BACHELOR THESIS

COMPUTER

AN,

KX

MiNe S

SCIENCE

S
iorrer

RADBOUD UNIVERSITY

Axis-Parallel

Ive-in-a-Row is

F
PSPACE-Complete

Author

Laurens Kuiper
54467299

University of Nijmegen
LKuiper@science.ru.nl

June 26,

Supervisor/assessor:

Prof. dr. H. Zantema
Insitute for Computing and
Information Sciences,
University of Nijmegen
H.Zantema@tue.nl

Second supervisor/assessor:
Dr. J.C. Rot

Faculty of Science,
University of Nijmegen
J.Rot@cs.ru.nl

2017

Abstract

Many games, even those for children, often turn out to have
a high computational complexity. In this thesis, we will prove
that the decision problem “Does the white player have a win-
ning strategy?”, for the two-player board game Auxis-Parallel
Five-in-a-Row, is PSPACE-complete. We will use a reduction
proof similar to the one found in a paper on the PSPACE-
completeness of the game Gobang by Stefan Reisch (1980).
Our proof has been verified by a backtracking algorithm, which
can test certain claims by letting our heuristic play against a
brute-force player.

Contents

Introduction

The ‘Geography’-game

2.1 Reisch’ ‘Bipartite Geography’
2.2 Transforming ‘Bipartite Geography’ to grid-format

Gobang is PSPACE-complete

3.1 Re-creating aspects of the ‘Geography’-game in Gobang
3.2 Translating instances of the ‘Geography’-game to Gobang
3.3 Concluding Reisch’ proof

Thoughts on Reisch’ proof

4.1 k-Gobang is only PSPACE-complete for k£ greater or equal to 5 .

Axis-Parallel Five-in-a-Row

5.1 Definitiono
52 APR-5in PSPACE,
5.3 APR-5is PSPACE-hard
5.3.1 Patterns
5.3.2 Verification
5.3.3 Conclusion

The backtracking algorithm

6.1 Explanation in pseudocode oL L.
6.1.1 Testing the first claim
6.1.2 Testing the second claim

6.2 Correctnesso

Axis-Parallel k-in-a-Row

Ot &~

N o O

13
13
14
15
16
22
24

25
25
26
26
27

28

1 Introduction

For many board games, the decision problem of whether a player has a winning
strategy in a given situation has been proven to have a certain computational
complexity. When we look at two-player board games, that decision problem is
often PSPACE-complete. PSPACE is the complexity class of decision problems
L for which a deterministic Turing machine M exists for which:

e M halts for every input;

e if M runs with input = € {0,1}* on the initial tape, then it will end in an
accepting state if and only if z € L;

e the size of the part of the tape that is used by M while running with input
z is polynomial in the length of the input, |z|.

To prove that a decision problem Lg is PSPACE-complete, one must prove that
Lo € PSPACE, which is done by proving that an algorithm exists that can solve
Lo using an amount of memory polynomial in the length of Lg. Then, one must
also show that Lg is PSPACE-hard. Proving Ly’s PSPACE-hardness can be done
by taking an existing problem Lp, which is already proven to be PSPACE-hard,
and proving that Lp <p Lg. That is, proving that Lp can be reduced to Lg
in polynomial time. This means that solving Lp is not computationally harder
than solving Ly, which shows that problem L is at least as hard as problem Lp,
which is PSPACE-hard. Because all PSPACE-hard problems can be reduced to
any other problem in PSPACE, this shows that Ly is at least as hard as ev-
ery other PSPACE-hard problem. What also follows is that a solution to any
PSPACE-hard problem is also a solution for any other problem in PSPACE.

“Gobang ist PSPACE-vollstindig”[4] shows us that the decision problem
“Does the white player, currently taking his turn, have a winning strategy?”
for the game Gobang, when played on a n x n board is PSPACE-complete. In
Gobang, traditionally played on a 19 x 19 board, both players try to create a row
of five stones of their colour first, either diagonally or straight. The players do
this by alternately taking turns placing stones of their own colour (either black
or white) on the board. It is essential that the players prevent their opponent
from creating a row of five, while attempting to create a row of their own.

In his paper, Reisch tells us that proving that the decision problem for Gob-
ang is in PSPACE is easy. Then, he elaborately shows that a very specific
variant of a game called Generalized ‘Geography’, which he calls ‘Bipartite Ge-
ography’, can be reduced to Gobang. The fact that the decision problem for
‘Bipartite Geography’ is PSPACE-hard, and the transitivity of the reduction
relation imply that Gobang is also PSPACE-hard, concluding the proof on the
PSPACE-completeness of Gobang.

In this thesis we will take a look at how Reisch made his proof, and how
we can apply his strategy to prove that a similar game, which we will call
Axis-Parallel Five-in-a-Row (abbreviated as APR-5), is also PSPACE-complete.
APR-5 is also a two-player game, played on an n X n board, in which both player
try to create an axis-parallel row of five stones of their own colour (no diagonals
allowed).

2 The ‘Geography’-game

The Generalized ‘Geography’-game is played on a directed graph. The player
going first places his stone on a specific starting vertex s. Then, the players
alternate taking turns, by placing their stone on a non-occupied vertex adja-
cent to the vertex where their opponent last played their stone. One player will
eventually not be able to place his stone because all reachable vertices are occu-
pied, causing him to lose. Note that an unoccupied adjacent vertex might not
be reachable because the edge that connects it is directed outgoing from that
vertex. This game is PSPACE-complete according to Reisch’ sources [5].

2.1 Reisch’ ‘Bipartite Geography’

Directed graphs can take on a lot of different shapes, and many of them cannot
be directly translated to a two-dimensional playing field. Reisch requires the
graph to have the following properties to make this translation possible, while
maintaining PSPACE-completeness:

(2.1.I) The graph G = (V,E) must be planar and bipartite, which means
that it can be drawn in a 2-D space in such a way that no edges cross
each other, and that the vertices of the graph can be divided into two
disjoint sets V1 and V' such that every edge e € E connects either
a vertex v € Vi to a vertex w € Vb, or a vertex w € V5 to a vertex
v e W.

(2.1.II) The starting vertex s has an indegree equal to 0, and an outde-
gree equal to 1. To all vertices v € V' \ {s}, the following applies:
degree(v) < 3, indegree(v) # 0, outdegree(v) # 0.

(2.1.IIT) s € V4, so that the next rule follows: the player going first only places
his stones on vertices in V1, and the second player only on vertices
in V2.

If the graph complies with requirements (2.1.I), (2.1.1I) and (2.1.III) it is called
‘Bipartite Geography’. Reisch does not prove that his requirements maintain
PSPACE-completeness, but notes that it is proven implicitly in the paper “Go
is PSPACE-hard”[2], by using results from “Word problems requiring exponential
time”[3].

2.2 Transforming ‘Bipartite Geography’ to grid-format

Next, Reisch shows us what must be done to transform a given planar and
bipartite ‘Geography’-graph to an equivalent graph that can be placed onto a
two-dimensional grid. Graphs often cannot be placed onto a two-dimensional
grid because they are not planar, which means they cannot be drawn in 2D
without their edges overlapping. Another reason is that the vertices in these
graphs can have high degrees, which requires a vertex to have many in- and
outgoing directions, but there are really only four possible directions in a 2D-
grid.

To solve this problem, a new graph G’ = (V’, E’) is to be constructed for the
given ‘Geography’-graph G = (V, E), which must satisfy the following conditions:

(2.2.I) G’ has properties (2.1.1), (2.1.II) and (2.1.I1II).

(2.2.I1) G’ can be embedded in the two-dimensional space IR? by following
these steps:

(a) Each edge stands either horizontally or vertically.
[(z1,91), (22, 92)) € B' = (21 = 22) V (41 = y2)]-

(b) Each edge is either of length 1 or length 2.
[((z1,31), (22,92)) € B = |21 — wa| + lyr — yo| € {1,2}].

(c) Edges going out from the same vertex make an angle of 180° with
each other.
[((96171/1))]7 (2,92)), (21, 91), (23, 43)) C E' = (z71 =22 = 23) V (41 =
Y2 = Y3)]-

(2.2.IT) The starting player in a ’Geography’-game played on G’ has a winning
strategy if and only if he also has a winning strategy in the game on

G.

The new graph G’ can be obtained by replacing the edges of length 1 in the graph
G with composite edges consisting of an odd number of edges where necessary.
This means some edges will be very long, which allows us to space the graph out
on the two-dimensional board nicely.

The construction of this modified graph is not a goal in itself, but rather a
means to have a PSPACE-complete problem that lends itself well for translation
to a two-dimensional board game.

3 Gobang is PSPACE-complete

As the definition in chapter one states: proving the PSPACE-completeness of a
decision problem requires showing that the problem is in PSPACE, and showing
that it is PSPACE-hard. In his paper, Reisch proves the PSPACE-completeness
of Gobang, and starts by formally defining his decision problem as follows.

Instances of an n x n Gobang-situation are encoded in alphabet A. The instances
for which the decision problem is true are given by A*, a subset of A:

a € A* = {The encoding of a game situation in an n x n Gobang-game,
where the player ‘white’ that is currently taking his turn has
a winning strategy.}

After this definition Reisch quickly states that Gobang must be in PSPACE,
because it is a two-player game where both players have at most n? options for
their moves. He does not prove this explicitly, but he does mention that the
proof is simple, and would follow the exact same argumentation as the proof for
some combinatorial games found in “A combinatorial problem which is complete
in polynomial space”[1] by S. Even and R.E. Tarjan (1975) or “On the complezity
of some two-person-perfect-information games”[5] by T.J. Schaefer (1978). We
will show that Reisch was right about this in section 5.2.

Now, the only thing left to prove is the PSPACE-hardness of the deci-
sion problem for Gobang, which is substantially harder than the first part of
PSPACE-completeness proof. Reisch has shown us how to create a grid-suitable
version of any ‘Bipartite Geography’-game by complying with requirements (a -
c¢) from property (2.2.1I), where the starting player has a winning strategy if and
only if he also has one in the non grid-suitable version of that game (2.2.IV).
Reisch reduces this grid-suitable version of ‘Bipartite Geography’ to Gobang
by making small patterns of Gobang-situations which contain chains of forced
moves. These patterns correspond with situations that occur within a ‘Bipartite
Geography’-game. All possible situations must have a corresponding pattern,
and there must be a way to chain these patterns together, so that any instance
of a ‘Bipartite Geography’-game can effectively be translated to an equivalent
Gobang-situation. We will take a look at how Reisch did this before applying
his strategy to our own game.

3.1 Re-creating aspects of the ‘Geography’-game in
Gobang
Before explaining how each part of the grid-suitable ‘Bipartite Geography’-graph

is made on a n X n playing field, Reisch explains how some important details of
the game play out on the Gobang-board by means of the example in Figure 3.1.

i
)
ffa 9
gt iyl
Lr Lk B § ‘ i
—(/ { ’__ql Ve I N
Ly L _X
e 15 ﬁlﬂl
‘“‘Eﬂ L .
O
b

Figure 3.1: Reisch’ Gobang-situation

In the situation depicted in the figure it is the white player’s turn to make a
move. The angular constructs to the right of the figure pose a constant threat.
Both players can win the game with just two more moves after they are allowed
to freely place their stone on |5| or @ Therefore, every move that a player makes
must block the opposing player’s current threat, and create a significant new
threat.

If white does not place his stone on |1| or , black will win the game in
two moves, by inevitably creating a diagonal row of 5 stones. However, if white
chooses to place his stone on , black is not pressured by white, and black
will win the game in three moves, by placing his stone on . Therefore, white
is forced to place his stone on . The starting position s that was discussed in
chapter 2 will be enforced in the reduced game similarly. So, if white chooses to
place his stone on , he will stop black’s diagonal row, and threaten to win in
two turns if he is not stopped immediately. Black must then place his stone on
because he does not create a threat of his own by placing his stone on .
Following the same logic, we can see that white must place his stone on |3| next,
to which black must respond by placing his stone on .

Now, white has to block black’s diagonal row through , but cannot create
his own threat in doing so. This allows black to place his stone on |5| the next
turn, which will then guarantee victory for black in the next two turns. What
happens here resembles what happens in the ‘Geography’ game when a player
runs out of unoccupied adjacent vertices to place his stone on: the other player
wins.

3.2 Translating instances of the ‘Geography’-game to
Gobang

Because of the properties that Reisch has set to the graph of his grid-suitable
‘Bipartite Geography’-game, only a handful of different edges and vertices occur
within the game. All of these situations must be translated to an equivalent
pattern of forced moves in a specific Gobang-situation. We won’t go over all of
these patterns in detail, because we want to create patterns for our own game
later on in chapter 5. However, it is important for our own proof that we do
know what patterns we need to cover all possible vertices and edges. We will
only discuss three of Reisch’ patterns in detail, to gain an understanding of how
they work.

We already saw that Reisch made a chain of forced moves in Figure 3.1,
moves to . He uses very similar constructions to re-create the edges of
the ‘Bipartite Geography’-graph. As stated in (2.2.IT)(b), edges of both length
1 and length 2 are needed. In Reisch’ proof, an edge of length 1 uses 15 spaces
on the Gobang-board, as shown in Figure 3.2. The edge of length 1 connects
two vertices with each other. The white player places his stone on the leftmost
double-square (depicting a vertex), after which both players follow their forced
moves on the single-squares, until the black player must place his stone on the
rightmost double-square. We can invert the colours of the stones in this edge
to create a new edge where the black player places his stone first. We can also
rotate it by a multiple of 90° or mirror it horizontally/vertically to change the
direction and/or orientation of the edge. This allows Reisch to cover multiple
cases with a single pattern, and can be done on both his edge and vertex pat-
terns.

T4
'T.F'I

LJ

’_II:E]]__

10 (10<

Figure 3.2: Reisch’ edge of length one

In these figures the double-squares depict vertices, and the single-squares de-
pict the intended forced moves. If the white player places his stone on the left
double-square, there will be a chain of forced moves, just as in Figure 3.1, until
the black player places his stone on the right double-square.

The next pattern, an edge of length 2, must naturally use 2 x 15 = 30 spaces.
However, we cannot simply string two edges of length 1 together to make it.
This is due to the fact that edges must connect two vertices that are to be occu-
pied by differently coloured stones, because the graph is bipartite (2.1.1). Thus,
concatenating two edges into one would result in the adjacent vertices being the
same colour. Reisch’ solves this by introducing a ’kink’ in the edge, as shown in
Figure 3.3. We can see that the perpendicular angles of the kink allow him to
tweak which colour forced move ends up where.

(3 LJOOL T {1]
0T =] RAR PN
7 " 4 '\
] (OQCH-HHCT

i) (1007 [

Figure 3.3: Reisch’ edge of length two

Again, if the white player places his stone on the left double-square, black will
eventually have to place his stone on the right double-square.

The patterns become more complex when we consider vertices. Vertices can
have a degree of up to 3, due to property (2.1.IT), and each vertex that is not
starting vertex s has indegree > 1. Edges must make an angle of 90° with ea-
chother (2.2.IT)(a). A vertex with outdegree = 2 must have it’s outgoing edges
make an angle of 180° due to requirement (2.2.IT)(c). These requirements leave
only one pattern for a vertex with outdegree = 2. Having two outgoing edges
is interesting because it leaves one of the players to pick the direction of the
game on the board. Thus, the intersection vertex must have a situation where
that player can choose between one of two forced moves. Thankfully, rows have
two sides, so Reisch was able to solve this quite easily. As we see in Figure 3.4,
after the black player places his stone on , and white responds with , the
black player can now make two moves that both stop white from creating a row
of four with two open ends, while creating his own row of three with two open
ends. Black does this by placing his stone on either |3| or , which makes the
game continue towards either the left or the right, respectively. We can simply
rotate/invert /mirror the vertex to create all other possible configurations, just
like the edges.

§

-, 3 !
o2l

PR AR | -t
L_F | T T 1

Figure 3.4: Reisch’ vertex with outdegree 2

A
i

i

T

Thusfar we have seen the two edges of different length, and the one vertex
with outdegree = 2. We now know how Reisch handled certain concrete situa-
tions when translating his ‘Bipartite Geography’-game to Gobang. Due to the
requirements that Reisch set, as discussed in chapter 2, there is only a small
amount of patterns that have to be made.

Let us consider the vertices with outdegree = 1. The indegree of these ver-
tices will be either equal to 1 or equal to 2. The vertices with indegree = 1 must
have their two in- and outgoing edges make either a straight- or perpendicular
angle with each other (recall that edges must stand either vertically or horizon-
tally due to property (2.2.1I)(b)).

There are also only two vertices with indegree = 2. With these, the ingoing
edges can only make either a straight angle or a perpendicular angle with ea-
chother, giving us two more patterns.

Reisch made two patterns for edges (length 1 and length 2), one pattern for
vertices with outdegree = 2 and 2 + 2 = 4 patterns for vertices with outdegree
=1, for a total of only seven patterns.

3.3 Concluding Reisch’ proof

After showing his patterns, Reisch begins to complete his proof. First off, he
shows that all of his seven patterns for vertices and edges can be effectively
concatenated into a graph. Then, he proves that the white player, currently
taking his turn, has a winning strategy in Gobang, if and only if the starting
player also has a winning strategy in the associated ‘Bipartite Geography-graph.
He does this step-by-step, showing that every aspect of the ‘Geography’-game
plays out the same way in the translated Gobang-version. This shows that any
given ‘Bipartite Geography’-graph can effectively be translated into a Gobang-
situation, for which the outcome of the decision problem is the same.

He then argues that even though a player can choose to deviate from the
proposed forced moves, that player will not be able to gain an advantage, and
his options to further deviate will be exhausted within a small number of moves.
The player is then forced to go back to following the intended forced moves,
if, by then, he has not lost by deviating. He says the proof that these moves
are exhausted quickly is relatively easy, but rather tedious, and chooses not
to elaborate further. This will be proved for our own game by a backtracking
algorithm.

This concludes Reisch’ proof that Gobang is PSPACE-hard, which implies
that it is also PSPACE-complete, because he already said that the decision
problem is in PSPACE. And, even though Reisch has skipped some details in
his proof, he has very convincing evidence that the decision problem for Gobang
is PSPACE-complete.

After his proof is complete, he shows that k-Gobang, which is the decision
problem for Gobang but with rows of length k (for £ > 2) instead of just k = 5,
is also PSPACE-complete. He says this can be proved by replacing the rows with
open ends of length 2 in his patterns by rows of length (k — 3).

10

4 Thoughts on Reisch’ proof

The quick proof at the end of Reisch’ paper leaves the reader with some questions.
Why does his proof also work for lower values? Does it mean that Reisch’
strategy is applicable for similar games?

4.1 k-Gobang is only PSPACE-complete for k greater
or equal to 5

How exactly does the proof for k-Gobang play out, when k takes on it’s lowest
possible value, £ = 27 Reisch says the rows in his patterns should be replaced
by rows of length (k — 3), which is equal to —1 for & = 2. However, it is not
possible for a row to have a length lower than 1. This is most likely an oversight
by Reisch.

This does cause the next question to arise: “What is the lowest k for which
Reisch’ proof holds?”. Because a row cannot have a length lower than 1, and
the rows in his patterns must have length & — 3, we are inclined to believe that
the lowest k for which the proof holds should be 1 + 3 = 4. But, this causes
problems in some of the patterns that Reisch made. For example, let’s look at
his vertex with indegree = outdegree = 1, where the edges make a perpendicular
angle, in Figure 4.1.

lj'l =

-] : JJ.!L:]-‘-‘T

1

Q
IR ! ?

I

o~

Figure 4.1: Reisch’ vertex with degree = 2, perpendicular angle
If we replace the rows of length two with rows of length one, the cornerpiece con-

tracts and we get a pattern where deviating from the intended strategy actually
does reward greatly, and can be shown easily.

11

1o H O
ahi

:

Figure 4.2: Same as Figure 4.1, but with rows of length 1

On the pattern shown in Figure 4.2, the players must make a row of length
4. The white player can choose to place his stone on |w|at any point in the game
where he is not under immediate pressure of losing the game. This move creates
a row of length 3 with two open ends, which will surely deliver him victory on
the next turn. This is not an intended move, and breaks Reisch’ proof for k = 4.
4-Gobang might still be PSPACE-complete, but that cannot be proved in this
manner. We already noticed that Reisch’ proof does not hold for k < 4, so we
can conclude that his proof only holds for k > 5.

12

5 Axis-Parallel Five-in-a-Row

Despite Reisch’ oversight at the end of his paper, his proof strategy is very in-
teresting. He modified the Generalized ‘Geography’-game in a way that made
it possible to reduce to a Gobang-situation. Then, he created seven Gobang-
patterns that, when stringed together, can simulate every possible situation in
the original game.

We are interested if this strategy is applicable to other, similar games. Luck-
ily, the rules of Gobang are easily adjusted. Reisch’ proof already holds for a
modified version of Gobang where the row length is k£ for k£ > 5. If we disal-
low diagonal row victories, we have already created a new game. We will call
that game ‘Axis-Parallel k-in-a-Row’. Can we use Reisch’ strategy to prove that
this game is also PSPACE-complete? If so, then what is the lowest value of k
for which it holds? If we think about this new game, it is not interesting for
k € {1,2,3}, because the player going first will win on his first, second or third
turn respectively. For k = 4 it already becomes much more interesting, because
the game can go on for a long time. For the most part, the time on this thesis
was spent trying to prove that Axis-Parallel Four-in-a-Row is PSPACE-complete.
However, it is very difficult to construct patterns for this game, because rows of
four are so easily made, that many deviations from the intended strategy gave an
advantage. These advantages were found using a backtracking algorithm, which
is explained in the next chapter.

For k£ = 5 the game can also go on for a very long time, and gives us a lot
of flexibility in making patterns. We suspect that Reisch’ strategy will work for
Axis-Parallel Five-in-a-Row (abbreviated as APR-5), and that we can prove that
it has the same complexity as Gobang. Is 5 the lowest value of k for which our
game is PSPACE-complete?

5.1 Definition

We will try to follow Reisch’ strategy as much as possible to prove APR-5’s
PSPACE-completeness, but this game is different and brings out some new chal-
lenges specific to this game. We must first define our decision problem.
Instances of an n x n APR-5-situation encoded are encoded in alphabet A. The
instances for which the decision problem is true are given by A*, a subset of A:

a € A* = {The encoding of a game situation in an n x n APR-5-game,
where the player ‘white’ that is currently taking his turn has
a winning strategy. }

We will prove the following theorem about this decision problem:
Theorem 5.1. APR-5 is PSPACE-complete.

This requires us to also prove two lemma’s. First, that APR-5 € PSPACE
and second, that APR-5 is PSPACE-hard.

13

5.2 APR-5 in PSPACE

To prove the first lemma, we must show that there is a polynomial-space bounded
algorithm for determining the outcome of our decision problem. We shall do
this by creating a game tree representation of our game, in which our algorithm
can determine who will win. Then, we shall prove that this algorithm uses
polynomial-space bounded memory during run-time.

Reisch did not prove this lemma for his decision problem for Gobang, but
he did cite a few sources in which proofs for other games could be found, and
said that the proof for Gobang would be similar. Our proof is based on one
of these sources: “A Combinatorial Problem Which Is Complete in Polynomial
Space”[1]. As we will see, the proof for APR-5 also holds for Gobang, because
both games are played in the same fashion, and on the same n x n board. This
means that Reisch’ assumption about Gobang being in PSPACE was right.

Lemma 5.2. APR-5 € PSPACE.

Proof. On an n x n board only n? moves can be made in any game before
the board is full. Suppose we construct a directed, rooted game tree 1" for our
game, where each vertex denotes a certain situation in that game. We will use
the term situation to refer to a certain configuration of an APR-5-game. The
root of T" then denotes the initial board state. The sons of any vertex v € T
denote the situations that are reachable from situation v, by letting the player
whose turn it is in v make one move. We will use v — w to express that w is a
son of v € T. A leaf of T' corresponds to a final game situation. We shall call a
vertex of T' a white vertex if it’s white’s turn to move in the situation denoted
by v, and a black vertex if it’s black’s turn to move. Now that we have defined
a game tree representation of the problem, we can describe the algorithm.

T has a depth of at most n? (the maximum number of moves that can be
made) and contains at most (n?)!/(n? — i)! vertices at depth 4, for a total of at

most Z;io(nQ)! /(n? —i)! vertices in the entire graph T. A lot of these vertices
correspond to the same situation, but with different sequences of moves. For any
vertex v € T, let W (v) = 1 if the white player has a forced win from situation v,
let W (v) = 0 otherwise. W (v) is easy to calculate if v is a leaf of T', because the
winner is the player who made the last move in that situation (he won by either
finishing a row of five or filling the last spot on the board). The colour of the
player who made the last move is the colour of w, with w — v, and v a leaf of
T. We can determine W (v) for all non-leaf vertices with the following recursive
formula:

If v is a white vertex, W (v) = 1 if there exists v — w such that W (w) = 1;
W (v) = 0 otherwise.

If v is a black vertex, W (v) = 1 if for all v — w such that W(w) = 1;
W (v) = 0 otherwise.

We want to know which player will win before the game starts. Therefore, we
must calculate the value of W(r), where r is the root of T. We can easily
calculate W (r) by using our recursive formula to explore 7" in a depth-first fash-
ion. Alongside storing the graph, we need a stack to store the moves made in
reaching the current position. The amount of storage required for this stack is

14

O(n?logn?) bits (each move can be encoded in log n? bits, with a maximum of
n? moves). We will need no more than O(n*) storage for storing game situations
plus any additional work area (one board state of O(n?) for each depth level of
the tree, up to depth n?). Thus, the total amount of storage required for our
algorithm to determine the winner is polynomial-bounded, which completes the
proof for Lemma 5.2. O

The conclusion of this proof, and the fact that there is no obvious way to
determine the winner of this game in polynomial time makes it even more rea-

sonable to suspect that this decision problem is PSPACE-complete.

5.3 APR-5 is PSPACE-hard

In this section, we shall prove the second lemma that we need to prove PSPACE-
completeness.

Lemma 5.3. APR-5 is PSPACE-hard.

We already have the PSPACE-complete, grid-suitable ‘Bipartite Geography’-
game. We need to reduce the decision problem for that game to the decision
problem for APR-5. We must create patterns of situations in the APR-5-game
that correspond with all the edges and vertices that can occur within ‘Bipartite
Geography’. Those patterns need to be able to be concatenated to re-create
a graph, so that every ‘Bipartite Geography’-situation can be simulated in our
APR-5-game.

We will start by showing how important aspects of the ‘Geography’-game
play out in our APR-5 in Figure 5.1, analogous to Figure 3.1. In this situation

&
2

Figure 5.1: An example of a APR-5 situation

it is white’s turn to make a move. Black already has a threat: a row of three
with two open ends. If black manages to create a row with of four with two
open ends, he will surely win on his next turn. Thus, white is left with two
choices; if he chooses to place his stone on , then black will respond with
placing his stone on , in the angular construct to the right. Black now has a
guaranteed win within the next two turns, because he has two ways to create a
row of four with 2 open ends, which cannot be stopped. So it seems white must
place his stone on ; indeed, black is now threatened, and he does not have the
freedom to place his stone in the construct to the right. He must stop white’s
threat by placing his stone on either side of white’s row of three. If he places his

15

stone on , he does not threaten white, allowing white to place his stone on
@, which will guarantee white victory. Because of the constructs, both players
must continually pressure each other. Thus, black must place his stone on ,
to which white must respond with , and black must respond with . Now,
white cannot stop black’s threat with his own threat, and can only delay the
inevitable. He can place hist stone on to create a row of four with one open
end, to which black must immediately respond with placing his stone on .
Now, white has run out of threats. He cannot place his stone on @, because he
is still threatened by black’s open-ended row of three through . He can stop
black’s threat, but black is simply able to respond with , granting him the win
in the next two turns.

Because we have already looked at Figure 3.1, it should be clear that |1|is a
way of forcing a starting vertex s, and steps are a chain of forced moves
that form the basis for our edges. The angular constructs to the right with
and @ ensure that the player that runs out of threats will lose, just as the player
that runs out of moves in the ‘Bipartite Geography’-game also loses.

5.3.1 Patterns

If we take a close look at the chain of forced moves in situation in Figure 5.1, we
see a recurring phenomenon. The black player starts with a vertical row, which
white must block by extending his own horizontal row. Black must then block
white’s threat with a vertical row, which white must then block with a new hor-
izontal row, and so forth. With this basic pattern, the white- and black player
cannot change the orientation of their rows. This leaves us with two choices: we
can either leave the orientations as they are, or find a way to swap them around.

Leaving the orientations as they are requires us to create two patterns for
each pattern in Gobang, because inverting the colours would also change the ori-
entations of the coloured rows in our game. Gobang does not have this problem,
because it allows for diagonal rows. He could simply invert the colours of his
patterns to create the same situation for both white and black vertices.

Finding a way to swap the orientation of the coloured rows allows us to re-use
vertex patterns by inverting their colours, but will certainly increase the length
of our edges. The latter option seems like a better choice, because we will have
to make less patterns.

Each of our patterns has been tested with a backtracking algorithm, which
verifies that the chains of moves in the patterns are indeed forced, by showing
that deviating from the chain will not give an advantage, and might even lead
to a loss. We will elaborate on the verification of patterns in section 5.3.2, and
show the algorithm in chapter 6.

Edge piece patterns

We cannot simply show what a whole edge looks like, because edges will look
different depending on which vertices they connect, and depending on the ori-
entation of the white and black coloured rows (horizontal/vertical). Rather, we
will describe edges pieces that can be concatenated into a whole edge.

There are two simple edge pieces of different lengths that can be concate-

16

nated. Their lengths, 5 and 6, allow us to create whole edges of a certain length
that space the vertices on the grid out perfectly. The short edge pieces of length
5 have to be concatenated by alternating the two patterns shown in Figure 5.2.
Not alternating leads to unwanted behaviour caused by stone [x].

Figure 5.3: Regular edge piece, length 6

The regular edge pieces of length 6, shown in Figure 5.3, can also be concate-
nated by alternating, but do not have to.
These two patterns have the following property: if there is a white stone on [a),
there will be a chain of forced moves until white places his stone on @

The last edge piece is a bit more complex, as it is the one that allows us to
swap the orientation of the coloured rows. It has a length of 10, shown in Figure
5.4. This edge piece can be horizontally mirrored as well.

Figure 5.4: Orientation swap edge piece, length 10

17

If there is a white stone on [a| in Figure 5.4, there will be a chain of forced moves
until black places his stone on @

As an example, the short, orientation swap and regular edge pieces can be
concatenated like shown in Figure 5.5. Only one version of the short edge piece
is seen here, but the other version can been seen in action in Figure 5.12.

Figure 5.5: Concatenation of edge pieces

We will discuss the set length of whole edges consiting of these edge pieces in
the ‘Determining edge length’ section.

Vertex patterns

In chapter 3 we learned that only five vertex patterns have to be made to trans-
late a graph of the ‘Bipartite Geography’-game to a grid, due to the requirements
set in chapter 2.

We shall consider the vertices with indegree = outdegree = 1 first. There are
two variants: the in- and outgoing edges can make either a straight or perpen-
dicular angle with each other (Figure 5.6 and 5.7).

(

Figure 5.6: Vertex with indegree = outdegree = 1, straight

2
p

(

Figure 5.7: Vertex with indegree = outdegree = 1, perpendicular

18

Just as in Reisch’ patterns, the single-squares show where the forced moves must
be placed, with the double-squares being the precise position of the vertex. In
these two figures the white player must place his stone on the double-square. As
we can see, these two patterns are made by fitting regular edge piece patterns
together. Therefore, the chain of forced moves is much the same as in the edge
piece patterns. The other vertex patterns require a different construction, due
to them having a higher degree: 3.

There are two patterns with indegree = 2 and outdegree = 1, because the
ingoing edges can now make either a straight or perpedicular angle with each
other. They both use the same construction to make two ingoing edges con-
verge into one outgoing edge (Figure 5.8). The ingoing edges can be extended in
the desired direction with edge piece patterns, to create both required patterns,
shown in Figure 5.9 and 5.10.

Only the construction in Figure 5.8 has been tested by the backtracking al-
gorithm (explained in the next chapter), because extending the edges lead to an
extremely long run-time. However, we know that the extended patterns must
also be correct, because the extensions are of the same form as the regular and
short edge pieces, whose interactions have all been tested.

T

Figure 5.8: Converging two incoming edges into one outgoing edge

19

O

T

Figure 5.10: Vertex with indegree = 2, outdegree = 1, perpendicular

In Figure 5.9 and Figure 5.10, if there is either a white stone on [a] or @,
there will be a chain of forced moves, forcing white to eventually place his stone
on [c]. Both are white vertices. Note that the white, vertical row of length 3 with
two open ends can be made into a row of length 4 with one open end, to which
black then must respond immediately. This does not lead to an advantage for
white, as tested by our algorithm.

Finally, we must have a vertex with indegree = 1, outdegree = 2. It is shown
in Figure 5.11. Recall that there is only one vertex with outdegree = 2 due to
requirement (2.2.II)(d). We already saw the Gobang version of this pattern in
Figure 3.4.

If a black stone is placed on [a, then a black stone must be placed on |b| or [c],
after the chain of forced moves. White shall place his stone on the vertex.

20

i'(
g){d

L)-(- | | =)-(- |

Figure 5.11: Vertex with indegree = 1, outdegree = 2

Determining edge length

The vertex patterns we described allow us to attach edge piece patterns so that,
eventually, vertices can be concatenated together by whole edges. The length
of these whole edges depends on how big the vertex patterns are, and how we
can extend them with edge pieces them until they have a uniform length. There
must also be enough space to swap the orientation of the coloured rows, which
can be done with the orientation swap edge piece, length 10.

The in- and outgoing edges of the vertex patterns are of the same form as
our edge pieces, and fit perfectly onto them, therefore we do not have to test the
full concatenation of an edge with our algorithm. We must find a fixed length
which can be reached by extending each vertex with multiples of 5 and 6, which
are the lengths of our short and regular edge pieces. Here are the lengths of all
the vertex patterns (length excludes the precise vertex point on the grid):

e Indegree = outdegree = 1, straight: in- and outgoing edges have length 6

e Indegree = outdegree = 1, perpendicular: ingoing edge has length 6, out-
going has length 3

e Indegree = 2, outdegree = 1, straight: ingoing edges have length 6, outgo-
ing has length 7

e Indegree = 2, outdegree = 1, perpendicular: one of the ingoing edges has
length 6, the other ingoing edge has length 9. Outgoing edge has length 7

e Indegree = 1, outdegree = 2: ingoing edge has length 9, outgoing edges
have length 5

21

It seems that we have five different lengths: 3, 5, 6, 7 and 9. These lengths
can all be extended to a fixed length of 29 as follows:

(3) +6+4x5=29
(5) +4 x 6 =29

(6) +5+3x6=29
(M +2x5+2x6=29
(9) +4 x5=29

If we now want to connect these extended vertex patterns, we get the length of
both sides, 29, with the orientation swap edge piece of length 10 in between for
a total whole edge length of 29 4+ 10 + 29 = 68. If the swap piece is not needed,
we can substitute it with two short edge piece patterns. To illustrate a whole
edge, we will take a look at the connection of two vertices in Figure 5.12. We
will connect our vertex with indegree = 1, outdegree = 2 with a vertex that has
indegree = 2, outdegree = 1, straight.

1
PuNE
ST
18
LOOTH CIOOTHHIOOTHHHIOOTH-HIOOT 108100 [10-81T oL H-IOOLH
ST B AED AN AND AND AN AHD4 E%:%:%:%:%Z%Z% o b4
———-g<%Q-—-Q<><ﬁ—-&xrﬁ-—-&xrﬁ-—#xrﬁ-—-&xxkuné» TRANRPYLINET .00 m%%m H3000HH-H
A T8
HOOTH-H OO0 C1CHH é
) AR
T

Figure 5.12: Connecting two vertex patterns

The grid is so big that it had to be downscaled, but we can see that the whole
edge takes up 68 spaces.

We now have whole edges of length 1, but we must also create edges that are
length 2. These edges must take up 2 x 68 = 136 spaces on our board. They
must also contain an orientation swap edge piece of length 10, and be buildable
from short- and regular edge pieces. We will not show them as it would have to
be downscaled to an unreadable level, but we can calculate that this is entirely
possible: 10 + 21 x 6 = 136.

The lowest possible whole edge length might not be 68, but that is not
important for our proof. As long as we find a length which allows us to line
everything up nicely with out edge pieces of length 5 and 6, the proof holds.

5.3.2 Verification

Our patterns have been verified by a backtracking algorithm. We will take a
look at the correctness of the algorithm in chapter 6. For now, we shall assume
the algorithm to be correct, so that we can explain how these patterns come
about. We want to make sure that deviating from the intended chain of forced
moves does not lead to an advantage, so that the players will have to follow the
intended path. Therefore, we have devised two claims for each pattern:

1. The white player will win.

2. If the white player is disallowed to make a certain move, black will win.

22

The patterns have been carefully made so that these claims hold for each pat-
tern. If the colours of the patterns were to be inverted, then the players in the
claims would also be swapped. When testing the claims, the patterns include
the angular constructs that appear on the right side of Figure 5.1, so that the
players must keep pressuring each other with their moves.

When our patterns are concatenated, white should no longer have an advan-
tage over black (apart from a small first-player advantage). The patterns are all
adjusted in a way that we expect expect a certain player to win, so that we can
test our claims. If the wrong player wins, we can adjust our pattern accordingly.
There also should not be a situation in which the white player is disallowed to
make a certain move, because this is never the case in APR-5, but this allows us
to test both claims on the same pattern.

Let us take a look at a vertex pattern for which the both claims have been
verified, the vertex with indegree = 1, outdegree = 2, Figure 5.13. In this figure

A
!
[1OO
A
T

Figure 5.13: Example of a verified pattern

we have already made white’s first move, and it is now black’s turn. The grey
squares are places that white may not make a move when we test the second
claim.

For the first claim, white must win. Black must block white’s threats and
choose whether to go left or right after white places his stone on the vertex point.
However, both the left- and right chain of forced moves end in a threat for the
white player. When black blocks this threat, he does not create a threat of his
own, allowing the white player to place his stone in his angular construct on
the right, granting white the win in the next two turns. The algorithm verifies
that white does indeed always win in this situation. We can then conclude that
any deviation from the intended strategy made by black does not change the
outcome of the game.

23

The second claim requires the black player to win, and disallows the white
player from making a move on the grey squares. When we disallow white placing
his stones on there, the chain of forced moves will end with a black threat, which
the white player cannot block by making a threat of his own. Black then places
his stone on the angular construct, guaranteeing him the win in the next two
turns. The algorithm verifies that black always wins in this situation, which
allows us to conclude that any deviation made by the white player does not
gain him any advantage. The angular constructs and disallowed fields have been
added to every pattern, after which all the patterns have been successfully tested.

5.3.3 Conclusion

We have covered every situation in the ‘Bipartite Geography’-game with pat-
terns. We have also shown that the vertex patterns can be connected by edge
piece patterns to re-create any situation in the ‘Bipartite Geography’-game. De-
viating from the chains of forced moves in the patterns does not lead to an
advantage for either player. Therefore, the player that has a winning strategy in
the ‘Bipartite Geography’-game must also have one in the reduced APR-5 ver-
sion. We can now conclude that ‘Bipartite Geography’ can be effectively reduced
to an equivalent APR-5 problem. The reduction can be done in polynomial time,
because there is a fixed number of pieces for each part that has to be translated.

This concludes the proof for Lemma 5.3. O
Having proved both lemma’s required for Theorem 5.1, we can conclude that
APR-5 is PSPACE-complete. O

24

6 The backtracking algorithm

In chapter five we argued that APR-5 was PSPACE-hard by using patterns
that were assumed to satisfy two claims. In this chapter we will see how the
correctness of those claims can be verified. Recall the claims that we discussed
in section 5.3.2:

1. The white player will win.
2. If the white player is disallowed to make a certain move, black will win.

These claims can be verified by a recursive backtracking algorithm, in which
the players alternate taking turns. Because we have to test two claims, we will
need two algorithms. Aside from the differences they have in their accepting and
rejecting states, and the different roles of the white and black player, they are
almost identical.

6.1 Explanation in pseudocode

In our algorithms, a situation is the configuration of an APR-5-game. The vari-
able nextSituations is an array of situations that have a follow-up move from
the current situation. In terms of the game tree that we discussed in section
5.2, these nextSituations are the children of the current situation in T

The function heuristic() takes a situation and adds just one new situation to
the nextSituations array, that being the situation with the move that heuris-
tic() deems best. The bruteforce() function also takes a situation, but adds
every situation reachable from the current situation to the nextSituations ar-
ray. In terms of the game tree, the nextSituations array is then filled with ALL
the children of situation in T

Lastly, the algorithm is recursively called with one of the situations in
nextSituations. It is the other player’s turn in this next situation, hence the
negation of playerColour.

25

6.1.1 Testing the first claim

We will call the algorithm that decides whether the first claim is true for a given
input situation TEST1. In this algorithm, the white player will follow a heuristic,
while the black player tries every possible move in every single situation. TEST1’s
accepting state is victory for the white player, and it’s rejecting state is victory
for the black player.

Algorithm 1 Testing the first claim

procedure TEST1 (situation, playerColour)
if win(situation, white) then return

1:

2

3 if win(situation, black) then

4: output(situation)

5: exit

6 if playerColour = white then

7 nextSituations < heuristic(situation)
8 else

9 nextSituations < bruteforce(situation)

10: for x € nextSituations do
11: TEST1(z, —playerColour)

6.1.2 Testing the second claim

The algorithm that decides whether the second claim is true for a given input
situation is called TEST2. The roles of the black and white player are reversed
in this second algorithm: the black player now follows the heuristic, while the
white player brute-forces. Due to of the restriction in the second claim, the
white player is not allowed to make a certain move in his brute-force efforts.
The accepting and rejecting states of TEST2 are inverted compared to TESTI.

Algorithm 2 Testing the second claim

1: procedure TEST2(situation, playerColour)

2 if win(situation, black) then return

3 if win(situation, white) then

4: output(situation)

5: exit

6 if playerColour = black then

7 nextSituations < heuristic(situation)
8 else

9 nextSituations < bruteforce(situation)

10: for x € nextSituations do
11: TEST2(x, —playerColour)

When testing our second claim, the roles are reversed compared to testing
the first claim. The black player now follows the heuristic, while the white player
tries every possible move. If our pattern already passed the first test, we know
that the white player will win in this pattern. Therefore, we restrict the white

26

player from making a certain move, for which we believe that white cannot win
anymore. That restricted move is white’s last move in the intended chain if
forced moves (remember that white’s intended forced moves are the white-filled
squares in the figures). If we restrict white from making that move, he cannot
answer black’s most recent threat with a threat of his own, therefore allowing
black to place a stone on his angular construct, guaranteeing black the win in
the next two moves.

6.2 Correctness

As we can see, the tests for both claims are very similar. If the heuristic player
wins in the current situation, the algorithm returns, stopping that branch of the
recursion. If the bruteforce player wins in the current situation, the algorithm
outputs that situation, revealing how it happened (this should not happen if the
pattern is made correctly). If none of the players wins yet, an array is filled with
all the moves that must be tried. That array will contain only one move if it is
the heuristic player’s turn, and up to n x n moves if it is the bruteforce player’s
turn. Then, we enter a loop which goes through all of the moves in the array.
Each iteration of the loop makes one move of the array on a copy of the current
situation, and recursively calls the algorithm on the newly created situation.

There are a finite number of possible moves in any game situation, with a
maximum of n X n. In some situations, the board can completely fill up deep
into the recursion, which means that the moves array for that situation will be
empty. This should not happen in our patterns, however, because the heuristic
player should have a solid strategy with which he can win within a reasonable
amount of turns. These observations allows us to conclude that every move in
the moves array will be done, and that the algorithm must terminate either
when the bruteforce player wins, or when the bruteforce player has lost with
every possible strategy. Our patterns vary in size, but the algorithm computed
anywhere between 2 and 20 million wins per pattern for the heuristic player
before concluding that the bruteforce player could not win there.

It is important to note that the heuristic does not have to be perfect for
our claims to be correct. If the heuristic is good enough and manages to win
against the bruteforce player in every possible situation, we can still conclude
that the pattern is correct, because the bruteforce player did exhaust every
possible strategy, and did not manage to win once.

27

7 Axis-Parallel k-in-a-Row

In chapter 4 we asked the question if 5 is the lowest rowlength for which the
decision problem for ‘Axis-Parallel k-in-a-Row’ is PSPACE-complete. We will
call the decision problem for k-in-a-row APR-k. It is defined as follows:

APR-k = {a € A* is the encoding of a game situation in a n x n APR-k-
game, where the player ‘white’ that is currently taking his turn
has a winning strategy. }

Theorem 7.1. APR-k is PSPACE-complete for k > 5.

The proof for this theorem relies on the length of the rows in our patterns.
The proof that APR-k € PSPACE still holds. As we saw in section 4.1, reducing
the size of k leads to problems in Reisch proof, and the same goes for our proof.
Increasing the size of £ however, does not lead to any problems. Therefore, we
can state that by increasing the rows in our patterns by x for k = 54+x and x > 0,
we can also effectively reduce APR-k to ‘Bipartite Geography’, for k > 5. O

28

Bibliography

1]

S. Even and R. E. Tarjan. A Combinatorial Problem Which Is Complete
in Polynomial Space. Journal of the ACM, 23(4):710-719, October 1976.
doi:10.1145/321978.321989.

D. Lichtenstein and M. Sipser. Go is PSPACE-hard. Annual Symposium on
Foundations of Computer-Science, 19th edition:48-54, 1978. doi:10.1109/
SFCS.1978.17.

A.R. Meyer and L.J. Stockmeyer. Word problems requiring exponential time.
Proceedings of the Annual ACM Symposium on Theory of Computing, 5th
edition:1-9, 1973. doi:10.1145/800125.804029.

S. Reisch. Gobang ist PSPACE-vollstandig. Acta Informatica, 13:59-66,
1980. doi:10.1007/BF00288536.

T.J. Schaefer. On the complexity of some two-person-perfect-information
games. Journal of Computer and System Sciences, 16(2):185-225, April 1978.
doi:10.1016/0022-0000(78)90045-4.

29

