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Abstract

The task of determining the activity a subject is performing at a specific time
by using sensor data is called Human Activity Recognition. This work aims
to utilize supervised learning techniques with data from different sensors
placed on the body, providing details about all stages of the classification
process. Both the more practical aspects from body sensing, as well as the
more theoretical aspects of machine learning, in particular random forests,
are discussed. Our main goal is a high rate of correct predictions, making
Human Activity Recognition systems more useful for monitoring behavior,
benefiting the health care sector and medical sciences. Afterwards we re-
flect on the classification process by looking for pairs of activities that are
confused with each other more often. As a third aim, this thesis attempts
to identify the important sensors, which should be used for a better predic-
tion. We reached an accuracy score of 0.87. In the rest of our findings we
present an overview, showing the degree of confusion between activities and
a ranking for features, which translates back to a ranking of sensors.
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Chapter 1

Introduction

In our society today there is a shift in the distribution of age due to declining
fertility rates and an increase in the average life expectancy. Combine this
with the fact that the world population is also growing and we can see why
the health care sector is rapidly growing. In order to reduce strain on health
care staff and costs, a smart system that can support and monitor elderly at
home is desirable. Recognizing behavior of patients is crucial in this process.

The task of determining the activity a subject is performing at a specific
time by using sensor data is called Human Activity Recognition (HAR).
Early attempts to recognize human activity date back to the 80’s. HAR has
become a broad and active research area since hardware has become cheaper,
smaller and faster. HAR has two main issues. The first one is choosing the
right setup and sensors for a set of activities. The second issue is going from
raw data to a prediction using machine learning techniques. HAR has a wide
range of applications, particularly in medical science. Automated HAR is
desired for researching effects of lifestyle on overall health by giving insights
into the physiological activity of a subject and can also aid in diagnosing
some diseases like sleep apnea or Parkinson’s disease [19] or can be used to
alarm medical personnel in case of abnormal activities like falling, strokes,
seizures and heart attack or find causes of abnormal activity [2, 24].

In fields as the military and sports there exist a high interest in HAR
systems. Safety and performance of the human body are critical. In both
fields health conditions and activities could be monitored, benefiting the
safety and performance of the soldier or athlete.

Human interaction with portable devices is growing rapidly. Nearly ev-
ery adult carries some kind of mobile device through a large portion of the
day. Most people have a smart phone and in some cases a smart watch. Due
to advances in technology these mobile devices are equipped with a variety
of sensors. Some examples of sensors that can be found in modern phones
are an accelerometer, fingerprint sensor, barometer, gyroscope, geomagnetic
sensor, hall sensor, heart rate sensor and a proximity sensor. The availabil-
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Figure 1.1: Taxonomy of sensors

ity of data provided by these sensors gives us an opportunity to monitor
behavior of a user and his surroundings. Figure 1 shows a taxonomy of
sensors [18].

One approach is placing sensors on the body of a subject. This is called
body sensing. This has the advantage of collecting more specific data for
areas of the body. Wearable sensors for example can be used to monitor
physiological attributes like brain activity, heart rate, body temperature
and blood pressure. Wearable sensors can also capture motion using ac-
celerometers and gyroscopes placed on different body parts. Sensors can be
placed in clothes, devices, glasses and shoes.

Another approach is based on external sensors, which focus on the envi-
ronment of the subject. External sensors are not placed on the body, but are
placed on points of interest. Points of interest depend on the analysis being
done. Frequently used points include fridge, bed, shower, kitchen, hallway
and living room. External sensors capture environment attributes such as
light, temperature and sound. Especially camera’s and microphones are used
a lot. A downside to this approach is that the sensors have to be placed
beforehand and subjects might be out a sight too much for useful analy-
sis. Consider the situation of multiple people in a room. Wearable sensors
might have the advantage since camera’s might have difficulty with hin-
dered sight. Another downside is complexity. Constant analysis of camera
recording might cost to much resources, especially in real time applications.
An advantage of external sensors is that interaction between subject and
environment can be monitored. On camera there is a distinction between
a fridge door and a ordinary door, while this distinction is hard to make
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with wearable sensors. In some cases this distinction might be relevant, for
example in research on eating habits. The external sensor approach has
applications particularly in smart homes [22, 21, 15, 25].

In this research we are taking the body sensing approach. There is a
wide variety of sensors to choose from (figure 1.1). For a specific set of ac-
tivities, a specific set of attributes is relevant. Based on those attributes a
setup can be chosen. Mostly accelerometers are used for motion in combi-
nation with gyroscopes. Environment attributes, such as light, temperature
and sound might be relevant for some activities. They might for example
be used to decide whether an activity is an outside activity or an inside
activity. Physiological sensors can monitor brain activity or vital signs such
as heart rate, body temperature and blood pressure, giving a indication on
the physiological state of the subject. When motion of two activities are
similar, think of jogging and sprinting, these can make a distinction based
on the intensity of an activity by monitoring heart rate. In the next chapter
I will give more details about the sensor setup.

Another issue [18] in choosing wearable sensors is obtrusiveness. Wear-
able sensors each have a level of obtrusiveness. Wearing sensors can hinder
the subject while performing activities. Some sensors might need wires or
might be heavy, resulting in high obtrusiveness. Ideally, the subject doesn’t
notice that he’s wearing sensors. Therefore a lot of HAR systems are based
on phones and watches [17, 10, 23].

There is also a variety of machine learning techniques being used, both
in the preprocessing phase (selection of features) and the actual classifica-
tion phase. Some classifiers that are used are neural networks [17], Hidden
Markov Model [22], Support Vector Machines [1], K-NN [16], Decision Trees
[23, 17], Naive Bayes [23, 21], Logistic Regression [17] and Random Forests
[23].

As we can see there are a lot of different approaches in the field of HAR.
In this work we are providing a new framework for activity recognition using
supervised learning, focusing on the machine learning aspect of HAR. We
decided to use a Random Forest classifier. The MHEALTH dataset is used
http://archive.ics.uci.edu/ml/datasets/MHEALTH+Dataset for which
measurement was done with wearable sensors. As a second aim, we we will
be focusing on which pairs of activities are confused more often with each
other in this process. And as a third aim, this work will attempt to identify
the most important sensors.

The remainder of this work is structured as follows:
Chapter 2 describes background information on HAR systems, classifi-

cation in general and provides a theoretical background on Random Forests
and feature extraction.

Chapter 3 describes the details of the data preparation. It includes
details on the setup that was used to gather data, the set of activities and
preprocessing steps.
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In Chapter 4 summarizes the results of this work.
Chapter 5 summarizes this thesis and discusses its findings, limitations

and future work.
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Chapter 2

Preliminaries

2.1 HAR system architecture

In this work we consider the case of wearable sensors. In figure 2.1 a typical
structure of such a HAR system is depicted [18, based on figure 2, p. 1194].
Wearable sensors attached to a person measure attributes. Typical sensors
are ECG, accelerometer, magnetometer, gyroscopes and heart monitoring
sensors. Output of these sensors is sent to a integration device such as a
mobile phone or a laptop. The data streams of different sensors are bundled
in this phase. Now that the data is stored on one device, the data can be pre-
processed locally or could be used for real time monitoring. Larger datasets
with data from multiple subjects can be acquired by sending the data over
a communication channel such as Wi-Fi and Internet to a remote server.
Note that there exists a lot of variety between setups. A simpler setup as
depicted is sometimes used. For example a single unit [11], with multiple
integrated sensors that can store aggregated data on an SD card, could be
preferred. In that case the sensor unit is also the integration and storage
device. These units are commercially available nowadays. The downsides
to this setup are that pre-processing might be limited due to less processing
power and a smaller storage capacity. Aggregating data from different sub-
jects also has to be done afterwards if this is desired.

Figure 2.1: A typical structure of a HAR system
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2.2 The classification pipeline

A classification task consists of multiple phases. A typical pipeline for clas-
sification is depicted in figure 2.2. It starts with raw sensor data, which
can contain outliers due to measurement errors. In the pre-processing phase
these outliers are removed. Analyzing data without removing outliers can
cause misleading results.

Then features are extracted. For some attributes it is beneficial to use
derived values instead of the actual values. Derived values could be simple
statistical features, such as means, standard deviations, maximum values
and minimum values. In time series data, feature extraction reduces data
points by binning values in time windows. Multiple measurements taken in
a window size are combined into one value resulting in a smaller, derived
data set. This may also reduce overfitting in later stages of the classification
pipeline. The reasoning behind binning samples is that a single sample
provides information for a very small time frame, since sensors often have
a high sampling rate. Activities take relatively long (multiple seconds, or
multiple minutes), this means that information from a single sample doesn’t
tell us that much about the activity being performed and it thus makes sense
to take a window size.

After we extracted the features, train and test subsets are chosen. The
training data is then used to fit a model. The model uses learning algo-
rithms to fit a model using the training set. A fitted model can make a
prediction, if given a sample. The test data is used to evaluate the fitted
model. In the next section we will give a more detailed explanation on a
popular supervised machine learning classifier, a random forest.

Sensor
signal

Prepro-
cessing

Model
Fitting

Pre-
diction

Eval-
uation

Figure 2.2: HAR pipeline using sensor data

2.3 Feature extraction

As explained above, it is beneficial to use derived values of signal data.
Determining how to derive these values is an important step in the pre-
processing phase. The discriminative power of these derivations influence
the classification. Typically used in HAR are the statistical functions mean,
standard deviation, maximum and minimum, because they discriminate well
in the acceleration domain [6, 20, 13, 17].
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Note that making features increases computational cost, which means
the number of features should be kept to a minimum if performance is an
issue. Choosing the relevant features from a set of features will be discussed
in subsection 2.4.2

2.4 Random forest classifier

Classification in supervised learning is the problem of identifying to which
category a sample belongs to by learning from a training set with correctly
labeled data. In HAR this means that we want to identify the activity the
subject is performing in a given time window with a model that learned from
correctly labeled training data. There are a lot of classification methods to
choose from when encountering a classification problem. They arose from
different fields of computer science, statistics and mathematics and a lot of
these have implementations available. There is no classifier that performs
best on every problem given. To determine which classifier is suited for our
problem we will take a look at the work “Do we need hundreds of classifiers to
solve real world classification problem” [12], which evaluated 179 classifiers
from 17 families with over 100 different data sets. This work concludes that
classifiers most likely to be the best for real world classification problems
are random forest classifiers. In the next section we will explain the concept
of a random forest classifier, which will be used later on in this work.

2.4.1 Algorithm

Random forest classifiers are based on random classification trees incorpo-
rated into an ensemble. Leo Breiman modified a technique called bootstrap
aggregation (bagging) [8] to build a collection of de-correlated trees and
called the resulting technique random forests. There are a lot of variations
and different implementations, but here we will explain the general con-
cept. A number of decision tree classifiers are fit on sub-sets of the data
set. After growing the ensemble of trees, there is a poll amongst the trees
for the most popular class. Predictive accuracy is increased by averaging
results from these trees. We are going to assume the reader is familiar with
decision trees and take a look at a random forest algorithm (figure 2.3) for
classification.

The algorithm starts with selecting the number of trees. Each tree is
constructed on a random subset of the data. In the next step each tree is
grown using the bootstrapped data for that tree. This is done by selecting m
features from the set of features in the data, at random. Recommendation

from the inventors states that the default value for m should be
⌊√

(p)
⌋
, but

optimal values depend on the problem and therefore the parameters of the
algorithm might need some tuning. For every of those m selected features,
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Figure 2.3: Random forest algorithm, from [14, p. 588]

a split is done and from those splits the best is selected. The quality of
the splits is assessed using impurity functions such as Gini and the entropy,
which both are a measure of misclassification.

Gini [7, p. 42]:

φ(p) =
∑

j pj(1 − pj)

j denotes a class and pj is the probability of items labeled with j.

Entropy [7, p. 42]:

φ(p) = −
∑

j pj log pj

In the next step of the algorithm the node is split, using the best split
found in the previous step. Note that the algorithm is recursive in terminal
nodes of the trees. It stops when the minimum node size nmin is reached.
The set of all the trees formed is the ensemble. Classification of a test point
is done, by pushing it through all the trees in the ensemble until a leave is
reached and then a majority vote is held amongst the trees.

2.4.2 Feature importance

To determine which sensors are most important for HAR we are going to
take a look at the extracted features of that sensor. Importance of features
can be measured in multiple ways.

One approach to measure feature importance is by performing statistical
permutation tests. Breiman came up with this approach as a first step, but
said that more research would be necessary to understand this mechanism
[9]. The idea is to measure the decrease in accuracy, using out-of-the-bag
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data. After the trees are constructed, one feature of the out-of-the-bag
samples is randomly permuted and run down the corresponding tree. The
predicted classes for each sample is stored. This procedure is done for every
feature and afterwards the votes are compared to the true class label. The
result is a measurement of misclassification when a feature noised up.

Another approach is based on Gini feature importance, often called Me-
anDecreaseGini. In the process of training each tree, splits are assessed
using impurity functions such as Gini. Every time a node is split the Gini
impurity of the two descendant nodes is smaller than the parent node.

D = Giniparent - Ginichild1 - Ginichild2

where D denotes the decrease in Gini from the split performed

The importance of a variable is measured by taking all the splits the
variable is involved in across the whole forest and average the decreases in
Gini. From these values a ranking on importance can be made. The highest
value (highest decrease in Gini) belongs to the most important feature for
classification. Results from these two approaches are often consistent. But
the Gini approach is a relatively cheap option by means of performance.
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Chapter 3

Data Preparation

In this chapter we will go over the details of the data preparation (also called
preprocessing in figure 2.2). It provides practical information on how the
research was conducted and provides insights on the decisions, that had to
be made along the way. First we will start of with the origin of the data.

3.1 Experimental set-up

The MHEALTH (Mobile health) is a dataset available at http://archive.
ics.uci.edu/ml/datasets/MHEALTH+Dataset [4]. Motion and vital signs
of volunteers were measured using wearable sensors while performing several
physical activities with periods of rest between them. Ten volunteers of
diverse profile were asked to perform 12 basic physical activities (table 3.1)
to the best of their abilities. Sensors were placed on the subject’s chest,
right wrist, and left ankle using elastic straps, as depicted in figure 3.1.
Accelerometers, gyroscopes and magnetometers for X,Y and Z axis were used
to capture three dimensional movement. These are embedded in Shimmer2
sensors (the white boxes in figure 3.1) [11]. The blue sensors attached to
the chest and stomach are used for ECG measurements.

The units of measurement for the accelerometers, gyroscopes and mag-
netometers are in m/s2, deg/s and local respectively. Additional ECG mea-
surements were taken with sensors on the chest in mV. This information can
potentially be used for simple heart monitoring or effects of the activities on
the ECG signal. All the sensors used have a sampling rate of 50 Hz. Each
session was recorded using a video camera. The video recordings were used
to label the data and to check for anomalies in the signal.
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Figure 3.1: The sensors placed on the body of a subject. From [5, p13,
figure 5]
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3.1.1 Activities

The activities consist of simple daily life things. The activities have different
intensities, speeds and motions and therefore should be distinguishable.

Activity Description Duration

L1 Standing still 1 min

L2 Sitting and relaxing 1 min

L3 Lying down 1 min

L4 Walking 1 min

L5 Climbing stairs 1 min

L6 Waist bends forward 20x

L7 Frontal elevation of arms 20x

L8 Knees bending (crouching) 20x

L9 Cycling 1 min

L10 Jogging 1 min

L11 Running 1 min

L12 Jump front and back 20x

Table 3.1: The activity set

3.1.2 Storage format

The data is collected separately for each of the subjects and stored in a log
file. Each row in this file is a sample with the different sensors as column
(table 3.2). The last column is the label. Labels range from 0 to 12. 0 for
the null class and for the activities the numbers from table 3.1 are used.
The null class label was used as a transition phase between activities, as for
example ECG signals might still be elevated from the previous activity.

3.2 Preprocessing

Now we know how the data was gathered and stored, we can start preparing
it for use in a random forest classifier. We chose to do our experiment in
Python using scikit-learn, a free machine learning library. Scikit-learn has
various features for data analysis. For our research, features for prepro-
cessing as well as classification, evaluation and visualizing data using plots
would come in handy.

The raw data of each subject is split on lines to retrieve a sample. Sensor
values in a sample were tab-separated. After splitting on tabs and casting

13
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Column Sensor Bodypart Axis

0 acceleration chest X

1 acceleration chest Y

2 acceleration chest Z

3 electrocardiogram signal chest lead 1

4 electrocardiogram signal chest lead 2

5 acceleration left-ankle X

6 acceleration left-ankle Y

7 acceleration left-ankle Z

8 gyro left-ankle X

9 gyro left-ankle Y

10 gyro left-ankle Z

11 magnetometer left-ankle X

12 magnetometer left-ankle Y

13 magnetometer left-ankle Z

14 acceleration right-lower-arm X

15 acceleration right-lower-arm Y

16 acceleration right-lower-arm Z

17 gyro right-lower-arm X

18 gyro right-lower-arm Y

19 gyro right-lower-arm Z

20 magnetometer right-lower-arm X

21 magnetometer right-lower-arm Y

22 magnetometer right-lower-arm Z

23 Label (0 for the null class)

Table 3.2: Dataset file
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to floats, we end up with a matrix, where each row is a sample and in each
column the values for one of the sensors (table 3.1).

3.2.1 Segmentation

We started of by making segments of samples for each subject. This was
done separately for each subject, because it wouldn’t make sense to make a
segment that combines samples from two different subjects. Segmentation
is a preparation step before feature extraction. The data was ordered in
chunks of the same class. From those chunks a few of the first samples
were removed so that in the next step, segments where every class label
is identical, would be formed. Segments were chosen to be the size of 100
samples, which is equal to a window of 2 seconds. This specific window
size is thought to be a good trade-off between speed and accuracy [3]. By
making features from the newly formed segments the number of data points
is reduced by a factor of roughly 100, which will speed up the classification
process. Performance is not our main concern, but it should always be taken
into account. Note that a bigger window size has the advantage of increasing
the accuracy (see explanation given in 2.2). Afterwards data from different
subjects were combined to one matrix. In our implementation we kept track
of which sample belongs to which subject, as this is needed in the evaluation
phase.

3.2.2 Feature extraction

We chose to extract features using the statistical functions mean, standard
deviation, maximum and minimum. As explained in section 2.3 features
made from these functions seem to be typically used in HAR, because they
discriminate well in the acceleration domain [6, 20, 13, 17]. This means we
will end up with 23 ∗ 4 = 92 features. The basic idea is to take slices, with
the size of the window size, of the original matrix and then form a new
smaller derived matrix from the results of these functions.

Mean

The mean is the sum of each element divided by the total number of ele-
ments, given by:

x̄ = 1
n

n∑
i=1

xi

Standard deviation

The standard deviation is the square root of the average of the squared
deviations from the mean. We used the implementation of NumPy, with
the degrees of freedom parameter set to 1, resulting in:
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s =

√
1

N−1

N∑
i=1

(xi − x)2

Max

The maximum is the highest value of each element.

Min

The minimum is the lowest value of each element.

3.2.3 Class distribution

After extracting features we noticed that the null class had significantly
more data points (figure 3.2). An unbalanced dataset might lead to a model
that will predict the null class a lot, since it occurs so much in the dataset.
We came up with two different strategies to handle with this. The first one
is simply removing some instances of the null class. We chose to remove the
first 95 percent of the data points with class null per subject to make the
classes balanced (figure 3.2). We chose to do this in the preprocessing phase.
Later on 10 fold cross validation will be used to test the classifier. Note that
because we remove instances of the null class before making a test and train
split, the test data will contain significantly less instances of the null class
as well. In the solution, we provide next, we will use weights on classes to
make the two solutions comparable. By using weights we can make the null
class less important, which is comparable to removing instances of the null
class.

The second solution is classifying in two steps. In the first step a binary
classifier is used to distinguish between the null class and the rest of the
classes. In the second step a multi-class classifier is used to predict the
exact class, if in the previous step it was predicted to not be from the
null class. Note that these are two separate random forest classifiers. As
mentioned above, we had to weigh classes differently to make it comparable
to the first solution. Our main goal was to adjust the weights in a manner
that is similar to having a test set with an even distribution in classes, as
in the previous solution. We chose to weigh not null classes 3 times as hard
as the null class in step 1, since not null classes combined only had 4 times
more instances as the null class and in the previous step this was roughly 12
times. In the second step we weighed the not null classes 30 times as hard
as the null class to mimic a balanced test set, since each class occurred 30
times less than the null class. This seemed to be simplest fix for this issue.
We will discuss the results of these two solutions in chapter 4.
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Figure 3.2: Class histogram before removing samples from the rest class

Figure 3.3: Class histogram after removing samples from the rest class
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Chapter 4

Results

4.1 Classification performance

Table 4.1 depicts the results for both solutions. The accuracy score of classi-
fying in two steps was generally worse comparing to the score of the solution
with removed samples. We chose to use 10 fold cross validation to test clas-
sifiers.

Solution Accuracy score

Removing samples 0.87

Two step classification 0.75

Table 4.1: Comparison between the two solutions

4.2 Analysis on the first solution

In this section we will analyze the first solution, where we removed samples
of the null class. Figure 4.1 shows the confusion matrix of the classification.
It shows the number of correct predictions on the diagonal. The rest of the
matrix shows the incorrectly predicted instances and their true label.

The first thing we noticed by looking at the confusion matrix was that
null class and the activities with a low intensity were confused a lot. This
is mostly seen when the true label is null. This seems logical, because
in the time frame between activities indicators of intensity might still be
elevated. A second thing we noticed, is a lot of confusion between running
and jogging. These activities are much alike with regard to movements, but
are different in intensity. Jogging is more confused for running than the
other way around, which indicates that the intensity of jogging might be a
bit overestimated.

18



Figure 4.1: Confusion matrix of classification using random forest.

4.2.1 Feature importance

Figure 4.2 shows the ranking in importances of all created features. Min,
max, std and mean stand for the statistical function used and the number
afterwards stands for the specific sensor, placed on a specific body part,
capturing a specific angle (see table 3.2). For example max11, the highest
ranked feature, stands for the maximum value for magnetometer placed on
left-ankle (X axis).
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Figure 4.2: Feature importance ranking.

The translation of the plot in figure 4.2 results in the ranking depicted
in table 4.2.

Rank Feature

1 maximum magnetometer left-ankle sensor (X axis)

2 standard deviation acceleration left-ankle sensor (Z axis)

3 standard deviation magnetometer left-ankle sensor (X axis)

4 standard deviation acceleration left-ankle sensor (Y axis)

5 maximum acceleration chest sensor (X axis)

Table 4.2: Top 5 features

Table 4.2 indicates that features derived from the magnetometer on the
left ankle in X axis is the most effective sensor for recognizing activities,
followed by features derived from the acceleration sensor on the left-ankle
in as-well Z as Y direction. Note that top four features are all derived from
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sensor data from the left-ankle. This indicates the sensor placed on the foot
is critical for this specific set of activities.
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Chapter 5

Discussion

5.1 Findings

5.1.1 Classification performance

As table 4.1 shows, we reached a accuracy of 0.87 in the case where we
removed samples in the data preparation phase. Related work [5] shows
results in the same order of magnitude, if we consider the fact that in that
work they only evaluated the activity classes, excluding the null class. Ex-
cluding evaluation on the null class is something we consider for future work,
since it is not regarded as an activity. For HAR it might be more relevant
to exclude it.

Confusion between activities

In the previous chapter we considered the confusion matrix in table 4.1 and
found that the most confused activities were jogging and running. Jogging
was more confused for running than the other way around. Related work [5]
also reported the most confusion between these activities. Jogging and run-
ning are much alike activities. In most humans, motions of these activities
are roughly the same. A distinction can be made by looking at the intensity.
Table 3.2 depicts all sensors that were placed. We will consider standard
deviation from the acceleration of the left ankle in Z-axis as a feature that
could indicate levels of intensity and then compare the means of this feature
where running is predicted, but jogging was performed, to means of where
it actually is jogging. In table 5.1 we can see that these values are quite
similar. Similarity indicates that this feature is a factor in the confusion
between these activities.
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Case Mean std acceleration left ankle (Z-axis)

Predicts running, is jogging 9.4

Jogging 8.9

Table 5.1: Comparison between mean values

5.1.2 Feature importance

In the previous chapter we concluded that the acceleration sensor and the
magnetometer on the left ankle were critical for recognizing activities, which
indicates foot sensors are important, since no sensors were placed on the right
foot of a subject. An explanation for the importance of the acceleration sen-
sor on the left ankle might be that a lot can be told from non moving feet
versus moving feet. Moving feet has to mean a subject is either walking,
climbing stairs, cycling, jogging, running or jumping front and back. Non
moving feet indicates a subject is either standing still, sitting and relax-
ing, lying down, doing waist bends, performing frontal elevation of arms or
crouching. This split results in a lot of information gain.

We found it hard to find an explanation for the importance of the mag-
netometer, as we lack the knowledge about the physics of magnetism. Our
theory is that values from the magnetometer also indicate movement, since
a magnetic field might be different at a different location.
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