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Abstract

Bitcoin is a cryptocurrency based on blockchain technology that has
attracted investors because of its big price increases. In this thesis we ex-
plore the design of algorithms that can make a profit by trading Bitcoin.
These trading algorithms often use models to predict the future price. Based
on these predictions a decision is made about buying or selling. We used
ARIMA and Artificial Neural Network as our models to make these predic-
tions. These models need training data to learn to predict a variable, in
this case the price of Bitcoin. We have collected 6 weeks of Bitcoin to US
Dollar transactions to use as training data for the models. We also use a
small part of this data as test data to see how well our models perform. The
performance of our algorithms is measured by their trading return rate and
the prediction accuracy of the model that is used. To get a more realistic
measure we also take into account transaction costs that come with Bit-
coin transactions. By using these measures we find that we can predict the
sign of the next price movement with almost 60% accuracy, but we do not
achieve any profitable return rates using both ARIMA and Artificial Neural
Networks due to transaction costs. We conclude that by using these models
one is unlikely to make a profit, but that does not mean the models have no
predictive value at all.
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Chapter 1

Introduction

In this thesis we try to find trading algorithms that can make a profit by
trading Bitcoin. We use Machine Learning methods to predict the price
of Bitcoin and then use these predictions to make decisions about Bitcoin
trades. Cryptocurrency trading with Machine Learning is a relatively new
and upcoming field of research, but it has many similarities to Stock Market
trading using Machine learning which has been researched more.

At a stock market stocks are exchanged. These stocks fluctuate in value.
These fluctuations enable stock traders to try to buy stocks for a low price
and sell them for a higher price.

Bitcoin is a cryptocurrency. Cryptocurrencies also fluctuate a in value
which means that we can also trade in Bitcoin and try to make a profit. In
Chapter 2 we will elaborate more on what a cryptocurrency is exactly.

A lot of stock trading happens through algorithms (about 75% in 2016
according to [17]). Because the principle to make profit on both markets is
the same, and algorithmic trading is used heavily on the stock market, it
would make sense to use algorithmic trading on the cryptocurrency market.
A trading algorithm generally tries to predict the future price of the good
that is to be traded. Then, based on these predictions, decisions about
buying or selling the good are made to try to make a profit. In the simplest
form, if the prediction indicates a higher future price, the good should be
bought and if the prediction indicates a lower future price the good should
be sold.

The profit made by this method of trading is obviously highly dependant
on how accurate the predictions are. Another aspect that is important are
the trading complications associated with certain goods (e.g. transactions
costs, availability, delivery time). Because of these complications we often
need more complex decision making rules than buying when the price goes
up and selling when the price goes down to still make a profit.

In this thesis we take a look at trading Bitcoin using algorithms. The
models we will use to predict the Bitcoin price are ARIMA and Artifi-



cial Neural Networks. Furthermore, we consider transaction costs, Bitcoin’s
main complication, when making decisions based on our predictions and
when reflecting on our trading performance.

In Chapter 2 we will first explain some fundamental ideas that are nec-
essary to understand the method we use. In Chapter 3, we will then discuss
the exact method that is used to produce the results. These results will be
analyzed in Chapter 4. We compare our results to similar works in Chapter
5 and finally we summarize our conclusions in Chapter 6.



Chapter 2

Preliminaries

2.1 Stock market

At a stock market, stocks are exchanged freely between buyers and sellers for
the market price of the stock. Stocks are an instrument to divide ownership
of a company. For example, if a person owns 1% of the stocks of a company,
he gets 1% of the profit the company makes. As a consequence, if a company
makes a large profit, owners of the company’s stock are less likely to sell the
stock. On the other side, buyers will be more likely to buy the stock. This
change in demand and supply will cause the price to go up. Similarly, if the
company’s profit declines, the price of its stock will also likely decline.

These price changes have attracted stock traders. Traders are not nec-
essarily interested in getting a margin of the profit a company makes. They
speculate what the future price of a stock will be, and try to buy low and
sell high to make a profit.

2.2 Cryptocurrency

Cryptocurrencies are digital currencies based on cryptographic proofs [13].
They provide an alternative for traditional money. Cryptocurrencies are
different from traditional currencies in multiple ways. These differences are
identified by [13] as:

e Cryptocurrencies do not need a central authority like a bank or state.

e Cryptocurrencies keep track of the number of units and who owns
them.

e Cryptocurrencies define how new units of the currency are created,
and who owns them when they are created.

e One can only prove cryptographically who is the owner of a unit of
cryptocurrency.



usp

22,500

20,000

17,500

15,000

12,500

10,000

5,000

2,500

Jun17

Jul17 Aug 17 Sep 17 oan7 Nov'17 Dec 17 Jan"s Feb'18 Mar 18 Apr'1g

Figure 2.1: The price of Bitcoin in USD (United States Dollar) over time.

e Cryptocurrency transactions can only be initiated by the owner of the
units that are to be transacted.

e If two transactions concerning the same units of the cryptocurrency
are initiated at the same time, at most one transaction will take place.

Bitcoin was the first form of cryptocurrency [18]. When Bitcoin was re-
leased in 2009 it was revolutionary to use blockchain technology to achieve
these six characteristics. The blockchain is a large set of data that con-
tains every Bitcoin transaction ever [18]. By 2018 there were hundreds of
cryptocurrencies based on blockchain technology [7].

The price of these cryptocurrencies tends to be very volatile when com-
pared to traditional currencies. For example, if we take a look at the price
of Bitcoin in US Dollar (Figure 2.1) we can see that in 2017 and early 2018
the price either increases or decreases very fast multiple times [4, 7]. For
example, between November 2017 and January 2018 the price went up by
200%. During this period we also observe an increase in the trading volume
(Figure 2.2) [4]. This indicates that people use cryptocurrency not only as
a currency, but also as an investment. This enables trading in cryptocur-
rencies similar to trading stocks, where one buys with the intentions to sell
at a higher price later on.

2.3 Prediction models

In 2016, about 75% of stock trading was done by algorithms [17]. These
algorithms try to predict the future price of the stock and make decisions
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Figure 2.2: The number of Bitcoin transactions per day over time.

based on this prediction. In this thesis we try to use such algorithms to trade
Bitcoin. More specifically, we will be using ARIMA and Artificial Neural
Network models to predict Bitcoin’s future price.

2.3.1 ARIMA

The content about ARIMA in this subsection is based on [2].

ARIMA is a model for time series data prediction. The model has three
parameters that each correspond to a different part of the model. In an
ARIMA(p, d, q) model, p corresponds to an AR(p) model, d corresponds to
the level of integration needed to make the data series stationary and finally,
q corresponds to an MA(g) model. We will describe how all these models
work exactly later on in this section.

What is meant by stationary data is that the mean, variance and co-
variance are constant over time. Financial data often shows a trend over
time which causes the mean to change over time. If the mean changes over
time the data is not stationary. However, we can make it stationary by using
the difference between each data point. The d in ARIMA(p, d, q) is the level
of differencing between data points needed to make the data stationary.

This process works as follows, instead of using the collected data we use
the difference between the data points Y at times ¢:

AY; =Y, - Y

If a data series requires a higher level of differencing to become stationary
one can just apply the same equation to the resulting AY. For example if
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AAY = AY; — AY;

An AR(p) model is an auto regressive model that considers the last p
values of the variable that is to be predicted. The prediction of a variable
at time ¢ with an AR(p) model is given by:

Vi=¢1Yio1 + d2Yio+ ..+ 9pYVip +

where Y; is the value at time ¢, and ¢ is a value between -1 and 1 that is
optimized to get the best fit for the training data. This fit is then used for
predictions using the test data.

An MA(g) model is a moving average model that considers the last ¢
error terms of the variable to be predicted. The prediction of a variable at
time t with a MA(g) model is given by:

Y = us + Orup—1 4 Oous—o + ... + Oqui—q

where Y; is the value at time t, u; is the error term at time ¢, and finally 6
is a value between -1 and 1 that needs to be fitted to get the best prediction.

We can put the AR(p) and MA(q) models together to get an ARMA(p, q)
model. The prediction equation is then simply given by adding the predic-
tions of the two models together:

Yi=01Yi 1+ @Y o+ ..+ Y p+01up 1 + Ooup o+ .o+ Ogup g + uy

If we then take the difference between the Y; variables we get an ARIMA
model.

2.3.2 Neural networks

The explanation of neural networks in this section will be based on [8].
Furthermore, we do not aim to explain neural networks in great detail but
we will give a brief explanation. For a more detailed explanation, see [8].

An artificial neural network is a useful model for self learning computer
programs. It is a network that consists of several layers; an input layer,
hidden layer(s) and an output layer. These layers are made out of artificial
neurons. These neurons take in inputs and produce a single output. In
Figure 2.3 you can see an example of a neural network, in this case the
network has an input layer with three neurons, a hidden layer with four
neurons and an output layer with three neurons.

Each artificial neuron has weights for all its inputs. When it gets input
it multiplies each input by their corresponding weight and takes the sum of
all these multiplications and adds a bias. After that, a function is often used
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Figure 2.3: A neural network with a single input layer, output layer and
hidden layer. The circles represent neurons. This network has 3 input
neurons that each take a number as input. The neurons calculate their
output, which is also a number, and send it to the neurons that they are
connected with. These connections are indicated by the arrows. After all the
neurons have processed their input the network produces 3 output numbers
through the 3 output neurons.

on this sum to get a result between some desired bounds (usually 0 and 1).
For example the sigmoid function, defined as:

B 1
C14e®

The result is then the output of the neuron. Formally:

S(x)

output = function(inputy * weighty + ... + input,, * weight, + bias)

If this neuron is in the output layer, the output is an output of the neural
network. Otherwise it is the input of all connected neurons in the next layer.

If we want to make the network do something useful we need to train it.
To do this we give the network inputs while we know the desired output. We
then compare the output of the network to the desired output using a cost
function. This is also known as supervised learning [15]. The cost function
should return a low value if the output is very similar to the desired output
and a high value if the output is very different from the desired output. The
neural network aims to minimize the cost function but it can only modify
the weight and bias values.

To find this minimum we could take the derivative of the cost function
with respect to all the weights and biases in the network. However, the
number of weights grows too fast to be able to calculate this derivative.
This is why we use a different approach. We calculate the partial derivative
of the cost function with respect to each weight or bias. We then change
each weight or bias in the direction of its partial derivative in small steps
until we find a local minimum.



This way the neural network minimizes the cost function to at least a
local minimum. By minimizing the cost function the neural network gets
better at giving the desired output for a certain set of inputs.



Chapter 3

Research

In this chapter we will first introduce the main problem. Then we will for-
malize this problem, making it easier to solve. This will also make analyzing
the performance of our solutions easier. Then we describe how to collect the
data we need. Lastly, we go over the models that use the collected data to
try to give a solution to our problem.

3.1 Problem

The goal of this research is to design algorithms that consistently make a
profit by trading Bitcoin. To do this we need to be able to predict the price
of Bitcoin. After we have made our predictions we will feed them into a
program that will make decisions.

Predicting the exact price is very hard. This is why we simplify the
problem; we only try to predict whether the price will increase, decrease or
stay the same within certain thresholds. Formally:

Down, if p[t]/p[t — 1] < T~
mlt] = § Stay, if p[t]/[t — 1] > T~ and p[t]/p[t — 1] < T
Up, if p[t]/p[t — 1] > T+

where t is the chronological index of the trade. This means that the first
trade to be recorded has t = 0, the second ¢t = 1 and so on. We will refer to
t as time but note that absolute time between successive transactions may
vary. Furthermore, m[t] is the movement of the price of Bitcoin at time ¢
and p[t] is the price of Bitcoin in USD (United States Dollar) at time ¢. T~
and T" are the lower and upper threshold respectively.

It may seem obvious to use absolute thresholds instead of fractional
thresholds because our data does not show any significant relation between
the price of Bitcoin and the change in Bitcoin price as can be seen in Figure
3.1. However, when choosing the thresholds we want to choose them such

10
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Figure 3.1: Scatter plot of the absolute Bitcoin price in USD (United States
Dollar) change and the Bitcoin price in USD.

that we can make the most profitable decisions. Binance [3], the cryptocur-
rency exchange used in this project takes 0.1% of the amount of currency
exchanged as a transaction fee. Consequently, if we want to make a profit
the price should go up by at least 0.1% to make a profit. This is why we
use fractional thresholds.

We put the upper threshold at 1.001. We use this value because if our
prediction is right, we will make a profit in the next time-step if we invest.
We put the lower threshold at 0.999. We choose this value because if we
already have invested and we assume our prediction is right, we know that
if our prediction is Down, we are better off selling.

We will also consider the classification problem using only two classes,
Up and Down, while ignoring the transaction costs. This will give us some
insight on the impact these fees have on our trading return rates. Formally:

mlt] = { Down, if p[t]/p[t — 1] < 1
Up, if plt]/plt — 1] > 1

Note that no change at all (p[t]/p[t — 1] = 1) is not included in this
classification problem. This choice was made because if there is no change
at all it does not matter whether we decide to buy or sell because we do not
consider transaction costs.

11



Furthermore, we will also try to predict the exact future price of Bitcoin.
This will give us more insight in what the models predict exactly and how
this compares to the real data.

3.2 Data Collection

To solve the classification problem, we will need to collect data about Bit-
coin. During this research, we use Binance [3] to collect this data.

The data collected and used consists of the highest price, lowest price
and last price (all in USD) in a 30 second interval from 12th of April, 2018
until the 22nd of April, 2018. After the 22nd of April, every Bitcoin to USD
transaction (and thus also every USD to Bitcoin transaction) was recorded
in terms of its price, quantity and time of trading until the 1st of June,
2018. The collected data will be used to train and test various models for
our classification problem.

This data is not available from the blockchain because Binance does not
put every transaction on the blockchain. Some of the transactions are offset
in the Binance exchange to save costs. Another issue is that the blockchain
does not record that what was used to buy the Bitcoin.

We have also been provided with a data set containing almost 6 million
transactions between Ethereum and Bitcoin from the 26th of March until
the 5th of April collected from Binance. We will use this data set only
for the two-class prediction problem because the price does not change fast
enough to get any data outside of the same class in the three-class prediction
problem.

3.3 ARIMA

The first model we will use to try to predict the price of Bitcoin is ARIMA.
Because ARIMA is using previous values to predict a value the output does
not tend to be very interesting when we use very small time-steps. The
output then just stays really close to the previous values so we cannot really
derive any conclusions from the predictions. Thus, we should increase the
time-step to get more variance in the previous values and make our output
more interesting.

We also want to find the parameters that give us the best model for pre-
dicting Bitcoin. To find these parameters we use the box-jenkins approach
[2].

To do this we first plot the autocorrelation function (ACF) and the
partial autocorrelation (PACF) function of the data. We can now see if the
data is stationary or not. If this is not the case, we take the logarithm of
the data and then the first difference. After that we check again if the ACF
and PACF show that the data is stationary.

12
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Figure 3.2: Autocorrelation plot of the first level differenced data. The x-
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If the data is stationary we use the ACF and PACF to estimate what
would be good p and ¢ parameters for our model. We can do this because
the ACF and PACF shows how much a previous result correlates with newer
results.

We find that the highest significant lag is 7 by looking at Figure 3.2, so
p and q are both < 7. After testing we find the optimal ARIMA model is
ARIMA(4,1,2). We will be using this model to make predictions.

An input for this ARIMA model consists of 5 inputs for the AR model
and 2 inputs for the MA model. Note that there are 5 inputs for the AR
model because in the process of differencing we end up with 4 inputs. Here
is an example of how ARIMA predicts a value:

13



Inputs for AR model 8127.0,8136.84,8131.46, 8092.0,8113.21

Inputs AR model after differ- 9.84, —5.38, —39.46,21.21

encing

Inputs for the MA model —33.42,18.2

Values found for ¢ —0.1753,0.5477,0.0380, 0.0369
Values found for 0 0.0761,—-0.5139

Vi =Y+ (01Yie1 + ¢2Yio + ¢33 +
$aYi—g + O1up—1 + Ouy_9) = 8113.21 +
(9.84 x —0.1753 — 5.38 * 0.5477 — 39.46 x*
0.0380 + 21.21 % 0.0369 — 33.42 x 0.0761 +
18.2 x —0.5139) = 8095.93

Prediction by ARIMA(4,1,2)
model

3.4 Neural networks

Now we will try to use neural networks to predict the price of Bitcoin. Dur-
ing this research project we used the Keras API [12]. Keras provides an
easy to use interface for neural networks in Python on top of Tensorflow
[20]. Tensorflow is a library by Google that includes neural network imple-
mentations.

The results of the neural network are strongly dependent on the input.
This makes sense because this is the only information the neural network
gets to give a prediction. We will be using the following inputs calculated
from the raw transaction data:

14



Input type ot vl
Previous price movement 1
Number of Down movements in the last 50 measuring points | 15
Number of Stay movements in the last 50 measuring points | 18
Number of Up movements int the last 50 measuring points | 17
Maximal length of consecutive Down movements in the last 5
50 measuring points

Maximal length of consecutive Stay movements in the last 5
50 measuring points

Maximal length of consecutive Up movements in the last 50 4
measuring points

Number of trades since the last measuring point 127
Second in current minute 29
Minute in current hour 24
Hour in current day 14
Day in current week 4
Day in current month 13
Expected output up

Note that the last row in this table is not an input but the expected output.

The results of the neural network also depend partially on the structure
of the neural network. There are no sharply defined methods to find the
optimal structure but there are some guidelines to find a competent neural
network structure. We will start with 2 hidden layers and try to add more
to see if this increases performance.

We also have to determine the number of neurons in each hidden layer.
We do not want too many neurons because this will cause overfitting. An-
other problem that could occur is that the network structure becomes too
big to train. Because neurons bring more weights to the network that need
adjusting, training the network becomes more complex when you add more
neurons. We also do not want too few neurons because then the network
will not be able to learn very well.

There are a few rules of thumb identified by [9] about the number of
neurons in a hidden network layer:

e The size of a hidden layer should be between the size of the input layer
and the output layer

e The size of a hidden layer should be 2/3 of the size of the input layer

15



+ the size of the output layer

e The size of a hidden layer should be smaller than twice the size of the
input layer

Because we have thirteen inputs and three outputs, the size of the two
hidden layers should be between thirteen and three neurons according to
the first rule of thumb. According to the second rule our input layer should
be consisting of % x 1343 = 11 neurons. Eleven neurons is also in line with
the last rule of thumb.

This gives us the following neural network structure: 13 input neurons in
the input layer, two hidden layers consisting both of 11 neurons and finally
an output layer consisting of 3 neurons. This is a good starting point,
but we will try several other structures with more hidden layers to see if
performance improves or not.

3.5 Decision making

Given our models’ predictions, we need to make profitable decisions. We
have already decided that our thresholds Tt and 7~ are 1.001 and 0.999
respectively. The values of these thresholds are important to the decision
we make given our predictions because these values give meaning to the
predicted classes:

e Up, price is predicted to go up by at least more than 0.1%

e Same, price is predicted to stay the same or go up by at most 0.1% or
go down by at most 0.1%

e Down, price is predicted to go down by at least more than 0.1%

Furthermore, we also need to consider whether or not we have already
invested or not when making a decision. What follows is a table of what the
system does in what situation and the reason behind it.

16



Prediction Invested Decision Reasoning

According to our prediction
the investment will increase
Up No Buy more in value than the cost
of investing, thus we will
make a profit

According to our prediction
Up Yes Wait the value of our investment
will increase

According to our prediction
we will not make a profit at
the next time-step if we in-
vest

Same No Wait

According to our prediction
the cost of selling our invest-
Same Yes Wait ment will at least be higher
than the maximum loss when
not selling it

According to our prediction
Down No Wait the value of our investment
will decline

According to our prediction
Down Yes Sell our investment will lose more
value than the cost of selling

3.6 Measuring performance

We are using two performance tests in this project. The first performance
test is measuring a model’s prediction accuracy. The second performance
test is how high the return rate is when the model uses its predictions to
trade.

Our first performance test will be measuring the model’s accuracy by
simply comparing the predicted movement to the actual price movement.
We will also consider the prediction accuracy for every class of the classi-
fication problem defined in Section 3.1. We do this because it will give us
more insight in what the model is actually good at. For example, we could
have model that when the price goes down it always predicts Down, when
the price stays the same it predicts Stay 50% of the time and when the price
goes up it is always wrong. This model will have an accuracy of roughly
50% but will still not be very useful because of always predicting one class
wrong. Furthermore, the actual distribution of the price changes will be

17



plotted to compare this to the distribution of the predictions.

The second performance test will be measuring the return rate of the the
model while trading. We will consider both the return rate while ignoring
the Binance fees and the return rate without ignoring the Binance fees.

18



Chapter 4

Results

In this chapter we will go over the performance of our models. First, we
take a look at ARIMA’s results on the three-class classification problem.
Then we will go over it’s performance while it tries to predict the exact
future price of Bitcoin. Then we take a look at the performance of Neural
Networks on the three-class classification problem and the exact prediction
of the price. We will also analyze the results of the models’ performance
on the two-class classification problem. Finally, we will compare the results
of different models and different problems to come to conclusions about to
what extend we have solved the main problem.

4.1 ARIMA

In this section we will discuss the results of our ARIMA(4, 1,2) model. When
using the ARIMA model the time between each measure was increased sig-
nificantly, otherwise the model would only predict that the price would stay
the same. This is due to ARIMA usage of past values of the variable that it
is trying to predict, which often results in predicting a value close to its pre-
decessors. The time-step that was used to prevent ARIMA from predicting
Stay every time is 1 hour and 40 minutes between each measurement.

19



4.1.1 Predicting classes

We get the following results, trying to solve the classification problem using
ARIMA(4,1,2):

Measure Result

Prediction accuracy 31.452%

Prediction class distribution (Down, 16.129%, 64.516%, 19.355%

Stay, Up)

gfs;d;;z; class distribution (Down, 43.548%. 11.200%, 45.161%
Return rate without Binance fees 0.923

Return rate with Binance fees 0.901

Number of trades 24

The corresponding confusion matrix is given by:
Correct class

Down Stay Up

Down | 11.290% | 0.000% | 4.839%

Predicted class | Stay | 26.613% | 8.871% | 29.032%

Up 5.645% | 2.419% | 11.290%

As we can see our prediction accuracy is not very high. This is mainly
due to the strong bias towards the Stay class from ARIMA. ARIMA is not a
model for classification and does not get punished necessarily for predicting
the wrong class, it gets punished for how far off its exact predictions are
from reality. This results in a lot of predictions around 0 because this is
the mean change of the Bitcoin price. The small size of the Stay class in
the test data can be explained by the large time-step that was used. The
chance that a fluctuating price is still within 0.1% range of the previous
value obviously gets smaller when larger time-steps are used. Furthermore,
the return rates for ARIMA are both negative which is a logical consequence
of a low prediction accuracy.

4.1.2 Predicting exact values

Now we will take take a look at the exact predictions of the ARIMA(4, 1, 2)
model. The model had a mean squared error of 4975.04. In Figure 4.1
we can see how the ARIMA predictions are just behind the actual price
movement most of the time. In Figure 4.2 we can see both the actual price
change distribution and the predicted price change distributions. We can
clearly see ARIMA’s bias towards no price change.

20
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Figure 4.1: ARIMA predictions of the Bitcoin price in USD (United States
Dollar) plotted over time in time-steps of 1 hour and 40 minutes (red) and
Bitcoin’s actual price movement in USD in time-steps of 1 hour and 40
minutes (blue).
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(a) Bitcoin’s actual price change distribution in a histogram.
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(b) ARIMA’s predicted price change distribution in a histogram.

Figure 4.2: Comparison between the actual price change distribution of Bit-
coin and ARIMA predicted price change distribution. The price changes are
recorded in time-steps of 1 hour and 40 minutes. Figure a shows the actual
price distribution in a histogram and figure b shows ARIMA’s prediction
distribution in a histogram



4.2 Neural networks

In this section we will discuss the results of the Neural Network model.
Similar to ARIMA we will first describe the results for the classification
problem and then the results for predicting an exact value. While using the

Neural Network model we used time-steps of 12.5 minutes.

4.2.1 Predicting classes

We get the following results, trying to solve the classification problem using

a Neural Network:

Neural network results using two hidden layers:

Measure

Result

Prediction accuracy

39.804%

Stay, Up)

Prediction class distribution (Down,

16.249%, 35.551%), 48.201%

Test data class distribution (Down,

33.151%, 32.606%, 34.242%

Stay, Up)

Return rate without Binance fees 0.980
Return rate with Binance fees 0.819
Number of trades 179

The corresponding confusion matrix is given by:

Correct class

Predicted class

Down Stay Up
Down | 6.761% | 4.471% | 5.016%
Stay | 12.323% | 13.522% | 9.706%
Up 14.068% | 14.613% | 19.520%
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Neural network results using three hidden layers:

Measure Result
Prediction accuracy 38.931%
Return rate without Binance fees 0.992
Return rate with Binance fees 0.870
Number of trades 132

Neural network results using four hidden layers:

Measure Result
Prediction accuracy 38.713%
Return rate without Binance fees 0.934
Return rate with Binance fees 0.804
Number of trades 149

During testing we tried adding more layers but this did not significantly
affect prediction accuracy. This is why we have decided to not describe all
of the results in as much detail as the results of the network that performed
best.

We can see that at a maximum of 39.804% the prediction accuracy is
still not very high. However, because it is a higher percentage than the size
of every class in the test data distribution, we at least know that the model
is able to predict better than just random guessing.

The return rates are still both negative. The higher difference between
the return rate without Binance fees and the return rate with Binance fees
can be explained by the higher number of trades. Every time we trade our
Bitcoin for USD or the other way around Binance takes 0.1%

4.2.2 Predicting exact values

Now we will take a look at the exact predictions of the Neural Network. The
model had a mean squared error of 588.10. In Figure 4.3 we can see how
the predictions is always just behind the actual movement. In Figure 4.4
we can see both the actual price change distribution and the predicted price
change distributions. We can see that the predicted change distribution is
way more centered than the actual price distribution.
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Figure 4.3: The Neural Network’s predictions of the Bitcoin price in USD
(United States Dollar) plotted over time in time-steps of 12.5 minutes (blue)
and Bitcoin’s actual price movement in USD in time steps of 12.5 minutes
(orange). Note that this graph only shows about the first 100 time-steps

to show the difference between the prediction line and the price movement
line.
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(a) Bitcoin’s actual price distribution in a histogram.
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(b) The Neural Network’s predicted price change distribution.

Figure 4.4: Comparison between the actual price change distribution of
Bitcoin and the Neural Network’s predicted price change distribution. The
price changes are recorded in time-steps of 12.5 minutes. Figure a shows
the actual price distribution in a histogram and figure b shows the Neural
Network’s prediction distribution in a histogram. Note that the x-axis in
both figures is different.
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4.3 Two-class problem

Now we will examine the results of the Neural Network on the two-class
classification problem. We did not need to use any time-step increase be-
cause there is already a balance between the two classes. First we observe
the results using the Ethereum-Bitcoin data set and then we observe the
results of the Bitcoin-USD data set.

Ethereum-Bitcoin data set

Measure Result

Prediction accuracy 57.393%

Prediction class distribution (Down, 30.176%, 69.824%
Up)

Test data class distribution (Down, 50.685%, 49.315%
Up)

Return rate without Binance fees 6.95937936774 % 1016
Number of trades 251504

The corresponding confusion matrix is given by:
Correct class

Down Up
Down | 18.954% | 31.731%
Predicted class | Up 31.731% | 18.954%

Bitcoin-USD data set

Measure Result

Prediction accuracy 59.886%

Prediction class distribution (Down,

54.897%, 45.103%

Up)

Test data class distribution (Down, 51.472%, 48.528%
Up)

Return rate without Binance fees 7.38226288632 % 1014
Number of trades 394094

The corresponding confusion matrix is given by:
Correct class

Down Up
Down | 33.127% | 21.769%
Predicted class | Up 18.345% | 26.759%
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(a) Bitcoin-Ethereum data set
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(b) Bitcoin-USD data set

Figure 4.5: Return rate over time for the two different data sets when not
considering transaction costs
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On the Ethereum-Bitcoin data set we achieve a prediction accuracy of
57.393%. On the Bitcoin-USD data set we achieve a prediction accuracy
59.886%. The return rates are exceptionally high, but if we consider the
high number of trades in both cases and the prediction accuracy above 50%
it is sensible. To show this we can calculate the average return rate per
trade:

009/7.38226288632 * 1014 = 1.0000109

In Figure 4.5 we can also see that the exceptionally high return rates
are just a consequence of the exponential growth when the average return
rate is just slightly above 1. Besides that, it would be impossible to actually
achieve such a high return rate without influencing the market price by our
own trading.

4.4 Comparing results

In this section we will compare our results and try to derive conclusions from
these comparisons. According to our results in the three-class problem,
Neural Networks outperformed ARIMA in both prediction accuracy and
return rate without transaction fees. ARIMA did get a higher return rate
with transaction fees but this is mostly due to the lower number of trades
made by ARIMA. All return rates were negative.

When using the models to predict the exact future Bitcoin price, ARIMA
and Neural Networks perform somewhat similar. Both show a strong bias
towards no change at all. This is probably because when predicting the
exact price, no change at all is the safest choice.

If we take a look at the results of the two-class prediction problem, we
can clearly see that the Neural Network has some predictive value. The
return rates are also exceptionally high but this due to exponential growth
and a lot of trades.

We did not manage to predict the price of Bitcoin well enough to actu-
ally make a profit. All return rates when considering transaction costs are
negative. Because of this, we would advise against using Neural Networks
or ARIMA to trade Bitcoin. We do see that Neural Networks have some
predictive value in the two-class problem, so maybe future research can im-
prove these predictions such that we can actually get positive return rates
while taking into account transaction costs.
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Chapter 5

Related Work

Work related to the subject of predicting Bitcoin prices is mostly about us-
ing machine learning techniques on financial data. We will consider the most
similar case to Bitcoin price prediction, which is stock price prediction. Af-
terwards we will examine the field of Bitcoin price prediction. Subsequently,
we identify our own contribution to the field and future works.

5.1 Stock price prediction

In [16] the authors tried using machine learning techniques to predict the
Indian stock market. They used Artificial Neural Networks, Support Vector
Machines, Random Forest and naive-Bayes. By doing this they achieved
a prediction accuracy of 75-83% with Random Forest having the highest
accuracy. In [10] the authors used Support Vector Machines to predict the
movement of the NIKKEI 225 index getting a prediction accuracy of 75%.
In [21] Multiple Discriminant Analysis and Artificial Neural Networks were
used to predict stock returns from companies mentioned in Fortune 500 and
Business Week’s ”top 1000”. They achieved a mean prediction accuracy of
65% using the Multiple Discriminant Analysis and 77.7%. In [5] they test
whether Back Propagating Neural Networks or Support Vector Machines are
more capable at predicting stock prices on six major Asian stock markets.
They find that Support Vector Machines perform better most of the time,
but not always. In [6] they introduced a Genetic Algorithm - Support Vector
Machine hybrid model to predict the price of three stocks. They achieved
a prediction accuracy of almost 62% using this method. In [19] they used a
different approach. They collected news articles about S&P 500 stocks and
the stock prices and used this data to predict the future stock prices. They
achieved a prediction accuracy of 57.1%.
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5.2 Bitcoin price prediction

In [1] the authors proposed several algorithms to predict the Bitcoin price,
such as ARIMA, Random Forest, Logistic Regression and Linear Discrim-
inant Analysis. They have achieved impressive results such as 60 to 70%
prediction accuracy for all algorithms and return rates varying between 2.6
and 6.9. They also managed to reproduce these results using older train-
ing data and the same test data. In [14] the authors used more complex
Neural Network structures such as Recurrent Neural Networks and Long
Short Term Memory Networks. The Long Short Term Memory Network
performed the best achieving a prediction accuracy of 52%. In [11] they
used a Neural Network that optimizes return rates. In a 1.8 month period
they achieved a return rate of 10.

5.3 Contribution

This thesis contributes to the relatively new field of Bitcoin price prediction
in several ways. We used ARIMA and Artificial Neural Network models on
real Bitcoin price data to predict the Bitcoin price. The Neural Network
model did outperform the ARIMA model but we did not manage to get any
positive return rates. This is because we took into account transaction costs
when creating and evaluating our models. We are one of the first to take
transaction costs in algorithmic Bitcoin trading into consideration. This has
given us more realistic return rates and a better grasp of how well the applied
Machine Learning techniques would actually work when trading Bitcoin. We
would not recommend using Neural Networks for Bitcoin trading for now
because return rates are negative.

5.4 Future work

As stated in the previous section, we did adjust for transaction fees in this re-
search. However, to get even more realistic performance measures we should
also consider other trading complications that Bitcoin has. For example, we
did not consider transaction latency. In our trading simulation Bitcoin are
bought and sold instantly but when you actually want to buy or sell Bitcoin
there is a delay due to the transaction time itself and the time needed to
find a buyer/seller. This delay is not very consistent. It is between 10 and
60 minutes most of the time but has peaks where it takes over 40 hours to
complete a transaction [4].

Another complication that we did not look into is the impact we have
on the Bitcoin market. If we only trade small amounts this impact will be
negligible, but if we would trade large amounts of Bitcoin we might have an
impact on the Bitcoin price. In our simulation we did not consider this.
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In future work we should also develop models that try to look more than
one time-step into the future. In this experiment the prediction models
only predict one step into the future which result in us missing out on a
profit. For example if the Bitcoin price increases gradually in the next three
time-steps by 0.05% for each step. The price will increase by 0.15% but we
will not invest because the predictions (if they are correct) will classify the
future price as Stay for each step, even though there was a profit to be made
because 0.15% is larger than 0.1%.

Finally, we should also consider using different Machine Learning tech-
niques like the Support Vector Machine and Random Forest. Other research
has shown that these can perform better than Artificial Neural Networks.
We should also consider more advanced Artificial Neural Networks that such
as Back Propagating Neural Networks to possibly achieve better predicting
accuracy. In addition, we should also find the best inputs for our Neural
Networks. We could take a look at the optimal inputs derived from finan-
cial data and we could also consider extra sources like news items and social
media discussions about cryptocurrency.
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Chapter 6

Conclusions

We tested an ARIMA model and several Artificial Neural Network models
on our formalized Classification problems. We measured the performance of
the models by their prediction accuracy and return rates.

Artificial Neural Networks outperformed ARIMA but did not perform
well enough to make a profit. All of our return rates where negative when we
considered transaction fees. However, this did not mean the Neural Network
models had no predictive value at all. On the three-class problem a predic-
tion accuracy of almost 40% was achieved and on the two-class problem we
achieved a prediction accuracy of almost 60% by the Neural Network mod-
els. Also our return rates where exceptionally high when not considering
transaction fees but this is mostly due to the nature of exponential growth
and not considering our own impact on the market.

From the negative return rate results in the three-class problem we can
conclude that we cannot make a profit by trading Bitcoin using the ARIMA
or Neural Network models that were used in this thesis. This is why we
would not recommend using these models to trade Bitcoin.

In the two-class prediction problem we see clearly that our Neural Net-
work model has some predictive value because it is able to predict the sign
of the future price with 60% accuracy. Perhaps future research can improve
the prediction accuracy significantly, which could mean we can use these
models to make a profit by trading Bitcoin.
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