
Bachelor thesis
Computer Science

Radboud University

Exploring Variable Ranges in
Machine Learned Models

Author:
Robin Tonen
s4486668

First supervisor/assessor:
B.P.J. Stienen, MSc

b.stienen@science.ru.nl

Second supervisor:
prof. dr. T.M. Heskes

tomh@cs.ru.nl

August 21, 2017

Abstract

Experiments, simulations and machine learned models can all be used as
ways of classifying a set of data into a certain class. When the dimensionality
of the input data starts getting larger, classification results like this become
difficult for humans to comprehend; it’s no longer possible to easily visualize
how the various parameters contribute to the given answer. A novel approach
for exploring and ranking the influence of input parameters of a Random
Forest classifier is given. This method is successfully used to show slice
thickness of an exclusion plot based on particle physics data.

Acknowledgements

Bob, thank you so much for providing me a chance to work with a subject so
wholly outside of my comfort zone. Thank you for putting in the time and
effort to try getting me at least the slightest bit educated about a complex
and utterly fascinating field of science. Tom, please keep teaching. It’s
thanks to your courses that I’ve found the things that interest me. Data
sciences are an amazing field, and I’d have never thought of it were it not
for your inspirational lectures.

1

Contents

1 Introduction 4

2 Preliminaries 5
2.1 Machine Learning . 5

2.1.1 Classification . 5
2.1.2 Validity . 7

2.2 Supersymmetry . 10
2.2.1 Standard Model . 10
2.2.2 Supersymmetry . 12
2.2.3 pMSSM . 12

2.3 SUSY-AI . 13
2.3.1 Computer Simulation 13
2.3.2 Further Analysis . 13

3 Research 15
3.1 Dissecting Random Forest Classifiers 15

3.1.1 Model Explanation . 15
3.1.2 Different Perspective 17
3.1.3 Consequences . 17

3.2 Creating Region Model . 18
3.2.1 Algorithm . 18

3.3 Using the Model . 19
3.3.1 Classification . 19
3.3.2 Boundary Checking 20

3.4 Slice Thickness in SUSY-AI data 23
3.4.1 Problem Definition . 23
3.4.2 Code . 24
3.4.3 Example Results . 24

4 Conclusions 27

A Appendix 30
A.1 Complexity . 30

2

A.1.1 Model Generation . 30
A.1.2 Model Usage . 31

3

Chapter 1

Introduction

There’s a clear hierarchy in the complexity and cost of gathering experi-
mental data when it comes to High Energy Physics. An actual physical
experiment, like the ATLAS detector at the CERN institute is an expensive
project that takes a significant time to set up, run and interpret. Using a
computer simulation to give an approximate prediction of such an experi-
ment is significantly faster and cheaper, but still requires a large computing
infrastructure[5]. Lastly, a prediction can be made using a Machine Learn-
ing classifier that has been trained on already produced or simulated data;
taking no more than seconds on simple consumer hardware [4]. While pre-
dictions from these models can’t be used to provide conclusive answers to
physical questions on their own, predictions can be used to define parameters
for more expensive simulations and experiments.

Using a model in this way can be difficult, as manual interpretation of results
is required for deciding the next course of action. Of course we could simply
brute-force our sampling of the entire parameter space; but even with the
relative performance of a Machine Learned model this process scales terribly
with parameter dimensionality.

Instead of brute-forcing, knowledge of the Machine Learned model can be
used to provide information on parameter variance; Given a known classifica-
tion, the extent to which parameters can be altered before model certainty
is impacted can be gleaned from observing the model itself. This thesis
presents a method for transforming a trained Random Forest Classifier to a
new model suitable for such parameter variance exploration. First, explana-
tions will be given on the basics of both machine learning and the physical
theory we’re hoping to explore. We’ll discuss the specific machine learned
model used for exploring the problem area. This model will then be rewritten
to a new model that may be used more efficiently in some ways. This new
model is then used to show validity and showcase example usage scenarios.

4

Chapter 2

Preliminaries

In this chapter, information is given about the concept of Machine Learning;
Explaining the basics of how this technique is used in classification problems.
Secondly, a very short introduction to a proposed theory in High Energy
Physics will be presented. Finally we’ll show an example of an existing
Machine Learning model applied to investigating this proposed theory.

2.1 Machine Learning

Extracting meaningful information from large sets of data is a large and ever
increasing field in computer science. A technique used in such data analysis
is Machine Learning; a collection of several methods and techniques that
allow a computer to learn about and provide insights on sets of data. A
computer model is fed information in order for the model to learn properties
and patterns in that data. This model can then be used to predict properties
of new (similar) data [11]. Such models are often primarily or at least partly
generated and modified by the computer during the process of learning about
the dataset.

2.1.1 Classification

One of the areas Machine Learning can be applied to is that of labeling data.
Two methods to do this are classification models and regression models;
methods where knowledge of a given set of data is used to apply a label to
newly presented data. The difference between the two methods lies between
the resulting labels. The labels can either be said to be belonging to a series
of discrete, distinct classes. Or the target label may be an element of a
continuous series. In the former case, we refer to a classification model, the

5

latter case is a regression model.The difference may best be illustrated with
a pair of examples.

Classification A model can be trained on a set of data detailing financial
transactions. This data is distributed in two classes: A trans-
action is either a legitimate transaction, or a fraudulent trans-
action. New transactions fed to the model are labeled one of
these two classes.

Regression A model can be trained on weather data. Given information
about a new day, it may predict the amount of rain expected
to fall that day. Such a result is given on a continuous scale
of, for example, millimeters.

Applying Machine Learning to these concepts is typically done by generating
a model and presenting that model with a collection of data to train it, as
illustrated in Figure 2.1. In some types of model these steps are one and
the same. An example of such a model is the Random Forest model. In
other types, model creation and training are distinct steps, for example a
Neural Network. Finally, we can use the trained model to predict a label
for a new point of data, illustrated in Figure 2.2. Variations on this can be
made, including how much of the model is pre-determined, which parameters
in the dataset are used for training and labeling, and whether information
about classes is provided along with the training data. The case where class
information is given is called supervised learning; unsupervised learning is
where it’s left up to the computer to distribute the data into classes on
its own. In the remainder of this thesis we’ll be dealing with supervised
classification and classifiers.

Figure 2.1: Supervised Classification training.

Figure 2.2: Classification using trained model.

6

2.1.2 Validity

The quality of a trained model is usually determined by presenting the model
a set of testing data. Several measures can then be calculated from the results
of this labeling. In general, for each class C we can divide the results in four
groups:

True Positive (TP) A point of data in the training set which belongs to
class C, and has been correctly labeled as such by the
model.

False Positive (FP) A point of data in the training set which does not be-
long to class C, but has incorrectly been labeled as such
by the model.

True Negative (TN) A point of data in the training set which does not be-
long to class C, and has correctly not been labeled as
such by the model.

False Negative (FN) A point of data in the training set which belongs to
class C, but has incorrectly not been labeled as such
by the model.

There exist several measures, but the shared property is trying to maximize
TN and TN rates, while minimising TP and FN rates. For example, we
can calculate the accuracy of the model by taking the fraction of correctly
classified points. Having access to the previously detailed numbers we may
calculate it as such:

Accuracy =
TP + TN

TP + FP + FN + TN

Another pair of metrics we can calculate are the True Positive Rate (TPR)
and False Positive Rate (FPR):

TPR =
TP

TP + FN

FPR =
FP

FP + TN

It is typical to repeatedly modify configuration variables of a model to at-
tempt to obtain as high a classifier rating as possible. A way of visualizing
such a rating is by means of an ROC curve [12], which uses the TPR and
FPR. A higher rating will drift the curve towards the top left, while a pure
50/50 guess is represented by the diagonal. An example of such a curve is
given in Figure 2.3.

We separate the known data used to generate the model into training and
testing data to minimise the problem of overfitting. Were we to use the same

7

Figure 2.3: Example ROC Curve (©scikit-learn developers)

dataset for both training and testing, increasing classifier rating could very
well mean a severe decrease in performance for new, unknown data. The
model becomes too specifically tuned on noise in the original data, instead
of the actual data characteristics that we want to train it on. Separating test
and training data reduces but does not completely alleviate the problem of
overfitting. An example of overfitting is given by the green line in Figure 2.4,
where the black line would represent a classifier that will provide a better
classification to new data points.

An important observation here is that Machine Learning operates on purely
mathematical interpretation of the presented data, and has no understanding
of the underlying problem or nature of the data. This is both a positive
and a negative; on one side it’s sometimes difficult for a computer to see a
connection that a human with intimate knowledge of the problem area might
easily identify. On the other hand, the computer operates without prior
assumptions, and may find connections and patterns in the data completely
invisible or overlooked by human observers. In the next section, we’ll discuss
the background and use of a classifier on a dataset.

8

Figure 2.4: Overfitting example. Two classes (Red and blue), an overfit-
ted classification (green, wavy line) and a more ideal classification (black,
smoothed line). (aCreative Commons, Chabacano)

9

2.2 Supersymmetry

This paper will not focus on physics. However, a brief outline is given of
some relevant concepts. For a significantly more elaborate introduction to
these concepts, I gladly refer to Bob Stienen’s Master’s thesis. [13]

2.2.1 Standard Model

An ongoing problem in physics is the search for an aptly called ’Theory of
Everything’; a mathematical description of the universe and all its contents.
As of now, no such model has been found that can pass experimental tests.
There are however several models that explain at least a subset of physical
phenomena and aspects of the universe. One such model, that does very
well to explain matter and forces is the so called ’Standard Model’. This
model explains matter as a composition of elementary particles, and the
interaction between various particles by the exchange of force particles. A
diagram showing the various elementary particles in the Standard Model is
shown in Figure 2.5.

The standard model is very accurate in describing these parts of nature, and
experiments show no significant deviation between its predictions and actual
measurements. However, there are some known shortcomings to the model.
Most importantly, it fails to explain several concepts in physics;

Dark Matter The presence of more matter than just the optically visible
matter has been theorized and hinted at by experiments. This
matter is referred to as ’Dark Matter’, alleging to its yet un-
observed nature. No particle in the Standard Model is fulfills
the requirements to be able to be this Dark Matter, either be-
cause such a particle cannot exist in sufficient quantities for
extended periods of time, or because such a construct would
already have been observable.

Gravity Various physical models exist to explain gravity at a quan-
tum scale. However, such models are incompatible with the
Standard Model; which does not contain a particle that can
adequately account for gravity.

These, and various other problems with the Standard Model call for a re-
placement or extensions of the model, in order to explain a greater portion
of, if not the entirety of the universe and its contents.

10

Figure 2.5: Elementary Particles in the Standard Model (bCreative Com-
mons, Cush)

11

2.2.2 Supersymmetry

One such theorized extension is called Supersymmetry. In this proposed
extension, the particles in the Standard Model account for only about half
the existing particles, the other half are matching particles with identical
parameters and quantum numbers; differing only in the property of spin with
their observed counterpart. [10] Such a construction would explain some of
the deficiencies in Standard Model, and would allow for the unification of
known forces to a single unifying force. However, it relies on the assumption
of existing particles that have not yet been observed. [8]

Exact symmetry like this isn’t realized in nature, as such a situation would
have meant the missing particles would have long since been detected by
virtue of them having identical masses to already observed particles. This
means that if such a symmetry exists, it is broken, where additional slight
differences between particle properties and their Standard Model counter-
parts are introduced.

2.2.3 pMSSM

Introducing the possibility of such slight differences creates a problem of
dimensionality. Broken supersymmetry introduces at least 105 free param-
eters. This configuration is called the Minimal Supersymmetric Standard
Model (MSSM). This is significantly too much for any feasible search or ex-
ploration. However, several assumptions can be made while focussing on
keeping the theory as general as possible, and making as little deviations
from existing rules as possible. By making such assumptions, we can reduce
the problem to the so called phenomenological MSSM (pMSSM), having only
19 free parameters.

Research into this model (and other models beyond the Standard Model)
is aided by the Large Hadron Collider: the largest particle accelerator in
the world. At the LHC, the ATLAS experiment is capable of searching for
deviations from the known Standard Model in various processes.

As it stands, no significant deviations have been found, which means the
experiments can currently only be used to set limits on the parameters of
various Beyond Standard Model theories, including the pMSSM. In the most
simple terms; experiments can determine parameter values that are excluded
in the theory. Were the chosen parameters be the correct, a deviation would
have already been detected in the experiment. In such a manner, LHC
experiments can be used to provide exclusion limits for models such as the
pMSSM. [6]

12

2.3 SUSY-AI

2.3.1 Computer Simulation

Physical experiments such as performed with ATLAS require both exten-
sive resources and time to perform. Unguided search of exclusion limits
with all possible configurations of particles in particle accelerator and de-
tectors is prohibitively expensive and time consuming. Instead of physical
experiments, a computer simulation can be run to provide at least an ap-
proximation of the results.

However, given the complexity of the physical model; computer simulation
of the experiments is computationally extremely expensive. Too much so
to be performed on readily available consumer hardware. The simulation
infrastructure and the data used and produced by the simulations is not
commonly publicly available. However, a large dataset was made available
[6], and has been used for generating a Machine Learned model.

As detailed above, Machine Learning allows us to use a dataset such as the
one produced by the simulation to train a model. This model can then pre-
dict the outcome of future simulations in a significantly less computationally
expensive manner. These predictions can then be used to decide whether or
not a full simulation and analysis is required.

A second goal of such a model is the possibility of finding a deeper analysis
of the underlying data. As explained above, machine learned models have
no understanding of the actual phenomena creating the data, and operate
purely on mathematical properties found during analysis of the testing data.
This may result in a previously unseen understanding of the data, based on
patterns in the data located by the model’s training. Such a model has been
made with the SUSY-AI program. [4]

2.3.2 Further Analysis

The model generated by SUSY-AI is significantly less computationally ex-
pensive than the full simulation and can easily be run on consumer hardware.
However, this does not remove the need for manual interpretation of the data
produced by the classifier. Full exploration of the parameter space would re-
quire still brute forcing; an operation that which computational complexity
scales exponential with the amount of variables. Even the reduced 19 param-
eters of pMSSM and the low runtime of the machine learned model mean a
significant computational investment. This means that directing the search
is a manual job, both in determining interesting points for full simulation,
as well as for attempting to find patterns in the model.

13

Instead of brute forcing, it might be possible to adapt the generated model
to ease the locating of limits to the various parameter spaces that lead to a
certain classification. A method for this is researched in the next chapter,
and applied to the data SUSY-AI is based on. [6]

14

Chapter 3

Research

We’ll define and dissect the Random Forest classifier that Susy-AI uses,
trying to transform the existing model into an equivalent one with different
properties that may aid in some of the exploration such models can be used
in. This chapter will detail the generation of such a model from a Random
Forest classifier, show several example algorithms, and finally apply these
algorithms to show possible usage in tandem with Susy-AI.

3.1 Dissecting Random Forest Classifiers

3.1.1 Model Explanation

A Random Forest classifier consists of a collection of Decision Tree clas-
sifiers [2]. Decision Trees are relatively simple classifiers; a data point is
sent through a series of nodes, where each node tests the value of a single
attribute, and splits the data to one of two lower nodes. This is repeated
through a path of nodes until a leaf node is reached, which contains the label
to be attached to the data point.

We can think of each node as dividing the remaining parameter space in two
regions over the attribute it specifies. Training of the model is performed
by repeatedly finding an attribute and value that best splits the data in two
groups corresponding to the desired classes. An example of a tree with two
nodes and three leaves is given in Figure 3.1. This tree uses two attributes
to split the data into one of two classes.

For classification in the Random Forest classifier, a data point is fed through
each Decision Tree classifier in the forest. The resulting labels from each
Tree are aggregated to provide a certainty measure for the label returned by
the Random Forest. The different trees are trained on different subsets of

15

Figure 3.1: Decision Tree Classifier

the training data set, and on different subsets of the various dimensions of
the attribute space. [2]

We can try and roughly but formally define a Random Forest in Backus-Naur
Form [7], first specifying it as nothing more than a collection of Decision
Trees:

RandomForest ::= Trees :[DecisionTree]

Where each Decision Tree is simply a pointer to a root node.

DecisionTree ::= Root :Node

Leaving for us to define what a node is, in this case it is either a leaf node;
specifying what class this node belongs to. Or it is a node with a left and right
descendant. In this case we need to define what attribute we’re working on,
and what value we’re splitting on. By convention, we’ll split Dimension ≤
V alue to the left node, and Dimension > V alue to the right node. (This is
equivalent to the scikit-learn implementation of such a classifier [3])

Node ::= |Leaf :Class

|Left :Node,

Right :Node,

Attribute :Dimension,

V alue :Number

16

3.1.2 Different Perspective

As noted above, we can think of each node as dividing the remaining param-
eter space in two regions in a single dimension. This means that, over the
total parameter space, a Decision Tree classifier can be seen as a collection
of non-overlapping regions with complete cover of the parameter space; each
region representing a label to be given as a resulting classification for every
point located in that region.

Because the parameter space is identical for each classifier, and each clas-
sifier’s regions do not overlap, a single point in the parameter space always
falls within exactly X regions, where X is the number of Decision Tree clas-
sifiers in the Random Forest. Instead of representing the Random Forest as
a collection of nodes, we can represent it as a collection of regions.

Similarly to our effort in formally specifying a Random Forest classifier,
we can specify our Region Model replacement, starting with specifying the
model as a collection of Regions:

RegionModel ::= Regions :[Region]

And then specifying each region as an ordered list of boundaries, and a class
that this region belongs to.

Region ::= Boundaries :[DimensionalBound],

Class :Class

Finally specifying the boundaries as having a start and an end. To match
with the previously made choice of left and right nodes; The Start value is
taken as an exclusive boundary, while the End value is taken as an inclusive
boundary.

DimensionBound ::= Start :Number

End :Number

3.1.3 Consequences

Representing the model in this way has a few negative consequences; it is
significantly more space-inefficient than the node representation, and classi-
fying a single data point by means of checking region overlap is much more
computationally intensive than in the node representation. There is however

17

one major benefit of this representation; regions can be sorted in accordance
to a dimension. A summary of complexity consequences is given in Appendix
A.1

Once sorted, we can traverse region boundaries one by one, subtracting and
adding the region count for each class. In this way we can efficiently find
the exact boundary where the Random Forest classifier will cross a given
certainty threshold.

3.2 Creating Region Model

3.2.1 Algorithm

Having already formalized the input and output types, we can specify the
function to be made as a function F : RandomForest→ RegionModel. We
can write the following pseudocode as Algorithm 1.

Algorithm 1 Generating Region model from Random Forest model
function GenerateRegions(RandomForest)

Regions← ∅
for all Tree in RandomForest do

Working ← ∅
Node← Tree.Root
for all Dimension in Tree.Dimensions do

Working ←Working + (−∞,∞)
end for
function Recurse(Working, Node)

if Node = Leaf then
Regions← Regions + (Working,Node.Class)

else
Recurse(Working[Node.Attribute].End = Node.Value,

Node.Left)
Recurse(Working[Node.Attribute].Start = Node.Value,

Node.Right)
end if

end function
end for
return Regions

end function

We’ll start with an empty set of Regions, which we’ll fill with the regions
obtained from the various trees. For each tree, we initialize a working set,

18

giving boundaries from −∞ to ∞ for each dimension. Then, we recursively
iterate the nodes, starting at the root of the tree.

If we hit a leaf node, we can add a region to the set of regions, using the
dimension limits of the working set, and marking the class as the one be-
longing to the leaf node. On any other node, we need to recursively iterate
both the left and right nodes. We’ll modify the working set by respectively
changing the end or start attribute of the correct dimension to the value
given by the node. In Figure 3.2 we can see the resulting regions generated
from the tree in Figure 3.1.

Figure 3.2: Region Model of the tree in Figure 3.1

3.3 Using the Model

3.3.1 Classification

The generated Region Model may be used in several ways. We can for in-
stance use it as a drop in replacement for the Random Forest Classifier by
simply checking what regions a given input falls in. We start with all the
boundaries, and remove them if the given parameter falls outside of the
region. Note that this operation is likely significantly slower than classifica-

19

tion via the Random Forest classifier, and is shown only to provide context
of equivalence in classification. Classification is detailed in Algorithm 2.

Algorithm 2 Classification using Region Model
function Classify(Input, RegionModel)

Boundaries← RegionModel.Boundaries
for all Parameter in Input do

for all Boundary in Boundaries do
if Boundary[Parameter].Begin ≥ Parameter.Value or Bound-

ary[Parameter].End < Parameter.Value then
Boundaries← Boundaries−Boundary

end if
end for

end for
return Count(Boundaries.Class)

end function

3.3.2 Boundary Checking

Far more interesting is to use the generated Region Model to to boundary
checking. An example is given in Figure 3.3. In this example model with
two trees, we’re interested in the boundaries for the feature represented by
the x-axis. The arrows represent the amount we can vary this feature while
still being at least 50% certain of our class prediction being ’blue’. For such
an algorithm, we’ll use the fact that sorting can be done in efficient time
(More discussion on complexity is done in Appendix A.1). We’ll create the
algorithm for finding the boundary in a single dimension. Our first task is to
collect the relevant regions. The code to this is almost identical to Algorithm
2. However, we exclude the dimension that we want to find the limits for.
At the end, we disassemble the region’s boundaries, taking only the ones in
the dimension we’re interested in.

An example of applying Algorithm 3 for finding the relevant boundaries is
shown by Figure 3.3, where for a two-dimensional mock region model with
two trees and an input (5, 5), we have selected every relevant region in the
dimension represented by the X-Axis. The rest of the regions are already
hidden.

20

Figure 3.3: Example mock region model, including boundaries for class rep-
resented by the blue regions at point (5,5). Only the regions in the relevant
x-axis are shown.

Algorithm 3 Selecting relevant Boundaries for a given dimension and input
function RelevantBoundaries(Input, RegionModel, Dimension)

Regions← RegionModel.Boundaries
for all Parameter in Input \ Dimension do

for all Region in Regions do
if Region[Parameter].Begin ≥

Parameter.V alueorRegion[Parameter].End < Parameter.V alue
then

Regions← Regions \Region
end if

end for
end for
return Sort(Regions.Begin[Dimension] ∪

Regions.End[Dimension])
end function

21

Since we now have a sorted list of the relevant boundaries, we can very effi-
ciently traverse this list in either direction. Each boundary crossed removes
one from the count of a class, while adding one to the count of another class.
This property can be used to find the limit to which we can vary the re-
quested dimension in the input data while maintaining a given certainty in
the returned class.

Algorithm 4 Finding the lower limit for a given input and dimension.
function LowerLimit(Input, RegionModel, Dimension, DesiredClass,
Threshold)

Stack ← RelevantBoundaries(Input,RegionModel,Dimension) ≤
Input[Dimension]

Counter = Count(RegionModel)[DesiredClass]
while Counter ≥ Threshold do

Boundary ← Stack.Pop()
if Boundary = End then

if Boundary.Class = DesiredClass then
Counter ← Counter + 1

end if
else

if Boundary.Class = DesiredClass then
Counter ← Counter − 1

end if
end if

end while
return Boundary.Value

end function

Algorithm 4 is given for finding the lower limit, but an equivalent algorithm
can be easily created for the upper limit. Alternatively, constructions can
be made that keep track of every class, rather than just a single one. Most
of the constructions of this type can be performed in Θ(N), since they only
require a single pass of already sorted data.

22

3.4 Slice Thickness in SUSY-AI data

3.4.1 Problem Definition

Visualizing data from experiments, simulations and model predictions is an
effective means of showing results and patterns in the data. However, while
visualizing data on two, three or with some constructs slightly more dimen-
sions can be easily performed in a variety of manners; there are few if no ways
of presenting data in as much as the 19 dimensions that pMSSM requires.

Figure 3.4: Example slice of pMSSM data. (Taken from [13])

As such, plots are often given in slices, where only two parameters are
tweaked, and the remaining 17 are either taken as a static value or sim-
ply projected unto the shown plane. Such a slice is easily visualized, but
deceptive in that it says absolutely nothing about the close proximity in any
other dimension; There is no telling how representative the data actually is
outside of the static parameters given. An example of such a representation
is given in Figure 3.4, showing the percentage of points with all measured
combinations of the remaining 17 parameters on a single point in the two
remaining dimensions.

We can use the Region Model to augment such a plot with more information,
to give at least an idea of how representative the slice is for the surrounding
data. Instead of colouring the various cells of the plot with the certainty of
the prediction, we will colour them with a measure of the lowest distance in
the remaining 17 dimensions before a change in predicted class is observed.

23

In this way, we can give a measure of slice thickness across the plot; points
with a high value mean the slice is representational in this point for a large
variation in values along the other dimensions, while points with a low value
mean the slice is less representational for at least one dimension in that point.

3.4.2 Code

An example can be given that produces a flat projection of two dimensions,
leaving the other dimensions for our region model. The two dimensions will
be referred to as x- and y-dimensions, reflecting their locations in the plot.
It’s important to note that this example works with a given plot size and
precision. We’ll input X and Y ranges as lists of values. We’ll also need a
base value for the remaining dimensions.

Algorithm 5 Creating a slice representation.
function Slice(Input, RegionModel, Xrange, Yrange)

Results← ∅
for all X in Xrange do

for all Y in Yrange do
Point← input[x← X, y ← Y]
for all Feature in input \ {x, y} do

Lower ← Feature−LowerLimit(Point,RegionModel, Feature)
Upper ← UpperLimit(Point,RegionModel, Feature) −

Feature
Width←Minimum(Lower, Upper)
Results[X,Y]←Minimum(Results[X,Y],Width)

end for
end for

end for
return Results

end function

Algorithm 5 details this operation, but in essence we simply check the upper
and lower limit of each feature not used as a grid dimension, and extract the
minimum value out of that.

3.4.3 Example Results

In Figure 3.5 we can see that using the region model in this fashion produces
results that can be considered sane. Boundaries of the existing Figure 3.4
are evident in the new Figure 3.5 as well, and such a verification can be even
more clearly shown by using the region model to produce these boundaries

24

Figure 3.5: Example slice with feature width information. Whiter areas are
wider in all dimensions, darker areas are thinner in at least one dimension.

Figure 3.6: Boundaries using region model. Lines show the area of the flat
slice with at least 50% certainty in predicting exclusion.

25

itself, as we have done in Figure 3.6. To produce these boundaries, we
repeatedly run a boundary finding algorithm such as Algorithm 4, choosing
points along the edges of the desired plot as the input point.

It can be observed that slice thickness is lower near some of the edges, this
is perfectly sensible, as thickness can be expected to lower as we approach
a point where the predicted class changes. The example used shows high
values for all other points. This suggests that, at least for these dimensions
and these input values, no unexpected holes in regions are found.

Sadly, much of this method remains brute-forced, and the solution; while
faster than complete brute-forcing, is still a time-intensive process. Running
a single iteration of the boundary-search such as 4 is a process that takes
a matter of minutes on consumer hardware. Depending on search space
size and desired resolution, the algorithm needs to be run hundreds if not
thousands of times. This combines to a runtime of several hours on consumer
hardware to produce a single plot such as Figure 3.5.

26

Chapter 4

Conclusions

It is possible to transform a Random Forest classifier into a different model
that encompasses the same data in a different format. This format can be
used for several applications. Using the region model format for applica-
tions that can also be solved by the existing Random Forest classifier shows
identical results to said classifier. Example applications that cannot be ef-
ficiently solved by means of the Random Forest classifier, and make use of
the region model’s property of being sortable show that such a model can
be used to provide answers to meta-questions on the ML classifier and its
problem domain.

The model is however highly inefficient in tasks where the classifier itself
would be appropriate, and many tasks where it replaces pure brute-forcing
with the classifier still retain a (smaller) element of repetitive application
and brute-forcing. Such questions remain a large investment of both com-
putational and time resources regardless of method, especially keeping in
mind the added cost of creating and storing the region model. While for
select applications the region model might be usable and appropriate, it is
not widely effective.

27

Bibliography

[1] Christian Bessiere, Emmanuel Hebrard, and Barry O’Sullivan. Minimis-
ing decision tree size as combinatorial optimisation. Lecture Notes in
Computer Science, 2009.

[2] Leo Breiman and Adele Cutler. Random forests. https://www.stat.
berkeley.edu/~breiman/RandomForests/cc_home.htm, 2001.

[3] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, et al.
API design for machine learning software: experiences from the scikit-
learn project. In ECML PKDD Workshop: Languages for Data Mining
and Machine Learning, pages 108–122, 2013.

[4] S. Caron, J.S. Kim, K. Rolbiecki, et al. The bsm-ai project: Susy-ai –
generalizing lhc limits on supersymmetry with machine learning. Eur.
Phys. J. C, 2017.

[5] The ATLAS Collaboration, G. Aad, B. Abbott, et al. The atlas simu-
lation infrastructure. Eur. Phys. J. C, 2010.

[6] The ATLAS Collaboration, G. Aad, B. Abbott, et al. Summary of
the atlas experiment’s sensitivity to supersymmetry after lhc run 1 —
interpreted in the phenomenological mssm. Journal of High Energy
Physics, 2015(10), 2015.

[7] D. Crocker and P. Overell. Augmented bnf for syntax specifications:
Abnf. STD 68, RFC Editor, January 2008. http://www.rfc-editor.
org/rfc/rfc5234.txt.

[8] H.E. Haber and G.L. Kane. The search for supersymmetry: Probing
physics beyond the standard model. Physics Reports, 1985.

[9] J Kent Martin and DS Hirschberg. On the complexity of learning de-
cision trees. In International Symposium on Artificial Intelligence and
Mathematics, 1996.

[10] Stephen P. Martin. A supersymmetry primer. Master’s thesis, Univer-
sity of Michigan, 1997.

28

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
http://www.rfc-editor.org/rfc/rfc5234.txt
http://www.rfc-editor.org/rfc/rfc5234.txt

[11] Tom M. Mitchell. The discipline of machine learning. http://www.cs.
cmu.edu/~tom/pubs/MachineLearning.pdf, 2006.

[12] Andrew P.Bradley. The use of the area under the roc curve in the
evaluation of machine learning algorithms. Pattern Recognition, 1997.

[13] Bob Stienen. Generalising lhc exclusion limits using machine learning.
Master’s thesis, Radboud University Nijmegen, November 2016.

29

http://www.cs.cmu.edu/~tom/pubs/MachineLearning.pdf
http://www.cs.cmu.edu/~tom/pubs/MachineLearning.pdf

Appendix A

Appendix

A.1 Complexity

While generation of a Random Forest remains a decently time-intensive and
complex matter [9], actually doing a prediction by means of a trained model
is quick and computationally cheap. Each tree in the forest has a worst-case
time complexity in O(H) where H is the height of the tree. We can reason
the total complexity of the forest as being in O(NH), with N being the
number of trees. Depending on implementation the algorithm can be ran in
parallel for N .

For space complexity, a decision tree has a number of nodes in O(2H+1− 1),
methods exist to try and minimize the size of a tree, ensuring a minimal
amount of nodes [1]. For a Random Forest classifier we of course need N
trees. This means that Random Forests can be quite space-costly classifiers.
However, time-complexity of running a prediction is very low. This is a very
handy property of random forests, which sadly the region model doesn’t
copy.

A.1.1 Model Generation

Generating the Region model is theoretically a time efficient solution. Our
algorithm recursively passes each node exactly once and performs an O(1)
operation. This gives us a total complexity ofO(N) in the size of the Random
Forest. We have however established that Random Forests are rather big, so
effective computational cost is still pretty big simply due to model size.

The resulting model is, like the model it was generated from, relatively size-
able for a Machine Learned model. Each decision tree has at most O(2H)
leaf nodes. Each leaf node produces a region, with the size of the data

30

representing this number dependent on the number of features. If we take
the random forest as a whole this gives us a resulting region model size of
O(FN2H) on the number of trees (N), the number of features (F) and the
height of the trees(H)

A.1.2 Model Usage

Basic operations on the region model are more complex than the equivalent
operation on the random forest. To perform the classification algorithm, we
need to consider each region and check whether the input falls withing the
boundaries of that region. While this is an operation in O(RF), with F the
number of features, and R the number of regions; not the number of trees like
N in the Random Forest. As explained in the last paragraph, the number
of regions scales exponentially with tree size. While the theoretical time
complexity is similar to that of the random forest, the size of the numbers
involved is significantly larger.

This is the primary problem of the region model. The random forest by its
very nature allows model traversal to skip the majority of nodes, as usually
only a single path to a leaf node is required. With the region model, almost
every operation requires checking each region. Due to the number of regions
being very large, this simply isn’t efficient.

The real advantage lies in the regions being sortable, and as such we can
replace brute forcing, which requires many iterations of an algorithm using
the random forest with only a single iteration of an algorithm using the
region model. While that single iteration might be costly, it may be more
efficient than repeatedly performing a cheaper algorithm.

31

	Introduction
	Preliminaries
	Machine Learning
	Classification
	Validity

	Supersymmetry
	Standard Model
	Supersymmetry
	pMSSM

	SUSY-AI
	Computer Simulation
	Further Analysis

	Research
	Dissecting Random Forest Classifiers
	Model Explanation
	Different Perspective
	Consequences

	Creating Region Model
	Algorithm

	Using the Model
	Classification
	Boundary Checking

	Slice Thickness in SUSY-AI data
	Problem Definition
	Code
	Example Results

	Conclusions
	Appendix
	Complexity
	Model Generation
	Model Usage

