
Bachelor thesis
Computer Science

Radboud University

IRMA over Bluetooth

Author:
Dion Scheper
s4437578

First supervisor/assessor:
dr. ir., B. Jacobs
bart@cs.ru.nl

Second assessor:
dr., S. Ringers

sringers@cs.u.nl

June 25, 2018

[This page intentionally left blank]

Abstract

The communication channel that IRMA currently supports is the internet.
We will show that Bluetooth is a viable alternative in certain use cases that
partially solves the problem of identifiable IP addresses, can bring peer to
peer communication to the smartphone app, and encourages users to come
up with their own use cases.

Contents

1 Introduction 3
1.1 Research question . 4

2 Preliminaries 5
2.1 Identification and Authentication 5
2.2 The Proving Game . 6

2.2.1 Actors . 6
2.2.2 The Attacker . 6

2.3 Zero-Knowledge Proof . 6
2.4 IRMA . 7

2.4.1 The Players . 7
2.4.2 The protocol . 7
2.4.3 The architecture . 8
2.4.4 QR . 9

2.5 Bluetooth . 9
2.5.1 SDP . 9
2.5.2 Quality of Service . 10
2.5.3 Pairing and Bonding 10
2.5.4 Association models . 10

3 Research 11
3.1 Applications of Bluetooth . 11

3.1.1 One-One . 11
3.1.2 Many-One . 12

3.2 Common transport . 13
3.2.1 Seralization . 13
3.2.2 Confidentiality . 14
3.2.3 Bluetooth bonding . 14

3.3 Security and Privacy . 14
3.3.1 Integrity . 14
3.3.2 Confidentiality . 15
3.3.3 Authentication . 15
3.3.4 Denial of Service Attack 15

1

3.3.5 Privacy . 15

4 Related Work 16

5 Conclusions 17
5.1 Research Answer . 17

A Appendix 21
A.1 IrmaBluetoothTransportServer.java 21
A.2 IrmaBluetoothTransportClient.java 24
A.3 IrmaBluetoothTransportCommon.java 27

Chapter 1

Introduction

The subject of privacy has become more prevalent [2][3][4]. Every once in a
while privacy violations become news because of a misbehaving company [1].
European politicians have introduced a new law governing the gathering and
processing of personal data [13]. This is called the General Data Protection
Regulation and is further referenced as GDPR. This law forces organizations
to rethink the way they handle personal data.

It remains to be seen how companies incorporate the new regulation.
Organizations will search for technical and organizational measures that can
help them. This is where IRMA comes in; an attribute based authentication
technology that can reside on your smartphone as a possible solution.

IRMA has evolved over the years. It has migrated from a smart card
to the smartphone. The documentation and IRMA software have matured.
And the smartphone app is now cross platform.

A feature that IRMA does not support is a peer to peer session. This
is because it uses the internet for all communication. One of the problems
with the internet is that the number of IP addresses do not scale. A short-
term solution to this problem is Network Address Translation [5]. This is
a widely accepted solution and is implemented in consumer routers. IRMA
users can not be reached over the internet without some configuration in
their routers due to this NAT.

There are some technologies that could provide the peer-to-peer func-
tionality. We will concentrate on Bluetooth. Bluetooth is included on every
smartphone made today. It is a device-to-device communication standard.
Let us illustrate the potential of this feature with an example:

The IRMA group supports infrastructure to load attributes on to your
smartphone, including your age limits. If the owner of a bar wants to check
your age, he could use IRMA over Bluetooth. With only minimal effort;
downloading the app from the app store. This contrasts the current situ-
ation where he would be required to have a web server, and install IRMA
functionality on that server.

3

1.1 Research question

How can Bluetooth support IRMA as a transport channel? We consider the
following subquestions in the analysis:

• What advantages or disadvantages does Bluetooth have over the in-
ternet as an IRMA transport channel?

• What are the IRMA scenarios for Bluetooth instead of internet?

• How can Bluetooth features be technically realised in the IRMA app?

The objective of this paper is to show that Bluetooth can provide a
transport channel for IRMA. And argue that this feature could potentially
help with the roll out. The main contribution of this paper is a design to
add Bluetooth functionality to IRMA in Java code.

Chapter 2

Preliminaries

We will first start with some preliminaries on the inner workings of IRMA
and Bluetooth. The design choices made in section three will be more clear
when backed up with the background presented here.

2.1 Identification and Authentication

Identification is the process of presenting some pseudonym that can be traced
back to you as a person by some party. This could be your face, physically,
but also an identifying number like your student number.

There is also non identifying information. This can not be traced back to
you as a person when observed. For example eye color, age, city you live in.
It is interesting that when multiple non identifying sources of information
are combined they could be identifying.

The set of pseudonyms and other (non) identifying information can be
classified into attributes. Proving the fact to you really are owner of an
attribute is called authentication. There are typically three ways to authen-
ticate:

• something you have
For example your IRMA smartphone app or smart card.

• something you are
For example your fingerprint or eyes.

• something you know
For example a password or pin.

All of these ways of authentication have strengths and flaws. Passwords
are hard to remember, you could lose your smartphone, and your finger-
print is irreplaceable for example. We will not discuss these problems or
advantages here as this is out of scope for this thesis.

5

IRMA uses a combination of something you have and something you
know. There are the attributes on your phone and there is the pin code in
your head that you need in order to participate in an IRMA session.

2.2 The Proving Game

Throughout this thesis we will speak of the proving game. We can model the
process of authentication as a role playing game. After the game is played
it is evaluated if the authentication succeeded or not. We can also change
the rules of the game to accommodate other requirements like privacy.

2.2.1 Actors

The actors in our game are the ’prover’, Patrick, and ’verifier’, V eronica.
Patrick needs to prove some part of his digital identity. And Veronica needs
to be convinced of some part of Patrick’s identity. If the prover and verifier
are playing according to the rules of the game, then the game is won when
Patrick can convince Veronica of a claim. And he must not be able to
convince Veronica of some invalid claim.

There are some relations between the verifier and prover. These only
become apparent when one looks at physical context.

1. Veronica wants to be convinced by Patrick and wants the protocol to
be such that a cheating Patrick can not convince her of something that
is not true.

2. Patrick has contextual information that he should trust Veronica. He
agrees with the disclosure of some part of his digital identity.

3. Patrick receives something of value and might search for ways to cheat
the authentication to receive that value.

2.2.2 The Attacker

The attacker is the infamous Eve. Eve has been known to listen in on the
communication between Alice and Bob in security analysis, also from Rivest
et al [18]. Now she also listens in on the communication between Patrick and
Veronica who are participating in a proving game. She tries to undermine
the game. And can work with or against any of the two participants. She
is the woman in the middle.

2.3 Zero-Knowledge Proof

The goal of the game is for Veronica to be convinced of some part of Patricks
identity. The way this is implemented in IRMA is using Zero-Knowledge

proofs and digital signatures. You prove that you own the signature of an
attribute ’age>18’ by giving a proof with which Veronica can verify that
you indeed have a valid signature for the given attributes but she can learn
nothing else from the proof.

2.4 IRMA

IRMA, I Reveal My Attributes, provides authentication without the explicit
need to identify the prover. It has been based on idemix, previous work done
by researchers at IBM Zurich [9][10].

An IRMA user can receive digital attributes like student number, eye
colour, or age. Digital IRMA attributes may represent a physical trait like
eye colour or an artificial one like student number. Attributes are bundled in
credentials. And a credential can be disclosed, partially, using a verification
protocol.

2.4.1 The Players

• Issuer
This party can provide credentials based on an authentication scheme
which is domain dependant. E.g. this can be that you verify your
name by providing your passport.

• Verifier
The party which verifies some attributes for some specific purpose.
E.g. Veronica wants to know for sure the name of Patrick. Then
Veronica is the verifier.

• Client
The user that discloses a partial identity. E.g. Patrick.

2.4.2 The protocol

This is a general description of the IRMA protocol. This applies regardless
of the communication channel used. First Patrick gets his credentials from
Ivy, the issuer:

1. Patrick wants some credential from Ivy.

2. Ivy provides a way for Patrick to receive these credentials but she will
need an other form of authentication from Patrick. That form could
be his passport for example. This is necessary because Ivy is going to
vouch for the credentials she is going to give to Patrick, and Patrick
can reuse those after he has gotten them.

3. Patrick receives the credentials from Ivy.

Figure 2.1: IRMA decentralised architecture as displayed on
https://privacybydesign.foundation/irma-explanation/

Now that Patrick has his credentials ready he can prove any of these to any
verifier. In our example we will generalize this to Veronica and look at a
high level description of the protocol.

1. Veronica lets Patrick know where to connect to.

2. Patrick connects to Veronica

3. Patrick asks for the session, this includes a set of attributes Patrick
has to reveal.

4. Patrick examines this set of attributes. If he agrees with the disclosure
he accepts.

5. Patrick now calculates the proof based on the credentials he has and
the parameters provided by Veronica.

6. He sends the proof to Veronica

7. Veronica verifies the proof and accepts if it is valid.

2.4.3 The architecture

The architecture of IRMA is decentralized. As can be seen in Figure 2.1.
Important here is that after Patrick receives the credentials, they only exist
on the device where Patrick receives them.

The products of the IRMA project at this moment include an API server
with issuer and verification possibilities. And recently a mobile app was
released, iOS and Android, that can function as a wallet of credentials.

The project has seperated the concerns over multiple projects which are
all available on github1.

• irma mobile this is the multi platform mobile application for An-
droid/iOS.

• gabi Idemix in Go.

• irmago client implementation in Go.

• irma api common client implementation in Java.

• irma api server the IRMA API server implementation.

• irma js JavaScript client for in the browser.

2.4.4 QR

IRMA uses Quick Response codes, QR-codes, to communicate connection
information. This is an optical encoding method that encodes some text,
often an URL, into a two dimensional image. This image can be decoded
by the IRMA app using the devices’ built in camera.

2.5 Bluetooth

Bluetooth specifies a device-to-device communications standard. The stan-
dard allows supported devices to connect to each other and share data. It
is supported by billions of devices2.

There are a few concepts in Bluetooth extracted from the specification
that need to be explained here. These are SDP, pairing and bonding, and
quality of service.

2.5.1 SDP

Bluetooth can use a process called Service Discovery Protocol to establish
a transport channel. Veronica will start by broadcasting an identifier of
the service that she is using, together with a user friendly name. Patrick
is looking for Veronica’s Bluetooth broadcast announcement. He will, after
he has found her signal, communicate with her and establish a transport
channel that is free at that time. It is not necessary to use SDP to establish
a channel if the MAC address of the other party is known in advance.

1https://github.com/credentials/
2https://www.bluetooth.com/bluetooth-technology

2.5.2 Quality of Service

Bluetooth guarantees that the packets it sends are received in order and
reliably [7]. If used with the ’secure channel’ mode of operation, it also
provides mutual authentication, message integrity and confidentiality of the
connection. It also makes those claims for subsequent Bluetooth sessions
between two bonded devices. This has been attacked in the past [14]. The
Bluetooth channel has an effective range of 20-100 meters. This depends on
the environment in which the two devices are located.

2.5.3 Pairing and Bonding

Bonding is the exchange of two long term cryptographic keys, providing
confidentiality and mutual authentication. Two devices are authenticated
before bonding by means of a pincode. Pairing is the process of establishing
a session key.

One of the features of Bluetooth is that it is session-less. It is designed
to bond with a device for repeated use. A Bluetooth device automatically
connects to devices to which it was previously bonded. The assumption is
that the device can be trusted because there was trust earlier by bonding.
This contrasts with IRMA where the trust is not in the other device but in
the IRMA protocol.

2.5.4 Association models

Devices with bluetooth can associate in multiple ways [7]. These are named
Just Works, Numeric Comparison, Out of Band, and Passkey Entry. For
this thesis we will look at Numeric Comparison and Just Works.

• Just Works is used without visual confirmation. There is no pincode or
QR. This protects against passive eavedroppers but not against active
MitM attacks.

• Numeric Comparison shows on both devices a numeric code and the
users are asked to compare those. If they are equal then the connection
succeeds. This protects against MitM attacks as well.

Chapter 3

Research

Data in this article has been gathered by performing a design and create
cycle. The following software and corresponding documentation has been
used to implement Bluetooth functionality in the app:

• Android Studio 3.0 (Android API >= 23)

• Java 8

• Bluetooth v4.2

3.1 Applications of Bluetooth

There are two different applications in which Bluetooth can play a role and
enhance IRMA. I will technically describe both in the following subsections
and go into more detail about the consequences in the conclusions.

3.1.1 One-One

The one-one approach described in this subsection is the one implemented
in the appendix. Patrick and Veronica interact with each other in a peer to
peer fashion. Veronica will let the prover know where to connect to. The
URL to connect to is embedded in a QR code. This QR is also used in
IRMA sessions over the internet. This means that the experience is familiar
to Patrick. The steps are as follows:

1. Veronica prepares the attributes she wants Patrick to reveal.

2. Veronica’s IRMA app prepares a QR code that corresponds to a stan-
dardized structure.

3. Patrick selects the option to scan a QR code in the IRMA app.

11

4. Patrick’s device will now process the QR, connect to Veronica, and
request the IRMA session information.

5. Veronica’s device will send the prepared IRMA session request.

6. Patrick’s device will process this according to the IRMA protocol spec-
ifications.

7. Veronica can read the information disclosed by Patrick and use that
for the goal she had specified.

The string that is being represented by the initial QR should have the
following structure. It should start with an IRMA bluetooth identifier so
that the client can assume it is an IRMA bluetooth connection and not an
internet connection. After which it should provide the connection parame-
ters. These should atleast include where to connect to and how to connect
to it secure. The following structure is implemented in the PoC:

irma-bluetooth://MAC_ADDRESS/KEY_BASE64_ENCODED

The MAC address is the bluetooth MAC address and is enough for two
devices to establish a connection. A symmetric key is appended to provide
confidentiality. Message integrity can be provided by means of a HMAC but
was not included in this PoC. A better solution is to let Veronica authenti-
cate as is discussed in the section on security.

Some notes on the strengths and weaknesses of this approach are as
follows. Patrick gets a visual hint of the device he is connecting to. This
is due to the QR code being physically visible on the device. And the QR
code disappears on the screen of Veronica when the devices are connected.
We can provide perfect forward secrecy since the key lives for a short period
of time and is forgotten by both devices after the session is complete.

The user interface is in accordance to the 7th law of identity as specified
by Cameron [11]. The experience for Patrick is consistent regardless of
connecting by Bluetooth or internet.

3.1.2 Many-One

Veronica will setup a server and Patrick will interact with it as a client.
The native Bluetooth interface is used to connect the two devices. In this
situation the server of Veronica is running and accepting any request for a
specified duration. The steps that parties have to take are as follows:

1. Veronica prepares the attributes she wants to be revealed by the
‘Patricks’ that are going to connect.

2. Patrick opens the IRMA app and selects Veronica her access point
based on a familiar name.

3. Patrick’s device will now use the native key exchange of Bluetooth to
establish a connection with Veronica. This can use either the Just
Works or the Numeric Comparison association method.

4. The devices will now handle the request in accordance to the IRMA
protocol.

5. Veronica her server application will have a way to disseminate the
results and act upon them.

This approach requires extra infrastructure from Veronica in the form of
a IRMA supporting server application. Veronica might also want to save or
process the responses she got on her server. For example when registering
presence of a group of students. Patrick also has to adjust and select an
IRMA access point from a list based on a human friendly identifier. This
identifier may or may not be authenticated. If using ‘Just Works’ to associate
the other device is not authenticated. It is necessary to implement Veronica’s
authentication in some other way. This contrasts the previous subsection
where Patrick got visual confirmation of the device he was connecting to.
This time he does not have that same guarantee. A solution to this problem
is discussed in the conclusion section.

An advantage of the ‘Just Works’ method is that you can do it asyn-
chronously without any action of Veronica after setup. In the ‘Numeric
Comparison’ method you still need to compare the two numbers on both
devices. This may or may not be preferable.

3.2 Common transport

Now we have a high level understanding of how Bluetooth might be used
in the interaction between Veronica and Patrick. We continue by digging a
little deeper into the Android Java code and look at how we provide seri-
alization and confidentiality on that layer. This poses a few challenges for
the programmer working on assembling packets and maintaining confiden-
tiality. Another thing the programmer has to work around is the ’bonding’
of Bluetooth devices by default.

3.2.1 Seralization

The Android Bluetooth API provides access to two byte streams; the re-
ceiving and sending stream.

1 InputStream getInputStream ()

2 OutputStream getOutputStream ()

Patrick will initiate the IRMA session and request the IRMA session
information from Veronica. This session is represented by the Java class

JwtSessionRequest. The handling of these Java objects is done by a
Bluetooth abstraction layer. This allows IRMA programmers to use intu-
itive code, e.g.: public boolean write(DisclosureProofRequest dpr).
Which sends dpr over the connection. This also applies to packets received.
Patrick might expect something of type DisclosureProofRequest.class

based on the request he made. When receiving the raw data the abstraction
layer returns an Object.class and it is to the transport receiver to cast
this object to the right class. When the casting fails, the connection fails
and assumes the integrity of either the message or the protocol has been
breached. It is possible to add integrity protection on top of this so that an
invalid proof and integrity breach can be distinguished.

3.2.2 Confidentiality

We have implemented AES-CBC to provide confidentiality on this transport
layer. That means that all packets going in or out are encrypted by this
key. This key lives as long as the session is running and is reset to zero
immediately after the connection is broken. This provides perfect forward
secrecy.

3.2.3 Bluetooth bonding

Bluetooth bonds devices by default. This allows Patrick and Veronica to
connect to each other more easily or even automatically. This is useful
where Bluetooth is used for car kits are wireless keyboards. Not in the
case of IRMA. The notion of a session is missing here. Therefore it is
recommended for usability to remove the bond using Java Reflection.

3.3 Security and Privacy

This is a security assessment based on the security principles of: integrity,
confidentiality, and authentication. The DoS attack is considered after-
wards. And we conclude with an observation on privacy.

3.3.1 Integrity

The packets exchanged between Patrick and Veronica are not checksummed
and neither do they have a message authentication code. These construc-
tions are normally used to provide the gaurantee of integrity. The shared
key between Patrick and Veronica is secret and has a short lifetime of five
to twenty seconds. The integrity therefore has to be attacked by an active
attacker that does not have the encryption key. Such an attacker can try to
adjust the packet to something malicious. The proof of concept in the ap-
pendix assumes that an active attacker cannot efficiently generate a stream

of bytes that would lead to a chosen Java object after decryption and de-
serialisation. In which case any attacks on integrity would be noticed and
the result would be DoS. It is recommended to add an additional method
to protect integrity for example by including an HMAC in production envi-
ronment.

3.3.2 Confidentiality

Confidentiality is provided on the assumption that Eve can not obtain the
key. This is practically enforced by Veronica by shielding the visual rep-
resentation of the key, QR, against Eve in the one-one scenario. The key
exchange in the many-one is based on Bluetooth security guarantees.

3.3.3 Authentication

The devices are not authenticated to favor usability over security. To au-
thenticate both parties we use the following steps in the one-one scenario:
the QR presented by Veronica contains a key that is used in one session. The
only one being able to commit in to the session is Patrick. This can however
be done by letting Veronica disclose attributes that allow identification in
that specific context before the authentication of Patrick. If the device of
Veronica supports a screen it is also possible to allow device authentication
by means of a pincode that is verified on both devices. Thus Patrick is
authenticated by the IRMA protocol to Veronica but the devices that they
use are not authenticated to each other.

3.3.4 Denial of Service Attack

Eve can undermine the bluetooth channel by probing Veronica. That way
Patrick can not use the channel. She has to have a device in close proximity
for this to succeed. Notice that Eve is not able to Hijack the communications
with Patrick in the one-one scenario since Patrick will work with a crypto-
graphic key communicated through the QR code. The same is not true for
many-one scenario’s. If used with the ’Just Works’ association model then
the connection can be hijacked during setup of the connection with an active
MitM attack.

3.3.5 Privacy

The privacy of Patrick is the main concern in IRMA. And one of the prob-
lems acknowledged is that IP addresses can be seen as pseudonyms [6]. You
do not necessarily have this problem with a Bluetooth connection. The
bluetooth group is working on randomization of the MAC addresses so that
you no longer have the problem of abusing it as a pseudonym.

Chapter 4

Related Work

This idea of moddeling security requirements as a role-play was coined by
Rivest et al and is used here [18]. Other researchers quickly took over this
tradition instead of the more mathematical notation.

For an elaborate example on zero-knowledge we would like to refer to the
’How to explain Zero-Knowledge to your children’ paper [17]. The original
scientific paper on zero-knowledge theory is there for further reading on the
underlying math [15]. These cryptographic ideas are the ones on which
IRMA bases its security.

Current authentication methods with web servers mostly use password
based authentication. A possible reason is nicely illustrated in a survey from
2012[8]. Widespread use of the password has not been eradicated yet because
of good reasons. Though researchers all over the world have tried to set up
alternative authentication mechanisms. An example of that is Idemix[10]
which uses attribute based authentication on which IRMA is based.

IRMA also considers the physcial context in which it plays be it a web
server, a garbage dumpster, or a supermarket. The initial work of IRMA
focused on smart cards [19]. This work though has halted and the focus has
shifted to smartphones [6].

The evolution of Bluetooth shows a strong focus on security. A good
survey on possible Bluetooth threaths is from 2010 [12]. Since then it has
improved by incorporating cryptographic tools. Interestingly the technique
developed here using QR codes as session establishment has been done be-
fore [16].

16

Chapter 5

Conclusions

Bluetooth is a viable communications channel for IRMA to use besides the
internet. We will answer the research questions in the first section that
support this claim.

5.1 Research Answer

• What advantages does Bluetooth have over the internet?

1. Bluetooth allows peer to peer sessions, this makes it easier for
end users to start using IRMA.

2. Bluetooth encourages decentralization of IRMA verifier respon-
sibilities. Where in the future commercial parties may try to
reveal information about identities and exploit the ’verification
as a service’, Bluetooth brings the IRMA attribute verification
alive on every end users smartphone and potentially end points
in contextual authentication situations.

3. Bluetooth solves the problem of large scale tracking because the
session has a small perceivable physical range. This opposed to
the internet where a web server gets requests from all over the
world. It is still technically possible to track but as IRMA uses
multi-show unlinkability it ‘discourages’ such an act.

• What disadvantages does Bluetooth have?

1. For now it comes with identifiable MAC address. This prob-
lem is being addressed by Bluetooth group with random MAC
addresses. This is a serious drawback as this MAC address is de-
vice identifying, which is more personal than an IP address. The
latter is identifying a network.

2. Internet is still necessary due to the split-key solution. It would
be great to use IRMA without internet, but because part of the

17

unlock key in the app is on the IRMA server; you will need to
connect to it.

• What are the IRMA scenario’s for Bluetooth instead of internet?

– It would be situations where there is a physical place to go to.
For example; public transport, restaurants, bars, cars, theater,
etc.

– On the other hand does it encourage end users to replace normal
authentication methods by IRMA. For example if you have a
camping, then you can ask people to provide them with some
attributes instead of a copy of their passport.

Bibliography

[1] https://nos.nl/artikel/2197753-autoriteit-persoonsgegevens-windows-
10-schendt-privacy.html.

[2] https://nos.nl/artikel/2198712-meer-privacy-op-internet-stap-
dichterbij.html.

[3] https://nos.nl/artikel/2199500-datahandelaren-schenden-privacy-van-
miljoenen-nederlanders.html.

[4] https://nos.nl/artikel/2207112-prijs-grootste-privacyschending-naar-
kabinet-wegens-aftapwet.html.

[5] https://tools.ietf.org/html/rfc1631.

[6] Gergely Alpár, Fabian van den Broek, Brinda Hampiholi, Bart Jacobs,
Wouter Lueks, and Sietse Ringers. Irma: practical, decentralized and
privacy-friendly identity management using smartphones.

[7] SIG Bluetooth. Bluetooth 4.2 core specification. Bluetooth SIG, 2009.

[8] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank
Stajano. The quest to replace passwords: A framework for comparative
evaluation of web authentication schemes. In Security and Privacy
(SP), 2012 IEEE Symposium on, pages 553–567. IEEE, 2012.

[9] Jan Camenisch and A Lysyanskaya. Efficient non-transferable anony-
mous multi-show credential system with optional anonymity revocation.
01 2001.

[10] Jan Camenisch and Els Van Herreweghen. Design and implementation
of the idemix anonymous credential system. In Proceedings of the 9th
ACM conference on Computer and communications security, pages 21–
30. ACM, 2002.

[11] K Cameron. The laws of identity. 2005. Microsoft Corporation, 2009.

[12] J. Dunning. Taming the blue beast: A survey of bluetooth based
threats. IEEE Security Privacy, 8(2):20–27, March 2010.

19

[13] Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General Data Protection
Regulation). Official Journal of the European Union, L119:1–88, May
2016.

[14] Chia-Ming Fan, Shiuhpyng Shieh, and Bing-Han Li. On the secu-
rity of password-based pairing protocol in bluetooth. In Network Op-
erations and Management Symposium (APNOMS), 2011 13th Asia-
Pacific, pages 1–4. IEEE, 2011.

[15] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on computing,
18(1):186–208, 1989.

[16] Artur H lobaż, Krzysztof Podlaski, and Piotr Milczarski. Applications
of qr codes in secure mobile data exchange. In International Conference
on Computer Networks, pages 277–286. Springer, 2014.

[17] Jean-Jacques Quisquater, Myriam Quisquater, Muriel Quisquater,
Michaël Quisquater, Louis Guillou, Marie Annick Guillou, Gäıd Guil-
lou, Anna Guillou, Gwenolé Guillou, and Soazig Guillou. How to ex-
plain zero-knowledge protocols to your children. In Conference on the
Theory and Application of Cryptology, pages 628–631. Springer, 1989.

[18] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communi-
cations of the ACM, 21(2):120–126, 1978.

[19] Pim Vullers and Gergely Alpár. Efficient selective disclosure on smart
cards using idemix. In IFIP Working Conference on Policies and Re-
search in Identity Management, pages 53–67. Springer, 2013.

Appendix A

Appendix

The proof of concept on which this thesis is based is provided here for
reference and to be scrutinized. It is in the open source domain.

A.1 IrmaBluetoothTransportServer.java

1 package org.irmacard.cardemu.bluetooth;

2

3 import android.bluetooth.BluetoothAdapter;

4 import android.bluetooth.BluetoothServerSocket;

5 import android.bluetooth.BluetoothSocket;

6 import android.os.Handler;

7 import android.os.Message;

8 import android.support.annotation.NonNull;

9 import android.util.Log;

10

11 import com.google.gson.Gson;

12 import com.google.gson.reflect.TypeToken;

13

14 import org.irmacard.api.common.JwtSessionRequest;

15 import org.irmacard.api.common.disclosure.DisclosureProofRequest;

16 import org.irmacard.api.common.disclosure.DisclosureProofResult;

17 import org.irmacard.api.common.util.GsonUtil;

18 import org.irmacard.credentials.idemix.proofs.ProofD;

19 import org.irmacard.credentials.idemix.proofs.ProofList;

20 import org.irmacard.credentials.info.AttributeIdentifier;

21 import org.irmacard.credentials.info.InfoException;

22 import org.irmacard.credentials.info.KeyException;

23

24 import java.io.IOException;

25 import java.io.InputStream;

26 import java.io.OutputStream;

27 import java.net.URL;

28 import java.util.ArrayList;

21

29 import java.util.Date;

30 import java.util.List;

31

32 import javax.crypto.SecretKey;

33

34 import io.jsonwebtoken.JwtBuilder;

35 import io.jsonwebtoken.Jwts;

36

37 /**

38 * Created by neonlight on 24-11-17.

39 */

40

41 public class IrmaBluetoothTransportServer extends Handler

implements Runnable{

42 private static final int CONNECTION_WAIT = 20000; //

Milliseconds to wait for the client to connect

43 private static final int CONNECTION_TIMEOUT = 20000; //

Milliseconds after being connected; to drop the connection.

44 private SecretKey key;

45 private IrmaBluetoothHandler handler;

46 private static IrmaBluetoothTransportServer instance;

47 private IrmaBluetoothTransportCommon common;

48

49 @Override

50 public void handleMessage(Message msg) {

51 super.handleMessage(msg);

52 IrmaBluetoothHandler.State[] values =

IrmaBluetoothHandler.State.values();

53 handler.publish(values[msg.what]);

54 }

55

56 private IrmaBluetoothTransportServer(SecretKey key,

IrmaBluetoothHandler handler) {

57 this.key = key;

58 this.handler = handler;

59 }

60

61 public static void start(@NonNull SecretKey key, @NonNull

IrmaBluetoothHandler handler) {

62 if(instance == null) {

63 instance = new IrmaBluetoothTransportServer(key,

handler);

64 new Thread(instance).start();

65 }

66 }

67

68 @Override

69 public void run() {

70 android.os.Process.setThreadPriority(android.os.Process.THREAD_PRIORITY_BACKGROUND);

71 receiveConnection();

72 }

73

74 private void receiveConnection() {

75 // Create the listening server socket

76 BluetoothServerSocket serverSocket;

77 BluetoothSocket socket;

78 try {

79 serverSocket = BluetoothAdapter.getDefaultAdapter()

80 .listenUsingInsecureRfcommWithServiceRecord("Irma",

IrmaBluetoothTransportCommon.IRMA_UUID);

81 } catch (IOException e) {

82 Log.e("TAG", "ServerSocket failed", e);

83 return;

84 }

85

86 // Serve any client connecting.

87 try {

88 Log.d("TAG", "Accepting connection");

89 socket = serverSocket.accept(CONNECTION_WAIT);

90 common = new IrmaBluetoothTransportCommon(key, socket);

91

92 sendEmptyMessage(IrmaBluetoothHandler.State.CONNECTED.ordinal());

93

94 long timeout = System.currentTimeMillis() +

CONNECTION_TIMEOUT;

95

96 DisclosureProofRequest disclosureProofRequest =

handler.getDisclosureProofRequest();

97 // TODO: Refactor the transportserver/handler? Does it

need to verify?

98

99 boolean done = false;

100 while(common.connected() && System.currentTimeMillis() <

timeout && !done) {

101 Object obj = common.read();

102

103 if(obj instanceof ProofList) {

104 ProofList proofList = (ProofList) obj; done =

true;

105 try {

106 proofList.populatePublicKeyArray();

107 DisclosureProofResult result =

disclosureProofRequest.verify(proofList);

108 if(result.getStatus() ==

DisclosureProofResult.Status.VALID) {

109 sendEmptyMessage(IrmaBluetoothHandler.State.SUCCESS.ordinal());

110 } else {

111 sendEmptyMessage(IrmaBluetoothHandler.State.FAIL.ordinal());

112 }

113 common.write(result.getStatus());

114 } catch (InfoException | KeyException |

RuntimeException e) {

115 Log.e("TAG", "Proof exception", e);

116 sendEmptyMessage(IrmaBluetoothHandler.State.FAIL.ordinal());

117 common.write(DisclosureProofResult.Status.INVALID);

118 }

119 } else if(obj instanceof RequestJwtSession) {

120 common.write(disclosureProofRequest);

121 } else {

122 Log.d("TAG", "Unrecognized object: " + obj);

123 }

124 }

125 } catch (IOException e) {

126 Log.e("TAG", "Connection failed.", e);

127 sendEmptyMessage(2);

128 }

129

130 instance = null; // This server is a Singleton.

131 common.close();

132 try {

133 serverSocket.close();

134 } catch(IOException e) {

135 Log.e("TAG", "Server close failed", e);

136 }

137 }

138 }

A.2 IrmaBluetoothTransportClient.java

1 package org.irmacard.cardemu.irmaclient;

2

3 import android.bluetooth.BluetoothAdapter;

4 import android.bluetooth.BluetoothDevice;

5 import android.bluetooth.BluetoothSocket;

6 import android.util.Log;

7

8 import com.google.gson.Gson;

9 import com.google.gson.internal.Primitives;

10

11 import org.irmacard.api.common.JwtSessionRequest;

12 import org.irmacard.api.common.disclosure.DisclosureProofRequest;

13 import org.irmacard.api.common.disclosure.DisclosureProofResult;

14 import org.irmacard.api.common.util.GsonUtil;

15 import org.irmacard.cardemu.bluetooth.IrmaBluetoothTransportCommon;

16 import org.irmacard.cardemu.httpclient.HttpClientException;

17 import org.irmacard.cardemu.httpclient.HttpResultHandler;

18

19 import java.io.IOException;

20 import java.io.InputStream;

21 import java.io.OutputStream;

22 import java.lang.reflect.Type;

23 import java.math.BigInteger;

24

25 import javax.crypto.SecretKey;

26

27 /**

28 * Created by neonlight on 20-11-17.

29 */

30

31 public class IrmaBluetoothTransportClient implements IrmaTransport {

32 private BluetoothDevice device;

33 private BluetoothSocket socket;

34 private IrmaBluetoothTransportCommon common;

35 private Gson gson;

36

37 public IrmaBluetoothTransportClient(SecretKey key, String mac) {

38 Log.d("TAG", "IrmaBluetoothTransportClient - Prover");

39 this.gson = GsonUtil.getGson();

40 this.device =

BluetoothAdapter.getDefaultAdapter().getRemoteDevice(mac);

41 if(connect()) {

42 this.common = new IrmaBluetoothTransportCommon(key,

socket);

43 }

44 }

45

46 private boolean connect() {

47 // Create socket to device

48 Log.d("TAG", "Creating socket");

49 try {

50 socket =

device.createInsecureRfcommSocketToServiceRecord(IrmaBluetoothTransportCommon.IRMA_UUID);

51 Log.d("TAG", "Socket Created");

52 } catch (IOException e) {

53 Log.e("TAG", "Socket creation failed", e);

54 return false;

55 }

56

57 // Connect to the device

58 try {

59 socket.connect();

60 Log.d("TAG", "Socket Connected");

61 return true;

62 } catch (Exception e) {

63 Log.e("TAG", "Socket could not connect", e);

64 return false;

65 }

66 }

67

68 @Override

69 public <T> void post(Type type, String url, Object object,

HttpResultHandler<T> handler) {

70 Log.d("TAG", "POST::" + type + ":" + url

+":"+object+":"+handler);

71 try {

72 common.write(gson.toJson(object),

IrmaBluetoothTransportCommon.Type.POST_PROOFLIST);

73 T result = Primitives.wrap((Class<T>)

type).cast(common.read());

74 if(result != null) {

75 handler.onSuccess(result);

76 } else {

77 throw new IOException("Object is not correctly

received.");

78 }

79 } catch (IOException e) {

80 handler.onError(new HttpClientException(0, "Bluetooth

Error"));

81 common.close();

82 }

83 }

84

85 @Override

86 public <T> void get(Type type, String url, HttpResultHandler<T>

handler) {

87 Log.d("TAG", "GET::" + type + ":" + url +":"+handler);

88 try {

89 common.write("",

IrmaBluetoothTransportCommon.Type.GET_JWT);

90 T result = Primitives.wrap((Class<T>)

type).cast(common.read());

91 if(result != null) {

92 handler.onSuccess(result);

93 } else {

94 throw new IOException("Object is not correctly

received.");

95 }

96 } catch (IOException e) {

97 handler.onError(new HttpClientException(0, "Bluetooth

Error"));

98 common.close();

99 }

100 }

101

102 @Override

103 public void delete() {

104 Log.d("TAG", "DELETE");

105 }

106 }

A.3 IrmaBluetoothTransportCommon.java

1 package org.irmacard.cardemu.bluetooth;

2

3 import android.bluetooth.BluetoothDevice;

4 import android.bluetooth.BluetoothSocket;

5 import android.support.annotation.NonNull;

6 import android.util.Log;

7

8 import com.google.gson.Gson;

9 import com.google.gson.reflect.TypeToken;

10

11 import org.irmacard.api.common.JwtSessionRequest;

12 import org.irmacard.api.common.disclosure.DisclosureProofRequest;

13 import org.irmacard.api.common.disclosure.DisclosureProofResult;

14 import org.irmacard.api.common.util.GsonUtil;

15 import org.irmacard.credentials.idemix.proofs.ProofD;

16 import org.irmacard.credentials.idemix.proofs.ProofList;

17

18 import java.io.IOException;

19 import java.io.InputStream;

20 import java.io.OutputStream;

21 import java.lang.reflect.Method;

22 import java.nio.BufferOverflowException;

23 import java.security.NoSuchAlgorithmException;

24 import java.util.ArrayList;

25 import java.util.Arrays;

26 import java.util.Date;

27 import java.util.List;

28 import java.util.UUID;

29 import java.util.concurrent.TimeoutException;

30

31 import javax.crypto.Cipher;

32 import javax.crypto.KeyGenerator;

33 import javax.crypto.SecretKey;

34 import javax.crypto.spec.IvParameterSpec;

35 import javax.crypto.spec.SecretKeySpec;

36

37 import io.jsonwebtoken.JwtBuilder;

38 import io.jsonwebtoken.Jwts;

39

40 /**

41 * Created by neonlight on 24-11-17.

42 */

43

44 public class IrmaBluetoothTransportCommon {

45 public static final UUID IRMA_UUID =

UUID.fromString("c7986f0a-3154-4dc9-b19c-a5e713bb1737");

//TODO: choose UUID (this is random generated)

46 private static final long TIMEOUT = 3000; //

network I/O timeout in milliseconds.

47 private static final int BUFFER_SIZE = 1024; // nr

bytes the buffer should hold

48 private static final int PACKET_SIZE = 4096; //

maximum size of the received object

49 private BluetoothSocket socket;

50 private InputStream is;

51 private OutputStream os;

52 private SecretKey key;

53 private Gson gson;

54

55 public enum Type {

56 POST_PROOFLIST,

57 PROOF_RESULT_STATUS,

58 GET_JWT,

59 PROOFREQUEST

60 }

61

62 public IrmaBluetoothTransportCommon(@NonNull SecretKey key,

@NonNull BluetoothSocket socket) {

63 this.key = key;

64 this.socket = socket;

65 this.is = null;

66 this.os = null;

67 try {

68 this.is = socket.getInputStream();

69 this.os = socket.getOutputStream();

70 } catch(IOException | NullPointerException e) {

71 Log.e("TAG", "I/O could not be opened", e);

72 }

73 this.gson = GsonUtil.getGson();

74 }

75

76 public boolean connected() {

77 return this.socket.isConnected();

78 }

79

80 static public SecretKey generateSessionKey() {

81 SecretKey secretKey = null;

82 try {

83 KeyGenerator keyGen = KeyGenerator.getInstance("AES");

84 keyGen.init(128); // for example

85 secretKey = keyGen.generateKey();

86 } catch(NoSuchAlgorithmException e) {

87 Log.e("TAG", "NoSuchAlgorithm", e);

88 }

89 return secretKey;

90 }

91

92 public void setInputOutputStreams(@NonNull InputStream is,

@NonNull OutputStream os) {

93 this.is = is;

94 this.os = os;

95 }

96

97 public byte[] encrypt(byte[] bytes) {

98 try {

99 SecretKeySpec secretKey = new

SecretKeySpec(key.getEncoded(), "AES");

100 Cipher cipher =

Cipher.getInstance("AES/CBC/PKCS5Padding");

101 IvParameterSpec ivParams = new IvParameterSpec(new

byte[cipher.getBlockSize()]);

102 cipher.init(Cipher.ENCRYPT_MODE, secretKey, ivParams);

103 return cipher.doFinal(bytes);

104 } catch (Exception e) {

105 // Reset the byte array to zero on failure

106 Log.e("TAG", "Encryption failed", e);

107 for(int i = 0; i < bytes.length; i++) {

108 bytes[i] = 0;

109 }

110 return bytes;

111 }

112 }

113

114 public byte[] decrypt(byte[] bytes) {

115 try {

116 SecretKeySpec secretKey = new

SecretKeySpec(key.getEncoded(), "AES");

117 Cipher cipher =

Cipher.getInstance("AES/CBC/PKCS5Padding");

118 IvParameterSpec ivParams = new IvParameterSpec(new

byte[cipher.getBlockSize()]);

119 cipher.init(Cipher.DECRYPT_MODE, secretKey, ivParams);

120 return cipher.doFinal(bytes);

121 } catch (Exception e) {

122 Log.e("TAG", "Decryption failed", e);

123 for(int i = 0; i < bytes.length; i++) {

124 bytes[i] = 0;

125 }

126 return bytes;

127 }

128 }

129

130 private boolean unbond(BluetoothDevice device) {

131 try {

132 Method m = device.getClass().getMethod("removeBond",

(Class[]) null);

133 m.invoke(device, (Object[]) null);

134 } catch (Exception e) {

135 return false;

136 }

137 return true;

138 }

139

140 /**

141 * Close the socket, and UNBOND it!

142 */

143 public void close() {

144 BluetoothDevice tmp = null;

145 try {

146 tmp = socket.getRemoteDevice();

147 socket.close();

148 } catch(IOException | NullPointerException e) {

149 Log.d("TAG", "Connection closed failed, socket already

closed?");

150 }

151 Log.d("TAG", "Closed");

152 if(unbond(tmp)) Log.d("TAG", "closing and unbonding

succesfull");

153 }

154

155 /**

156 * Keep Busy-Waiting on the stream for it to show up with data,

then take that data.

157 * Return it to be processed.

158 * @param buffer the buffer in which to place the data.

159 * @return the number of bytes that have been read.

160 * @throws IOException in case the InputStream is unavailable,

or broken.

161 * @throws TimeoutException in case it took too long.

162 */

163 private int readPacket(byte[] buffer) throws IOException,

TimeoutException{

164 long time = System.currentTimeMillis() + TIMEOUT;

165 while(System.currentTimeMillis() < time && is.available() <

1) ;

166 if(is.available() > 0) {

167 return is.read(buffer);

168 }

169 throw new TimeoutException("The reading failed");

170 }

171

172 /**

173 * Keep reading packets until you can reconstruct it to an

object.

174 * The first two bytes received contain the length of the data.

175 * @return the byte array containing the decrypted object

176 * @throws TimeoutException in case it took to long to read the

object

177 * @throws IOException in case the channel is broken.

178 */

179 private byte[] readObject() throws TimeoutException,

IOException{

180 byte[] buffer = new byte[BUFFER_SIZE]; byte[] result = new

byte[PACKET_SIZE];

181 int nr_bytes = readPacket(buffer);

182 if (nr_bytes < 4) { return null; }

183

184 // Parse packet size field

185 final int payload_length = ((buffer[0] & 0xff) << 8) |

(buffer[1] & 0xff);

186 int payload_size = nr_bytes - 2;

187

188 // Start processing.

189 System.arraycopy(buffer, 2, result, 0, payload_size);

190 boolean done = payload_size == payload_length;

191

192 // Continue reading if packet is not complete.

193 while (!done) {

194 nr_bytes = readPacket(buffer);

195 if (payload_size + nr_bytes > PACKET_SIZE) {

196 throw new BufferOverflowException();

197 }

198

199 System.arraycopy(buffer, 0, result, payload_size + 2,

nr_bytes);

200 payload_size += nr_bytes;

201 done = payload_size == payload_length;

202 }

203

204 return decrypt(Arrays.copyOfRange(result, 0,

payload_length));

205 }

206

207 /**

208 * The IRMA object is to be returned:

209 * - DisclosureProofRequest

210 * - JwtSessionRequest

211 * - ProofList

212 * - DisclosureProofResult.Status

213 * etc. etc. etc.

214 * @return an object that could be any of the above class.

215 */

216 public Object read() {

217 try {

218 byte[] bytes = null;

219 while(bytes == null) {

220 bytes = readObject();

221 }

222

223 Type irma_type = Type.values()[((bytes[0] & 0xff) << 8)

| (bytes[1] & 0xff)];

224 byte[] result = Arrays.copyOfRange(bytes, 2,

bytes.length);

225

226 switch(irma_type) {

227 case POST_PROOFLIST:

228 String jwt = new String(result);

229 Log.d("TAG", "RECV: POST_PROOFLIST: " + jwt);

230 List<ProofD> proofDS = gson.fromJson(jwt, new

TypeToken<ArrayList<ProofD>>(){}.getType());

231 ProofList proofList = new ProofList();

232 proofList.addAll(proofDS);

233 return proofList;

234 case PROOF_RESULT_STATUS:

235 Log.d("TAG", "RECV: PROOF_RESULT_STATUS: " + new

String(result));

236 return DisclosureProofResult.Status.valueOf(new

String(result));

237 case GET_JWT:

238 Log.d("TAG", "RECV: GET_JWT ");

239 return new RequestJwtSession();

240 case PROOFREQUEST:

241 Log.d("TAG", "RECV: PROOFREQUEST: " + new

String(result));

242 //TODO: build the JwtSessionRequest at server

side instead of replicating at client side

243 DisclosureProofRequest request =

gson.fromJson(new String(result), new

TypeToken<DisclosureProofRequest>(){}.getType());

244 JwtSessionRequest req = new JwtSessionRequest(

245 getDisclosureJwt(request),

246 request.getNonce(),

247 request.getContext()

248);

249 return req;

250 default:

251 Log.d("TAG", "RECV: UNKNOWN IRMA TYPE");

252 return null;

253 }

254 } catch (TimeoutException | IOException e) {

255 Log.e("TAG", "Timeout readObject socket", e);

256 return null;

257 } catch (Exception e) {

258 Log.e("TAG", "Unknown object mismatch?", e);

259 return null;

260 }

261 }

262

263 private String getDisclosureJwt(DisclosureProofRequest dpr) {

264 // Translate the object to bytes

265 String result = gson.toJson(dpr);

266

267 //TODO: fix hacky string manipulation

268 result = result.substring(1, result.length() - 1);

269 JwtBuilder builder = Jwts.builder();

270 String jwt = builder.setPayload(

271 "{\"sub\": \"verification_request\"," +

272 "\"iss\": \"bluetooth\"," +

273 "\"iat\": "+ new Date().getTime() + "," +

274 "\"sprequest\": {"+

275 "\"validity\": 60, " +

276 "\"request\": {" +

277 result +

278 "}" +

279 "}" +

280 "}").compact();

281

282 return jwt;

283 }

284

285 /**

286 * Public functions to write the objects to the other end.

287 * As a developer you may want to transfer the object ’MyObject’

288 * 1. implement ’public boolean write(MyObject object)’

289 * 2. implement ’case ??’ in the ’read’ function above.

290 *

291 * @param dpr the DisclosureProofRequest

292 * @return it succeeded.

293 */

294 public boolean write(DisclosureProofRequest dpr) {

295 return write(gson.toJson(dpr), Type.PROOFREQUEST);

296 }

297

298 public boolean write(ProofList proofList) {

299 return write(gson.toJson(proofList), Type.POST_PROOFLIST);

300 }

301

302 public boolean write(DisclosureProofResult.Status status) {

303 return write(status.toString().getBytes(),

Type.PROOF_RESULT_STATUS);

304 }

305

306 public boolean write(String url, Type type) {

307 return write(url.getBytes(), type);

308 }

309

310

311 /**

312 * The bare level write, it writes the bytes, adds a ’size’

header field, and serialises the irma type.

313 * @param object the bytes representing the object to send.

314 * @param irma_type the ’type’ of the IRMA packet, indicates to

the receiver what it is receiving.

315 * look into the enum Type at the top of this

class declaration.

316 * @return it succeeded.

317 */

318 private boolean write(byte[] object, Type irma_type) {

319 // Build Enchilada to be encrypted

320 int irma_int = irma_type.ordinal();

321 byte[] enchilada = new byte[2 + object.length];

322 enchilada[0] = (byte) (irma_int >>> 8);

323 enchilada[1] = (byte) (irma_int);

324

325 // Set Payload

326 System.arraycopy(object, 0, enchilada, 2, object.length);

327

328 // Encrypt the enchilada

329 byte[] encrypted = encrypt(enchilada);

330

331 // Attach header

332 int length = encrypted.length;

333 byte[] packet = new byte[2 + length];

334 packet[0] = (byte) (length >>> 8);

335 packet[1] = (byte) (length);

336 System.arraycopy(encrypted, 0, packet, 2, length);

337

338 // Send it

339 Log.d("TAG", "SEND: " + new String(packet) + "(" +

packet.length +")");

340 try {

341 this.os.write(packet);

342 return true;

343 } catch(IOException e) {

344 Log.e("TAG", "Write failed", e);

345 return false;

346 }

347 }

348 }

