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Abstract

In this thesis we present a straightforward implementation and a threshold
implementation of the block cipher DoubleKing, a variant of BaseKing
that uses 32-bit words instead of 16-bit words and has a block size of a 384-
bit. The implementations are optimized with a focus on throughput and
are made for the ARM Cortex-M4 microcontroller that uses the ARMv7
instruction set. The straightforward implementation achieves a throughput
of 5.54 cycles per bit and the threshold implementation achieves one of 25.2
cycles per bit. We performed a test for resistance against first-order differen-
tial power analysis on the threshold implementation using close to a million
traces. We did not find significant leakages. Therefore we conclude the
threshold implementation indeed does protect against first-order differential
power analysis.
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Chapter 1

Introduction

It is not sufficient to only think of cryptographic systems in terms of ab-
stract mathematical transformations, turning some input into some output.
In practice, in order to use such a cryptographic system, it needs to be
implemented first. The resulting program will run on a given processor,
in a given environment, and will therefore present specific characteristics.
[14] Even if a cryptographic system is considered mathematically secure,
information could still leak through implementation-specific physically ob-
servable phenomena, such as power consumption, timing, electromagnetic
radiation and even sound. The class of physical attacks where an adversary
tries to retrieve secret data from a cryptographic system by exploiting these
characteristics, is called side-channel attacks. Embedded devices are typical
targets for side-channel attacks, so software for these devices should include
adequate protection against such attacks.[12]

The block cipher BaseKing was designed in 1994 by Joan Daemen as
part of his doctoral dissertation. [3]. A few years later, an optimized imple-
mentation of it was made for ARMv7 along with a reference implementation
written in the C programming language. [4]

ARM Cortex M4 is one of the most popular modern microprocessors for
constrained embedded devices.[12] For this microprocessor, we provide two
implementations of DoubleKing, a modified version of BaseKing that
uses 32-bit words instead of 16-bit words. The first implementation is a
highly optimized unprotected implementation. The other is an optimized
threshold implementation that aims to provide resistance against first-order
power analysis attacks. These implementations are written in ARM as-
sembly because an implementation written in a high-level programming
language is unlikely to produce optimal performance and there would be
numerous leaks as we cannot control register allocation nor the order of
instructions. Both ARM assembly implementations, along with python
implementations for both BaseKing and DoubleKing can be found at
https://github.com/TimVanDijk/Bachelor-Thesis-Public.
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In the remainder of this thesis, we will take a look at the details, opti-
mizations and design choices of these implementations. We will also discuss
the side-channel analysis with which we have verified the threshold imple-
mentation’s resistance against first-order power analysis attacks.
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Chapter 2

Preliminaries

2.1 BaseKing

In 1994, Joan Daemen designed the block cipher BaseKing as part of his
doctoral dissertation. In this dissertation, he presents a new approach for
the design of encryption schemes, ciphers and cryptographic hash functions,
among which a design strategy for block ciphers. He then uses this strategy
to design two ciphers, each specified with different choices for the variable
parameters. One of the resulting ciphers is BaseKing.

BaseKing is a block cipher with a round function that consists of
symmetric step functions. It operates on blocks consisting of twelve 16-bit
words, which gives a block size of 192 bits. The key length is 192 bits as well.
Both encryption and decryption are performed in eleven rounds and a final
output transformation. In each of the eleven rounds, five transformations
are applied to the intermediate result which we call the state. The state is
denoted by a0 to a11. The five transformations are (in order):

• Key addition

• Mixing layer

• Early shift

• Nonlinear transform

• Late shift

The final output transformation consists of key addition followed by the
mixing layer after which the order of the words is inverted.

In the next five subsections, we will take a closer look at each of the
transformations to briefly explain what they do and what they accomplish.

5



2.1.1 Key addition

First the key is added to the state, then the round constant is added to some
of the words. The words to which the round constant is added are ai for
i ∈ {2, 3, 8, 9}. The round constants are generated with a LFSR that can be
described with the following pseudo-c program[4]:

q[0] = 0x000B;

if ((q[j+1] = q[j]<<1) & 0x0100) q[j+1] ^= 0x0111;

These constants are of course the same for each run of the program. This
means that we can precompute the round constants generated by this LFSR.
The computed round constants are: 0x0b, 0x16, 0x2c, 0x58, 0xb0, 0x71,
0xe2, 0xd5, 0xbb, 0x67, 0xce and 0x8d.

2.1.2 Mixing layer

BaseKing uses the wide trail strategy to gain resistance against linear and
differential cryptanalysis. This is achieved by the iterated alternation of
a nonlinear transformation and a transformation with high diffusion. In
BaseKing, the mixing layer achieves diffusion of branch number 8 by
making each word in this transformation’s output depend on seven words
in the input.[4] This is done by adding six words to each word in the state.
These six words are found at offsets 2, 6, 7, 9, 10 and 11 from the word
we are adding to. We can therefore describe the transformation as follows
(with indices in modulo 12):

ai ← ai ⊕ ai+2 ⊕ ai+6 ⊕ ai+7 ⊕ ai+9 ⊕ ai+10 ⊕ ai+11

2.1.3 Early shift

The early shift performs a bitwise circular shift on each of the words in the
state. The amount of bits that each word is rotated depends on the rotation
constants: r0 to r11. There are twelve constants, which means that each
word has its own rotation constant. These constants are: 0, 8, 1, 15, 5, 10,
7, 6, 13, 14, 2 and 3. We can denote this transformation by: ai ← ai � ri.

2.1.4 Nonlinear transform

The transformation uses an S-box that takes 3 input bits and substitutes it
with 3 output bits. There is a one-to-one relation between the input block
and the output block. This makes it a permutation and ensures invertibility
which is in some cases is useful for decryption. The criteria for an S-box are
determined by the design strategy. BaseKing’s wide trail strategy requires
the S-box to be selected such that it results in the minimization of the worst-
case differential probability and of the largest input-output correlation. Each
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bit of each word is put in the S-box along with the bits at the same position
in the words at offsets 4 and 8 from the current word. BaseKing uses the
S-box shown in table 2.1.

in 000 001 010 011 100 101 110 111

out 111 010 100 101 001 110 011 000

Table 2.1: BaseKing’s 3-bit S-box

This S-box can also be described in terms of bitwise boolean operations.
Doing so allows us to compute many S-boxes at the same time. To be more
precise, the number of S-boxes we can compute at the same time is equal
to the processor’s word length. The boolean operations that describe this
S-box are: ai ← ai ⊕ (ai+4 ∨ ai+8).

2.1.5 Late shift

The late shift is similar to the early shift in the sense that it is a cyclic
shift, however this time we rotate to the right. Rotating n bits to the right
is of course the same as rotating 16 − n bits to the left. We also use the
same rotation constants, although in reversed order. This leaves us with the
following: ai ← ai � r11−i.

2.2 DoubleKing

After discussing the idea of implementing BaseKing with its designer, Joan
Daemen, we decided that in this day and age it would make more sense to
implement a version with 32-bit words instead. We decided to call this 32-
bit version DoubleKing. The specification of DoubleKing is exactly the
same as BaseKing, except for the word size and the rotation constants. In
DoubleKing, each of the twelve words is 32-bit which is double the word
size of BaseKing, hence the name DoubleKing. BaseKing’s rotation
constants were made considering there are only 16 bits to rotate through.
DoubleKing therefore requires different rotation constants. Joan Daemen
provided a new set of rotation constants for DoubleKing. These constants
are combinational numbers 2 out of i, with i starting from 1 and up to 12.
This gives 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66. Doing this modulo 32
reduces the last few to 4, 13, 23 and 2. This is natural as rotating over a
32-bit word over 36 is the same as rotating over 4.
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2.3 ARM Cortex-M4

In this section we will provide background information on the ARM Cortex-
M4 which is the microcontroller that we chose to develop the implementation
of DoubleKing for.

2.3.1 Registers

The ARM Cortex-M4 has 16 accessible registers: r0-r15. Of these, r0-r12
are general-purpose registers; r13 (sp) is the stack pointer; r14 (lr) is the
link register and r15 (pc) is the program counter. All instructions can access
r0-r14 and some can access r15 as well. In some cases, however, this leads
to undefined behavior, for example, it is undefined what happens when r13
is used in logical operations such as eor (exclusive or).

2.3.2 Instruction set

The ARM Cortex-M4 is a 32-bit microcontroller that has an ARMv7E-M
architecture and it supports the ARMv7-M instruction set as well as the
Thumb instruction set.[1] The Thumb instruction set consists of instructions
with a length of 16 bits and acts as a compact subset of the ARMv7-M
instruction set whose instructions have a length of 32 bits. Not all of the
ARMv7-M’s instructions are available in the Thumb subset. For example,
one cannot access some of the registers. Also, some ARM instructions can
only be simulated with a sequence of Thumb instructions. In practise, when
we compare programs that use the Thumb instruction set to their ARMv7-M
counterpart, we notice that their code size is about 30% smaller and the
increase in executed instructions is in the range of 9% to 41%.[9]

In applications where memory is limited, this trade-off is likely worth it.
In our case memory is not an issue and we will focus solely on performance.
Therefore, we will use the ARMv7-M instruction set.

2.3.3 Instructions

All instructions in the ARMv7-M instruction set are 32 bits long. Most, but
not all instructions take one clock cycle to execute. Instructions such as ldr
and str access SRAM and have a latency of two cycles, however consecutive
executions of that instruction can be pipelined and will therefore only take
one cycle.

To understand the implementation, we first need to understand the
instructions that it uses. BaseKing is a bitslice cipher which means that
it can be implemented using only bitwise logical operations and (cyclic)
shifts.[4] Aside from those instructions we also make use of instructions to
access memory such as str, stm, ldr and ldm. To control program flow we
also use cmp (to test conditions) and branch instructions.
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2.3.4 Barrel shifter

The ARM Cortex-M4 contains a barrel shifter, which is a piece of hardware
that can shift or rotate a given value. Many instructions allow the use of
the barrel shifter by sending the value of the second operand through the
barrel shifter before it reaches the ALU. In most architectures this allows
both the instruction as well as a shift or a rotate to be executed in the same
cycle. For example, if we wanted to compute: r0 := r1 + 4×r2, we could
achieve this with:

LSL r2, r2, #2 ; r2 := r2 << 2

ADD r0, r1, r2 ; r0 := r1 + r2

Both instructions require one cycle, so in total it takes two cycles. Because
the add instruction allows the use of the barrel shifter, we can combine the
two instructions as follows:

ADD r0, r1, r2, LSL #2 ; r0 := r1 + (r2 << 2)

This instruction only takes one cycle to execute.

2.4 Threshold implementations

There are many ways to protect against side-channel attacks. In this section
we briefly discuss traditional approaches as well as the approach we applied
to DoubleKing.

2.4.1 Traditional approaches

Traditional approaches to protect against side-channel attacks use random
values to mask the data that is being processed. This is done such that op-
erations on individual words of the intermediate result of the cryptographic
algorithm are being executed independent of the secret key. A downside
to these approaches is that one needs to be very careful when selecting the
order of instructions, as executing instruction in the wrong order can leak
information. Also, many approaches that were believed to be secure turned
out leak information in the presence of glitches. Glitches naturally occur
in hardware all the time, but can, for example, also be introduced in fault-
injection attacks.[10]
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2.4.2 A new approach

In 2006, Nikova, Rechberger & Rijmen presented threshold schemes: a new
approach to protect against side-channel attacks. Threshold schemes are
masking schemes that are provably secure against first-order differential
power analysis attacks and are based on secret sharing, threshold cryptog-
raphy and multiparty computation. Unlike traditional masking schemes, it
protects against first-order differential power analysis, even in the presence
of glitches. Also, the order in which instructions are executed does not
matter, because each share misses information and therefore each share
cannot leak information by itself. We will briefly discuss the properties
of threshold implementations. For a complete explanation and the proof of
these properties, we refer to the original paper.[10]

In threshold schemes sensitive variables are initially split over n shares
such that:

1. the sum of the shares is equal to the sensitive variable;

2. knowledge of up to n − 1 shares does not provide information about
the sensitive variable.

The first property is called correctness, and like all other properties, it
holds not only at the start, but throughout the entire scheme. In other
words, applying function f to the variable must have the same result as
applying the shared function f ′ to each of the shares and then computing
the sum of those shares. If this is the case, then f ′ is a correct sharing of f.

The second property is called non-completeness. This property ensures
that no correlation between a share and the sensitive variable exists. For a
scheme to have this property, it is essential that there are no functions that
operate on all shares at the same time. This can be challenging in nonlinear
transformations.

Then there is a third property that we have not yet discussed: uniformity.
Because in a threshold scheme transformations are often applied after one
another, it is important that the output of each transformation is uniform
as it will likely be used as input for a next transformation. It is an essential
part in the proof of resistance against differential power analysis attacks,
but in practise it is not straightforward to exploit a lack of uniformity. One
way to show that a function is uniform is by showing that an inverse of that
function exists.
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Chapter 3

Related Work

In 2000, several techniques to protect bitslice block ciphers against power
analysis attacks are presented by Daemen, Peeters & van Assche[4]. They
extend the full state splitting method and show how it can protect against
first-order differential power analysis (DPA) attacks. They call this the bias
vector method and proceed by applying it, along with the method it is based
on, to BaseKing, an example of a bitslice block cipher.

When using the full state splitting method, before computing the cipher,
the state a is split in two shares: a′ and a′′. a′ is generated randomly and
a′′ = a ⊕ a′ such that a = a′ ⊕ a′′. This way a′ and a′′ are independent of
a. Only after the cipher computation is finished, the shares are recombined.
As long as each computation does not involve both a′ and a′′, there is no
correlation with a, and thus is the cipher protected against first-order DPA
attacks.

The bias vector method is similar to full state splitting, but one of the
two shares always consists of words that are either all-0 or all-1. Some of
BaseKing’s computations can be performed more efficiently on these bias
states, thus improving performance. Although the bias vector method makes
second order DPA attacks more difficult than full state splitting with two
shares, decorrelation is only reached at bit-level and not at word-level.

In 2012, Bertoni, Daemen, Peeters, van Assche & van Keer[8] presented
several implementations of the nonlinear transformation χ in the round
function of Keccak-f, which is very similar to the nonlinear transforma-
tion in BaseKing. Among these implemenations are a two-share masking
implementation and a hardware implementation using three-share masking.
Like our threshold implementation for DoubleKing, their hardware im-
plementation provides not only resistance against first order DPA, but also
against glitches.

Similar to these papers, we provide a side-channel protected implementa-
tion for a cipher. To be more specific, we provide a threshold implementation
of a BaseKing variant that is optimized for performance. This is the first
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time a threshold implementation is made of BaseKing. Being a thresh-
old implementation, it provides resistance against glitch attacks, which is
something existing side-channel protected implementations of BaseKing
do not.
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Chapter 4

Straightforward
Implementation

In this chapter, we explain the optimizations made in DoubleKing’s imple-
mentation as well as its performance. Despite the main focus of this thesis
being the threshold implementation, we figured an unprotected implemen-
tation could be very useful in situations where protection against first-order
differential power analysis attacks is not necessary. Also, optimizations made
in the unprotected implementation can likely be carried over to the threshold
implementation.

The main obstacle we encountered when implementing DoubleKing is
the lack of general purpose registers in the ARM Cortex M4. Remember
there are only 16 registers: r0-r15. Twelve of these, r0-r11, are used to store
the state. Because we cannot use r15, the program counter, this leaves us
with three registers to work with: r12-r14. Although r13 and r14 are not
intended to be used as general purpose registers, they can still be used for
most purposes. Having three registers to work with was sufficient to keep the
amount of memory accesses manageable. Figure 4.1 provides an overview
of the transformations that are applied to the state in each round. The top
part shows the first round. The bottom part shows the final transformation
and the part in the middle shows what happens in each of the rounds in
between.
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Figure 4.1: Overview of the unprotected implementation

4.1 Implementation details

Key Addition. Instead of computing the round constants on the spot, we
hard-coded the round constants in memory. Although this solution requires
memory access, it has our preference because it does not occupy one of our
three precious open registers with the round constant. Using one of those
three registers would cause a huge increase in memory accesses in the other
transformations, therefore using memory in this transformation would have
been inevitable anyway. When the key addition transformation is called,
the round constant must be in r14. Because the xor operation is associative,
we can add the constant before adding the key. This frees r14, which allows
us to pipeline memory accesses required to load the key; instead of twelve
accesses that each take 2 cycles for a total of 24 cycles, we now get six
accesses that each take (2+1) cycles for a total of 18 cycles.

Mixing layer. A naive implementation of the mixing layer would require
an overwhelming amount of memory accesses because all new words are to
be computed in parallel and not sequential. For example, we compute a′8
as follows: a8 := a2 ⊕ a3 ⊕ a5 ⊕ a6 ⊕ a7 ⊕ a8 ⊕ a10. If we compute the new
ai’s in order, to compute a′8 we need to retrieve a2, a3, a5, a6 and a7 from
memory because we have already modified them. This would be very costly
in terms of clock cycles. We figured out a way to compute a′0 to a′5 using
only the three spare registers. This was possible because fewer words were
modified already. We also devised a method to compute a′6 to a′11 using a′0
to a′5. This method uses that a′i = ai ⊕ ai−6 ⊕ a′i−6 ⊕ (a0 ⊕ a1 ⊕ . . .⊕ a11).
Let us take a moment to derive this.
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By definition, we know that

a′i = ai ⊕ ai+2 ⊕ ai+6 ⊕ ai+7 ⊕ ai+9 ⊕ ai+10 ⊕ ai+11

By changing the order of the terms slightly, we get

a′i = ai ⊕ ai+6 ⊕ ai+2 ⊕ ai+7 ⊕ ai+9 ⊕ ai+10 ⊕ ai+11

Then we consider all but the two leftmost terms. They might not seem to
be very useful, but it is all about what is not in them. By adding all words
in the state to that group, we get the words that are not in them. We also
change the order of terms again.

a′i = ai ⊕ ai+6 ⊕ (ai+1 ⊕ ai+3 ⊕ ai+4 ⊕ ai+5 ⊕ ai+6 ⊕ ai+8 ⊕ ai+0)

⊕ (ai ⊕ ai+1 ⊕ . . .⊕ ai+11)

a′i = ai ⊕ ai+6 ⊕ (ai+6 ⊕ ai+8 ⊕ ai+0 ⊕ ai+1 ⊕ ai+3 ⊕ ai+4 ⊕ ai+5)

⊕ (ai ⊕ ai+1 ⊕ . . .⊕ ai+11)

Now the second group is by definition equal to a′i+6. Also, the indices are
in modulo 12 and of course ai ⊕ ai+1 ⊕ . . .⊕ ai+11 is simply the same as all
words. To complete the proof, let us rewrite things a little.

a′i = ai ⊕ ai+6 ⊕ a′i+6 ⊕ (ai ⊕ ai+1 ⊕ . . .⊕ ai+11)

a′i = ai ⊕ ai−6 ⊕ a′i−6 ⊕ (ai ⊕ ai+1 ⊕ . . .⊕ ai+11)

a′i = ai ⊕ ai−6 ⊕ a′i−6 ⊕ (a0 ⊕ a1 ⊕ . . .⊕ a11)

Using this method we need to retrieve only one of the unmodified words
from memory per computation of each of the words a6 to a11. We also
managed to prevent a couple of memory accesses by postponing the final-
ization of some computations because they required a value that would need
to be retrieved from memory at a later point in time anyway.

Early shift. We completely merged this transformation with the nonlinear
transform. In the nonlinear transform, whenever a word is required in a
computation, we shift it first in the same way the early shift would have done.
Because of the barrel shifter this takes no additional cycles. A limitation
of the barrel shifter is, however, that only one of the two operands can be
shifted. We figured out a way to compute the S-box in four parts. The
limitation of the barrel shifter becomes a problem at the start of each those
four parts where we need to do the OR operation on two shifted values. To
solve this problem we shift one of the operands first. The other operand we
shift with the barrel shifter for free during the operation in which we require
two shifted values. In total the early shift takes four times 1 cycle for a total
of 4 cycles.
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Nonlinear transform. As we already discussed in the preliminaries, the
S-box that this transformation uses can be described in terms of boolean
operations to compute entire words at once. Upon closer inspection of those
boolean operations, it becomes apparent that we can compute the result of
this transformation in four separate parts. These parts are { (ai, ai+4, ai+8) |
0 ≤ i ≤ 3 }. The new value of the words in each of these parts only depend
on words in the same part. This way the three free registers are sufficient to
perform the S-box transformation without accessing SRAM at all. All parts
are computed in exactly the same way. By saving and reusing intermediate
results that are saved in one of the free registers, we save a few cycles as
well.

While developing the threshold implementation, we serialized the S-box.
We decided not to revise the S-Box in the unprotected implementation
because we expected the gain in performance to be minimal, and given
the time constraints not worth the effort.

Late shift. Similarly to the early shift, we also merge this transformation
with the one that comes after it. In this case, that transformation is the
key addition of the next round. In the key addition we do not encounter the
problem we had in the nonlinear transform and all shifts are done for free.
Unfortunately we cannot use the merged version everywhere because in the
first round there is no preceding late shift. In the first round we therefore
use the unmerged version of key addition.

4.2 Results

We decided to count the cycles manually as making the processor on a
board count them resulted in very unpredictable and unexpected values.
When counting the cycles, we assumed that each instruction takes one cycle,
except when it is a ldr or str instruction. In that case the first instruction
takes two cycles and any subsequent instructions of that type take one. ldm
and stm instructions were converted into equivalent ldr or str instructions.

In table 4.1 is a breakdown of the implementation, showing for each
transformation what instructions were used and how many cycles it took.

Using table 4.1 we see that encryption of one block (384 bits) with
DoubleKing takes 2127 cycles. This means we have a latency of 2127 cycles
and a throughput of 5.54 cycles per bit. It has a code size of 1756 bytes and
during execution uses 45 distinct words (= 180 bytes) in SRAM.
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Transformation Instructions Cycles
Times

used

Total

cycles
% of total

Key Addition eor x16, ldr x13 35 1 35 1.6%

Late Shift +

Key Addition
eor x5, eor+ror x15, ldr x13 35 11 385 18.1%

Mixing Layer
eor x59, ldr x11, mov x3,

str x8
89 12 1068 50.2%

Early Shift +

Nonlinear Transform

eor x8, eor+ror x8, mov x1,

mov+ror x3, mvn x8, orr x4,

mvn+ror x4, orr+ror x8

44 11 484 22.8%

Reverse State eor x18 18 1 18 0.8%

Control Logic
add x10, blt x10, cmp x10,

ldr x63, mov x3, str x10
137 1 137 6.4%

Table 4.1: Breakdown of DoubleKing’s unprotected implementation

There is no reference implementation of DoubleKing to compare it
against, but there is a timing and SPA resistant implementation of BaseKing.
That implementation requires 1949 cycles to encrypt 192 bits and has a code
size of 1776 bytes. In about the same amount of cycles we encrypt twice as
many bits, but the code size has increased by a factor of 2.3. The code size
could be significantly reduced by using subroutines instead of macros, but
it would come at the cost of a slight decrease in performance.
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Chapter 5

Threshold Implementation

In addition to a straightforward implementation, we made a threshold im-
plementation. Threshold implementations, when made correctly, provide
provable theoretical security against first-order side-channel attacks. In this
chapter we start off by providing an overview of the threshold implementa-
tion, afterwards we will take an in-depth look at each of the transformations
to further discuss the details, optimizations and design choices.

5.1 Overview

Because of the linear step functions of BaseKing, we were able to reuse
large parts of the straightforward implementation. One exception is the
nonlinear transform. This is the only step function in which information
from multiple shares is combined. We had to rewrite this transformation to
ensure non-completeness while preserving correctness.

From the non-completeness and correctness property of threshold im-
plementations follows that at least d + 1 shares are required to implement
a function of degree d.[10] As we soon will see, the nonlinear transform,
being a function of degree 2, has the highest degree of all functions used in
DoubleKing. Therefore we need at least 3 shares.

During encryption, we start by using two random 384-bit strings to split
the plaintext into three shares. Each of these shares consist out of twelve
words. Because we only have 16 registers, just one of the three shares can be
kept in memory at a time. Again the first round is different because there
is no late shift that still needs to be done. To reduce the number of memory
accesses we keep applying transformations to the share that is currently in
the registers until we arrive at the nonlinear transform. At this point we can
only continue once the other shares are ready to do the nonlinear transform
as well. This is where we have to switch shares and access memory. This
requires way fewer memory accesses compared to the naive solution where
each transformation applied to each of the shares in succession. At the end
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of the final output transformation the shares are combined and result in the
ciphertext.

The code size of this implementation is drastically increased compared
to the straightforward implementation. To counter this, we decided to
sometimes use subroutines instead of macros. One problem is that we cannot
use the link register to store the return address in, as we need that register
for our computations. To solve this problem, at the start of each subroutine,
we store the return address to SRAM. Once the subroutine is finished, we
retrieve the address from SRAM and branch to it.

Figure 5.1 shows what transformations are applied to what shares in the
threshold implementation. The top part shows the splitting of the plaintext
into three shares and the first round. The middle part shows what happens
in each of the other rounds and at the bottom we see the final output
transformation along with the combining and reversing of the shares. If the
names of two transformations are put inside the same block, it means that
they have been merged.

Figure 5.1: Overview of the threshold implementation
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5.2 Implementation details

Create Shares. This transformation takes the plaintext and two random
values that are the same length as the plaintext. It then computes:

in0 = rand0

in1 = rand1

in2 = plaintext⊕ rand0 ⊕ rand1

We perform the actual computation in two parts. We first compute the first
half of each share and then we compute the second half. The main advantage
of this approach is that it enables us to pipeline most memory accesses. A
fortuitous coincidence is that it leaves us with half of one of the shares in
the registers already. In our case, we end up with the second half of in2 in
r6-r11. To continue with the other transformations we only need to retrieve
the first half instead of the whole share. Of course we could have ended
up with an entire share in the registers, but that would be at the expense
of our ability to pipeline the memory accesses and could cost us many cycles.

Key Addition. The key addition transformation from the straightforward
implementation remains more or less untouched and can easily be reused in
this implementation. Unlike the other linear transformations, we only apply
it to one of the shares. This is natural because two key additions cancel
each other out, so three key additions are equivalent to one key addition.

Mixing Layer. Like the key addition, we can easily reuse the mixing
layer due to its linearity. A difference however is that we now need a version
that is merged with the late shift. The merged version takes one cycle longer
than the normal mixing layer. Compared to its unmerged counterpart, this
is a reduction of 11 cycles. The merged version is used on the shares to
which the key is not added except in the first round where no late shift is
required.

Early Shift. This time the early shift is not merged with the nonlinear
transform. As we soon will see, the threshold implementation version of the
nonlinear transform has increased greatly in both complexity and code size
compared to the one used in the straightforward implementation.

If an attempt would be made to merge the early shift with the nonlinear
transform, the code size of the nonlinear transform would quadruple as each
of the four slices requires different shifts. Also, we are uncertain if the shifts
can efficiently be merged into the nonlinear transform in the first place
because there seem to be many instructions that require not just one but
two shifted operands. This would require us to spend one cycle to shift one of
the operands first. Therefore, we expect the potential gain in performance to
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be very small or even nonexistent. Because of time constraints, we decided
not to attempt the merge.

Nonlinear Transform. Due to the nonlinearity of this transformation,
we are required to completely rewrite the transformation such that it uses
the shares correctly and the correctness property holds.

But before we deal with that, we first have another issue to deal with:
the lack of general purpose registers. The S-box operates on three words at
a time each split over three shares so we need nine registers to keep them
in. Then we need nine more registers to store the resulting three words
in as well as about 2 registers to store intermediate results in. So a naive
implementation needs more registers than there actually are and would need
to use SRAM to work around that.

To work around this issue we serialized the S-box. This means that we
can compute the output words from the already computed output words
and the untouched input words. At first we described the S-box as follows
where x0, x1, x2 are the input words and y0, y1, y2 are the output words:

y0 = f(x0, x1, x2) = x0 ⊕ (x1 ∨ x2)
y1 = g(x0, x1, x2) = x1 ⊕ (x2 ∨ x0)
y2 = h(x0, x1, x2) = x2 ⊕ (x0 ∨ x1)

As you can see, all output words are a function of the input words. Next is
the serialized version in which output words are a function of output words
and untouched input words:

y0 = f(x0, x1, x2) = x0 ⊕ (x1 ∨ x2)
y1 = g(y0, x1, x2) = x1 ⊕ (x2 ∨ y0)
y2 = h(y0, y1, x2) = x2 ⊕ (y0 ∨ y1)

Using these functions, we can overwrite input words with their respective
output word, e.g. x0 with y0, without causing problems in the subsequent
functions. This way, we no longer require SRAM to store intermediate
results.

These functions were found using a trial-and-error strategy. It was not
necessary to change function to compute y0 because all input words were still
available. To find g(y0, x1, x2) and h(y0, y1, x2), we repeatedly made a guess
as to what it could be, then we made the corresponding truth table and
compared it to the truth table of the original function. We stopped once we
found a function with a matching truth table for each of the two functions,
because if two functions have the same truth tables, they are equivalent.

Now that we have got the first problem out of our way, it is time to move
on to the second task: the rewriting such that it handles the shares nicely.
For each of the functions of the serialized S-box we use the same technique.
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By applying it to the first function, y0 = f(x0, x1, x2) = x0 ⊕ (x1 ∨ x2), we
will explain this technique. As the calculations are quite lengthy, some parts
of the calculations are left out. The complete calculations for each of the
functions can be found in the appendix.

We first rewrite the boolean expression into an algebraic expression in
GF(2) one and simplify it. In the following functions, a + b means the sum
of a and b in GF(2) and ab means the product of a and b in GF(2).

y0 = x0 ⊕ (x1 ∨ x2)
= . . .

= x0 + (x1 + 1)x2 + 1

We must then realize that the words that it requires as input are actually
split over three shares. For the sake of readability, in the calculations, we
have named the shares differently: a, b and c instead of in0, in1 and in2.
Using this terminology, xi = ai+bi+ci. We use this knowledge to substitute
the variables in the function with these expanded forms.

y0 = x0 + (x1 + 1)x2 + 1

= (a0 + b0 + c0) + ((a1 + b1 + c1 + 1)(a2 + b2 + c2) + 1)

Afterwards, we simplify it. The result is a long list of terms.

y0 = (a0 + b0 + c0) + ((a1 + b1 + c1 + 1)(a2 + b2 + c2) + 1)

= a0 + b0 + c0 + a1a2 + a1b2 + a1c2 + b1a2 + b1b2 + b1c2

+ c1a2 + c1b2 + c1c2 + a2 + b2 + c2 + 1

Each term is composed of information from at most two shares. Next we
split the terms in three groups where in each group information from one
share is missing.

A0 = fA(a, b) = b0 + a1b2 + b1a2 + b1b2 + b2

B0 = fB(b, c) = c0 + b1c2 + c1b2 + c1c2 + c2 + 1

C0 = fC(a, c) = a0 + c1a2 + a1c1 + a1a2 + a2

Each term is put in exactly one group. Therefore, when we add the groups
we once again have y0. This means the correctness property holds. The
non-completeness property holds as well because we can compute y0 in three
parts, each in which information from one share is missing.

We still need to show that the uniformity property holds. We will
prove it holds by showing that it is invertible. This means that a function
(A0, . . . , C2) → (a0, . . . , c2) exists. Because the S-box is serialized, this is
rather straightforward.
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We start at the end i.e. functions hA, hB and hC . At this point we have
(A0, . . . , C2). Moving every value that we have knowledge of to the right-
hand side and moving those we do not know to the left-hand side gives a
function to compute a2, b2 and c2 with, as is shown below:

b2 = hA(a, b)′ = A2 +A0B1 +B0A1 +B0B1 +B0

c2 = hB(b, c)′ = B2 +B0C1 + C0B1 + C0C1 + C0 + 1

a2 = hC(a, c)′ = C2 +A0A1 +A0C1 + C0A1 +A0

Because we now know a2, b2 and c2, we can repeat the same process on
ga, gb and gc to compute a1, b1 and c1. Afterwards we repeat it on fa, fb and
fc to compute a0, b0 and c0. We now have a0, . . . , c2. This shows that the
function is invertible.

Combine Shares. The combine shares transformation simply adds the
three shares and is used at the end of the computations. Because of the
correctness property, it results in the correct ciphertext. Instead of putting it
at the very end, we put it before the reverse state transformation. This way,
we combine the shares and then execute reverse state only once to reverse
the combined shares. This is more efficient than the naive implementation,
because we would then execute reverse state thrice before calling combine
shares. This takes two additions executions of reverse state.

5.3 Results

In theory, this implementation protects against first-order side-channel at-
tacks. It comes however at the expense of performance and code size. The
decrease in performance can be explained by the fact that most transfor-
mations now need to be applied to all three shares instead of just one.
Another important factor is frequent memory accesses. Although we tried
to minimize the amount of accesses by switching shares as little as possible,
it still has significant impact on the cycle count. In table 5.1 is a breakdown
of the threshold implementation, showing for each transformation what
instructions were used and how many cycles it took. The cycles were counted
in the same way as they were counted for the unprotected implementation.
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Transformation Instructions Cycles
Times

used

Total

cycles
% of total

Create Shares
add x5, eor x24, ldr x47,

str x30
123 1 123 1.2%

Key Addition eor x16, ldr x13 35 1 35 0.4%

Late Shift +

Key Addition
eor x5, eor+ror x15, ldr x13 35 11 385 4.0%

Mixing Layer
eor x59, ldr x11, mov x3,

str x8
89 14 1246 12.9%

Late Shift +

Mixing Layer

eor x13, eor+ror x46, ldr x11,

mov x1, mov+ror x3, str x8
90 22 1980 20.4%

Early Shift mov+ror x11 11 33 363 3.7%

Nonlinear

Transform

and x108, eor x204, mov x12,

mvn x8
332 11 3652 37.9%

Combine Shares add x3, eor x24, ldr x46, str x6 85 1 85 0.8%

Reverse State eor x18 18 1 18 0.2%

Control Logic
bl x80, blt x10, cmp x10,

ldr x788, mov x3, str x522
1803 1 1803 18.6%

Table 5.1: Breakdown of DoubleKing’s threshold implementation

In total, encryption of 384 bits with this implementation takes 9690
cycles, so we have a latency of 9690 cycles and a throughput of 25.2 cycles
per bit. The code size is 3592 bytes and during execution it uses 106 distinct
words (= 424 bytes) in SRAM.
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Chapter 6

Side-channel Analysis

To test if the threshold implementation protects against first-order differ-
ential power attacks, we performed several t-tests. A t-test is a tool for
distinguishing noisy signals and can be used as a preliminary test to see if
there are leakages in an implementation of a cryptographic program.[13] In
our case, the goal of the t-test was to see if we could distinguish traces of
runs of the first round of DoubleKing with fixed plaintext from traces of
runs with random plaintext.

The theoretical security of a threshold implementation is that of a second-
order attack. Unfortunately, distance-based leakages and other problems[2][5]
cause deployed implementations to lose order of security. Solutions include
increasing the order and/or hardening the implementation. The point of a
threshold implementation is to make a first-order attack very inconvenient
to the adversary such that he is forced to use a second-order attack instead.
Next, we discuss how we examined if our implementation loses orders of
security.

6.1 T-tests

We employed a random vs. fixed, first-order t-test. We first collected two
distinct sets of traces. The first set, Sfixed, consists of traces of runs of the
first round of DoubleKing where the plaintext was the same every time.
The other set, Srandom, consists of traces of runs where a uniformly random
plaintext was provided. The types of runs were randomly interleaved and
each run used the same encryption key.
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(a) 450k fixed vs. 450k random t-test (b) 5k fixed vs. 5k random t-test

A t-test tries to assess whether the two sets Sfixed and Srandom stem
from the same population. To do this it, uses a statistical test that takes
into account the distance of their means, as well as their variability and
cardinality.[7] For a more detailed description, we refer to [6]. If the result
of the t-test says that the two sets do not stem from the same population,
it implies leakage detection which could mean that the protective scheme is
not working.[11]

6.2 Experiments

On an ARM Cortex-M4F core with a clock speed of 168MHz, we captured
300.000 power traces at a sampling rate of 500Msamples/second using the
method described above. When we used these traces to do a first-order t-test
with 130k fixed vs. 130k random traces, we did not detect leakages. We later
repeated the experiment and captured close to a million traces. As we can
see in figure 6.1a, even when we do a 450k fixed vs. 450k random traces t-
test, we do not detect first-order leakage. Because of the protection that the
threshold implementation offers, the boundary set at about w = 4.5 is not
exceeded. Without going into too much detail, if that boundary is exceeded,
it means that it has reached the level of confidence required to reject the
null hypothesis (that says that the sets stem from the same population).
Because we did not exceed that boundary, it means we cannot significantly
distinguish the types of traces from one-another, implying no leakage was
detected.

To verify we are looking at the right spot, we repeated the acquisition of
traces, but this time the random number generator was disabled such that
the implementation would use the same random values every time. This
should render the threshold implementation useless. As expected, we were
able to detect first-order leakage very quickly; using only 5000 traces of each
type. As we can see in figure 6.1b, the boundary is exceeded at many points
in time, implying leakage.
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From these experiments we conclude that the threshold implementation
on this particular device (the ARM Cortex M4) does not lose orders of
security. This is despite the fact that at some points in the implementation,
registers and memory buses are overwritten with information from the re-
maining missing shares. These problems have been shown to cause issues in
AVR devices.[11]
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Chapter 7

Results

We have made two optimized ARMv7 implementations of DoubleKing:
a variant of BaseKing that uses 32-bit words. One implementation is
unprotected and the other uses a threshold scheme which provides theoret-
ical resistance against first-order DPA attacks. We confirmed the threshold
implementation’s resistance against first-order DPA attacks by conducting
serveral t-test. Even with a t-test using close to a million traces we did
not detect significant leakages. Therefore we conclude that the threshold
implementation indeed does protect against first-order DPA attacks.

In table 7.1 several statistics on both implementations are shown. It
takes the threshold implementation about 4.5 times as many cycles to en-
crypt as the unprotected implementation. This can easily be explained by
the fact that most transformations now need be applied to three shares
instead of just one. The nonlinear transform also is an important factor,
because it is called eleven times and each time takes 332 cycles to complete.
This is a significant increase compared to the unprotected implementation
where each call only takes 44 cycles. Because there are only sixteen usable
registers, shares need to be moved from and to memory regularly. This is
takes about a thousand cycles. Due to limitations on code size we had to
use subroutines instead of macros which cost us a few hundred cycles.

Unprotected impl. Threshold impl.

Number of cycles 2127 9690

Latency in cycles 2127 9690

Throughput in cycles/bit 5.54 25.2

Code size in bytes 1776 3592

SRAM size in bytes 180 424

Table 7.1: Comparison of the implementations
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The difference in the amount of cycles between the unprotected imple-
mentation and the threshold implementation was to be expected. To a large
extend, the remaining sources of overhead in the threshold implementation
are inevitable. Despite the large increase, it could have been a lot worse if
we had not used the optimizations discussed in chapter 4 and 5. That is why
it seems reasonable to us to call it a high-performance implementation.
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[8] B Guido, D Joan, P Michaël, VA Gilles, and VK Ronny. K implemen-
tation overview. 2012.

[9] Arvind Krishnaswamy and Rajiv Gupta. Profile guided selection of arm
and thumb instructions. In ACM SIGPLAN Notices, volume 37, pages
56–64. ACM, 2002.

[10] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware
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Appendix A

Appendix

A.1 Equations for TI S-Box

Below are the complete calculations for each of the functions of the S-box
in the threshold implementation.

y0 = x0 ⊕ (x1 ∨ x2)
= x0 + (x1 ∨ (x2 + 1))

= x0 + (x1(x2 + 1) + x1 + (x2 + 1))

= x0 + x1x2 + x1 + x1 + x2 + 1

= x0 + x1x2 + x2 + 1

= x0 + (x1 + 1)x2 + 1

= (a0 + b0 + c0) + ((a1 + b1 + c1 + 1)(a2 + b2 + c2) + 1)

= a0 + b0 + c0 + a1a2 + a1b2 + a1c2 + b1a2 + b1b2 + b1c2

+ c1a2 + c1b2 + c1c2 + a2 + b2 + c2 + 1

A0 = fA(a, b) = b0 + a1b2 + b1a2 + b1b2 + b2

B0 = fB(b, c) = c0 + b1c2 + c1b2 + c1c2 + c2 + 1

C0 = fC(a, c) = a0 + c1a2 + a1c1 + a1a2 + a2

y0 = A0 ⊕B0 ⊕ C0

y1 = x1 ⊕ (x2 ∨ y0)
= x1 + (x2y0 + x2 + y0)

= y0(x2 + 1) + x1 + x2

= (A0 +B0 + C0)((a2 + b2 + c2) + 1) + (a1 + b1 + c1) + (a2 + b2 + c2)

= A0a2 +A0b2 +A0c2 +A0 +B0a2 +B0b2 +B0c2 +B0

+ C0a2 + C0b2 + C0c2 + C0 + a1 + b1 + c1 + a2 + b2 + c2
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A1 = gA(a, b) = A0b2 +B0a2 +B0b2 +B0 + b1 + b2

B1 = gB(b, c) = B0c2 + C0b2 + C0c2 + C0 + c1 + c2

C1 = gC(a, c) = A0a2 +A0c2 + C0a2 +A0 + a1 + a2

y1 = A1 ⊕B1 ⊕ C1

y2 = x2 ⊕ (y0 ∨ y1)
= x2((y0 + 1) ∨ y1)
= x2 + (y1(y0 + 1) + (y0 + 1) + y1)

= x2 + y0y1 + y1 + y0 + 1 + y1

= x2 + y0(y1 + 1) + 1

= (a2 + b2 + c2) + (A0 +B0 + C0)(A1 +B1 + C1 + 1) + 1

= a2 + b2 + c2 +A0A1 +A0B1 +A0C1 +A0 +B0A1

+B0B1 +B0C1 +B0 + C0A1 + C0B1 + C0C1 + C0 + 1

A2 = hA(a, b) = b2 +A0B1 +B0A1 +B0B1 +B0

B2 = hB(b, c) = c2 +B0C1 + C0B1 + C0C1 + C0 + 1

C2 = hC(a, c) = a2 +A0A1 +A0C1 + C0A1 +A0

y2 = A2 ⊕B2 ⊕ C2
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