

return match(rule + e[1:], w)

if len(e) > 1:

negation

if e[0] == "!":

expressions = split(e[1:])

result = match(expressions[0], w)

if result[1] != FAIL:

return (result[0] + 1, FAIL)

result1 = match(expressions[1],w)

return result1[0] + result[0] + 1, result1[1]

expressions = split(e)

if len(expressions[1]) == 0:

return match(expressions[0],w)

alternation

if expressions[1][0] == "/":

result = match(expressions[0], w)

if result[1] != FAIL:

return result

result2 = match(expressions[1][1:],w)

return result2[0] + result[0], result2[1]

repetitions

if expressions[1][0] == "*":

33

result = match(expressions[0], w)

if result[1] == FAIL:

result2 = match(expressions[1][1:], w)

if result2[1] == FAIL:

return result[0] + result2[0] + 1, FAIL

return result[0] + result2[0] + 1, result2[1]

result2 = match("(" + expressions[0] + ")" + expressions[1]

, w.replace(result[1],"", 1))

if result2[1] == FAIL:

return (result2[0] + result[0] + 1, FAIL)

return (result2[0] + result[0] + 1, result[1] + result2[1])

concat

result = match(expressions[0], w)

if result[1] == FAIL:

return (result[0] + 1, FAIL)

w = w.replace(result[1], "",1)

result2 = match(expressions[1], w)

if result2[1] == FAIL:

return (result[0] + result2[0] + 1, FAIL)

else:

return (result2[0] + result[0] + 1, result[1] + result2[1])

if len(w) == 0:

return (1,FAIL)

else:

return (1, PARSEFAIL)

#split expressions

def split(e):

if e[0] == "(":

expres1 = ""

count = 0

for s in e[1:]:

if s == "(":

count +=1

if count == 0 and s == ")":

return expres1, e.replace("(" + expres1 + ")","",1)

if s == ")":

count -= 1

expres1 += s

else:

return e[0], e[1:]

34

