
Bachelor thesis
Computer Science

Radboud University

Comparing Discretization Methods
for Applying Q-learning in

Continuous State-Action Space

Author:
Luuk Arts
s4396863

First supervisor/assessor:
Prof. dr. Tom Heskes

t.heskes@science.ru.nl

Second assessor:
Prof. dr. ir. Arjen P. de Vries

A.deVries@cs.ru.nl

June 30, 2017

Abstract

Q-learning is a learning algorithm that can be used to find optimal solu-
tions for Markov Decision Processes, most commonly in discrete state-action
space. One way to extend Q-learning to continuous state-action space, is to
discretize the environment in order to reduce the state-action space. In this
thesis we evaluate two such discretization methods for their learning speed
and solution optimality.

For this research we used Project Malmo, an AI experimentation plat-
form released by Microsoft Research in august 2016. Over the course of
this research, we evaluated this platform for its usefulness in implementing,
visualizing and analyzing learning algorithms.

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Reinforcement Learning . 3
2.2 Q-learning . 4
2.3 Project Malmo . 5

2.3.1 Server Handler . 6
2.3.2 Agent Handler . 7

3 Research 8
3.1 Experiment . 8

3.1.1 Setup . 8
3.1.2 Mission . 9
3.1.3 Agents . 10
3.1.4 Data Visualization . 11

3.2 Results . 12
3.2.1 Agent 1 . 13
3.2.2 Agent 2 . 15

3.3 Discussion . 17
3.3.1 Comparison of the Methods 17
3.3.2 Platform Related Issues 19

4 Conclusions 21

1

Chapter 1

Introduction

In August last year Microsoft Research released Project Malmo[1], an AI
experimentation platform built on top of the popular game Minecraft. This
platform provides an accessible way for researchers to program agents to
solve diverse tasks within the Minecraft world.

Project Malmo contains an example of a Q-learning agent that can solve
navigation problems in discrete state-action space. Since actual players and
AI in Minecraft move around in continuous state-action space, it would
be more interesting to see the performance of such an agent in continuous
state-action space.

So for this research we will extend the discrete Q-learning agent to con-
tinuous state-action space using two different discretization methods. The
first method discretizes the state-action space by mimicking a fully discrete
state-action space, which allows only movement in the north, east, south
and west directions. The second method gives more precision in movement
by also allowing movement in the north-west, north-east, south-east and
south-west directions.

Theoretically the second method allows the agent to move around faster
by moving diagonally in one movement rather than in two. In addition, being
able to move more freely makes the agent more versatile in environments
involving more complex tasks and other AI. This comes at the cost of a
doubling in the state-action space however, since we need to keep track of
twice the amount of movement directions.

The main goal of this research is then to apply the two discretization
methods to a navigation problem within the Project Malmo platform in
order to see if this tradeoff has an impact on which method learns faster
and which method learns a better performing solution.

As a subgoal of this research, we will be evaluating the Project Malmo
platform on its usefulness for implementing, visualizing and analyzing lear-
ning algorithms.

2

Chapter 2

Preliminaries

2.1 Reinforcement Learning

Reinforcement learning[3] is a type of machine learning that, as opposed to
other types of machine learning, does not need full knowledge of the environ-
ment and of the exact desired behaviour of the agent. Supervised learning
for example, requires an external supervisor to provide the agent with lear-
ning examples to teach the agent the desired behaviour. When faced with
problems with an unknown or complex environment, it becomes increasingly
hard to provide the agent with a set of examples that covers all behaviours
that are necessary for it to fulfil its task. Reinforcement learning is capable
of dealing with these kinds of problems, because it allows algorithms to gain
experience through interaction with the environment and to then determine
the course of action that gives the best results.

For this to be possible, there needs to be a way to mathematically model
the problem. This can be done by representing the problem as a Markov
Decision Process (MDP)[3]. MDPs contain a set of environment states S, a
set of actions A, a reward function R, which determines the reward that is
received when performing a certain action in a certain state, and a probabi-
lity function P, which determines the probability of moving from state s to
state s′ after using action a. This can be represented as a tuple

< S,A,R, P > . (2.1)

The received rewards can be positive, neutral or negative and help the agent
determine what actions are good and what actions are bad. In addition
to states, actions and rewards, there are also rules that determine which
aspects of the environment an agent can observe. This generally consists
of the received rewards, but can also contain hints about the immediate
environment.

The overall goal of reinforcement learning algorithms in regards to MDPs
is to get an accurate internal model of the environment and to then find the

3

sequence of actions that results in the highest possible reward within the
MDP.

2.2 Q-learning

Q-learning is an algorithm in the field of reinforcement learning that was
proposed in 1989 by Watkins[4]. Implementations of Q-learning contain all
concepts that were described in section 2.1, notably a set of states S, a set of
actions A and rewards associated with every state transition. The algorithm
is environment independent, meaning that it requires no prior knowledge of
the states and the associated rewards. Therefore, all knowledge about an
environment can be gained through interaction with that environment.

The goal in Q-learning is then to learn what the expected reward will
be for every state-action pair, in order to find the path that results in the
highest possible reward. Generally the rewards for each state-action pair
will be saved in a lookup table[2]. The agent then tries many state-action
pairs repeatedly and updates the associated rewards in the lookup table
with the newly gained knowledge, using a specific update function. When
applied to a terminating state, this update function will simply assign the
reward received from transitioning to the final state to the state-action pair
corresponding to that final state and the action that was taken to get there.
These terminating states can occur when, for example, the goal is found
or the agent runs out of time or resources. For all other states, the non-
terminating states, the update function for any given state-action pair is

Qn(x, a) = (1 − an)Qn−1(x, a) + αn[rn + γVn−1(yn)]. (2.2)

Here Qn(x, a) represents the Q value, or reward, associated with the state-
action pair consisting of state x and action a at stage n, given that the agent’s
learning experience consists of a sequence of distinct stages. The update
function then takes the old value for the state-action pair and updates it
using the reward received in stage n, rn, and the maximum future reward
the agent can receive taking any action in state yn, Vn−1(yn), and then
assigns this updated value to the Q value of the current state-action pair.

Finally, the update function contains two factors, that each can be as-
signed a value between 0 and 1. The first one is the learning rate, αn, which
determines the weight of the combination of the received reward and the
maximum future reward. A high learning rate means that the algorithm
favours this new knowledge over the old Q value. The other factor is the
discount factor, γn, which determines the influence of future rewards. Here
a value close to 0 means the algorithm is more short-term reward orien-
ted, whereas a high value means the algorithm is more long-term reward
oriented.

4

2.3 Project Malmo

Project Malmo is an AI experimentation platform built as a mod on top
of the popular game Minecraft. This platform allows researchers to pro-
gram agents that simulate player behaviour within the complex 3D game
environment (fig. 2.1). The platform offers support for multiple areas of re-
search, including robotics, computer vision, planning, multi-agent learning
and reinforcement learning. In this research, version 18.0 of the platform
was used.

Figure 2.1: An agent in a Minecraft environment.

The game Minecraft is very diverse and offers a great variety of pro-
blems for agents to solve, such as survival mode, where the agent has to
fight against enemies and gather food to prevent itself from starving, or
crafting mode where the goal is to gather and combine smaller items in
order to build one bigger item, or simple navigation problems like mazes
and obstacle courses. These problems are represented within the game as
missions. Missions load a Minecraft world in the Minecraft game and spawn
an agent. They can be customized in mission definitions, which are written
in XML.

The platform uses client-server interactions in order to interface the
user’s code with the Minecraft environment. The server (fig. 2.2) simply
runs the Minecraft game and sends updates of the current state of the world
when they are requested. The client runs the user’s code and sends the
mission XML and the commands that determine the agent’s behaviour. It
keeps track of the agent’s environment by requesting the world state and
updating its internal representation of the environment.

Agents must achieve a certain goal within the Minecraft world, for ex-
ample reaching a certain coordinate, within a time limit using the actions

5

Figure 2.2: The Project Malmo server running the Minecraft game.

and the items provided in the mission definition. Each mission definition
consists of two main programmable parts; the server handler (section 2.3.1)
and the agent handler (section 2.3.2). These define the mission setup and
the agent’s capabilities.

Reinforcement learning is explicitly supported in these handlers by pro-
viding an easy way to programmatically set observation and reward policies
in the agent handler. These policies determine when the agent receives re-
wards and which parts of the environment the agent is allowed to observe.
The agent handler also provides several rules for actions, which determine
the kinds of actions the agent is allowed to take in order to solve the mis-
sion. State management, in the form of dividing the environment in states
and determining what constitutes a state transition, is not provided by the
platform and must be coded from scratch.

The logic that is used to determine an agent’s behaviour must be coded in
separate files. This is where learning algorithms are implemented and where
data about the observations and rewards that were received by the agent
and the actions that were taken in response can be exposed. To support
this, Project Malmo offers functionality for various programming languages,
including Python, Java, C++ and C#, with functions that expose internal
aspects of the platform. This makes it easy to connect self-written code with
the Minecraft client.

2.3.1 Server Handler

The server handler determines the time limit of a mission and the kind of
world that is created when the mission is loaded. Minecraft worlds consist of
blocks with a certain type of material, like stone, wood or lava. The mission

6

handler exposes XML definitions that allow a world to be drawn block by
block, but also offers several generators which randomly generate structures.
One such structure is the classroom structure, which consists of one or more
rooms, separated by a door or by an obstacle. Examples of such obstacles
are narrow paths across lava or a door that has to be opened by using a
lever. We will be using a customized version of the classroom structure in
our experiment.

2.3.2 Agent Handler

The agent handler is the part where all permissions regarding agent beha-
viour are defined. As mentioned earlier, this includes several concepts used
for reinforcement learning.

The first important concept of the agent handler is its use of command
permissions to determine which commands the agent can use. Commands
are predefined and simulate keyboard and mouse input in order to let the
agent mimic player behaviour. There are three categories of commands;
movement commands, chat commands and inventory commands. These
categories contain all elements related to their domains. For example, in-
ventory commands contain the commands that allow the agent to use, swap,
pick up or drop items. The agent handler provides XML definitions that
grant permission to use a category of commands. It is also possible to allow
or deny individual commands by entering them in the lists for allowed or
denied commands, which are also provided as XML definitions.

Besides command permissions, the agent handler also provides XML
definitions that determine when rewards are received and which observations
are allowed. Examples of events that trigger positive rewards are touching
a certain block type, collecting a certain item or reaching a certain position.
Negative rewards can be triggered when the mission ends before the goal is
reached or when the agent dies.

An example of observations that can be allowed are grid observations,
which look at the block the agent is standing on and all surrounding blocks
to determine their type. This can then be used to see if the agent is stan-
ding in front of obstacles like lava, a door or a wall. Other observation types
include inventory observations, which determine what items the agent pos-
sesses, observations of nearby entities, including enemies, and so-called full
stats observations, which contain information about the status of the agent,
including the coordinates of its current position, its health and whether or
not the agent is currently alive.

Finally, the agent handler offers XML definitions which determine what
events trigger the end of a mission. Examples of triggers are reaching the
specified time limit, reaching a specified maximum amount of commands,
or when the agent reaches a certain position, touches a certain block type
or collects a certain item.

7

Chapter 3

Research

3.1 Experiment

3.1.1 Setup

In this experiment we gathered data on the performance of two agents,
each of which used Q-learning in combination with one of the two different
discretization methods that we want to evaluate to solve the same mission.

This data gathering process contained two main phases: training and
evaluating. In the training phase we trained each agent on a mission. In
each of these training sessions the agent was run for a number of repeats until
a solution path was found. The rewards for discovered state-action pairs that
were learned in these repeats were saved in a lookup table as described in
section 2.2. After every 10 repeats this lookup table was exported to a file.

When all lookup tables had been exported, the evaluation phase began.
In this phase we tested the agents 10 times for their final lookup tables.
No exploration was allowed in these runs, so that the results were fully
determined by the knowledge represented in these lookup tables. The data
we gathered in each of these test runs was whether or not the agent succeeds
in finding its goal and if so, how many actions were taken before succeeding
and how long the run lasted in seconds. The solution paths of the agents
were then compared to each other by the success ratio and by how optimal
the found solutions were in terms of duration and actions taken.

To evaluate the learning process, we took the lookup tables that were
exported after every 10 runs and tested them again. Each of these tests was
then scored by how much progress towards the goal was achieved in terms
of the amount of cleared obstacles. In these runs exploration was allowed,
to simulate the actual training phase of the agent.

8

3.1.2 Mission

The mission we used in this experiment contained an environment with two
rooms with obstacles in the form of walls and lava bridges (figs. 3.1 and 3.2).

Figure 3.1: The first room of our mission, containing a wall obstacle and
one subgoal, marked with yellow ore.

Figure 3.2: The second room of our mission, containing two lava bridge
obstacles, two subgoals, marked with blue and red ore, and the final goal in
the form of a gold block.

This mission environment has a total size of 6 by 14 blocks. The agent
was spawned in the first room on a fixed starting position at the front wall.
The goal of the mission was reached upon touching the gold block, which was
placed on a fixed position at the end of the second room. Alternatively, the

9

mission could end when a time limit of 1000 seconds was reached. Subgoals
were placed at every obstacle to help the agent find the obstacles, as is com-
mon practice in Project Malmo missions. These subgoals were represented
as blocks of colored ore, with a yellow, blue or a red color. Positive rewards
were associated with touching subgoals and the final goal and negative re-
wards with touching lava. This mission was loosely modelled after missions
provided by the Project Malmo platform, but adapted to our specific needs.

3.1.3 Agents

Discretization Methods

In this experiment we tested two agents, each using a different discretization
method. For the first agent, the state space was discretized using discretiza-
tion method 1, where we limited the turn directions of the agent to the north,
east, south and west directions, or to 0, 90, 180 and 270 degree turns. Prior
to this discretization the agent could turn to any degree within a 360 degree
circle. For the second agent we used discretization method 2, which allowed
the agent to turn in the north-west, north-east, south-east and south-west
directions on top of the directions allowed in discretization method 1, the-
reby doubling the amount of directions the agent could turn to. Another
step that was taken to discretize the state space was to limit the possible X-
and Z-coordinates to whole numbers, meaning states correspond to the 1 by
1 blocks in the Minecraft world, rather than every possible combination of
X- and Z-coordinates the agent could be standing on.

For both discretization methods the states were then defined as a com-
bination of the X-coordinate, the Z-coordinate and the yaw, meaning the
degree of rotation of the agent. So taking the first method as an example, for
every valid combination of X- and Z-coordinates, there were then 4 possible
states, corresponding to the north, east, south and west directions of the
yaw. Because the X- and Z-coordinates were tied to blocks in the Minecraft
world after performing the discretization, this meant that the amount of
possible states was 4 times the amount of blocks in the mission. For the
second method there were 8 possible states for every valid combination of
X- and Z-coordinates, meaning the added turn directions doubled the state
space.

Action Selection

The actions the agent could take were continuous actions, with the exception
of the turn action which was discretized, meaning the agent turned instantly
to the desired yaw degree. The full list of possible actions was as follows:
move forwards, move backwards, strafe right, strafe left, turn right and turn
left.

10

New actions were chosen whenever the agent entered a new state, or
when an action resulted in no state change, which happened when the agent
was not moving or turning. The chosen action was determined by the ε-
greedy strategy, where generally the action that offered the best possible
known reward in the current state was chosen, but there was an ε chance
every time an action was chosen of selecting a random action instead, in
order to encourage exploration.

3.1.4 Data Visualization

For the visualization of the lookup tables, we extended an example provided
by Project Malmo for their discrete Q-learning agent. It consists of a simple
grid of X by Z rectangles (fig. 3.3), where X and Z represent the width and
depth of the mission environment.

Figure 3.3: Grid representation of the mission environment.

Each of the rectangles in the grid represents a block in the Minecraft
world, and for our discretization methods also the X- and Z-coordinate part
of our states. The white circle represents the agent. To also incorporate the
yaw part of the state, we fill the rectangles in using single state visualizations
(fig. 3.4).

In these single state visualizations the positions of the symbols represent
a yaw degree, with the top position being at 0 degrees, the right position at
90 degrees, the bottom position at 180 degrees and the left position at 270
degrees. The specific meanings of the symbols can be found in the legend.
The different colors represent different reward values, where the color green

11

(a) Method 1. (b) Method 2.

Figure 3.4: Single state visualizations for both discretization methods.

M : Move forwards M−: Move backwards

S: Strafe right S−: Strafe left

T : Turn right T−: Turn left

represents a positive reward, red represents a negative reward and yellow
represents a zero reward. Brighter colors represent bigger reward values.

3.2 Results

In this section we show the results we obtained by following the procedure
described in section 3.1.1. These results represent an example of typical be-
haviour of Q-learning agents in combination with our discretization methods
when they are run in Project Malmo.

We defined two agents and two discretization methods, along with a mis-
sion. For this section we will name the agent that runs the first discretization
method Agent 1 and the agent that runs the second discretization method
Agent 2. We let the two agents run the mission until they found a solu-
tion path, resulting in two lookup tables (fig. 3.5) and a set of intermediate
lookup tables that were exported after every 10 runs.

For each of our intermediate lookup tables, we will show what a typical
training run with the knowledge contained within that lookup table looked
like. For this we had the agent perform another training run with each inter-
mediate lookup table and we looked at the agent’s progress towards the goal
over time. This progress was determined by the number of received rewards,
where the first three received rewards meant that an obstacle towards the
goal had been cleared and the fourth reward meant that the goal had been
reached.

We wil also show the solution paths found in the final lookup tables for
each of the agents and analyze them over 10 evaluation runs based on the
following criteria:

• Success ratio

• Average actions taken

12

• Average duration in seconds

(a) Agent 1. (b) Agent 2.

Figure 3.5: Visualization of the final lookup tables using the method descri-
bed in section 3.1.4.

3.2.1 Agent 1

Learning Process

We visualized the learning process of the first agent in a graph (fig. 3.6).
This graph shows that the agent reached the second subgoal for the first
time after 20 runs, and reached it consistently after 110 runs. The reason
for the inconsistency between runs 20 and 110 is that the agent died to lava
for a lot of these runs. After run 110 most of the ways in which the agent
could die between the first and the second obstacle were known and could
be prevented.

13

The graph also shows that subgoal 3 and the goal are reached at the
same time at run 280. What this means is that while over the course of
the runs before that point, the obstacle before subgoal 3 had been cleared
enough times to learn the path from subgoal 3 to the goal, the agent took
some more time to find a full path between subgoal 2 and subgoal 3 that
reliably cleared the obstacle.

Figure 3.6: The progress of agent 1 towards the goal over time, in terms of
the amount of positive rewards it received in every tenth run.

Solution Path

For agent 1 it took 289 runs in total to find a deterministic solution path
from the starting point to the goal (fig. 3.7).

Across the 10 evaluation runs the agent scored very consistently, with
the goal being reached in every run, using the same amount of actions and
with a a difference of two seconds, or about 10% of the whole duration,
between the shortest and longest of the runs.

The average performance across the 10 evaluation runs is described in
table 3.1.

14

Figure 3.7: The solution path (in white) found by agent 1 over the course
of 286 runs.

Succes Ratio (%) 100

Average Actions Taken 25

Average Duration (s) 22.4

Table 3.1: The average performance of agent 1’s solution path over 10 eva-
luation runs.

3.2.2 Agent 2

Learning Process

Like we did for agent 1, the learning process of agent 2 has been visualized in
a graph (fig. 3.8). This graph shows that the agent reaches the first subgoal
reliably from run 10 onwards. It took the agent 80 runs to find a path from
the starting point to subgoal 2. While learning the path towards subgoal
3 and the goal, the agent was still dying to lava in some runs, as shown at
run 190 and run 300 in the graph. The relatively high state-action space

15

of the second discretization method makes it hard for the agent to learn all
the ways in which it can die, meaning it still randomly died all the way up
until the solution path was found.

The agent finds the closed path towards subgoal 3 and the final goal
relatively close after each other. In run 320 it reaches subgoal 3 and it takes
another 40 runs to finalize the solution path.

Figure 3.8: The progress of agent 2 towards the goal over time, in terms of
the amount of positive rewards it received in every tenth run.

Solution Path

It took the second agent 346 runs to find a deterministic solution path from
the starting point to the goal (fig. 3.9). Its performance for the 10 evaluation
runs was not very consistent, with the goal being found in 6 of the 10 runs,
different amounts of actions taken in all but 2 of the runs and a difference
of 4 seconds, or about 14% of the total duration, between the durations of
the longest and the shortest run.

The average performance across the 10 evaluation runs can be seen in
table 3.2.

16

Figure 3.9: The solution path (in white) found by agent 2 over the course
of 286 runs.

Succes Ratio (%) 60

Average Actions Taken 33.2

Average Duration (s) 27.7

Table 3.2: The average performance of agent 2’s solution path over 10 eva-
luation runs.

3.3 Discussion

3.3.1 Comparison of the Methods

Learning Process

In our experiment the second agent was both slower and less performant
than the first agent. To further illustrate the difference in learning speed we
combined the graphs of the learning processes of both agents into one graph
(fig. 3.10).

17

Figure 3.10: The progress of both agents towards the goal over time, in
terms of the amount of positive rewards they received in every tenth run.

This graph shows that the agent using the first discretization method
was at all points except for run 100 ahead or equal to agent 2, which uses
the second discretization method. Agent 1 also finished its learning 57 runs
ahead of agent 2, meaning it took agent 2 almost 20% longer to find a so-
lution path. A reason for this may be found in the additional movement
directions that were allowed for agent 2, because allowing movement in the
4 diagonal directions on top of the 4 straight movement directions doubles
the state-action space. This means that the agent generally has to learn the
optimal action for more states before it can find its deterministic solution
path. There are also simply more ways for the agent to die, because more
state-action pairs result in stepping into lava, meaning more runs end wit-
hout receiving rewards for subgoals further into the mission and the goal
itself.

Solution Path

An explanation for the 40% failure rate for agent 2 may be found in our use
of the second discretization method, where diagonal movement is allowed.
One shortcoming of this method is that in the case of diagonal movement
from a state, the agent can exit the state directly through the corner, to the
left of the corner or to the right of the corner, where each of these three exit
points brings the agent to a different state. So a diagonal movement action
from one state, can potentially bring the agent to three different other states.
The result then depends on where exactly the agent entered the state, which
may differ slightly between runs because of different delays in computation
or in the client-server interactions of Project Malmo.

18

This can affect the success ratio of the solution path, because there are
still many states left where the path back to the solution path is unknown
and where no other path to the goal is known. When the agent enters one
such state unexpectedly because it entered the previous state slightly to the
left or slightly to the right of the expected entry point, the goal will not be
found. More learning would be necessary to get solution paths from those
states as well.

This would potentially require a lot of repetitions, because the only op-
portunity for learning is on the rare occassion the agent accidentally gets
into one of those states. In those rare occasions the agent would then have
to randomly select the right action. On top of that in order to ensure the
correct action is taken in the future, the learned reward for this action, which
depends on the new reward and the old already known reward, would have
to be bigger than the already known rewards. Depending on the learning
rate, this itself could take several repetitions.

In the end this would not change the fact that there would likely be
multiple different outcomes with different amounts of actions taken and
with different durations, but the success ratio could become 100%.

3.3.2 Platform Related Issues

The Project Malmo Platform itself also seems to contribute to the poor
stability of the performance of agent 2. The platform only offers two ways
to offer subgoal rewards that are relevant to navigation problems, a reward
on reaching a position and a reward on touching a certain blocktype. This
first type of reward is not an option in combination with our discretiza-
tion methods, because an agent can reach the block that the position is in,
while actually passing by the precise X- and Z-coordinates that define that
position. This would make rewards in the states that move towards that
block unreliable, because the agent would not reliably get the reward for
moving towards that block. So the second type of reward was used in our
experiment.

The issue that comes along with this reward on touching a certain block
type, is that in some cases the platform somehow registers the agent touching
the block while the agent’s position coordinates are actually outside the
block that the reward is in. Therefore, the agent will not reach the subgoal
state in its internal representation of the state-action space, meaning the
received reward will be assigned to the wrong state-action pair.

The platform does not offer a way to alter the reward on touching a
certain block type functionality in order to account for these problems. It
also does not offer more precise rewards which require you to actually fully
stand on the subgoal block. These things would be necessary to make the
learning process with our discretization methods more reliable.

Another problem is caused by the communication between the agent

19

code on the client and the Minecraft environment on the server. This com-
munication consists of client-server interactions, where the server sends its
current world state when the client requests it and the client sends the com-
mands for the agent to the server. This communication causes some delay,
which sometimes causes some inconsistency between what the client believes
to be the current state of the Minecraft world and the actual state of the
Minecraft world, in particular related to the current X- and Z-coordinates of
the agent. This makes it possible for the agent to just slightly pass through
a subgoal state’s outer corner and then pass into the next state in the time
it takes for the client to finish its own operations and to receive the new
world state. The reward is then assigned to the wrong state.

20

Chapter 4

Conclusions

The main goal of our research was to compare two discretization methods,
based on their learning process and their final solution path. In the first
method we discretized the state-action space so that the agent could only
move in the north, south, east and west directions, while in the second
method we also allowed movement in the north-west, south-west, south-east
and north-east directions. We expected the first method to be faster and
the second method to perform better in a tradeoff between learning speed
and performance. The results show that this tradeoff did not occur in our
experiment and that the first method learned faster and performed better.

Therefore trying to make the discretization of the continuous state-action
space more precise by allowing movement in more directions did not improve
the performance of the agent within a reasonable timeframe.

We also showed some of the functionality of the Project Malmo plat-
form. When it came to implementing our agents with the Q-learning al-
gorithm and the two discretization methods and our mission as an envi-
ronment with an underlying MDP, Malmo offered all the functionality we
needed and more. We did however encounter some very specific problems
with the interaction between Project Malmo and our discretization methods
(section 3.3.2), which could have been solved with some slight alterations
of existing functionality. The platform makes it very easy to represent Mi-
necraft environments as MDPs through its mission system and also offers a
lot of template code and missions up front. Importantly, the platform also
works as documented, meaning we spent very little time debugging.

The platform does not provide a lot of functionality for visualizing and
analysing algorithms and methods. It does however provide the opportunity
to quickly and easily generate a lot of data about the performance of an
algorithm by letting an agent actually apply the algorithm to problems of
varying complexity within Minecraft. It also provides some examples on
how to visualize this data.

21

So overall the Project Malmo platform is very useful for implementing,
visualizing and analyzing learning algorithms.

22

Bibliography

[1] Johnson M., Hofmann K., Hutton T., and Bignell D. The Malmo Plat-
form for Artificial Intelligence Experimentation. In Kambhampati S.,
editor, Proc. 25th International Joint Conference on Artificial Intel-
ligence, page 4246. AAAI Press, Palo Alto, California USA., (2016).
https://github.com/Microsoft/malmo.

[2] J. C. Santamaŕıa, R. S. Sutton, and A. Ram. Experiments with rein-
forcement learning in problems with continuous state and action spaces.
Adaptive behaviour, 6(2):163–217, 1997.

[3] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction,
volume 1. Cambridge: MIT press, 1998.

[4] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–
292, 1992.

23

