
Bachelor thesis
Computer Science

Radboud University

Transducers over G-sets and
their properties

Author:
Bas Hofmans
s4204336

Supervisor/First assessor:
Dr. J. C. Rot

jrot@cs.ru.nl

Second assessor:
Prof. Dr. J. H. Geuvers
h.geuvers@cs.ru.nl

23rd January 2019

Abstract

In this thesis we want to show and explore the possibilities and prop-
erties of automata and, in particular, transducers, over G-sets. Until now
no theory has been available for such transducers. This means that it has
not been possible to assess which properties these kinds of transducers
might have. In this thesis we introduce a definition of transducers over
G-sets and then analyse their properties. We find that transducers can
be normalised showing that the length of transitions the transducer has
is not important, and that the set of languages recognised by G-NFAs is
closed under transduction.

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Languages . 3
2.2 Classic automata . 3

3 G-Automata 9
3.1 G-sets . 9
3.2 G-Automata . 12

4 G-transducers 20

5 Normalising G-transducers 27

6 Closure of G-NFA languages 33

7 Related work and conclusions 40

1

1 Introduction

Transducers provide a huge amount of possibilities for manipulating languages.
They allow us to transform words and languages into other words and language
with very simple operations. Classically, these transducers are modelled as a
variation of a finite automaton and are therefore limited in the same way that
classic automata are. This means that they cannot be applied to any kind of
infinite alphabets.

Bojańczyk, Klin and Lasota, 2014 describes theory for automata over G-sets
and nominal sets. These automata are able to work with G-sets allowing infinite
alphabets, state spaces, and transition relations. Adding structure to infinite
sets allows these automata to be described and represented finitely, allowing
us to work with these infinite structures intuitively and elegantly. While they
discuss a lot of theory about and properties of these kinds of automata this
theory is not extended to providing theory for transducers over these same sets.

In this thesis we add to the theory by introducing transducers over G-sets in
a way such that they relate closely to non-deterministic automata over G-sets.
Such G-transducers are then able to compute transductions from words and
languages over one G-set alphabet to another. In particular we provide a formal
definition of this kind of transducer. We then analyse some of the characteristics
of these transducers where we specifically look at the closure properties of the
languages recognised by non-deterministic automata over G-sets and show that
these are indeed closed under the application of transduction.

Section 2 discusses some of the preliminaries relevant to this thesis including
theory about classic automata and transducers. Section 3 then discusses existing
theory about both deterministic and non-deterministic automata over G-sets.
Following this section 4 provides a definition of G-transducers such that they
can be constructed and provides a method of normalising these transducers.
Section 6 then discusses the closure properties of non-deterministic automata
over G-sets and shows these are closed under G-transduction. Section 7 then
discusses related work and concludes.

2

2 Preliminaries

In this section we present the preliminaries for this thesis. This starts with a
short description of the notation used for formal languages, this is followed by
a description of certain types of classic automata. We discuss both determin-
istic and non-deterministic finite automata as presented, among many others,
in Hopcroft, Motwani and Ullman, 2006. Then we discuss the classic finite
transducers as they are described in Shallit, 2008.

2.1 Languages

We give a short recap of the notation that is used in this thesis for languages
and related matters. We describe languages as a set of words over an alphabet.
Given an alphabet Σ we define the set of all words Σ∗ as defined by the Kleene
star such that Σ∗ contains all finite-length words consisting of arbitrary elements
from Σ including the empty word given by ε. A language over Σ is then given
by a subset of all words L ⊆ Σ∗.

We also define a function which can be applied to (regular)expressions to
retrieve the language generated by that (regular)expression. For any regular
expression r the language generated by that regular expression is given by JrK ⊆
Σ∗. In the same fashion we define a function which is applied to automata to
retrieve the language recognised by that automaton. For an automaton A the
language recognised by that automaton is given by JAK ⊆ Σ∗.

For sets in general, we use the notation
(
S
n

)
for the set of subsets of a set S

containing n elements. Similarly, the notation Sn is used to represent the set of
all n-tuples consisting of elements of S.

2.2 Classic automata

Here we will briefly consider two classic types of automata over finite alpha-
bets, deterministic finite automata (DFAs) and non-deterministic finite auto-
mata (NFAs). These provide the basis for our later consideration of DFAs and
NFAs over G-sets. We then consider the classic notion of transducer over finite
alphabets.

In general automata are machines consisting of states and transitions which
recognise languages over finite alphabets by recognising the words in them. All
these automata read words by taking transitions from one state to another
dependant on the next letter read from the inputted word.

In the case of these classic automata, deterministic and non-deterministic
automata are able to recognise the same set of languages. These are also exactly
those languages for which a regular expression exists and these are appropriately
named the regular languages.

3

2.2.1 Deterministic finite automata

Definition 2.1. A deterministic finite automaton (DFA) is a tuple A =
(Q,Σ, I, F, δ) consisting of:

• A finite set of states Q,

• A finite input alphabet Σ,

• An initial state q0,

• A finite set of final states F ⊆ Q,

• A transition function δ : Q× Σ→ Q.

The transition functions defines the transitions present in the automaton,
if δ(q, a) = q′ then there is a transition from q to q′ along which a is read
in the automaton. This transition function thus represents the possibilities to
take single steps in the automaton. We extend this to a multi-step transition
function δ∗ : Q × Σ∗ → Q which tells us in which state we end up if a word is
read from some state. We define it as:

δ∗(q, ε) = q δ∗(q, ax) = δ∗(δ(q, a), x)

with a ∈ Σ and x ∈ Σ∗. The automaton then recognises those words which end
in final state when read from the initial state q0. This means that the language
of an automaton A is given by:

JAK = {w | δ∗(q0, w) ∈ F}

Like other automata DFAs recognise words by reading them from the input.
More precisely a DFA reads words from input and takes a transition from one
state to another whenever a letter from the input is read. This process starts
in some initial state and a word is recognised by the automaton if this process
ends in a final state when the word is completely read.

Such automata can be represented graphically, a transition from some state
q to another state q′ along which the letter a is read would be represented by:

q q′
a

States which are initial are indicated with a start arrow, final states are
indicated with double border lines, there are represented by:

qstart r

In which state q is initial and state r is final.

4

Example 2.1. We give an example of a simple DFA A over the alphabet {a, b}
the goal of this automaton is to recognise any word which contains the letter a
exactly two times. This automaton is given by:

q0start q1 q2 q3
a a a

a,
bbbb

It is easy to recognise that the letter a needs to occur exactly twice in a word
for the word to be recognised by this automaton. If it occurs fewer, the only
accepting state, state q2 is never reached. If it contains occurs more then the
computation will be stuck in state q3 which is not accepting. Thus the auto-
maton does what it is designed to do: JAK = {w ∈ Σ∗ | a occurs twice in w}.

2.2.2 Non-deterministic finite automata

Non-deterministic finite automata (NFA) resemble DFAs and are both defined
and represented very similarly. The only addition is that these automata allow
non-determinism in their transitions. This means that it is allowed to have any
amount of possible transitions from a state when a certain letter is read.

Definition 2.2. A non-deterministic finite automaton (NFA) is a tuple A =
(Q,Σ, I, F, δ) consisting of:

• A finite set of states Q,

• A finite input alphabet Σ,

• A finite set of initial states I ⊆ Q,

• A finite set of final states F ⊆ Q,

• A transition relation δ ⊆ Q× Σ×Q.

In this case a tuple (q, a, q′) is in the transition relation δ if there is a transition
from q to q′ in the automaton along which a is read. Once again this relation
can be extended to a multi-step transition relation δ∗ ⊆ Q×Σ∗×Q as the least
relation such that:

(q, w, q′) ∈ δ
(q, w, q′) ∈ δ∗

(q, v, q′) ∈ δ∗ (q′′, w, q′′′) ∈ δ∗ q′ = q′′

(q, vw, q′′′) ∈ δ∗

A word is then recognised by the automata if there is a possible path from an
initial state to a final state along which the word is read. The language of a
NFA A is then given by:

JAK =
{w | (q, w, q′) ∈ δ∗ for some q ∈ I and q′ ∈ F}
∪{ε | there is q such that q ∈ I and q ∈ F}

5

Example 2.2. We give an example of a simple NFA. The non-determinism
allowed in NFAs allows them to recognise certain language more intuitively than
DFAs can. While every language recognised by a NFA can also be recognised by
a DFA making such an automaton is much easier when using NFAs. Consider
a language over the alphabet {a, b, c} which contains all words in which some
letter occurs more than once. A NFA which recognises this language is given
by:

q0start q1

q2

q3

q4
b

a

c

a,
b,
c

a,
c

b,
c

a,
b

a,
b,
c

c

a

b

This recognises the right language because whenever a letter occurs at least
two times in a word the automaton can loop in q0 until the first occurrence of
the word and take the transition to another state at this first occurrence. The
non-determinism is useful in this case because it allows the automaton to stay
in state q0 until the letter it knows to occur twice occurs for the first time.

2.2.3 Transducers

Transducers are a variation of non-deterministic automata. Rather than re-
cognising whether a word is contained in the language of the automata, trans-
ducers write output when reading input and effectively transform words and
languages. Here we present a definition of transducers closely following the
definition presented in Shallit, 2008.

Definition 2.3. A transducer is a tuple T = (Q,Σ,Γ, I, F, δ) consisting of:

• A finite set of states Q,

6

• A finite input alphabet Σ,

• A finite output alphabet Γ,

• A finite set of initial states I ⊆ Q,

• A finite set of final states F ⊆ Q,

• A finite transition relation δ ⊆ Q× Σ∗ × Γ∗ ×Q.

Transitions in δ are tuples (q, w, v, q′) such that there is a transition from
state q to state q′ along which w is read from the input and v is read from the
output. Such a transition of a transducer is represented by:

q q′
w/v

The single-step transition relation δ can then be extended to a multi-step
transition relation δ∗ by making δ∗ the least relation such that:

(q, w, v, q′) ∈ δ
(q, w, v, q′) ∈ δ∗

(q, w, v, q′) ∈ δ∗ (q′′, x, y, q′′′) ∈ δ∗ q′ = q′′

(q, wx, vy, q′′′) ∈ δ∗

We can then say that the transducer computes a transduction T which we
define as a function T : Σ∗ → P(Γ) over words w ∈ Σ∗ which is given by:

T (w) =
{v | (q, w, v, q′) ∈ δ∗ for some q ∈ I and q′ ∈ F}
∪{ε | w = ε and there is q ∈ Q such that q ∈ I and q ∈ F}

We then extend this to a transduction T̄ for languages over Σ which we can
also define as a function T̄ : P(Σ) → P(Γ) which for a language L ∈ P(Σ) is
given by:

T̄ =
⋃
w∈L

T (w)

Example 2.3. Let us consider a basic transducer over input alphabet Σ =
{a, b} and output alphabet Γ = {a, b, c} the goal of which is to add a number of
c’s in front of a word and after a word. For this purpose we make the following
transducer:

q0start q1 q2

a/a
b/b ε/ε

a/a
b/b ε/cε/c

7

Then this transducer achieves the goal as the transducer can loop in the
initial state while printing c’s without reading any input, then has to read the
entire word before going to a new accepting state without printing or reading
anything where it can once again print any amount of c’s without reading input.

8

3 G-Automata

In this section we illustrate the existing theory used to describe G-sets and
how they functions as well as the theory of automata over G-sets. We do this
following the way in which it is presented in Bojańczyk et al., 2014.

3.1 G-sets

We are going to consider languages and automata over possibly infinite alpha-
bets Σ involving some countably infinite set of data values D. Values in the
collection of data atoms cannot be accessed directly by an automaton, they can
be accessed through some structure imposed on the collection of data values.
We consider the structure of equality of the set of data atoms such that for any
two elements d, e ∈ D we can evaluate whether d = e or d 6= e. This means that
the only thing any automaton can do with atoms is compare whether are they
are equal or not.

The set of data values D is then considered together with a group of bijections
over D called G. Here, G is the set of all bijections over D that is given by:

G = {π : D→ D | π is a bijection}

paired with the binary operation (written infix) · : G×G→ G given by compos-
ition to combine elements of G. Composition works such that for all bijections
f, g ∈ G the composition of two bijections applied to some value x ∈ D is
(f · g)(x) = f(g(x)). This satisfies all the necessary group axioms. It satisfies
closure as the composition of two bijections is still a bijection. Furthermore it is
associative as function composition is associative. It has a neutral element e in
the identity function. Every bijection π has an inverse bijection π−1 such that
π · π−1 = e. A pair of a set of data atoms paired with a certain group is called
a data symmetry. Our imposed structure of equality on the set of data atoms
and the choice of the group of all bijections over D means that we operate in
the equality symmetry, other symmetries are possible but will not be considered
in this thesis, see Bojańczyk et al., 2014 for more discussion on this subject.

3.1.1 Group action

We define a (right) group action which is a function · : X × G → X, a group
action must satisfy two axioms namely that for all elements x ∈ X, π, σ ∈ G,
and the neutral element e of G:

x · e = x x · (πσ) = (x · π) · σ

A set X paired with an action is called a G-set. In this thesis we will consider
the following actions:

9

• For any x ∈ D and π ∈ G, x · π = π(x),

• For elements of the powerset of a G-set T , S ∈ P(T) it is defined as
S · π = {x · π | x ∈ S},

• For product types over G-sets the action is applied to the elements,

• On lists of elements of a G-set, such as words over alphabets, the action
is applied to the elements of the list,

• For elements of all sets S not covered by any of these the action functions
as the trivial action such that for all x ∈ S and π ∈ G it is defined as:
x · π = x.

3.1.2 Orbits

When considering automata over infinite alphabets we will consider a type of
finiteness called orbit-finiteness. The orbit of an element x for some G-set X is
the set of all elements x maps to when the group action is applied to it with
some element π ∈ G. Precisely this means the orbit of x is given by:

{x · π | π ∈ G}

This also means that it is often the case that elements have the same orbit. We
consider the amount of orbits a certain set has to be the amount of different
orbit its elements have. Take as an example the set of data values D, this is a
single-orbit set as each of its elements will have the same orbit as each x ∈ D
maps to the same set of elements when all bijections over D are applied to it. A
set is then considered to be orbit-finite if the amount of orbits it has is finite.

3.1.3 Equivariant subsets, relations, and functions

We introduce the concept of equivariance on sets, relations, and functions. A
subset of a G-set or a relation over a G-set is considered to be equivariant if it is
closed under application of an arbitrary bijection from G by the group action.
Intuitively this means that this set treats each data value equally with respect
to equality of values or that if the set contains a certain data values in some
way it contains all other data values in that same way as well.

We can give a more exact definition of this. Suppose X is a G-set, a subset
Y ⊆ X is then equivariant if the application of the group action leaves the set
intact for all permutations π ∈ G, meaning that Y · π = Y . Extending this
to relations gives that a relation R ⊆ X × Y is equivariant if it is left intact
by point-wise application of the group action on the Cartesian product X × Y ,
that is, if (x, y) ∈ R implies (x · π, y · π) ∈ R. A function is considered to be
equivariant if the relation it corresponds to is equivariant. This means that a
function f is equivariant if f(x) · π = f(x · π).

10

We will now introduce a number of lemmas with regard to equivariance
which will later be used in the main proofs of the thesis.

Lemma 3.1. If sets S ⊆ X and T ⊆ Y are equivariant subsets of G-sets X
and Y , then the Cartesian product S × T ⊆ X × Y is equivariant as well.

Proof. In order to show S×T equivariant we need to prove that (S×T)·π = S×T
for all π ∈ G, we know S × T = {(s, t) | s ∈ S, t ∈ T)}.

We then have:

(S × T) · π = {(s, t) · π | s ∈ S, t ∈ T}
= {(s · π, t · π) | s ∈ S, t ∈ T}
= {(s, t) | s ∈ S · π, t ∈ T · π}
= {(s, t) | s ∈ S, t ∈ T} (by equivariance of S and T)

As this is equal to S × T we know that S × T is equivariant.

The next lemma shows that the image of application of an equivariant func-
tion with respect to an equivariant subset of a G-set is equivariant.
Lemma 3.2. Given an equivariant function f and an equivariant subset of
some G-set S the image of f applied to all elements of S, {f(s) | s ∈ S} is
equivariant.

Proof. Suppose we have a set S and a function f such that S and f are equivari-
ant. Then the image of f with respect to S is given by

{f(s) | s ∈ S}

To show this is equivariant we must show that

{f(s) | s ∈ S} · π = {f(s) | s ∈ S}

holds for all π ∈ G, this holds as:

{f(s) | s ∈ S} · π = {f(s) · π | s ∈ S}
= {f(s · π) | s ∈ S} (by equivariance of f)

= {f(s) | s ∈ S · π}
= {f(s) | s ∈ S} (by equivariance of S)

Which is what we had to show.

Lemma 3.3. The union of the elements of an equivariant set of sets is equivari-
ant.

11

Proof. Let S be an equivariant set of sets, then the union of its elements is given
by: ⋃

s∈S
s

To show this is equivariant we need to show that:

(
⋃
s∈S

s) · π =
⋃
s∈S

s

For all π ∈ G, this follows from:

(
⋃
s∈S

s) · π =
⋃
s∈S

(s · π)

=
⋃

s∈S·π
s

=
⋃
s∈S

s (by equivariance of S)

Which shows that the union of the elements of S is equivariant.

3.2 G-Automata

G-Automata are, as their name suggests, automata over G-sets. They clearly
distinguish themselves from classic automata in that they allow infinite alpha-
bets as long as they are G-sets and allow for an orbit-finite state space instead
of a finite one.

3.2.1 Deterministic G-Automata

Definition 3.1. We define a deterministic G-Automata over a (possibly infin-
ite) alphabet Σ which needs to be a G-set as a tuple (Q,Σ, δ, I, F) with:

• An orbit-finite G-set of states Q,

• A G-set Σ containing the alphabet,

• An equivariant single-step transition function δ: Q× Σ→ Q,

• An equivariant singleton set I ⊆ Q containing initial state qi ∈ Q,

• An equivariant set of accepting states F ⊆ Q.

We extend the single-step transition function δ to a multi-step transition
function δ∗ : Q× Σ∗ → Q where (q, ε) 7→ q and for w 6= ε we have (q0, w) 7→ qn
if and only if there is a sequence (q0, a0), (q1, a1), . . . , (qn, an) such that w =
a0a1a2 . . . an and δ(qi, ai) = qi+1 for all i ∈ N with 0 ≤ i < n.

12

A word w is then accepted by the automaton if and only if δ∗(q0, w) = qf
for some qf ∈ F or if w = ε and q0 ∈ F . The language of a given automaton is
then given by:

{w | δ∗(q0, w) ∈ F}

.
Example 3.1. Let us consider an automaton for a language L in the equality
symmetry over the set of atoms D. let L be defined by:

L =
⋃
a,b∈D

J(ab)∗K

Then an automaton recognising L is given by:

εstart a (a, b) (a, b)

⊥

a b

a

b

c 6= a c 6= b

a

Then the set of states Q is given by:

• The initial state given by ε,

• The set of states in which the first letter is stored given by a with a ∈ D,

• The set of states in which two letters have been stored and where the word
should be accepted given by (D2, 1),

• The set of states in which two letters have been stored and where the word
should not be accepted given by (D2, 0),

• The sink state given by ⊥.

Thus Q is defined by

Q = {ε,⊥} ∪ D ∪ (D2, 1) ∪ (D2, 0)

This set of states has two singleton orbits ε and ⊥ and three infinite orbits
D, (D2, 1), (D2, 0). The initial state qi is then given by ε and the set of final
states F given by:

F = {ε} ∪ (D2, 1)

13

The transition function δ is then given by:

δ(ε, a) = a

δ(a, b) = ((a, b), 1)

δ(((a, b), 1), c) =

{
((a, b), 0) if c = a

⊥ otherwise

δ(((a, b), 0), c) =

{
((a, b), 1) if c = b

⊥ otherwise

δ(⊥, a) = ⊥

Example 3.2. Let us consider an automaton for a language L over the alphabet
Σ given by the set of atoms D. let L be defined as:

L =
⋃
a,b∈D

J(1 + (ab(aa+ ab+ ba+ bb)∗)K

Then an automaton recognising L is given by:

εstart a {a, b} {a, b}

⊥

a b

a

b

c 6∈ {a, b} c 6∈ {a, b}

a

Then the set of states Q is given by:

• The initial state given by ε

• The set of states in which the first letter is stored given by a with a ∈ D

• The set of states in which two letters have been stored and where the word
should be accepted given by (

(D
2

)
, 1) if the first two letters are not equal

and by (
(D

1

)
, 1) if they are.

• The set of states in which two letters have been stored in where the word
should not be accepted give by (

(D
2

)
, 0) if the first two letters are not equal

and by (
(D

1

)
, 0) if they are.

• The sink state given by ⊥

14

Thus Q is defined by

Q = {ε,⊥} ∪ D ∪
((

D
2

)
, 1

)
∪
((

D
1

)
, 1

)
∪
((

D
2

)
, 0

)((
D
1

)
, 0

)

This set of states has two singleton orbits ε and ⊥ and five infinite orbits D,
(
(D

2

)
, 1), (

(D
1

)
, 1), (

(D
2

)
, 0), and (

(D
1

)
, 0).

With the initial state q0 given by ε and the set of final states F given by:

F = {ε} ∪
((

D
2

)
, 1

)
∪
((

D
1

)
, 1

)

The transition function δ is then given by:

δ(ε, a) = a

δ(a, b) =

{
({a, b}, 1) if a 6= b

({a}, 1) otherwise

δ(({a, b}, 1), c) =

{
({a, b}, 0) if c ∈ {a, b}
⊥ otherwise

δ(({a}, 1), b) =

{
({a}, 0) if b = a

⊥ otherwise

δ(({a, b}, 0), c) =

{
({a, b}, 1) if c ∈ {a, b}
⊥ otherwise

δ(({a}, 0), b) =

{
({a}, 1) if b = a

⊥ otherwise

δ(⊥, a) = ⊥

3.2.2 Non-deterministic G-automata

Like deterministic G-automata we can define non-deterministic G-automata
which allow non-determinism in the transitions in a similar fashion.

Definition 3.2. A non-deterministic G-automata is defined by a tuple
(Q,Σ, δ, I, F) consisting of:

• An orbit-finite G-set of states Q,

• A G-set Σ containing the alphabet,

• An equivariant transition relation δ ⊆ Q× D×Q,

15

• An equivariant orbit finite set of initial states I ⊆ Q,

• An equivariant orbit finite set of accepting states F ⊆ Q.

We can now extend the transition relation δ to a multi-step transition rela-
tion δ∗ ⊆ Q× Σ∗ ×Q which is defined as the least relation such that:

(q, w, q′) ∈ δ
(q, w, q′) ∈ δ∗

(q, w, q′) ∈ δ (q′′, v, q′′′) ∈ δ q′ = q′′

(q, wv, q′′′) ∈ δ∗

A word w is then accepted by a given automaton A = (Q, δ, I, F) if and
only if (q, w, q′) ∈ δ∗ for some q ∈ I and q′ ∈ F or if w = ε and there is some
q ∈ Q for which both q ∈ I and q ∈ F hold. Equivalently a word is accepted
if a sequence (q0, a0, q1), . . . , (qn−1, an−1, qn) exists such that w = a0a1 . . . an−1,
that for all tuples (qi, ai, qi+1) it holds that (qi, ai, qi+1) ∈ δ, that q0 ∈ I, and
that qn ∈ F . Intuitively this means that a words is accepted if there is a path
from an initial state to a final state along which w is read.
Example 3.3. Consider the language from example 3.1 given by

L =
⋃
a,b∈D

J(ab)∗K

Using non-determinism the automaton given in example 3.1 can be simplified
to the following:

(a, b)start (a, b)

⊥

a

b

c 6= a c 6= b

a

The set of states Q is then given by:

• A set of accepting states in which two characters are being stored given
by: (D2, 1),

• A set of non-accepting states in which two characters are being stored
given by: (D2, 0),

16

• A sink state given by: ⊥.

Thus:
Q = {⊥} ∪ (D2, 1) ∪ (D2, 0)

For this automaton the set of initial states I is then equal to the set of
accepting states F and is given by the orbit-finite set of states (D2, 1).

The transition relation for the automaton consists of

δ = {(((a, b), 1), a, ((a, b), 0)) | a, b ∈ D}
∪ {(((a, b), 1), c,⊥) | a, b, c ∈ D ∧ c 6= a}
∪ {(((a, b), 0), b, ((a, b), 1)) | a, b ∈ D}
∪ {(((a, b), 0), c,⊥) | a, b, c ∈ D ∧ c 6= b}
∪ {(⊥, a,⊥) | a ∈ D}

3.2.3 G-NFAs and ε transitions.

Note that in these G-NFAs it is not possible to take ε-transitions, that is,
transitions in which no letter from the inputted word is read. We can define
G-NFAs in which this is allowed as G-NFA-ε. A G-NFA-ε is a G-NFA in which
the transition relation δ becomes a relation over Q × (Σ ∪ {ε}) × Q. A δ∗ can
be constructed from this δ in the same way it normally would be constructed
for a G-NFA.

The distinction between G-NFA which allows ε transitions and those which
do not is not very meaningful as they recognise the same set of languages.
To show this we show how to construct a G-NFA which recognises the same
language as any given G-NFA-ε. Note that this is the same method that is
used to turn a regular NFA-ε into a NFA. The ε-closure of a state represents
all states which can be reached from that states taking only ε transitions. We
define the ε-closure of a state q ∈ Q as all states qn ∈ Q such that a path
(q, ε, q1), (q1, ε, q2), . . . , (qn−1, ε, qn) exists such that all transitions in the path
are in δ. For a given G-NFA-ε G = (Q, I, F, δ) we can then create a G-NFA
G′ = (Q, I, F ′, δ′) such that G and G′ recognise the same language. We make:

δ′ =
{(q, v, q′) | v ∈ Σ, (q, v, q′) ∈ δ}
∪{(q, v, q′) | v ∈ Σ, q′′ ∈ ε-closure(q), (q′′, v, q′) ∈ δ}

and
F ′ = F ∪ {q | qf ∈ ε-closure(q) for some qf ∈ F}

Using a proof in the same way as used for the classic case any G-NFA-ε and
its corresponding G-NFA then recognise the same language (Bojańczyk et al.,
2014).

17

3.2.4 Myhill-Nerode theorem

In this section we will use the Myhill-Nerode theorem applied to G-automata to
show that deterministic and non-deterministic G-Automata recognise a different
set of languages. Myhill-Nerode equivalence is given with regard to a language
L over an alphabet Σ by a relation ≡L⊆ Σ∗ × Σ∗ such that two words w and
v are related by ≡L if and only if their left quotients with regard to L are the
same. This is equivalent to saying that w and v are related if for all u ∈ Σ∗ we
have wu ∈ L if and only if vu ∈ L (Shallit, 2008).

The Myhill-Nerode theorem then states that for an orbit finite G-set A and
a G-language L ⊆ A∗ the following conditions are equivalent (Bojańczyk et al.,
2014):

• The set of Myhill-Nerode equivalence classes L/ ≡L is orbit finite,

• Language L is recognised by a deterministic orbit-finite G-automaton.

Using the Myhill-Nerode theorem we can show that in the context of G-
automata deterministic automatons do not recognise the same set of languages
as non-deterministic automata.

Example 3.4. Consider the following language where Σ is equal to D

L =
⋃

u,v,w∈Σ∗

⋃
a∈Σ

JuavawK

It is easy to see a non-deterministic automaton which recognises this lan-
guage such as:

start a
a

a b 6= a

a

a

However, we can use the Myhill-Nerode theorem to show that there is no
deterministic G-automaton which recognises L. We do this by showing that the
set of Myhill-Nerode equivalence classes L/ ≡L is not orbit-finite.

Proof. For all words w and w′ such that w,w′ ∈ L it holds that w ≡L w′:

• For all v ∈ D∗ we know wv ∈ L and w′v ∈ L holds, thus for all v ∈ D∗ we
have that wv ∈ L if and only if w′v ∈ L also holds.

For all words w and w′ such that w,w′ 6∈ L we have that w ≡L w′ if and only
if w and w′ contain the same unique atoms:

• If w and w′ contain the same unique atoms given by some set C ⊂ D then
for all v both wv ∈ L and w′v ∈ L only hold if v contains at least one
atom in C.

18

• If w and w′ do not contain the same unique atoms there must either be
an atom which is in w but which is not in w′ or there is an atom which is
in w′ but is not in w:

– Assume without loss of generality that an atom a which is in w but
not in w′ exists, then it follows that wa ∈ L but w′a 6∈ L, thus as
there is a v for which wv ∈ L if and only if w′v ∈ L does not hold
w ≡L w′ does not hold either.

Thus there is one equivalence class containing all words w ∈ L and an equi-
valence class for each combination of unique atoms containing all those words
w 6∈ L for that combination of atoms.

L/ ≡L is not finite:

• For each combination of unique atoms, words w 6∈ L exist, those words in
which all the atoms occur only once.

• As there are infinitely many combinations of different unique atoms and
each of these combinations results in a nonempty equivalence class the set
of Myhill-Nerode equivalence classes of L is infinite.

L/ ≡L is not orbit finite:

• For a given equivalence class of words which are not in L, all elements
have the same length:

– If the length of two words differ, they either have different unique
elements, meaning they would not be related by ≡L, or at least one
of the words has duplicate elements, meaning it would in fact be in
L.

• Two equivalence classes converge to a single orbit if and only if their ele-
ments have the same length, as length is conserved through permutations.

• For all x ∈ N there are equivalence classes in L/ ≡L such that its elements
are of length x

• as these all converge to different orbits, there are infinite orbits.

As L/ ≡L is not orbit finite, the Myhill-Nerode theorem tells us that there is
no deterministic G-automaton which recognises L.

Thus as there is a non-deterministic G-automaton which recognises L but no
deterministic G-automaton which recognises L, we can conclude that determin-
istic and non-deterministic G-automata recognise a different set of languages.

Because of this difference between deterministic and non-deterministic G-
Automata, we cannot determine properties over these different kinds of G-
automata by determining those properties for a single kind. As such we will
focus on defining transducers which relate to G-NFAs and their languages and
focus on the properties which relate to those.

19

4 G-transducers

In this section we will provide a definition of transducers over G-sets. This
definition is largely based on the definition of classic transducers and the defin-
ition of G-NFAs given in the preliminaries. We will then use this definition to
explore the properties of this kind of transducer.

Definition 4.1. A G-transducer T is a tuple (Q,Σ,Γ, I, F, δ) with:

• An orbit-finite G-set of states Q,

• An input alphabet Σ being a G-set,

• An output alphabet Γ being a G-set,

• An equivariant orbit-finite set of initial states I ⊆ Q,

• An equivariant orbit-finite set of accepting states F ⊆ Q,

• An equivariant single-step transition relation δ ⊆ Q× Σ∗ × Γ∗ ×Q.

The transition relation δ contains tuples (q, x, y, q′) such that if a word x
is read in state q then y is written and the next state is q′. A transition
(q, x, y, q′) ∈ δ is represented by:

q q′
x/y

We can extend the single-step transition relation δ to a multi-step transition
relation δ∗ ⊆ Q× Σ∗ × Γ∗ ×Q. We define δ∗ as the least relation such that:

(q1, w, v, q2) ∈ δ
(q1, w, v, q2) ∈ δ∗

(q1, w, v, q2) ∈ δ∗ (q3, x, y, q4) ∈ δ∗ q2 = q3

(q1, wx, vy, q4) ∈ δ∗

Equivalently, we can say that (qi, w, v, qf) ∈ δ∗ if and only if a sequence
(q0, a0, b0, q1), (q1, a1, b1, q2), . . . , (qn−1, an−1, bn−1, qn) exists such that all tuples
in the sequence are in δ, q0 ∈ I, qn ∈ F, a0, a1, . . . , an−1 ∈ Σ∗, b0, b1, . . . , bn−1 ∈
Γ∗ where w = a0a1 . . . an−1 and v = b0b1 . . . bn−1. Intuitively, this means that a
tuple (qi, w, v, qf) is in δ∗ if there is a possible path in the automaton from an
initial state to a final state such that w is read on this path and v is outputted
on this path.

For a transducer T = (Q,Σ,Γ, I, F, S) we define a function which computes
a transduction for words over the input alphabet to languages over the output
alphabet. The function T : Σ∗ → P(Γ∗) for a word w ∈ Σ∗ is defined as:

T (w) =
{v | (q, w, v, q′) ∈ δ∗ for some q ∈ I and q′ ∈ F}
∪{ε | w = ε and there is q ∈ Q such that q ∈ I and q ∈ F}

20

We can extend this to a function T̄ : P(Σ∗) → P(Γ∗) which computes a trans-
duction for languages over the input alphabet to languages over the output
alphabet. For a language L ⊆ Σ∗ the function is defined as

T̄ (L) =
⋃
w∈L

T (w)

Example 4.1. Consider a simple transducer T where input and output alpha-
bets Σ and Γ are both equal to D:

εstart a
a/a

b/a

This transducer replaces all letters in a word by the first letter of the word.
Its set of states is given by:

Q = {ε} ∪ D

This consists of two orbits given by ε the singleton orbit representing the initial
state and D as the infinite orbit representing the set of states in which the first
character read is stored. The sets of initial and accepting states are given by
the single orbit sets:

I = {ε} F = D

The transition relation δ for this transducer is given by:

δ = {(ε, a, a, a) | a ∈ D}
∪ {(a, b, a, a) | a, b ∈ D}

We know that Σ, Γ, and F are equivariant as they are equal to D. Because
ε · π = ε for all π ∈ G we know that I is equivariant as well.

We still need to show that δ is equivariant for this to be a valid transducer,
informally this means that the transducer treats all values in the input language
equally and is essentially indifferent to which exact value is being read.

We do this by showing that δ · π = δ for all π ∈ G.

Note that

{(ε, a, a, a) | a ∈ D} · π = {(ε · π, a · π, a · π, a · π) | a ∈ D} = {(ε, a, a, a) | a ∈ D}

as ε · π = ε and a · π ∈ D for all a ∈ D and that

{(a, b, a, a) | a, b ∈ D}·π = {(a·π, b·π, a·π, a·π) | a, b ∈ D} = {(a, b, a, a) | a, b ∈ D}

21

as a · π ∈ D and b · π ∈ D for all a, b ∈ D. From this it follows that:

δ · π = ({(ε, a, a, a) | a ∈ D} ∪ {(a, b, a, a) | a, b ∈ D}) · π
= {(ε, a, a, a) | a ∈ D} · π ∪ {(a, b, a, a) | a, b ∈ D} · π
= {(ε, a, a, a) | a ∈ D} ∪ {(a, b, a, a) | a, b ∈ D}
= δ

Thus δ is equivariant.

As we have shown that Σ, Γ, I, F , and δ are all equivariant, and that Q, I,
and F are all orbit finite sets T is a valid transducer.
Example 4.2. We can also consider transducers over alphabets which are not
equal to D. Let us consider a transducer where the input alphabet is given by
Σ =

(D
3

)
and the output alphabet Γ is equal to D. Note that Σ is an equivariant

set as the set of all subsets of D with three elements is closed under permutation.

The goal of this transducer is to output all words that result from the com-
bining the letters in each subsequent set in different ways such that the first
letter of each word is from the first set in the input word, the second letter is
from the second set and so on.

In order to achieve this we make the following transducer:

εstart

S/a with a ∈ S

Where all of Q, I, and F , are given by the single-orbit set {ε}. These are
all equivariant as ε · π = ε for all π ∈ G. δ is then given by:

δ = {(ε, S, a, ε | S ∈
(
D
3

)
, a ∈ S}

We then still need to prove that δ is equivariant, we can do this by showing
that δ = δ · π for all π ∈ G.

δ · π = {(ε, S, a, ε | b ∈
(
D
3

)
, a ∈ S} · π

= {(ε · π, S · π, a · π, ε · π | S ∈
(
D
3

)
, a ∈ S}

= {(ε, S · π, a · π, ε | S ∈
(
D
3

)
, a ∈ S}

= {(ε, S, a, ε | S ∈
(
D
3

)
, a ∈ S} (by equivariance of

(D
3

)
)

= δ

22

Thus δ is equivariant.

Following this we know T is a valid transducer.
Example 4.3. Similarly it is also possible to define transducers over composite
alphabets. Let us consider a transducer with Σ = {0, 1} × D and Γ = D. Note
that Σ is equivariant as {0, 1} · π = {0 · π, 1 · π} = {0, 1} for all π ∈ G and as
the Cartesian product preserves equivariance following lemma 3.1.

Let us then consider a transducer T = (Q,Σ,Γ, I, F, δ) where whether a
letter read from input is written to output depends on whether the value from
{0, 1} is one or zero. To achieve this we make the following automaton:

εstart

(1, a)/a
(0, a)/ε

Here, Q, I, and F are all given by the single orbit equivariant set {ε} and
the transition relation is given by:

δ = {(ε, (1, a), a, ε) | a ∈ D} ∪ {(ε, (0, a), ε, ε) | a ∈ D}

This can easily be seen to be equivariant making T a valid transducer for this
purpose.

We will now prove some lemmas about transducers showing a few of their
properties. First we show that any valid transducer with an equivariant trans-
ition relation δ also has an equivariant multi-step transition relation δ∗. We
then show that the functions which compute transductions over words and lan-
guages are equivariant as well.

Lemma 4.1. If δ is equivariant, then δ∗ is equivariant.

Proof. To prove that δ∗ is equivariant, we need to show that δ∗ · π = δ∗ for all
π ∈ G which we do by showing that x ·π ∈ δ∗ for all x ∈ δ∗ and π ∈ G. In turn,
we show this by induction on the structure of δ∗:

For all x ∈ δ∗, we know that either x ∈ δ or that x = (q1, wx, vy, q4) for some
q1, w, x, v, y, and q4 and that some (q1, w, v, q2) ∈ δ∗ and (q3, x, y, q4) ∈ δ∗ exist
such that q2 = q3.

• If x ∈ δ, by equivariance of δ, we know that x · π ∈ δ and, as δ ⊆ δ∗,
x · π ∈ δ∗ for all π ∈ G.

• If x = (q1, wx, vy, q4) for some q1, w, x, v, y, and q4 where some (q1, w, v, q2) ∈
δ∗ and (q3, x, y, q4) ∈ δ∗ exist such that q2 = q3. As an induction hypo-
thesis we may then assume that (q1, w, v, q2) · π ∈ δ∗ for all π ∈ G and
that (q3, x, y, q4) · π ∈ δ∗ for all π ∈ G.

23

We need to show that (q1, wx, vy, q4) · π ∈ δ∗ for all π ∈ G

(q1, wx, vy, q4) · π = (q1 · π,wx · π, vy · π, q4 · π)

= (q1 · π, (w · π)(x · π), (v · π)(y · π), q4 · π)

From the induction hypothesis we know that (q1 ·π,w ·π, v ·π, q2 ·π) ∈ δ∗
and that (q3 · π, x · π, y · π, q4 · π) ∈ δ∗. We also know that q2 = q3, from
which it also follows that q2 · π = q3 · π. Following this the second rule of
δ∗ tells us that

(q1 · π, (w · π)(x · π), (v · π)(y · π), q4 · π) ∈ δ∗

Thus for all x ∈ δ∗ it holds that x · π ∈ δ∗ for all π ∈ G and as such δ∗ is
equivariant.

Lemma 4.2. The transducing function T : Σ∗ → P(Γ∗) is equivariant.

Proof. The function T is equivariant if for all w ∈ Σ∗ and π ∈ G it holds that
T (w) · π = T (w · π).

We know that

T (w) =
{v | (q, w, v, q′) ∈ δ∗ for some q ∈ I and q′ ∈ F}
∪{ε | w = ε and there is q ∈ Q such that q ∈ I and q ∈ F}

As set union preserves equivariance we show this for both sets in the union
separately. So we need to show that

{v | (qi, w, v, qf) ∈ δ∗ for some qi ∈ I and qf ∈ F} · π
= {v | (qi, w · π, v, qf) ∈ δ∗ for some qi ∈ I and qf ∈ F}

and

{ε | w = ε and there is q ∈ Q such that q ∈ I and q ∈ F} · π
= {ε | w · π = ε and there is q ∈ Q such that q ∈ I and q ∈ F}

For the first we know:

{v | (qi, w, v, qf) ∈ δ∗ for some qi ∈ I and qf ∈ F} · π
= {v · π | (qi, w, v, qf) ∈ δ∗ for some qi ∈ I and qf ∈ F}

By equivariance of δ∗ we know that (qi, w, v, qf) ∈ δ∗ implies (qi, w, v, qf) · π,
which equals (qi · π,w · π, v · π, qf · π) is in δ∗. By equivariance of I and F we
also know that qi ∈ I implies qi · π ∈ I and qf ∈ F implies qf · π ∈ F .

Thus for each v ·π ∈ {v | (qi, w, v, qf) ∈ δ∗ for some qi ∈ I and qf ∈ F} ·π there
is (qi · π,w · π, v · π, qf · π) such that (qi · π,w · π, v · π, qf · π) ∈ δ∗, qi · π ∈ I, and
qf · π ∈ F .

{v | (qi, w · π, v, qf) ∈ δ∗ for some qi ∈ I and qf ∈ F}

24

And thus for each v · π ∈ {v | (qi, w, v, qf) ∈ δ∗ for some qi ∈ I and qf ∈ F} · π,
we know v · π ∈ {v | (qi, w · π, v, qf) ∈ δ∗ for some qi ∈ I and qf ∈ F} from
which we know that {v | (qi, w, v, qf) ∈ δ∗ for some qi ∈ I and qf ∈ F} · π ⊆
{v | (qi, w · π, v, qf) ∈ δ∗ for some qi ∈ I and qf ∈ F}.

Conversely, for each v ∈ {v | (qi, w · π, v, qf) ∈ δ∗ for some qi ∈ I and qf ∈ F}
there is a tuple (qi, w · π, v, qf) ∈ δ∗ with qi ∈ I and qf ∈ F . By equivariance of
δ∗, I, and F , and given π−1 the inverse of π we know that

(qi · π−1, w · π · π−1, v · π−1, qf · π−1) = (qi · π−1, w, v · π−1, qf · π−1)

is also in δ∗ with qi · π−1 ∈ I and qf · π−1 ∈ F .

From this it follows that all these v·π−1 are in {v | (qi, w, v, qf) ∈ δ∗ for some qi ∈
I and qf ∈ F} and thus that all these v = v · π−1 · π are in {v | (qi, w, v, qf) ∈
δ∗ for some qi ∈ I and qf ∈ F} · π. This means that {v | (qi, w · π, v, qf) ∈
δ∗ for some qi ∈ I and qf ∈ F} ⊆ {v | (qi, w, v, qf) ∈ δ∗ for some qi ∈ I and qf ∈
F} · π. We then know

{v | (qi, w, v, qf) ∈ δ∗ for some qi ∈ I and qf ∈ F} · π
= {v | (qi, w · π, v, qf) ∈ δ∗ for some qi ∈ I and qf ∈ F}

For the second part we know:

{ε | w = ε and there is q ∈ Q such that q ∈ I and q ∈ F} · π
= {ε · π | w = ε and there is q ∈ Q such that q ∈ I and q ∈ F}
= {ε | w = ε and there is q ∈ Q such that q ∈ I and q ∈ F} (as ε · π = ε)

Which shows that

{ε | w = ε and there is q ∈ Q such that q ∈ I and q ∈ F} · π
= {ε | w = ε and there is q ∈ Q such that q ∈ I and q ∈ F}

Because we have shown both sides and the property is preserved by set union,
the function computing transductions is equivariant.

Lemma 4.3. The transducing function over languages T̄ is equivariant.

Proof. To show T̄ : P(Σ∗) → P(Γ∗) is equivariant we must show that for all
L ∈ P(Σ∗) and π ∈ G we have that T̄ (L) · π = T̄ (L · π) holds.

25

T̄ (L) · π = (
⋃
w∈L

T (w)) · π

=
⋃
w∈L

T (w) · π

=
⋃
w∈L

T (w · π) (by equivariance of T)

=
⋃

w∈L·π
T (w) = T̄ (L · π)

Thus T̄ is equivariant.

This definition of G-transducers will be used in the following sections to
consider some of the properties of these kinds of transducers.

26

5 Normalising G-transducers

In this section we will show that we can normalise transducers, we do this be-
cause it shows that allowing transition of words longer than one letter does not
affect the power of the transducer and because we use this to show a closure
property of the set of languages recognised by a G-NFA in the following section.

Definition 5.1. A normal G-transducer is a transducer such that for all
(q, w, v, q′) ∈ δ we have that |w| ≤ 1 and |v| ≤ 1.

We show that it is possible for us to transform any arbitrary transducer to
a normal transducer. Given an arbitrary transducer T = (Q,Σ,Γ, I, F, δ) we
create a normal transducer Tnorm = (Qnorm,Σ,Γ, I, F, δnorm). We do this by
constructing an intermediate transducer T ′ = (Q′,Σ,Γ, I, F, δ′) with a modi-
fied transition relation δ′ and set of states Q′ by doing the following for every
transition (q, w, v, q′) in δ, starting with an empty δ′ and Q′.

If |w| ≤ 1 and |v| ≤ 1 then the transition is not changed and δ′ ← [δ′ ∪
{(q, w, v, q′)} and Q′ ← [Q′ ∪ {q, q′}. If |w| > 1 we split the transition, we know
we can write w as ax for some a ∈ Σ and x ∈ Σ∗. We then split the transition
such that (q, ax, v, q′) is replaced by (q, a, ε, (a, q)) and ((a, q), x, v, q′). Then
δ′ ← [δ′ ∪ {(q, a, ε, (a, q)), ((a, q), x, v, q′)} and Q′ ← [Q′ ∪ {q, (a, q), q′}, making
sure that (a, q) is not already in Q′. This means that:

q q′
ax/v

Becomes

q (a, q) q′
a/ε x/v

Similarly, if |w| ≤ 1 but |v| > 1 we also want to split the transition into
two. We can write v as by for some b ∈ Γ and y ∈ Γ∗. We then split the
transition such that we replace (q, w, by, q′) by (q, w, b, q′′) and (q′′, ε, y, q′) where
q′′ is an arbitrary new state. Then δ′ ← [δ′ ∪ {(q, w, b, q′′), (q′′, ε, y, q′)} and
Q′ ←[Q′ ∪ {q, q′, q′′}. This means that:

q q′
w/by

Becomes

q q′′ q′
w/b ε/y

This process is applied to the resulting T ′ repeatedly until |w| ≤ 1 and

27

|v| ≤ 1 hold for all transitions (q, w, v, q′) in the resulting δ′. In the process we
assume that whenever we add a new state q′′ that it is an arbitrary new state
such that if new states are added for two states q1 and q2 that q′′1 ·π = q′′2 if and
only if q1 · πq2. We furthermore assume that when a state (a, q) is added that
it does not yet exist in the set of states and would otherwise be altered in such
a way that it is a new state.

We can also represent a step of this process by means of two functions we
called

normδ : Q× Σ∗ × Γ∗ ×Q→ P(Q′ × Σ∗ × Γ∗ ×Q′)

and
normQ : Q→ Q′

which can be applied to the elements of δ and Q respectively to compute this
step. These functions are defined as:

normδ((q, w, v, q
′)) =

{(q, w, v, q′)} if |w| ≤ 1 and |v| ≤ 1

{(q, a, ε, (a, q)), ((a, q), x, v, q′)} if |w| > 1 and w = ax for
some a ∈ Σ and x ∈ Σ∗

{(q, w, b, q′′), (q′′, ε, y, q′)} if |w| ≤ 1, |v| > 1 and v = by
for some b ∈ Γ and y ∈ Γ∗

for normδ applied to transitions (q, w, v, q′) in δ and as:

normQ(q) =

{q | (q, w, v, q′) ∈ δ or (q′, w, v, q) ∈ δ for some w, v, q′}
∪ {(a, q) | (q, w, v, q′) ∈ δ for some w, v, q′ such that |w| > 1

and w = ax for some a ∈ Σ and x ∈ Σ∗}
∪ {q′′ | (q, w, v, q′) ∈ δ for some w, v, q′

such that |w| ≤ 1 and |v| > 1}

for states q in Q. When applied to the entire set of transitions or states we
define them as:

normδ(δ) =
⋃

(q,w,v,q′)∈δ

normδ((q, w, v, q
′) normQ(Q) =

⋃
q∈Q

normQ(q)

A step of the normalisation process is then computed by

T ′ = (normQ(Q),Σ,Γ, I, F, normδ(δ))

which is then computed repeatedly from resulting T ′ until a normal automaton
is achieved.

We now want to prove that this process is valid. This means that we need
to show that this operation preserves equivariance such that the resulting trans-
ducer is still a valid transducer. We also need to show that the resulting trans-
ducer computes the same transduction.

28

Lemma 5.1. Normalisation of a transducer T to Tnorm preserves equivariance
of δ such that δnorm is equivariant.

Proof. To show this, we need to show that, given a transducer T = (Q,Σ,Γ, I, F, δ),
the δnorm in normalised transducer Tnorm is still equivariant. Tnorm arises from
repeatedly applying a step of the normalisation procedure to intermediate T ′,
thus if one step of the procedure preserves equivariance, meaning that δ′ is
equivariant, so does the entire procedure.

One step of the normalisation procedure consists of applying normδ to all the
elements of δ and normQ to all elements of Q. If we can show normδ to be
equivariant, then lemmas 3.2 and 3.3 tell us that applying one step of this
procedure to equivariant δ results in equivariant δ′.

If normδ is applied to a transition (q, w, v, q′) then there are three possibil-
ities:

If normδ((q, w, v, q
′)) = {(q, w, v, q′)} because |w| ≤ 1 and |v| ≤ 1 then

normδ((q, w, v, q
′)) · π = {(q, w, v, q′)} · π

= {(q, w, v, q′) · π}
= {(q · π,w · π, v · π, q′ · π)}
= normδ((q · π,w · π, v · π, q′ · π))

= normδ((q, w, v, q
′) · π)

Otherwise, if normδ((q, w, v, q
′)) = {(q, a, ε, (a, q)), ((a, q), x, v, q′)} where w =

ax and a ∈ Σ and x ∈ Σ∗ such that |w| > 1 then

normδ((q, ax, v, q
′)) · π = {(q, a, ε, (a, q)), ((a, q), x, v, q′)} · π

= {(q, a, ε, (a, q)) · π, ((a, q), x, v, q′) · π}
= {(q · π, a · π, ε, (a, q) · π), ((a, q) · π, x · π, v · π, q′ · π)}
= normδ((q · π, (a · π)(x · π), v · π, q′ · π))

= normδ((q · π, ax · π, v · π, q′ · π))

= normδ((q, ax, v, q
′) · π)

The last option is that normδ((q, w, v, q
′)) = {(q, w, b, q′′), (q′′, ε, y, q′)} where

v = by and b ∈ Γ and y ∈ Γ∗, then

normδ((q, w, by, q
′)) · π = {(q, w, b, q′′), (q′′, ε, y, q′)} · π

= {(q, w, b, q′′) · π, (q′′, ε, y, q′) · π}
= {(q · π,w · π, b · π, q′′ · π), (q′′ · π, ε, y · π, q′ · π)}
= normδ((q · π,w · π, (b · π)(y · π), q′ · π))

= normδ((q · π,w · π, by · π, q′ · π))

= normδ((q, w, by, q
′) · π)

29

This means that for all three possibilities

normδ((q, w, v, q
′)) · π = normδ((q, w, v, q

′) · π)

holds which means that normδ is equivariant. From this we can conclude that
performing one step of the normalisation procedure preserves equivariance. As
all steps are the same this means that the entire procedure preserves equivari-
ance.

We will now show that the normalisation operation preserves the transduc-
tion computed by the transducer such that the normalised transducer computes
the same transduction as the original.

Lemma 5.2. If a step of the normalisation operation has been applied to get a
δ′ and Q′ from some δ and Q then for all q, q′ ∈ Q it holds that (q, w, v, q′) ∈ δ′∗
if and only if (q, w, v, q′) ∈ δ∗.

Proof. We first want to prove the property that if (q, w, v, q′) ∈ δ∗ with q, q′ ∈ Q,
then (q, w, v, q′) ∈ δ′∗, we do this by means of induction on the structure of δ∗.

In the base case we assume that (q, w, v, q′) ∈ δ. In this case there are three
possibilities: either (q, w, v, q′) ∈ δ′, w = ax for some a ∈ Σ and x ∈ Σ∗ and
(q, a, ε, (a, q)) ∈ δ′ and ((a, q), x, v, q′) ∈ δ′, or v = by for some b ∈ Γ and y ∈ Γ∗

and (q, w, b, q′′) ∈ δ′ and (q′′, ε, y, q′) ∈ δ′.

• If (q, w, v, q′) ∈ δ′ then it directly follows that (q, w, v, q′) ∈ δ′∗.

• If w = ax for some a ∈ Σ and x ∈ Σ∗ and (q, a, ε, (a, q)) ∈ δ′ and
((a, q), x, v, q′) ∈ δ′ then (q, a, ε, (a, q)) ∈ δ′∗ and ((a, q), x, v, q′) ∈ δ′∗, as
(a, q) = (a, q) we then know that (q, ax, v, q′) ∈ δ′∗, and as ax = w this
means (q, w, v, q′) ∈ δ′∗.

• If v = by for some b ∈ Γ and y ∈ Γ∗ and (q, w, b, q′′) ∈ δ′ and (q′′, ε, y, q′) ∈
δ′, then (q, w, b, q′′) ∈ δ′∗ and (q′′, ε, y, q′) ∈ δ′∗, as q′′ = q′′ this implies
(q, w, by, q′) ∈ δ′∗. Then as by = v this means that (q, w, v, q′) ∈ δ′∗.

In the inductive case we assume that there are (q, r, s, q′′) ∈ δ∗ and (q′′′, x, y, q′) ∈
δ∗ with q′′ = q′′′, rx = w and sy = v such that (q, rx, sy, q′) ∈ δ∗. We assume
that the property holds for these premises and thus that (q, r, s, q′′) ∈ δ′∗ and
(q′′′, x, y, q′) ∈ δ′∗. From this (q, rx, sy, q′) ∈ δ′∗ directly follows. As rx = w
and sy = v this means (q, w, v, q′) ∈ δ′∗.

Thus we know that in all cases that (q, w, v, q′) ∈ δ∗ it follows that (q, w, v, q′) ∈
δ′∗. We then still need to show the property that if (q, w, v, q′) ∈ δ′∗ with
q, q′ ∈ Q then (q, w, v, q′) ∈ δ∗ follows. We show this by induction on the
structure of δ′∗.

In the base case we assume (q, w, v, q′) ∈ δ′ with q, q′ ∈ Q such that
(q, w, v, q′) ∈ δ′∗. In this case as q, q′ ∈ Q this transition was taken from δ

30

directly without being split. Thus (q, w, v, q′) ∈ δ. From this we immediately
know that (q, w, v, q′) ∈ δ∗.

In the inductive case we assume there are (q, r, s, q′′) ∈ δ′∗ and (q′′′, x, y, q′) ∈
δ′∗ with q′′ = q′′′, rx = w, and sy = v. We then assume that the property holds
for the premises such that (q, r, s, q′′) ∈ δ′∗ implies (q, r, s, q′′) ∈ δ∗ if q, q′′ ∈ Q
and that (q′′′, x, y, q′) ∈ δ′∗ implies (q′′′, x, y, q′) ∈ δ∗ if q′′′, q′ ∈ Q. We first
make the distinction whether q′′ and thus q′′′ is in Q.

• If q′′ and q′′′ are in Q the we know that (q, r, s, q′′) ∈ δ∗ and (q′′′, x, y, q′) ∈
δ∗. From this and the fact that q′′ = q′′′ we can then immediately conclude
that (q, rx, sy, q′) ∈ δ∗.

• If q′′ and q′′′ are not inQ then the two transitions (q, r, s, q′′) and (q′′′, x, y, q′)
must be the result of splitting some transition originally in δ. If this is the
case then the transition (q, rx, sy, q′) must have been in δ. From this we
can then easily conclude that (q, rx, sy, q′) ∈ δ∗.

We then know for q, q′ ∈ Q that if (q, w, v, q′) ∈ δ∗ then (q, w, v, q′) ∈ δ′∗
and vice-versa, so we can conclude for q, q′ ∈ Q that (q, w, v, q′) ∈ δ∗ if and only
if (q, w, v, q′) ∈ δ′∗.

We can then easily show that the new transducer computes the same trans-
duction as the original.

Theorem 5.1. If a step of the normalisation procedure has been applied to
get a transducer T ′ from some original transducer T , they compute the same
transduction. This means that for all w ∈ Σ∗, v ∈ T (w) if and only if v ∈ T ′(w).

Proof. We know that

T (w) =
{v | (q, w, v, q′) ∈ δ∗ for some q ∈ I and q′ ∈ F}
∪{ε | w = ε and there is q ∈ Q such that q ∈ I and q ∈ F}

and that

T ′(w) =
{v | (q, w, v, q′) ∈ δ′∗ for some q ∈ I and q′ ∈ F}
∪{ε | w = ε and there is q ∈ Q′ such that q ∈ I and q ∈ F}

As I and F are both subsets of Q and are shared as sets of initial and final states
by T and T ′. We also know that for all q, q′ ∈ Q it holds that (q, w, v, q′) ∈ δ∗ if
and only if (q, w, v, q′) ∈ δ′∗. From this we can then easily conclude that T (w)
and T ′(w) must be the same set.

As one step of the normalisation process preserves the transduction that is
computed and because all steps are the same the complete normalisation process
also trivially preserves the computed transduction which is what we needed to
show.

31

As we have shown that the transducer resulting from the normalisation pro-
cedure is valid and that the normalisation procedure preserves the computed
transduction we can conclude that we can successfully normalise transducers.
In turn, this means that the allowed lengths of the words in the transitions of
a transducers does not affect the ability transducers to compute certain trans-
ductions.

32

6 Closure of G-NFA languages

In this section we will show the main result of the thesis, that being that we
will show a closure property of the set of languages recognised by G-NFAs. In
particular we will show that this set of languages is closed under the application
of a G-transduction. Formally, this means that if a language L is recognised by
a G-NFA and is acted upon by a G-transducer T then the resulting language
T̄ (L) is also recognised by some G-NFA. We show this by giving a procedure
which constructs a new G-NFA which recognises T̄ (L) given a G-NFA which
recognises language L and a transducer T .

Suppose we have a G-NFA A = (Qa, Ia, Fa, δa) which recognises a language
over some alphabet Σ and a G-transducer T which has been normalised to a
transducer Tnorm = (Qt,Σ,Γ, It, Ft, δt). We can then make a automaton which
recognises T (JAK) by first combining A and Tnorm into an intermediate trans-
ducer AT and then simplifying AT into a G-NFA B which recognises T (JAK).
We want to make the intermediate transducer AT such that it outputs those
words which are outputted along some accepting path in T such that the cor-
responding input word is also accepted by A. To achieve this we use a product
construction such that

AT = ((Qa ×Qt),Σ,Γ, (Ia × It), (Fa × Ft), δat)

Each state of AT represents a state from Qa and a state from Qt, each initial
state of AT represents a pair of state such that both states are initial in their
respective automata and each final state of AT represents a pair of states such
that both states are final in their respective automata. We then want to con-
struct the transition relation of AT such that a transition between two states
(qa, qt) and (q′a, q

′
t) along which w is read and v is outputted is in the transition

relation δat if there is such a transition qt and q′t in δt and if there is a transition
between qa and q′a in δa along which w is read. Additionally, as ε cannot be read
along transitions in δ, a transition between (qa, qt) and (qa, q

′
t) along which ε is

read and v is written is in δat if there is such a transition between qt and q′t in
δt. Note that while words longer than a single letter also cannot be read along
transitions in δa, but this does not need to be considered as the transducer T
has been normalised. In all, this means that we get δat such that:

δat =
{((qa, qt), w, v, (q′a, q′t)) | (qa, w, q′a) ∈ δa, (qt, w, v, q′t) ∈ δt}

∪ {((qa, qt), ε, v, (qa, q′t)) | (qt, ε, v, q′t) ∈ δt}

We will now introduce a lemma which shows the way in which δ∗a, δ∗t and δ∗at
relate based on this definition. This will be used in the later proof showing the
correctness of this procedure.

Lemma 6.1. If (qa, w, q
′
a) ∈ δ∗a and (qt, w, v, q

′
t) ∈ δ∗t then ((qa, qt), w, v, (q

′
a, q
′
t)) ∈

δ∗at.

33

Proof. If (qt, w, v, q
′
t) ∈ δ∗t then there is a sequence of one or more tuples

(r0, b0, c0, r1), (r1, b1, c1, r2), . . . , (rn−1, bn−1, cn−1, rn)

such that r0 = qt, rn = q′t, w = b0b1 . . . bn−1 and v = c0c1 . . . cn−1 and
that all these tuples are in δt. As δt is the transition relation of a norm-
alised transducer we know that |bi| ≤ 1 for all bi in one of the tuples of
the sequence. Similarly, if (ra, w, r

′
a) ∈ δ∗a then there is a sequence of tuples

(q0, a0, q1), (q1, a1, q2), . . . , (qm−1, am−1, qm) such that q0 = qa, qm = q′a, w =
a0a1 . . . am−1 and that all these tuples are in δa.

For all the tuples (ri, bi, ci, ri+1) in the sequence which makes (qt, w, v, q
′
t) we

know that either bi = ε or that bi = x for some x ∈ Σ. If bi = ε then because
(ri, ε, ci, ri+1) ∈ δt it follows that ((qa, ri), ε, ci, (qa, ri+1)) ∈ δat. If bi = x for
some x ∈ Σ then bi represents some letter of w being read. Then there is also a
tuple (qi, ai, qi+1) in the sequence representing (qa, w, q

′
a) such that ai = bi and

that ai being read in this transition represents bi being read. If this is the case
then because (qi, ai, qi+1) ∈ δa, (ri, bi, ci, ri+1) ∈ δt, and ai = bi we know that
((qi, ri), bi, ci, ((qi+1, ri+1)) ∈ δat.

Following this we have that for every tuple (ri, bi, ci, ri+1) in the sequence which
makes (qt, w, v, q

′
t) there is ((qj , ri), bi, ci, (qk, ri)) ∈ δat where k = j if bi = ε and

k = j + 1 otherwise. Then using the structure of δ∗ of G-transducers we know
that we can combine these tuples such that a tuple ((q0, r0), w, v, (qm, rn)) is in
δ∗at. As q0 = qa, qm = q′a, r0 = qt, and rn = q′t this means ((qa, qt), w, v, (q

′
a, q
′
t)) ∈

δ∗at.

We then also show the converse of this lemma as this will also be necessary
in the later proofs.

Lemma 6.2. If ((qa, qt), w, v, (q
′
a, q
′
t)) ∈ δ∗at, then either (qa, w, q

′
a) ∈ δ∗a and

(qt, w, v, q
′
t) ∈ δ∗t or w = ε, qa = q′a, and (qt, w, v, q

′
t) ∈ δ∗t .

Proof. If ((qa, qt), w, v, (q
′
a, q
′
t)) ∈ δ∗at then the structure of δ∗at tells us that either

((qa, qt), w, v, (q
′
a, q
′
t)) ∈ δat or there are two tuples ((qa, qt), r, s, (q

′′
a , q
′′
t)) ∈ δ∗at

and ((q′′′a , q
′′′
t), x, y, (q′a, q

′
t)) ∈ δ∗at where (q′′a , q

′′
t) = (q′′′a , q

′′′
t), rx = w, and sy = v.

We prove this lemma by induction on the structure of δ∗at.

In the base case we assume that ((qa, qt), w, v, (q
′
a, q
′
t)) ∈ δat. The way δat

is defined then directly tells us that either (qt, w, v, q
′
t) ∈ δt and (qa, w, q

′
a) ∈ δa

hold or that w = ε, qa = q′a, and (qt, ε, v, q
′
t) ∈ δt all hold. These two possibilities

directly correspond to the two possibilities in the consequent of the implication
in the lemma.

In the inductive case we assume that there are two tuples ((qa, qt), r, s, (q
′′
a , q
′′
t)) ∈

δ∗at and ((q′′′a , q
′′′
t), x, y, (q′a, q

′
t)) ∈ δ∗at where (q′′a , q

′′
t) = (q′′′a , q

′′′
t), rx = w, and

sy = v. We then assume that the implication in the lemma holds for these two
tuples.

34

We then have to make the distinction whether r and/or x are equal to ε.
If neither r nor x is equal to ε then we know by induction that (qa, r, q

′′
a) ∈ δ∗a

and (qt, r, s, q
′′
t) ∈ δ∗t as well as that (q′′′a , x, q

′
a) ∈ δ∗a and (q′′′t , x, y, q

′
t) ∈ δ∗t with

q′′a = q′′′a and q′′t = q′′′t from which we can easily conclude that (qa, rx, q
′
a) ∈ δ∗a

and (qt, rx, sy, q
′
t) ∈ δ∗t .

As the cases in which either r or x is equal to ε are very similar we then
assume without loss of generality that r = ε but x 6= ε. Then by induction
we know that qa = q′′a and (qt, ε, s, q

′′
t) ∈ δ∗t and that (q′′′a , x, q

′
a) ∈ δ∗a and

(q′′′t , x, y, q
′
t) ∈ δ∗t . As this means that qa = q′′′a this means that (qa, x, q

′
a) ∈ δ∗a

and as q′′t = q′′′t we can also easily conclude that (qt, x, sy, q
′
t) ∈ δ∗t .

We then assume that both r = ε and x = ε. Then by induction we know
that qa = q′′a and (qt, ε, s, q

′
t) ∈ δ∗t and that q′′′a = q′a and (q′′′t , ε, y, q

′
t) ∈ δ∗t . We

can then easily conclude that qa = q′a, that (qt, ε, sy, q
′
t) ∈ δ∗t as q′′t = q′′′t and

that w = ε as w = rx = ε.

This means that the lemma holds in all cases and is therefore valid.

Continuing with the procedure, this is then simplified to a G-NFA-ε:

Bε = ((Qa ×Qt), (Ia × It), (Fa × Ft), δbε)

by filling δbε with transitions ((qa, qt), v, (q
′
a, q
′
t)) if there is a transition

((qa, qt), w, v, (q
′
a, q
′
t)) in δat for some w ∈ Σ∗, so:

δbε = {((qa, qt), v, (q′a, q′t)) | ((qa, qt), w, v, (q′a, q′t)) ∈ δat}

Bε can then be simplified to a G-NFA by eliminating the ε transitions as
shown possible in section 3.2.3.

We still need to show that AT and Bε are a valid transducer and G-NFA,
respectively. The sets of states, initial states, and final states of the automata
are given by (Qa ×Qt), (Ia × It), and (Fa × Ft) in both cases. Because A and
T are a valid G-NFA and transducer we know that: Qa, Qt, Ia, It, Fa, and Ft
are all orbit finite equivariant sets. As the Cartesian product preserves orbit
finiteness in the equality symmetry we know that (Qa × Qt), (Ia × It), and
(Fa×Ft) are all also orbit finite. Furthermore following lemma 3.1 we know the
Cartesian product preserves equivariance of sets. We then still need to show
that δat and δbε are equivariant relations.

Lemma 6.3. Given an automaton A and transducer T with transition relations
δa and δt, the transition relation δat of the combined transducer AT and the
transition δbε of the simplified automaton Bε are equivariant.

Proof. Recall that:

δat =
{((qa, qt), w, v, (q′a, q′t)) | (qa, w, q′a) ∈ δa, (qt, w, v, q′t) ∈ δt}

∪ {((qa, qt), ε, v, (qa, q′t)) | (qt, ε, v, q′t) ∈ δt}

35

Because set union preserves equivariance we can show δat equivariant by showing
that

{((qa, qt), w, v, (q′a, q′t)) | (qa, w, q′a) ∈ δa, (qt, w, v, q′t) ∈ δt}

and
{((qa, qt), ε, v, (qa, q′t)) | (qt, ε, v, q′t) ∈ δt}

are equivariant. So we need to show that

{((qa, qt), w, v, (q′a, q′t)) | (qa, w, q′a) ∈ δa, (qt, w, v, q′t) ∈ δt} · π
= {((qa, qt), w, v, (q′a, q′t)) | (qa, w, q′a) ∈ δa, (qt, w, v, q′t) ∈ δt}

and

{((qa, qt), ε, v, (qa, q′t)) | (qt, ε, v, q′t) ∈ δt} · π
= {((qa, qt), ε, v, (qa, q′t)) | (qt, ε, v, q′t) ∈ δt}

For the first we know that:

{((qa, qt), w, v, (q′a, q′t)) | (qa, w, q′a) ∈ δa, (qt, w, v, q′t) ∈ δt} · π
= {((qa, qt), w, v, (q′a, q′t)) · π | (qa, w, q′a) ∈ δa, (qt, w, v, q′t) ∈ δt}
= {((qa, qt) · π,w · π, v · π, (q′a, q′t) · π) | (qa, w, q′a) ∈ δa, (qt, w, v, q′t) ∈ δt}
= {((qa · π, qt · π), w · π, v · π, (q′a · π, q′t · π)) | (qa, w, q′a) ∈ δa, (qt, w, v, q′t) ∈ δt}

By equivariance of δa and δt we know that if (qa, w, q
′
a) ∈ δa then (qa · π,w ·

π, q′a ·π) ∈ δa and if (qt, w, v, q
′
t) ∈ δt then (qt ·π,w ·π, v ·π, q′t ·π) ∈ δt. Because

of this we know that if (qa, w, q
′
a) ∈ δa and (qt, w, v, q

′
t) ∈ δt then consequently

((qa · π, qt · π), w · π, v · π, (q′a · π, q′t · π)) ∈ {((qa, qt), w, v, (q
′
a, q
′
t)) |

(qa, w, q
′
a) ∈ δa, (qt, w, v, q′t) ∈ δt}

and ((qa · π, qt · π), w · π, v · π, (q′a · π, q′t · π)) ∈ {((qa, qt), w, v, (q
′
a, q
′
t)) |

(qa, w, q
′
a) ∈ δa, (qt, w, v, q′t) ∈ δt} · π

Following this we can conclude that

{((qa, qt), w, v, (q′a, q′t)) | (qa, w, q′a) ∈ δa, (qt, w, v, q′t) ∈ δt} · π
⊆{((qa, qt), w, v, (q′a, q′t)) | (qa, w, q′a) ∈ δa, (qt, w, v, q′t) ∈ δt}

We also know that if

((qa·π, qt·π), w·π, v·π, (q′a·π, q′t·π)) ∈ {((qa · π, qt · π), w · π, v · π, (q′a · π, q′t · π)) |
(qa, w, q

′
a) ∈ δa, (qt, w, v, q′t) ∈ δt}

then by equivariance of δa and δt we know that (qa · π,w · π, q′a · π) ∈ δa and
(qt · π,w · π, v · π, q′t · π) ∈ δt from which we can directly conclude that

((qa · π, qt · π), w · π, v · π, (q′a · π, q′t · π)) ∈ {((qa, qt), w, v, (q
′
a, q
′
t)) |

(qa, w, q
′
a) ∈ δa, (qt, w, v, q′t) ∈ δt}

36

and thus

{((qa, qt), w, v, (q′a, q′t)) | (qa, w, q′a) ∈ δa, (qt, w, v, q′t) ∈ δt}
⊆{((qa, qt), w, v, (q′a, q′t)) | (qa, w, q′a) ∈ δa, (qt, w, v, q′t) ∈ δt} · π }

As such we know that

{((qa, qt), w, v, (q′a, q′t)) | (qa, w, q′a) ∈ δa, (qt, w, v, q′t) ∈ δt}
= {((qa, qt), w, v, (q′a, q′t)) | (qa, w, q′a) ∈ δa, (qt, w, v, q′t) ∈ δt} · π }

For the second we know that

{((qa, qt), ε, v, (qa, q′t)) | (qt, ε, v, q′t) ∈ δt} · π
= {((qa, qt) · π, ε, v · π, (qa, q′t) · π) | (qt, ε, v, q′t) ∈ δt}
= {((qa · π, qt · π), ε, v · π, (qa · π, q′t · π)) | (qt, ε, v, q′t) ∈ δt}

By equivariance of δt we know that if (qt, ε, v, q
′
t) ∈ δt that also (qt ·π, ε, v ·π, q′t ·

π) ∈ δt and, using equivariance of Qa, also that

((qa · π, qt · π), ε, v · π, (qa · π, q′t · π)) ∈ {((qa, qt), ε, v, (qa, q′t)) | (qt, ε, v, q′t) ∈ δt}

from which we can conclude that

{((qa, qt), ε, v, (qa, q′t)) | (qt, ε, v, q′t) ∈ δt} · π
⊆{((qa, qt), ε, v, (qa, q′t)) | (qt, ε, v, q′t) ∈ δt}

Furthermore, assume ((qa, qt), ε, v, (qa, q
′
t)) ∈ {((qa, qt), ε, v, (qa, q′t)) | (qt, ε, v, q′t) ∈

δt}, then (qt, ε, v, q
′
t) ∈ δt. Then there must be some q′′t , v′, and q′′′t such that

q′′t · π−1 = qt, v
′ · π−1 = v, and q′′′t · π−1 = q′t. By equivariance of δt we know

that (q′′t , ε, v
′, q′′′t) ∈ δt from which it follows that

((qa, q
′′
t · π), ε, v · π, (qa, q′′′t · π)) ∈ {((qa, qt), ε, v, (qa, q′t)) | (qt, ε, v, q′t) ∈ δt} · π

= ((qa, qt), ε, v, (qa, q
′
t)) ∈ {((qa, qt), ε, v, (qa, q′t)) | (qt, ε, v, q′t) ∈ δt} · π

Which shows that

{((qa, qt), ε, v, (qa, q′t)) | (qt, ε, v, q′t) ∈ δt}
⊆{((qa, qt), ε, v, (qa, q′t)) | (qt, ε, v, q′t) ∈ δt} · π

And thus we can conclude that

{((qa, qt), ε, v, (qa, q′t)) | (qt, ε, v, q′t) ∈ δt} · π
= {((qa, qt), ε, v, (qa, q′t)) | (qt, ε, v, q′t) ∈ δt}

As we have shows that both parts of the union that composes δat are equivariant
we also know that δat is equivariant.

37

We then still need to show that δbε is equivariant. Recall that

δbε = {((qa, qt), v, (q′a, q′t)) | ((qa, qt), w, v, (q′a, q′t)) ∈ δat}

Then

δbε = {((qa, qt), v, (q′a, q′t)) | ((qa, qt), w, v, (q′a, q′t)) ∈ δat} · π
= {((qa, qt), v, (q′a, q′t)) · π | ((qa, qt), w, v, (q′a, q′t)) ∈ δat}
= {((qa, qt) · π, v · π, (q′a, q′t) · π) | ((qa, qt), w, v, (q′a, q′t)) ∈ δat}

We know that if ((qa, qt), v, (q
′
a, q
′
t)) ∈ δbε then ((qa, qt), w, v, (q

′
a, q
′
t)) ∈ δat for

some w. By equivariance of δat we then know that ((qa, qt) ·π,w ·π, v ·π, (q′a, q′t) ·
π) ∈ δat and thus that also ((qa, qt) · π, v · π, (q′a, q′t) · π) ∈ δbε. This shows
that δbε · π ⊆ δbε. We also know that if ((qa, qt), w, v, (q

′
a, q
′
t)) ∈ δat then by

equivariance of δat also ((qa, qt) · π−1, w · π−1, v · π−1, (q′a, q
′
t) · π−1) ∈ δat, which

in turn implies that ((qa, qt) ·π−1 ·π,w ·π−1 ·π, v ·π−1 ·π, (q′a, q′t) ·π−1 ·π) ∈ δat
and thus that ((qa, qt)v, (q

′
a, q
′
t)) ∈ δbε. This then shows that δbε ⊆ δbε. Because

of this we know that δbε = δbε which shows that δbε is equivariant.

We have been able to show that δat and δbε are equivariant, we know that
the set of states is an orbit-finite G-set for both automata, and we know that
the sets of initial states and final states of both automata are both orbit finite
and equivariant. From this we conclude that AT and Bε are a valid transducer
and G-NFA-ε.

We then need to prove that this construction is correct, that is, the resulting
automaton Bε actually recognises the intended languages language, that be-
ing the languages resulting from computing transduction T over language JAK.
In this case that means that for all v ∈ Γ∗, we have v ∈ JBK if and only if
v ∈ T (JAK).

Theorem 6.1. The construction is correct, that is, the new automaton B
recognises the language given by the transduction of T applied to the language
recognised by automaton A. This means that v ∈ JBK if and only if v ∈ T (JAK).

Proof. Suppose that v ∈ T (JAK). Then there is a w ∈ JAK such that v ∈ T (w).
If w ∈ JAK then (qa, w, q

′
a) ∈ δ∗a for w 6= ε and some qa ∈ Ia and q′a ∈ Fa or

w = ε and there is some qa ∈ Qa with qa ∈ Ia and qa ∈ Fa. Also if v ∈ T (w)
then we know that either (qt, w, v, q

′
t) ∈ δ∗t for some qt ∈ It and q′t ∈ Ft or w = ε

and v = ε and there is some qt ∈ Qt with qt ∈ It and qt ∈ Ft. We make a
distinction on whether w = ε or not.

If w = ε and w ∈ JAK, then there is some qa ∈ Qa such that qa ∈ Ia and
qa ∈ Fa. Then if v ∈ T (w) we know that there is either (qt, ε, v, q

′
t) ∈ δ∗t for some

qt ∈ It and q′t ∈ Ft or v = ε and there is some qt ∈ Qt with qt ∈ It and qt ∈ Ft.
If (qt, ε, v, q

′
t) ∈ δ∗t then we easily know that ((q, qt), ε, v, (q, q

′
t)) ∈ δ∗at for all

q ∈ Qa. Thus in particular it also holds for q = qa from which we know that

38

((qa, qt), ε, v, (qa, q
′
t)) ∈ δ∗at. From this it follows that ((qa, qt), v, (qa, q

′
t)) ∈ δ∗bε.

As qa ∈ Ia and qt ∈ It we know that (qa, qt) ∈ (Ia × It), similarly because
qa ∈ Fa and q′t ∈ Ft we know that (qa, q

′
t) ∈ (Fa × Ft). This tells us that

v ∈ JBεK.

If v = ε and there is some qt ∈ Qt with qt ∈ It and qt ∈ Ft. Then v ∈ JBεK
as we know that (qa, qt) ∈ (Ia × It) and (qa, qt) ∈ (Fa × Ft).

If w 6= ε and v ∈ T (w) the we know that (qa, w, q
′
a) ∈ δ∗a and (qt, w, v, q

′
t) ∈

δ∗t , lemma 6.1 then tells us that ((qa, qt), w, v, (q
′
a, q
′
t)) ∈ δ∗at. From this it follows

that ((qa, qt), v, (q
′
a, q
′
t)) ∈ δ∗bε. As qa ∈ Ia and qt ∈ It we know that (qa, qt) ∈

(Ia×It), similarly because q′a ∈ Fa and q′t ∈ Ft we know that (q′a, q
′
t) ∈ (Fa×Ft).

Following this the definition of Bε tells us that as ((qa, qt), v, (q
′
a, q
′
t)) ∈ δ∗bε,

(qa, qt) ∈ (Ia × It), and (q′a, q
′
t) ∈ (Fa × Ft) that v is recognised by Bε and

thus that v ∈ JBεK. Thus for all possibilities we have that v ∈ T (JAK) implies
v ∈ JBεK. As B and Bε recognise the same language we thus have v ∈ T (JAK)
implies v ∈ JBK.

Suppose that v ∈ JBK. This also implies that v ∈ JBεK from which we know
that either there is some ((qa, qt), v, (q

′
a, q
′
t)) ∈ δ∗bε with (qa, qt) ∈ (Ia × It) and

(q′a, q
′
t) ∈ (Fa × Ft) or v = ε and there is a pair (qa, qt) ∈ (Qa × Qt) such that

(qa, qt) ∈ (Ia × It) and (qa, qt) ∈ (Fa × Ft). In the first case there must be
some w such that ((qa, qt), w, v, (q

′
a, q
′
t)) ∈ δ∗at. From (qa, qt) ∈ (Ia×It) we know

that qa ∈ Ia and qt ∈ It and similarly from (q′a, q
′
t) ∈ (Fa × Ft) we know that

q′a ∈ Fa and q′t ∈ Ft. Lemma 6.2 then tells us that either (qa, w, q
′
a) ∈ δ∗a and

(qt, w, v, q
′
t) ∈ δ∗t or that w = ε, that qa = q′a, and that (qt, ε, v, q

′
t) ∈ δ∗t .

If (qa, w, q
′
a) ∈ δ∗a and (qt, w, v, q

′
t) ∈ δ∗t we know because of (qa, w, q

′
a) ∈

δ∗a with qa ∈ Ia and q′a ∈ Fa that w is recognised by A and thus w ∈ JAK.
Furthermore, as (qt, w, v, q

′
t) ∈ δ∗t with qt ∈ It and q′t ∈ Ft we know that

v ∈ T (w). Else if w = ε, qa = q′a and (qt, ε, v, q
′
t) ∈ δ∗t , we know that because

qa = q′a, qa ∈ Ia and q′a ∈ Fa that ε ∈ JAK and thus that w ∈ JAK. From
(qt, ε, v, q

′
t) ∈ δ∗t with qt ∈ It and q′t ∈ Ft that v ∈ T (ε) and thus that v ∈ T (w).

In the other case v = ε and there is a pair (qa, qt) ∈ (Qa × Qt) such that
(qa, qt) ∈ (Ia × It) and (qa, qt) ∈ (Fa × Ft). Then ε ∈ JAK as we have qa ∈ Ia
and qa ∈ Fa and ε ∈ T (ε) as we have qt ∈ It and qt ∈ Ft.

Thus in all cases if v ∈ JBK then there is some w ∈ JAK such that v ∈ T (w),
which means that v ∈ JBK implies v ∈ T (JAK).

Thus as v ∈ T (JAK) implies v ∈ JBK and v ∈ JBK implies v ∈ T (JAK) we
know that T (JAK) = JBK.

We have shown that for every G-NFA A and every G-transducer T that there
is a valid G-NFA which recognises the language given by using T̄ to compute a
transduction over the language recognised by A. The fact that this is possible
shows that the set of languages recognised by G-NFAs is closed with regard to
this kind of transduction.

39

7 Related work and conclusions

In this thesis we have introduced a definition for transducers over G-sets. We
then showed a number of properties of these kinds of transducers: we showed
that it is possible to normalise transducers such there are no transitions remain-
ing in which words longer than one letter are either read or written, showing
that allowing these kinds of transitions has no effect on which transductions
can be computed. We were further able to show our main result which is that
the set of languages that is recognised by G-NFAs is closed under the type of
transduction that we describe.

These results are the same as in the classical case but the methods shown
are largely different. The normalisation procedure described in this thesis is
new and differs from the classic case because the states added when splitting
a transition need to contain the values that are being read in some way. The
procedure used to show the closure property is similar to a procedure which can
be used in the classic case, but differs due to the infinite state spaces. Some of
the proofs shown also clearly differ from the classic case. Firstly the equivariance
proofs shown are not needed in the classic case and are thus new. Furthermore
the proofs used to show the correctness of the normalisation procedure are new
as the method differs so greatly from the one used in the classic case.

Work related to this kind of transducer is limited. Work on automata over
G-sets exists and are often continuations of the work presented in Bojańczyk
et al., 2014, but no other work on transducers over these kinds of sets really
exists. Other models which explore transducers over infinite collections of data
values exist, such as the streaming transducer introduced in Alur and Černý,
2011. The streaming transducer model requires the input alphabet to contain
some set of tag values, the model using G-sets introduced in this thesis requires
no such set. The exact relation between the model introduced in this thesis and
other models such as the model of streaming transducers could be explored in
future work.

In this area some more properties of these kinds of transducers could be ex-
plored. For example the functions which these transducers are able to compute
could be characterised in some way similar to how Nivat’s theorem character-
ises those function which are computed by some finite state transducer (Shallit,
2008). Additionally a future opportunity is to make framework for different
kinds of transducers, such as two-way transducers, over G-sets. Thus there are
a lot of opportunities for future research in this area.

40

References

Alur, R. & Černý, P. (2011). Streaming transducers for algorithmic verification
of single-pass list-processing programs. SIGPLAN Not. 46 (1), 599–610.
doi:10.1145/1925844.1926454

Bojańczyk, M., Klin, B. & Lasota, S. (2014). Automata theory in nominal sets.
Logical Methods in Computer Science, 10 (3).

Hopcroft, J. E., Motwani, R. & Ullman, J. D. (2006). Introduction to auto-
mata theory, languages, and computation (3rd edition). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.

Shallit, J. (2008). A second course in formal languages and automata theory.
Cambridge University Press. doi:10.1017/CBO9780511808876

41

