
Bachelor thesis
Computing Science

Radboud University

Digital flowchart maker

How do we aid the learning of programming?
Author:
Frank Gerlings
s4384873

First supervisor/assessor:
J.E.W. (Sjaak) Smetsers
S.Smetsers@cs.ru.nl

Second supervisor/assessor:
MSc T.J. (Tim) Steenvoorden

T.Steenvoorden@cs.ru.nl

December 12, 2018

Abstract

Learning the basics of programming can be hard. Worldwide efforts try
to teach people programming but there still is an ongoing shortage of pro-
grammers. This thesis tries to make it easier to understand the basic concept
of control flow.

We will start by identifying a way to separate programming into al-
gorithmic thinking and coding by using flowcharts and argue that making
flowcharts can be made easier by constructing them digitally. We will ask
ourselves what a flowchart creating tool should look like, delve into three
different designs for such tools and finally choose one and work out a tool
around it.

To see how well our tool supports the process of learning how to program,
we will test our tool by observing and interviewing students while they use
it. In the results we will see that adding and deleting nodes and choosing
specific node types goes fairly well. However, we will see that editing content
of nodes is hindering the students. These problems seem to originate from
technical limitations, rather than design flaws.

Acknowledgements

First off, I would like to thank Sjaak Smetsers and Tim Steenvoorden, my
research supervisors, for their ceaseless help throughout the project. Even
though the project took longer than expected, they never hesitated to show
me how to do research and write a thesis.

Also, I would like to thank Renske Smetsers-Weeda, the students and in
extent the Montessori College for testing the tool and giving me the valuable
feedback that you are about to read.

Another group of people that I owe my thanks to are all the people
that worked with me on a daily basis at the university. For their occasional
welcome distraction and their listening ear.

And finally, I want to thank my mom and dad for being there for me.

Contents

1 Introduction 3

2 Background 4
2.1 The Problem: Learning to Program 4
2.2 The solution: Flowcharts . 5
2.3 Digital Flowcharts . 5
2.4 Drawing Flowcharts . 6
2.5 Nielsen’s Heuristics: Guidelines to Usability 7

3 Tool development 10
3.1 Requirements . 10
3.2 The programming language 11

3.2.1 JavaScript . 11
3.2.2 Elm . 12
3.2.3 Conclusion . 12

3.3 Designing Flowchart Manipulation 12
3.3.1 Selection bar . 13
3.3.2 Drag and drop . 13
3.3.3 Overlay buttons . 14
3.3.4 Conclusion . 15

3.4 Implementation . 15
3.4.1 Model . 15
3.4.2 Update . 17
3.4.3 View . 19
3.4.4 Technical limitations 19
3.4.5 Other functionalities 21

4 Methodology 22
4.1 Research question . 22
4.2 Measuring environment . 22
4.3 Empiric variables . 24

5 Results 26

1

6 Discussion 29
6.1 Interpretation . 29

6.1.1 Add and delete nodes 29
6.1.2 Choose node type . 30
6.1.3 Edit content . 31

6.2 Remarks . 33

7 Conclusions 34
7.1 Related Work . 34
7.2 Future work . 35

8 Appendix 39
8.1 Interview questions . 39
8.2 Interview transcriptions . 39

8.2.1 Group 1 . 39
8.2.2 Group 2 and 3 . 41

8.3 Video quotes . 44
8.3.1 Pre-test: Group 2 . 44
8.3.2 Pre-test: Group 3 . 44
8.3.3 Main test: Group 2 . 44

2

Chapter 1

Introduction

A study by Smetsers and Smetsers[1] developed a course called Algoritmisch
Denken, where students need to develop and implement algorithms in a
Java1 environment. During the course algorithmic assignments are posed to
students. The problem solving of these assignments is divided in two parts:
first the students work out a solution on paper by drawing a flowchart. Next,
they convert the flowchart to Java-code to see if their answer is correct.
The idea behind this was to separate the semantics and the syntax of the
algorithm, in order to reduce the cognitive load placed on students, more on
this later. However, they found some trouble in letting the students create
flowcharts analogous, which is why in this thesis we will search for a way to
improve that by building a tool that lets the students create flowcharts. To
put it directly, we will try to answer the next question:

What does a digital flowchart creating tool looks like, such that
it supports learning to program the best?

To this end we will look at different designs, explore its implementation
and finally test it and draw conclusions. The full code of the tool can be
found online2.

1Java, Oracle https://www.java.com/nl/
2Flowchart tool - Frank Gerlings https://gitlab.science.ru.nl/gerlings/Thesis_

Sources/tree/master/flowcharttool

3

https://www.java.com/nl/
https://gitlab.science.ru.nl/gerlings/Thesis_Sources/tree/master/flowcharttool
https://gitlab.science.ru.nl/gerlings/Thesis_Sources/tree/master/flowcharttool

Chapter 2

Background

First we will look into what programming is and why it is hard. Next, we
will find an answer by using flowcharts, after which we will elaborate on the
technical details. Then we will see why we will build these flowcharts digitally
rather than on paper. Lastly we will see that there are certain criteria, better
known as heuristics, that lead to a successful digital flowchart maker.

2.1 The Problem: Learning to Program

Programming is the confluence of algorithmic thinking and coding.
This confluence makes programming hard and tends to lead to confusion
for novice programmers[2]. The two main struggles are the mathematical
challenge that algorithmic thinking poses and the syntactical knowledge
that is needed for coding.

The mathematical challenge of designing an algorithm is larger than nor-
mal with programming because students are also facing syntactical errors
from the coding. These errors put students in an act-first mode: they ne-
glects the algorithm and dive straight into syntactical issues. While doing so,
students tend to forget what the exact problem is they’re trying to solve[3].
This leads to a lot of logical errors, that is, errors in the algorithm.

The syntactical knowledge that is needed to code in a certain program-
ming language can be difficult too. For starters, code shows all nitty gritty
details that are needed for the algorithm to work. Take for example the data
structure that is used or specific libraries needed to make something work.
These are details that obfuscate the logical errors and hinder when trying
to get a quick overview of the program flow[1]. Secondly, using a concrete
programming language might shape one’s understanding of programming[4].
This is disadvantageous when a course tries to teach algorithmic thinking,
rather than a specific language.

4

2.2 The solution: Flowcharts

Luckily, there is a way to counter these problems. For this we will use
flowcharts. A flowchart is a diagram that visually represents a computer
program in a step-by-step progression using conventional symbols1. We will
put text in these symbols that describe what should happen at that step. For
an example, look at figure 2.1. We should note that this figure describes an
algorithm in a concrete manner, rather than the abstract way that we will
describe later. Later on we will look further into the conventional symbols
that we will use for these flowcharts. Now we will discuss how flowcharts are
going to solve earlier posed problems.

To begin with, if students make a flowchart before starting to program
directly they are not confronted with the syntactic details. This prevents
them from entering an act-first mode. Now they can first figure out how the
algorithm needs to be solved and learn the bigger scope of the project[1].

Another advantage is that the way that we are going to use flowcharts
does not enforce concrete details. Thus students are not directly imposed to
think of technical details. This is why we can easier see the logical think-
ing steps and their corresponding problems before diving into the technical
details[4].

Also, flowcharts serve as ’road maps’, or overviews. They can swiftly
communicate the program flow. If we compare flowcharts for example to
another unplugged programming method such as using natural language,
we see that this is a major advantage[5].

A last advantage of flowcharts is that they abstract away from language
specific constructs. This way we can see more easily what algorithmic steps
the student does wrong and does not impose a specific mindset.

2.3 Digital Flowcharts

In this section we will see what kinds of problems that drawing flowcharts
on paper introduces and how a digital flowchart maker could solve these.

The first kind of problem that working on paper introduces has to do with
syntax. Flowcharts try to focus on the algorithmic side of programming so
it is easier to implement the syntactical part later. However, flowcharts have
a syntax of their own, this is the set of conventional symbols we mentioned
earlier. We see this being a problem when we create flowcharts on paper.
Students tend to confuse the shapes of the different elements and make
mistakes in the syntactical structure of the flowchart[4].

One way that a digital flowchart maker solves this is by visually repre-
senting all conventional symbols. Students now don’t need to remember the

1Merriam-Webster Online Dictionary: https://www.merriam-webster.com/

dictionary/

5

https://www.merriam-webster.com/dictionary/
https://www.merriam-webster.com/dictionary/

Figure 2.1: Example of a Smetsers and Smetsers flowchart

shape of the one they want to use, they only have to select the correct shape.
Another way in which a digital tool helps with this syntax problem, is by
limiting the possible ways to create flowcharts, ensuring that all flowcharts
created have the correct structure. For instance, having an if-statement with
more than two branches or a flowchart with multiple ending nodes can be
made impossible.

A second problem has to do with the readability of the flowchart. Draw-
ing a flowchart by hand and adjusting it later makes it cluttered really fast.
Especially when you consider the creation of the flowchart as a learning
process which needs reiteration[2]. Working digitally solves this problem.

One last problem that working on paper introduces is the limited share-
ability. Digital flowchart makers allow for digital copies that can easily be
spread in the ICT-network of the school. This allows a student, their partner
students and their teacher to look at it and change it whenever they want. It
also makes it possible to have assignment deadlines outside of regular hours,
creating flexibility for the teacher.

2.4 Drawing Flowcharts

Now, we will look further into the drawing of flowcharts as described in the
Smetsers and Smetsers paper[1]. An example illustration can be found in
figure 2.1.

A flowchart consists of different nodes connected with arrows. It is pos-

6

sible to traverse through the scheme by executing the step described in a
node and following an arrow to a new node. There are different kinds of
nodes on which we will now elaborate.

A first node is the Start-node. It is the point where the algorithm starts
and is unique. This node is by convention placed at the top op a flowchart.
There is also exactly one End-node, by convention placed at the bottom of
the flowchart. Further, to execute an elementary step, such as the assignment
of a variable, we use a Statement node.

A more intricate node is the if-node, which has a condition. From the
node there are two arrows going to other nodes, one annotated with true
and the other with false. Should the condition in the node be met, the user
must follow the true-arrow to the next node. We call this the true-branch
of the if-statement. Should the condition not be met, the user must follow
the false-arrow. Eventually, these two branches converge again.

Lastly, there are two other kinds of nodes, being the while- and forEach-
nodes. They also work with a condition and a true- and false-branch. Again,
you follow the true-arrow should the condition be met and the false-arrow
otherwise. The difference with the if-statement, however, is that true-branch
of the while- and forEach-statements eventually loops back to themselves.
The difference between the while- and forEach- statement is that the forEach-
statement works on a specific data structure, lists, whereas the while-statement
is less specific and can work on other data structures as well.

2.5 Nielsen’s Heuristics: Guidelines to Usability

The last part of the background will be used to outline Nielsen’s heuristics[6]2.
Heuristics are broad guidelines for trial-and-error methods3, in this case they
will guide us get good usability for our tool. We will list the heuristics in two
parts. The first list will help us make a distinction between different designs
of our tool. We will use these heuristics in section 3.3. The heuristics in
the second list can be applied to all of them and therefore will not be used
further in this work.

The heuristics that we will use to distinguish different designs are:

• Visibility of system status
An application should always keep the user informed on it’s internal
state. This needs to be in reasonable time when a user is confronted
with background processes that need time to load.

In our case users should always be aware what the flowchart is that will
be executed. We will not implement time-costly background processes.

210 Usability Heuristics for User Interface Design - https://www.nngroup.com/

articles/ten-usability-heuristics/
3Merriam-Webster Online Dictionary: https://www.merriam-webster.com/

dictionary/

7

https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.merriam-webster.com/dictionary/
https://www.merriam-webster.com/dictionary/

• Recognition rather than recall
Users should not have to remember anything. Objects in play should be
visible and instructions on how to use them should be easily retrievable
or unnecessary.

This means for us that users should not need to remember the syntax
of a flowchart and that adding, removing and editing nodes can be
done without further instruction.

• Aesthetic and minimalist design
No irrelevant information should be shown, since this information takes
away attention form relevant pieces of information. Features that are
barely used should not take a disproportionate amount of space and
user attention.

When we look at our tool, we can see that it should represent our
requirements but prioritise these based on how often they are used. For
example, adding nodes should be easier and therefore more prominent
in the design than downloading flowcharts.

The other heuristics can be applied to all designs. We will list them and
argument why and how will fulfil these:

• Consistency and standards
The same words or actions should have the same implications. If ap-
plicable, they should comply to general application standards.

All figures, buttons and text boxes should be consistent with each
other. A button that adds a node should look the same as a button
with the same behaviour in a different place. Also, these buttons should
meet the global standards, they need to look like add buttons on other
sites4.

• Match between system and the real world
The words used in the application should be familiar to the user, fol-
lowing conventions and following a logical order.

Within our tool all jargon used is explained to the students by the
course that uses our tool. Therefore users should be familiar with the
syntax and terminology.

• Error prevention
Check for error-prone input and try to let the user correct possible
mistakes. This is applicable to for example date, since they need to
follow a specific format.

4An example website that sets these standards is Best practices for buttons - Longo,
Luca https://uxplanet.org/best-practices-for-buttons-b7048479d440

8

https://uxplanet.org/best-practices-for-buttons-b7048479d440

The tool explicitly allows for fuzzy input in order to give the user as
much freedom as possible. No input is being tested, because no input
is further used by the application.

• Help and documentation
If necessary, extra information needs to be easy to find, centred around
the task at hand and concise.

For our tool we will search for a design that is sufficiently intuitive so it
will not need extra documentation. Even though this is an important
heuristic, we will not discuss it since the tasks performed with our tool
are sufficiently simple that they do not need further documentation.

• Help users recognise, diagnose and recover from errors
Error messages should be clear, expressive, not contain unrecognisable
codes and suggest a solution.

Later in this work, during the choice of our programming language3.2,
we will see that run time errors can only occur if they are explicitly
programmed in. We will choose to not have run time errors, but instead
handle the exceptional state in a predefined way.

• Flexibility and efficiency of use
Expert users can use accelerators, that is, functions that tailor frequent
actions, speed up interaction and are unseen by first-time users. This
way the application can serve first-time users and long-term users.

Our tool will not incorporate accelerators due to time constraints.

• User control and freedom
Users should be able to undo and redo every step. Other functional-
ities should always provide a cancel -button, should users start using
the functionality by accident.

Our tool will not incorporate undo and redo functionalities due to time
constraints.

9

Chapter 3

Tool development

In this chapter we will first establish the requirements, then discuss what
programming language we will use. Next we will look into the design. Once
we settled on a design, we will look into the details of implementing the tool.

3.1 Requirements

In this section we will outline all requirements that the tool needs to fulfil.
We will do so in order of importance.

The first and foremost requirement of the tool is that the tool can create
flowcharts as described by the Smetsers paper, explained in section 2.4. We
will do so in a user friendly manner. To check if the tool is user friendly
we will use Nielsen heuristics, described in section 2.5. The answer to this
requirement will be formulated in two parts. First we will design the tool in
section 3.3 and then we will implement it in section 3.4.

The second requirement of the tool is that it needs to be a web appli-
cation. At the start of this research a preliminary prototype was developed
in Java, so not as a web application. This has the drawback that it had to
be installed on every school computer, whereas a web application would be
accessible by default from every computer with internet access. Section 3.2
will be centred around finding the appropriate programming language to do
so.

In this paragraph we will discuss some less prominent functionalities that
the tool needs to have. A first example of this is the ability to formulate the
state of an algorithm before and after the it’s execution. In the Smetsers
paper they call it the pre- and the postcondition. Another functionality is
the possibility to save a flowchart with the intention to work on it at a
later time on a different computer or to hand it in with the teacher. A last
functionality is the ability to convert the flowchart into Java-code, to help
bridge the gap between the problem solving in the flowchart and the actual
coding. The implementation of these functionalities will be discussed in the

10

last section of this chapter, 3.4.5.

3.2 The programming language

In this section we will motivate our programming language choice. The tool
needs to be a web application, what strongly determines our programming
language. In web development there is one go-to language for web appli-
cations, JavaScript[7]. We will now match JavaScript to the programming
language Elm1, a functional programming language that compiles to HTML,
CSS and JavaScript2. We will motivate why we picked the latter.

Keep in mind that we want to construct a singe page web application
that is easy to maintain.

3.2.1 JavaScript

JavaScript started in 1995 as hastily constructed dynamic, easy-to-learn web
language. Nowadays it is an established language for building dynamic web
pages, having all needed features in extensive libraries.[7] However, there are
two aspects that are more negative than positive in regard to our project.

The first one is that JavaScript gives freedom to the users on how to use
it, leading it to be used with different paradigms, having grown broad and
complex over the years. Libraries are not forced to use semantic versioning
correctly, meaning there must not necessarily be a clear distinction between
backwards compatible library updates and updates that might break your
current project build. This means that libraries could push changes that
break your build even though their version number says that it won’t. Also,
projects in JavaScript can have very different project architectures because
there has never been one universal standard, this makes projects less clear
to other programmers and therefore less maintainable.

The second aspect is JavaScript’s loosely typing[8]. Again, this makes
programming very flexible and gives freedom to the programmer. However,
this also enables the programmer to make code unreadable but still function-
ing, demanding a great discipline of the programmer to produce organised
code. Aside from that, loosely typing makes refactoring code hard, since it
can result in ambiguous code. These effects can make writing easy maintain-
able code harder.

All in all, JavaScript code is very flexible and easy to program with, but
demands quite a time investment to master due to it’s extensiveness and
pitfalls. Also maintenance is hard, since there are no strict coding standards
enforced and refactoring might lead to ambiguous code.

1Elm - E. Czaplicki http://elm-lang.org/
2Based on The Why and When of Choosing Elm - O. Hanhinen http://ohanhi.com/

why-and-when-of-choosing-elm.html

11

http://elm-lang.org/
http://ohanhi.com/why-and-when-of-choosing-elm.html
http://ohanhi.com/why-and-when-of-choosing-elm.html

3.2.2 Elm

Now let’s look at Elm. Elm is relatively new, originating from a master
thesis[9] and built for robustness and performance. It doesn’t hold back
when it has the chance to enforce certain programming habits onto the
programmer. It limits the programmers freedom in a programmer friendly
way. We will look at the two aspects that bothered us in JavaScript.

First off, because Elm is new and originates from an academic environment[10]
its programming standards have been very well thought through3. We see
this in several ways. To begin with, the Elm package manager enforces se-
mantic versioning, meaning that your builds cannot break if you managed
your dependencies right. Also, the project architecture in Elm projects is
unified. This is because Elm forces you to use a Model-Update-View ar-
chitecture, which we will explain in section 3.4. This unification of build
schemes makes maintenance a lot easier.

Secondly, Elm uses type inference4. This means that the compiler must
know what type every object is during compile time. It allows the compiler
to detect some mistakes beforehand and report these to the programmer. To
infer types the programmer needs to explicitly state what type all variables
and functions have. It therefore limits flexibility and ease of use for the
programmer, but once the program compiles it is guaranteed to run without
inconsistencies, ambiguities or runtime errors.

3.2.3 Conclusion

With Elm enforcing higher code quality, it ensures easier maintainability and
the possibility to extend it later on without giving in on functionality. We
therefore think that Elm fits our personal wishes better than a JavaScript
framework.

3.3 Designing Flowchart Manipulation

To fulfil the first requirement we will discuss three different designs for
flowchart manipulation and search for the most user friendly one. The three
designs are Selection bar, Drag and drop and Overlay buttons. For each of
them we will describe the interface and match it to Nielsen’s heuristics,
which are listed in section 2.5. Finally we will compare the three with each
other and conclude on a final design.

3Design Guidelines - E. Czaplicki http://package.elm-lang.org/help/

design-guidelines
4Compilers as Assistents - E. Czaplicki http://elm-lang.org/blog/

compilers-as-assistants

12

http://package.elm-lang.org/help/design-guidelines
http://package.elm-lang.org/help/design-guidelines
http://elm-lang.org/blog/compilers-as-assistants
http://elm-lang.org/blog/compilers-as-assistants

Figure 3.1: An example of a selection bar from Creately. At the top we see
the selection bar and at the bottom a flowchart that is being built.

3.3.1 Selection bar

The first design that we will discuss is the selection bar. An example of a
selection bar interface can be seen in figure 3.1, which is built using Cre-
ately5. It has a bar of buttons and each button changes the way you interact
with the flowchart. For example, clicking the ”Add node above”-button in
the selection bar and then clicking a node will add a node above said node.
The flowchart also contains a node that allows the user to insert nodes in
the tree, the Empty-node. Selecting for example the ”Insert If”-button and
clicking an Empty-node will change the Empty-node into an If-node.

One of the upsides of this design is that the user always has a clear
view of the current state of the program. There is just one flowchart and by
ignoring the empty-nodes you will always have a syntactically correct one.
Also, all nodes are given inside the bar so the user doesn’t have to recall
anything.

There is one downside to this design. Nielsen urges to use a minimalist
design. However, the selection bar at the top is always present, even when
the user is finished with the flowchart.

3.3.2 Drag and drop

Another possible design is the drag and drop interface. This is illustrated
in 3.2, which is built using Scratch6. In this design the components of a
flowchart are available at the side of the flowchart. They can be moved into

5Cinergix Pty. Ltd. - https://creately.com/diagram-type/flowchart
6Lifelong Kindergarten Group, MIT Media Lab - https://scratch.mit.edu/

13

https://creately.com/diagram-type/flowchart
https://scratch.mit.edu/

Figure 3.2: Example code of Scratch, which uses drag and drop flowchart
manipulation. Left we see the components and right the building area. Note
that Scratch does not work with a Start- and End-node.

a building area, and snapped onto existing components. There are always
exactly one Start- and End-node which are always connected to each other.
All components must be put in between them. These together with the Start-
and End-node form the flowchart.

One advantages is that the system status is always clearly visible, the
flowchart is between the Start- and End-nodes. Furthermore all possible new
flowchart components are visible, so the user won’t have to rely on recalling
them.

However, there is a disadvantage to this design too. The area with new
components always shows all components, even though the user might be
done with it’s flowchart. This conflicts with the heuristic of a minimalist
design.

3.3.3 Overlay buttons

The last design for flowchart manipulation that we look into are overlay
buttons. An example is shown in figure 3.3, which is built using the final
version of the tool that we will build in this thesis7. Upon hovering over
a node several buttons will fade in. These buttons allow you to insert and
delete nodes. An inserted node is an Empty-node, which has buttons in it
for all possible insertable nodes. Clicking one of these buttons will change
the Empty-node in the corresponding insertable node.

Just like the other designs, this one has a clear visibility of the system
state and removes the necessity for the user to recall flowchart components.
The biggest advantage of this design however, is it’s minimalist design. Only
buttons that are relevant at that moment are visible. Once the user has
finished his flowchart and he isn’t hovering over a node, there are no buttons
at all. This is ideal, since the user is done building the flowchart and therefore
doesn’t need buttons for flowchart manipulation anymore. At the same time,

7Flowchart tool http://course.cs.ru.nl/greenfoot/flowchart/flowcharttool.

html

14

http://course.cs.ru.nl/greenfoot/flowchart/flowcharttool.html
http://course.cs.ru.nl/greenfoot/flowchart/flowcharttool.html

Figure 3.3: An example flowchart using the overlay buttons menu on an
Empty-node.

all necessary buttons are provided. This is because we use the location of
the mouse to determine what the user wants to do. Is it on a node, than he
probably wants to delete this node or insert a node above or below it. The
user probably wouldn’t be searching for a way to delete a node at another
location.

3.3.4 Conclusion

In conclusion we can see that the overlay buttons design is superior over the
others due to its extremely minimalist design. This is the design that we
will build during the implementation

3.4 Implementation

In this section we will look at the implementation of the tool. First we will
look at the implementation of the core parts of the tool, by talking about its
model, then its update and finally its view. Next we will discuss the technical
limitations that the implementation has. At the end of the section we will
look at the non-core functionalities of the tool.

3.4.1 Model

In a model-update-view architecture, the model describes all information
contained by the program. In this section we will elaborate on the data
type that forms our flowchart, the Tree data type. Below we can see the
associated code for reference. Note that a comment in Elm is a line that
starts with ‘—’ and is followed by recursive text.

type a l i a s Id = Int
type a l i a s Content = String

15

type a l i a s Tree =
{ id : Id
, bas i cTree : BasicTree
}

type BasicTree
−− keyword restOfFC

= Star t Tree
−− keyword
| End
−− keyword restOfFC
| Empty Tree
−− keyword
| Void
−− keyword t e x t restOfFC
| Statement Content Tree
−− keyword t e x t fa l seBranch trueBranch restOfFC
| I f Content Tree Tree Tree
−− keyword t e x t t rueCh i l d restOfFC
| While Content Tree Tree
−− keyword t e x t t rueCh i l d restOfFC
| ForEach Content Tree Tree

We should clarify that this Tree data type is a derivative of the tree
data structure8. This means that almost every node contains a Tree inside
it, being the rest of the flowchart. In this work we will use Tree to denote
the following child node and all of its successors, whereas we say child node
if we only mean the directly succeeding node of our current node.

To start with we have two type aliases, Id and Content. These are syn-
onyms for types that already exist. They help us identify the meaning of
the variable and help the compiler distinguish regular Int ’s from Id ’s and
regular Strings from Contents.

Next we have the type alias Tree which is synonym for a couple of Id and
BasicTree. We will discuss the latter in the next paragraph. We made Tree
because every node has an Id and we did not want to repeat Id as attribute
for all node-types. Rather, we want to make explicit that every node has an
Id.

The last piece of code describes the type BasicTree. Contrary to type
aliases this describes a whole new type, it is not simply composed of already
known types. A newly defined type has different instances and to make a
distinction between them we begin every instance with a keyword. After
the keyword we give all attributes that belong to that instance. Note that
all instances are preceded by a comment describing the semantics of the
attributes.

For example, we see that BasicTree has an instance named Start which
has only one attribute, a Tree. This Tree is the remaining part of the

8Tree - Wikipedia https://en.wikipedia.org/wiki/Tree_(data_structure)

16

https://en.wikipedia.org/wiki/Tree_(data_structure)

Figure 3.4: Statement has an invisible and immutable child, Void

flowchart, so the following node and all of its successors. Another exam-
ple is the instance If which has four attributes. The first is a Content, it is
the text that holds the condition of the If. The second and third attribute
are the Tree’s that contain the false and true branch respectively. The last
attribute is the Tree that follows after the false and true branches merge.

However, this gives us a problem at the end of a branch, since all nodes
that can be inserted in a branch have an attribute that wants to contain the
rest of the tree. The question now is what will be the last child of a branch.

Technically, we could end every branch with an instance of End. However,
we do not want every branch to have a visible End node, since defined our
flowcharts differently in section 2.4. So to solve this problem we use an
auxiliary node, Void. Void is invisible, cannot directly be mutated by the
user and is used to end separate branches. So for example in figure 3.4 the
Start node has While as child and While has End as direct child. While is
special in the sense that it has an extra child in it’s loop, a Statement. Now
Statement per construction needs a child too. This is where we use Void.
Void is injected in the tree structure as last child of a branch. So here Void
is the child of Statement.

3.4.2 Update

In the model-update-view architecture the update function takes care that
the model is renewed every time new information comes in. We will now take
a closer look at the types that make the flowchart manipulation possible and
the actions taken upon receiving a so called message. Below another piece

17

of code for reference. Note again that ‘—’ denotes a comment that explains
the semantics of the line below it.

type Msg
−− keyword updatedText currentNode

= UpdateContent Content Id
−− keyword newNodeType currentNode
| FillEmpty FillEmpty Id
−− keyword actionNeeded currentNode
| ChangeTree ChangeTree Id

type FillEmpty
= AddStatement
| AddIf
| AddWhile
| AddForEach

type ChangeTree
= NewAbove
| NewBelow
| NewTrue
| NewFalse
| Delete

To begin with, Elm obligates the use of the Msg type, or in normal
words, the message type. The message type lists all possible ways in which
the program can update itself. Every time something is triggered in the view
it can send a message, which will then arrive at our update function. We
will not explicitly give the update function here, but we will describe its
behaviour.

When our update function receives an UpdateContent message it searches
the Tree for the node with the according Id. Once found it will replace the
current Content by the new given Content.

A FillEmpty message will result in the update function searching for
the node with the given Id. This should lead to an Empty node which we
will then replace by either a Statement, If, While or ForEach node. To
make a difference between these we introduce a new type that we will call
FillEmpty, named just like the keyword of this message, and consists of these
four options.

Lastly we will discuss the ChangeTree message. This message is used
to add or delete nodes. As with the FillEmpty message there are different
options to consider that we will list in a different data type, which is called
ChangeTree. Again, named just like the keyword of the message type. These
options are adding a node directly above or below another node or deleting
the node itself. On top of that, an If node has two branches that it can add
nodes to, a true- and false-branch.

18

Figure 3.5: The initial flowchart

3.4.3 View

The last part of the architecture that we will discuss is the view. The view
is the part that we designed to use overlay buttons in section 3.3.3 and is
illustrated in figure 3.5. The elements it draws are described in the model
section and the messages it releases are described in the update section, view
does not introduce new types or type aliases. So in this section we will not
look at those, but at how we draw the model and send messages.

To start with, the Tree elements will be drawn using Scalable Vector
Graphics9. Within the Tree elements that have a Content we put HTML-
textboxes to make them editable. Typing in these textboxes fires Update-
Content messages with the new text, updating the content of the textbox.

An Empty node contains all four insertable nodes, as seen in figure
3.5. Clicking one of these will send a corresponding FillEmpty message and
change the Empty node into the clicked node.

As for the overlay buttons, every node has a rectangular hitbox behind
it that registers when a mouse enters and leaves. When a mouse hovers in
three buttons appear, two add-buttons and one delete-button, as can be
seen in figure 3.6. The add-button is blue and has a white cross and is used
to add Empty nodes. The delete-button is red with a white cross in the top
right corner and will remove the underlying node. Some nodes such as the
If node have extra add-buttons at the sides of their condition box. All of
these buttons work by sending the according ChangeTree messages to the
update function.

3.4.4 Technical limitations

In this section we will discuss some technical difficulties that could influence
the usability of the tool, but have nothing to with the design.

9Scalable Vector Graphics (SVG) 1.1 (Second Edition) - World Wide Web Consortium
https://www.w3.org/TR/2011/REC-SVG11-20110816/

19

https://www.w3.org/TR/2011/REC-SVG11-20110816/

Figure 3.6: An overlay menu on a statement node

Figure 3.7: Only the bottom left quarter of the delete-button is within the
hitbox

First off, the hitbox’ outlining is used for further calculations. This is
why the arrows between nodes stop at the hitbox rather than the node
itself, as can be seen in figure 3.5. Making the hitbox invisible would create
the inconsistency that arrows not always connect to boxes, so we gave it a
discrete colour. Also, the overlay buttons are drawn based on the outlining
of the hitboxes rather than the underlying node, as can be seen in figure 3.6.
This leads to only a quarter of the delete-button being inside the hitbox, as
illustrated in figure 3.7. Upon leaving the hitbox, the overlay menu would
disappear. Thus hovering your mouse into one of the three outer quarters of
the button would lead to the disappearance of the button.

A second limitation is that the tool has a character limit, as seen in
figure 3.8. The line count received from HTML-textboxes is inaccurate due
to invisible characters being counted. This leads to the SVG-shapes scal-
ing inaccurate with the HTML-textboxes. In length however, they do scale
correctly. This lead us to create a character limit of 22 characters on the
Content of a Statement node. The If, While and For-each nodes have a
limit of 25 characters. When this limit is reached, no more input can be
given.

Figure 3.8: There is a character limit of 22 tokens for Statement-nodes

20

Figure 3.9: The pre- and postconditions

Figure 3.10: Menu presenting extra features

3.4.5 Other functionalities

In this section we will look deeper into peripheral functions of the tool.
These are the possibility of pre- and postconditions, local save files and a
conversion method to Java comments.

For starters, part of the course ”Algorithmisch Denken” was to formulate
the beginning and ending state of the algorithm in the pre- and postcon-
ditions. As such we implemented text boxes accordingly, as can be seen in
3.9. These are connected with the Start and End node, since they give the
states of these nodes.

The requirements to save files and convert a flowchart to Java-comments
is fulfilled by adding an extra menu, given in figure 3.10. The first box allows
the user to enter a name for the algorithm. The button below it allows for a
download of the flowchart, followed by a button to upload a local save. The
last button lets the user convert the flowchart to Java comments

Up- and downloading is implemented by transforming the tree into a
JSON-file[11]. This JSON-file is than downloaded, assuming the name of the
algorithm as name with a .flow extension. This .flow extension is necessary
to evade the school’s built in spam filter since it marks all .json files as
malicious files.

Our last feature is the possibility of converting a flowchart to comments.
Upon clicking the accessory button, a prompt will come up with a com-
mented text version of the flowchart. This text file can be pasted directly
into a Java file without resulting in errors.

21

Chapter 4

Methodology

In this chapter we will look into the specifics of what we are going to research
and how we are going to do that. We will first formulate our research question
and sub-questions. Next we will outline the environment in which we will
do the research. In the last section we will look at how to measure the
sub-questions by choosing suitable theoretical and empiric variables.

4.1 Research question

In this thesis we are looking for the best way to create a tool that restrains
the user from making syntactically incorrect flowcharts. On the other hand
we do not want to limit students capacity to express their algorithmic think-
ing. In other words:

What does a digital flowchart creating tool looks like, such that
it supports learning to program the best?

To answer this question we formulate three sub-questions to which we will
always refer to by number. Is it clear for users how to. . .

1. add or delete a node?

2. choose a node type from an Empty-node?

3. edit the content of a node?

4.2 Measuring environment

In this section we will look at the environment of the research. To test the
tool we will use two measuring moments on the same participants. A pre-
test at the 20th of November, 2017, and a main test one week later. We will
first look into the participants group and the exercises that they will do.

22

Then we will look at the measuring methods during the pre-test and the
main test.

We will test the tool in a class that follows the course Algoritmisch
Denken1 which is outlined in [1]. This course is given to a class of eight
fifth year high school students. According to Faulkner [12] a group of 8
participants in a usability research is sufficient to find at least 75% of the
mistakes. Students will not be expected to have programming knowledge
prior to the start of the course in September. For this research the students
will be divided in three groups, the same groups that they worked in during
earlier courses. These will be groups made by the students themselves. The
research will be done during courses when the course is already running for
two months on a weekly basis. During the research the students will get
new theory on algorithmic thinking that they will have to implement using
flowcharts.

At the start of the course of the pre-test, the students will have a few
minutes to get accustomed to the tool, without explicit instructions on what
to do. After that they will have to solve an exercise that made them use all
flowchart manipulations. During the course of the main test the students
will have to build another two flowcharts.

During the pre-test we want to find out if the testing tools operate cor-
rectly. Also we will be able to slightly adjust the tool after the pre-test,
should we see design flaws. In that sense, the pre-test allows us to reiterate
our work. Data generation in this pre-test will be done in three ways, through
overt observation and by capturing screen activity and filming the reactions
of three groups of students with a webcam. This way we can experience the
results firsthand and also have material to delve into afterwards.

The main test will be used to generate more and richer results. It will
therefore not only have earlier mentioned observations on two groups, but
will also include semi-structured interviews at the end of the class. Due to
time restrictions, there will only be two of these interviews: one with group 1
and one with group 2 and group 3 together. The interviews will be recorded
and transcribed.

The screen activity of the pre-test and main test will be coded using
Atlas.ti2. The interviews will not contain direct quantifiable information
about the users interacting with the tool and will therefore not be coded.
Instead, we will use quotes of the interviews in the discussion, chapter 6,
when a student explicitly refers to an occurrence, so we better understand
their point of view.

1“Algoritmisch denken” course - Smetsers, Sjaak and Smetsers-Weeda, Renske http:

//course.cs.ru.nl/greenfoot/
2Atlas.ti - Scientific Software Development GmbH https://atlasti.com/

23

http://course.cs.ru.nl/greenfoot/
http://course.cs.ru.nl/greenfoot/
https://atlasti.com/

Table 4.1: The sub-questions with their according theoretical variables, em-
piric variables and the empiric variable abbreviations

Theo var Abbreviation Empiric variable

1 Affordance ClickAdd Clicking Add-button, rather than
dragging

ClickDelete Clicking Delete-button, rather than
dragging

Misclick Misclick due to buttons disappear-
ing

Meaning CorrectButton Clicked on button in Empty-node,
rather than dragging

2 Affordance ClickNodeType Using the correct button

Meaning CorrectNodeType Used the correct node type

3 Affordance TypeText Typing text, rather than leaving the
text box empty

Ease of use RemovePH Typing after removing the place-
holder text during the pre-test

NoRemovePH Typing without removing the place-
holder text during the main test

CharLimit Stopped typing due to character
limit

TextBoxBlur Stopped typing due to by text box
blur

4.3 Empiric variables

In this section we will look further into the sub-questions that we pose in
order to answer our research question. For each sub-question we will give
theoretical variables and for each of these we will give empiric variables with
abbreviations. For a complete overview, see table 4.1.

The first sub-question concerns adding and deleting nodes. For starters,
we will use affordance as a theoretical variable. Affordance3 is the situation
in which an objects characteristics imply it’s functionality and use. In our
case this means that we want our buttons to be clicked on and not for
example dragged. Specifically we will check here if the user perceives the
add and delete buttons as clickable. In our next empiric variable we will
count the times that a user tries to click a button but the menu disappears

3Usability First: Glossary - Foraker Labs http://www.usabilityfirst.com/glossary/
affordance/

24

http://www.usabilityfirst.com/glossary/affordance/
http://www.usabilityfirst.com/glossary/affordance/

due to the mouse leaving the hit box.
The second theoretical variable that we will use is meaning4, that is,

does the user intend to do the thing that happens. Here we will check if the
user is aware of the meaning of the buttons. We count how often a user uses
the correct button. We also measure this by looking if the user tries to undo
its actions, after clicking a button. If so, we can say that the user did not
intend the action to happen.

The second sub-question that we treat concerns the use of the Empty-
node. To measure this we will use the amount of clicks on the buttons inside
our Empty-node. Every time a user tries to interact in a different way with
these buttons, we will count the variable as failed. The second theoretical
variable that we will use is the meaning. For the use of the Empty-node this
means that when the user clicks on the miniature Statement-node he should
get a Statement-node, rather than for example a While-node. When a user
clicks on a node and directly deletes it in order to replace it by another node,
we see this as a failure towards this empiric variable.

The last sub-question is about editing the content of the node. Again
we will test the affordance by counting the times that users try to write in
the text box. The second theoretical variable that we will use is ease of use,
that is, to what extent the text boxes hinder the thinking process of the
user. We will do so by counting the times that a user doesn’t remove the
placeholder text before typing during the pre-test, but instead starts typing
in the middle of this text and then remove the placeholder text afterwards.
We will also count the times during the main test that users tried to delete
the placeholder text while it already disappeared out of itself. Another thing
that we will count is the times that users are limited by the character limit,
by counting the times that they are typing but no extra input is shown due
to the character limit. The last empiric variable belonging to ease of use will
count the times that users try to type but the program loses focus of the
text box and thus no typed text will be appear on screen.

Note that we make a difference between empiric variables that can suc-
ceed or fail and variables that simply occur. For the empiric variables that
can succeed or fail we will make a distinction between the first time that
something is done and later times. Should an empiric variable only lead to
a fail the first time, we know that the user accommodates his behaviour
without too much effort. This helps us prioritise design issues.

4Merriam-Webster Online Dictionary: https://www.merriam-webster.com/

dictionary/

25

https://www.merriam-webster.com/dictionary/
https://www.merriam-webster.com/dictionary/

Chapter 5

Results

In this chapter we will objectively describe the results of our research, given
in three different tables. We will first outline the empiric variables that can
succeed or fail split out over two tables, one for the pre-test and one for the
main test. The third table that we will discuss displays the occurrences of
the empiric variables that cannot fail or succeed.

We must remark that a part of the data got lost during the main test.
This is because the program that records the screen and films the students
had to be closed in a specific way in order to save the recordings. One group
however did not save the recordings during the main test. This is why there
is one group less in the main test then in the pre-test.

We will now discuss the empiric variables taken during the pre-test that
can succeed or fail, shown in table 5.1. Since we are mostly interested in
the times an empiric variable failed, we have listed these. For reference we
also show the amount of total occurrences. So for example, we see that
ClickDelete, belonging to research sub-question 1, has failed once when one
of the three groups used it the first time, but never failed after that. This
means that during the pre-test one group tried to interact with a delete-
button, not by clicking on it, but by doing something else. Also, we can see
that ClickDelete happened 22 times, thus in total 21 successes. This implies
that during the pre-test the delete-button was clicked 21 times and only
once had been interacted with in another way.

Note that the sum of the total occurrences of ClickAdd and ClickDelete
should be equal to the total occurrences of CorrectButton. However, during
the pre-test the students were allowed to get used to the tool. In this period
they clicked buttons without having a concrete intention with it. Therefore
we did not register CorrectButton and CorrectNodeType during this trial
period. After this trial however, we did.

The empiric variables that either succeed or fail during the main test are
given in table 5.2. It is similar to the table with the pre-test results in that
it only shows fails and total occurrences. So take for example NoRemovePH,

26

Table 5.1: Empiric variables during the pre-test that succeed or fail, discrim-
inating first occurrence

Empiric variable First time fail Later fail Total occurrences

1 ClickAdd 0 1 32

ClickDelete 1 0 22

CorrectButton 0 0 44

2 ClickNodeType 1 1 48

CorrectNodeType 0 0 42

3 TypeText 0 0 39

RemovePH 1 0 39

Table 5.2: Empiric variables during the main test that succeed or fail, dis-
criminating first occurrence

Empiric variable First time fail Later fail Total occurrences

1 ClickAdd 0 1 11

ClickDelete 0 0 3

CorrectButton 0 0 14

2 ClickNodeType 0 0 19

CorrectNodeType 0 0 19

3 TypeText 0 0 18

NoRemovePH 1 1 18

the empiric variable that measures how often someone tried to remove a
placeholder text. It failed once the first time, out of the two groups that
were observed, and failed a second time later on. In total there were 18
occurrences where the placeholder could be removed of which only 2 where
users tried to do so.

Note that the main test did not include time to get used to the tool, so the
total occurrences have their logical relations. For example, the sum of total
occurrences of ClickAdd and ClickDelete is equal to the total occurrences of
CorrectButton.

The last table that we will discuss, shows all empiric variables that can-
not specifically succeed or fail and is given in table 5.3. Here we split the
table up in pre-test and main test and over groups. So we can see for exam-
ple that during the pre-test group 2 had no occurrences of Misclick, but did
have 8 occurrences of TextBoxBlur.

27

28

Table 5.3: Empiric variables during the pre-test and the main test, split over
groups

Pre-test Main test

Empiric variable Group 1 Group 2 Group 3 Group 1 Group 2

1 Misclick 3 0 4 2 1

3 CharLimit 1 2 3 3 3

TextBoxBlur 3 8 7 8 0

Chapter 6

Discussion

This chapter will interpret the results. We will do so by going over all three
sub-questions and discussing every empiric variable. After we discussed all
empiric variables of one sub-question, we will try to formulate an answer to
it. At the end of this chapter we will mark a possible critic to this research.

6.1 Interpretation

6.1.1 Add and delete nodes

For the ClickAdd empiric variable, we see that there are no first time fails.
This implies that students perceive the add-button as something clickable.
The two later occurrences of fail are due to an add-button missing. These
cases are illustrated in figure 6.1. In the first case, 6.1a, a student just deleted
the false-child of an if -node. At the spot where the node disappeared, he
expects to find something to undo what he has done. Later he finds out
that the if -condition box allows him to add a child in the false-branch.
The second case, 6.1b, involves an if -node that is nested in a while-node.
Students were working step by step from top to bottom to fill the body of
the while. However, upon adding an if -node, they could not add a child
directly underneath it. Contrary to the other case, there is no undiscovered
possibility to add a node at this location. The solution of the students was
to recreate the flowchart with an extra emtpy-node below the if -node before
instantiating it.

We have found that ClickDelete always results in success, except for
one of the first times, during the pre-test. One group tried to drag the
button when they wanted to delete an empty-node, therewith selecting all
the contents of the empty-node. We can conclude from this that their initial
thought was that this was a draggable shape, rather than a button. Also
there are two noteworthy events associated with the fact that deleting for
example an if -node will also delete both its branches. A first is that a student
once deleted a valuable child upon deleting a while-node. The second is that

29

(a) The false if-child is just deleted
(b) An if nested in a while

Figure 6.1: Missing options to add nodes at the cursors location

one group wanted to delete their flowchart, consisting of nested if -nodes and
did so by first deleting the child nodes and finishing with the parent node.
This took them five clicks, whereas deleting the top-level if -node first would
have accomplished that in one click.

The Misclick empiric variable did not occur with one group during the
pre-test. The other two groups had a few occurrences. The times it did occur,
did not lead them to openly comment about it during the test. There was
however one occurrence where the students gave up clicking on a button
when they tried to delete a node, saying: “That one can’t go away.”1 and
moving on to do something else. In the interviews the students commented
“. . . the crosses tend to disappear when you try to click on them.”2

The last empiric variable that we will discuss for this sub-question is
CorrectButton. The results show that no one ever added or deleted a button
without intending to do so, so its functioning seems to be clear.

To conclude, we see that the affordance of the add- and delete-buttons is
clear in general. The most problematic results are misclicks, caused by the
technical limitations, outlined in 3.4.4. The meaning of the buttons seems
to be clear too. All in all we can say that adding and deleting nodes is clear
for the users.

6.1.2 Choose node type

ClickNodeType only failed twice, once during a first time in the pre-test
and once later on during the pre-test with another group. In both cases the
students tried to drag an element in the empty-node outside of it. However,
the large amounts of successful occurrences show that students correct their
behaviour after mistaking once.

1Original: “Die kan niet weg.”
2Original: “. . . alleen die kruisjes enzo als je probeert er op te klikken dan gaat het

meestal weer weg.”

30

Figure 6.2: The placeholder text is expected to disappear

The CorrectNodeType variable never failed and has relatively high fre-
quencies compared to the other empiric variables. We can therefore conclude
that the link between the drawings of the nodes and their study material is
good.

In conclusion we can see that clicking on node types can be a bit con-
fusing in the beginning, since students seem to feel the need to drag the
buttons. However, they change their behaviour swiftly. We can say that the
functionality of choosing node types seems to be clear to all students.

6.1.3 Edit content

The TypeText empiric variable is always successful. So we could say that it
was always clear for users that text boxes are for typing text.

During the pre-test we counted the RemovePH variable. One group for-
got to remove the placeholder text the first time as shown in figure 6.2. All
other times were successful. It should be noted that one group reused parts
of the placeholder text and another replaced it with the dutch variant.

In the main test we counted NoRemovePH. One group tried to remove
the placeholder text twice, once during the first time interacting with the
text box and once later. None of the students said they missed the place-
holder text. Together with the fact that students always seemed to delete
the placeholder text, we can conclude that removing it was a good idea.

The next empiric variable that we will discuss is CharLimit. During the
pre-test one group reported it as a bug upon first encountering it. “We’ve got
a problem. It doesn’t grow when the text doesn’t fit.”3 In the main test most
groups got real struggles with the character limit. They shortened their an-
swers, making them less clear. For example “Swap smallest and” got changed
into “Swap 1 and small”4 and “take first card and la” got changed into “first
and last K”5. The latter took 40 seconds for the students to change, since
they could not come up with a shorter wording. The students commented

3Original: “We hebben een probleem. Hij wordt niet groter als de tekst er niet meer op
past.”

4Original: “Wissel kleinste kaar” ← “Wissel 1 en klein”
5Original: “pak eerste kaart en la” ← “eerste en laaste K”

31

“You almost can’t write anything in it and that is really annoying.”6 In
the interviews all students agree that the character limit is annoying, saying
things like “. . . and also the length of the text cannot be bigger than a certain
amount of letters. I think that is really annoying because some statements
are a little bit longer than others and then it is not small enough for the
box.”7.

TextBoxBlur has had quite some occurrences. All groups had trouble
with this, commenting “OK just leave it, it is good.”8. One group in partic-
ular had a lot of trouble with this during the pre-test. An important thing to
note is that once a text field blurs, all keyboard input is interpreted directly
by the browser as shortcuts. The group that had trouble with the blurring
issue was also the only group to use the Firefox browser9 , whereas the oth-
ers used the Chrome browser10 . In Firefox the backspace-key is used to go
back to the previous page. Doing so will unload the tool and all information
in it, effectively deleting all work done. It should be noted that this hap-
pened during the pre-test. As seen in figure 6.3 all nodes still had default
text in them. So when the students made a new while-node the first thing
they did was delete the contents by repeatedly pressing backspace. However,
upon pressing backspace the text box and hit box shrink. So as seen in 6.3b
there is a point where the cursor itself stays still, but still leaves the hitbox
because the hitbox shrinks, thus blurring the text field. The students do not
notice the blur, press backspace once more and leave the page, deleting all
their progress. It was technically impossible to remove this bug before the
main test, so instead we urged all groups to use Chrome.

All in all we can say that the affordance was clear, since all students
immediately started typing in the text boxes. The ease of use however is
questionable. Even though removing the placeholder text was a good move,
the character limit and the text box blur hindered the students too much to
call the text boxes a good and clear functionality.

6Original: “Je kunt er echt bijna niks in schrijven en dat is echt heel irritant.”
7Original: “. . . en ook mag de lengte van de tekst kan niet groter zijn dan een bepaald

aantal letters. Dat vind ik ook irritant want sommige statements zijn iets langer dan
anderen en dan is het niet kort genoeg voor het blokje.”

8Original: “OK laat maar, het is goed”
9The Mozilla Firefox browser, the Mozilla Foundation - https://www.mozilla.org/

nl/firefox/new/
10The Google Chrome Browser, Google LLC - https://www.google.com/chrome/

32

https://www.mozilla.org/nl/firefox/new/
https://www.mozilla.org/nl/firefox/new/
https://www.google.com/chrome/

(a) Right before the blur

(b) The text field is now blurred

Figure 6.3: The events leading up to an intended screen closure

6.2 Remarks

One could argue that one of the writers of the paper that this work is based
on[1] is also involved in the research itself, namely by being the teacher of
the class. However, this research concerned the usability of the tool, whereas
the possible conflict of interest is situated on the level of the course method.
Therefore we do not mark this as a problem.

33

Chapter 7

Conclusions

We looked into the best way to design a flowchart tool through a design
and creation method. To this end we got acquainted with basic flowchart
terminology and Nielsen’s heuristics for a good design. Next we have set
up requirements for the tool, chosen a programming language accordingly
and then went over three designs of flowchart manipulation. Using Nielsen’s
heuristics we choose one. After that we looked into the technical specifics of
the tool, namely how it concretely works, what the limitations are and what
other functionalities it encompasses. Next we formulated a research question
and split it up over three sub-questions to which we assigned empiric vari-
ables. We then discussed the results of the testing and interpreted these. It
showed that the add- and delete-buttons work good, except for the technical
limitations, and that choosing node types also works well. Most problems
were encountered with the editing of the content where the character limit
and the sudden text box blurs hindered user experiences. All in all we have
explored the ways to design and build a flowchart creating tool. Our final
result seems only to be hindered by technical limitations, rather than its
design.

7.1 Related Work

One tool that was used before to draw flowcharts is the web application
draw.io1. Draw.io has all benefits over working on paper that we noted in
section 2.3. Handwriting for instance is no longer a limiting factor, things
can be quickly reordered and flowcharts can now be saved as pdf-file and
sent to the teacher through the schools digital environment.

However, draw.io has some drawbacks. The main one being that students
have to do a lot of actions to accomplish simple things. For example, to start
constructing a flowchart a student has to create a Start- and End -node. To
do this, they have to select a shape, drag it to the right position, create a

1draw.io - JGraph Ltd. https://www.draw.io/

34

https://www.draw.io/

text box within the shape and type the word ”Start” or ”End” in it. Finally,
they need to connect these shapes with arrows, unless they still want to add
a statement in the middle. Also the student still has to choose the right
shape to use for said node out of a large array of shapes. In other words,
he is still forced to know the syntax of flowcharts by heart, structure isn’t
coerced and it takes a lot of tedious work to visualise a small thinking step.
All of this is a logical consequence of the fact that draw.io is designed for
general purpose drawing, rather than specifically drawing flowcharts.

This tool has in fact been used in the course Algoritmisch denken, so
it is in fact the predecessor of our tool. During the interviews the students
commented on their previous tool with the following “[The new tool is] Nicer
than the other tools we had for drawing. With them it took very long to find
the right thing and to drag it into the right place.”2. We therefore look for
other options.

Alternative tools similar to ours are Flowgorithm3, Hour of Code4, Scratch5

and Lego Mindstorms[13]. Contrary to draw.io, these are specifically built
to create flowcharts. Also, they can directly execute the built flowchart. Ex-
panding on that, they can execute step-wise, while showing the current value
of all parameters and the position of the execution in the flowchart. Lastly,
the flowchart can be converted to multiple kinds of functioning program-
ming code. All of this can be done because the text in the flowchart has a
correct syntax and can be interpreted by the compiler.

This brings us to our main disadvantage: Flowgorithm is too zoomed
in for the Algoritmisch denken course. The reason we would like to use
flowcharts is because they function as an abstract sheet that can be used to
keep overview while programming. The idea while creating such flowchart
is that you do not have to worry about implementation details such as
boundaries and syntax. In Flowgorithm however you do need to worry about
these things, otherwise the flowchart wouldn’t be able to compile. Aside from
that there are also studies that question these tools and see little change in
the students motivation[14] or programming skill[15]. We therefore went for
our own take on the matter and created our own tool.

7.2 Future work

The main focus of this work consisted of the interaction between a student
and this tool in order to build flowcharts. There are two ways to continue
on this work.

2Original: “[De nieuwe tool is] Fijner dan die andere tooltjes die we hadden om te
tekenen. Daar duurde het heel lang voordat je het goede had gevonden en dan zeg maar in
de goede plek had gesleept.”

3Flowgorithm - Devin Cook http://www.flowgorithm.org/
4Hour of Code - Code.org https://hourofcode.com/
5Lifelong Kindergarten Group - MIT Media Lab https://scratch.mit.edu/

35

http://www.flowgorithm.org/
https://hourofcode.com/
https://scratch.mit.edu/

First off, one could directly work further on this thesis by improving on
this interaction. This work has shown several technical problems that hinder
the interaction, such as the focus on text boxes, that could be resolved.
Another way is to implement new features such as an undo- and redo-button
or keyboard shortcuts allowing the user for greater control, freedom and
flexibility.

Secondly, one could look more at improving the learning of the student
through other means than directly building flowcharts. One example of this
is the introduction of notes. Students could use these to note the program
state or to show the teacher which parts they find difficult. Also, the teacher
could use notes to make corrections for the students.

36

Bibliography

[1] R. Smetsers-Weeda and S. Smetsers, “Problem solving and algorithmic
development with flowcharts,” in Proceedings of the 12th Workshop
on Primary and Secondary Computing Education, ser. WiPSCE ’17.
New York, NY, USA: ACM, 2017, pp. 25–34. [Online]. Available:
http://doi.acm.org/10.1145/3137065.3137080

[2] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching
programming: A review and discussion,” Computer Science Education,
vol. 13, no. 2, pp. 137–172, 2003. [Online]. Available: http:
//www.tandfonline.com/doi/abs/10.1076/csed.13.2.137.14200

[3] J. Chetty and D. van der Westhuizen, “Towards a pedagogical design
for teaching novice programmers: design-based research as an empir-
ical determinant for success,” in Proceedings of the 15th Koli Calling
Conference on Computing Education Research. ACM, 2015, pp. 5–12.

[4] E. Rahimi, E. Barendsen, and I. Henze, “Identifying students’ miscon-
ceptions on basic algorithmic concepts through flowchart analysis,” in
International Conference on Informatics in Schools: Situation, Evolu-
tion, and Perspectives. Springer, 2017, pp. 155–168.

[5] S. Chen and S. Morris, “Iconic programming for flowcharts, Java, Tur-
ing, etc,” in ACM SIGCSE Bulletin, vol. 37, no. 3. ACM, 2005, pp.
104–107.

[6] J. Nielsen, “Enhancing the explanatory power of usability heuristics,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’94. New York, NY, USA: ACM, 1994, pp. 152–158.
[Online]. Available: http://doi.acm.org/10.1145/191666.191729

[7] B. Eich, “JavaScript at ten years,” SIGPLAN Not., vol. 40, no. 9, pp.
129–129, Sep. 2005. [Online]. Available: http://doi.acm.org/10.1145/
1090189.1086382

[8] D. Crockford, JavaScript: The Good Parts: The Good Parts. ” O’Reilly
Media, Inc.”, 2008.

37

http://doi.acm.org/10.1145/3137065.3137080
http://www.tandfonline.com/doi/abs/10.1076/csed.13.2.137.14200
http://www.tandfonline.com/doi/abs/10.1076/csed.13.2.137.14200
http://doi.acm.org/10.1145/191666.191729
http://doi.acm.org/10.1145/1090189.1086382
http://doi.acm.org/10.1145/1090189.1086382

[9] E. Czaplicki, “Elm: Concurrent FRP for functional GUIs,” Senior the-
sis, Harvard University, 2012.

[10] E. Czaplicki and S. Chong, “Asynchronous functional reactive
programming for GUIs,” SIGPLAN Not., vol. 48, no. 6, pp. 411–422,
Jun. 2013. [Online]. Available: http://doi.acm.org/10.1145/2499370.
2462161

[11] I. E. T. Force, “The JavaScript Object Notation (JSON) data inter-
change format,” https://tools.ietf.org/html/rfc7159, accessed: 2018-09-
10.

[12] L. Faulkner, “Beyond the five-user assumption: Benefits of increased
sample sizes in usability testing,” Behavior Research Methods, Instru-
ments, & Computers, vol. 35, no. 3, pp. 379–383, 2003.

[13] B. Bagnall, Core LEGO MINDSTORMS Programming. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2002.

[14] F. KALELIOĞLU and Y. Gülbahar, “The effects of teaching program-
ming via scratch on problem solving skills: A discussion from learners’
perspective.” Informatics in Education, vol. 13, no. 1, 2014.

[15] W. I. McWhorter and B. C. O’Connor, “Do LEGO Mindstorms
motivate students in CS1?” SIGCSE Bull., vol. 41, no. 1, pp. 438–442,
Mar. 2009. [Online]. Available: http://doi.acm.org/10.1145/1539024.
1509019

38

http://doi.acm.org/10.1145/2499370.2462161
http://doi.acm.org/10.1145/2499370.2462161
https://tools.ietf.org/html/rfc7159
http://doi.acm.org/10.1145/1539024.1509019
http://doi.acm.org/10.1145/1539024.1509019

Chapter 8

Appendix

8.1 Interview questions

We used a semi-structured interviewing technique. The initial questions are
given below, follow-up questions can be found in the transcripts further up
in this appendix. Since the interviews were in Dutch, the questions are also
formulated in Dutch.

• Wat vinden jullie van de werking van het programma?

• Wat voor tool gebruikten jullie vorig jaar?

• Zijn er dingen in de tool waar jullie je aan storen?

• Wat vinden jullie er van als je elementen kan slepen?

• Zou je liever dit gebruiken of op papier werken?

• Is het character limit storend?

8.2 Interview transcriptions

8.2.1 Group 1

00:00
Researcher: Ok. Allereerst, wat vinden jullie er van?
Student A: Van wat?
Researcher: Heel die tool, heel dat klikprogramma.
Student B: Ik vond het wel handig, alleen die kruisjes enzo als je probeert
er op te klikken dan gaat het meestal weer weg.
Researcher: Ja dat klopt. Daar ga ik iets aan doen. Verder?
Student C: Ik vind het overzichtelijk en handig en prima te gebruiken.
Student A: Nou ik vind het wel prima.
00:37

39

Researcher: Want ik ben wel wat dingen tegen gekomen, waar dat je je miss-
chien een beetje aan zou kunnen storen. We noemen het bugs, visuele bugs.
Dat tekst ergens doorheen loopt zoals hier. Dit is ondertussen gefixt, maar
dit bijvoorbeeld nog niet, dat het kruisje half wegvalt. Of dat hier zo’n ifbox
veel groter is dan het pijltje of dan de [interrupted]
0:55
Student C: en ook mag de lengte van de tekst, kan niet groter zijn dan een
bepaald aantal letters. Dat vind ik ook irritant want sommige statements
zijn iets langer dan anderen en dan is het niet lang genoeg voor het blokje.
Researcher: Klopt. Wat vinden jullie hier van? [Researcher shows “171120
Group 3 #1 [2:23, 160]”] Die dingen geven een beetje een lelijke overlap, dat
er net iets weg valt. Is dat storend, is dat helemaal niet storend, helemaal
prima?
Student B: Ja, dat vind ik niet heel erg storend.
Student A: Wat bedoel je dan precies?
Researcher: Dat hier dat lijntje niet helemaal uitkomt en normaal gesproken
heb je dat hier nog lijntjes die mooi netjes aan de zijkant uitsteken en dat
je er “true” of “false” hebt, alleen dat zie je hier helemaal niet, want daar
valt dat ding helemaal overheen.
Student A: Nou ja, ik vind het niet heel erg denk ik. Het was me ook niet
opgevallen.
Researcher: Oh, ideaal.
01:50
Researcher: Dan, de character limit, dat je niet verder kan typen soms in
een blokje. Is dat heel storend?
Student B: Ja, soms is het nog een paar letters ofzo en dan denk je waarom
kan dit er niet bij. Dan heb je toch wel veel meer nodig.
Student C: Terwijl als je op hoog niveau denkt, dan wil je langere zinnen
maken en dat is dan lastiger.
Researcher: Eh. . . We doen dat eigenlijk, deels omdat je dan wordt gedwon-
gen om met kleine zinnen te werken, kleine elementaire stukjes.
[Student D is a student that was interviewed 5 minutes earlier, and inter-
venes this interview]
Student D: Ik heb nog een suggestie dat als je op pijltje-terug klikt, dat ie
dan iets vraagt van “Weet je zeker dat je de pagina wil verlaten?” want we
klikten hem net weg en toen waren we alles kwijt.
Researcher: Ja dat is een goede, dat is een heel goede.
02:40
Researcher: Verder, werken jullie graag op papier of vinden jullie de tool
echt iets van meerwaarde hebben?
Student C: Ik heb een lelijk handschrift, dus ik vind het fijn om op de com-
puter te werken. Dat is wel handig.
Researcher: Maar als je later iets in de informatica gaat doen ofzo, dan ga
je niet nog even naar deze webpagina toe om nog gauw even iets in elkaar

40

te steken?
Student C: Is op zich wel handig.
Researcher: Ik ga hem nog wat bijschaven. Hey heel erg bedankt!

8.2.2 Group 2 and 3

00:00
Researcher: Ja, wat vinden jullie er van? Eerste open vraag. Vind je het een
beetje fijn?
Student A: Ik vind het een prima tooltje, alleen ja een paar vervelende pun-
tjes waar ik hem dan aan herinner.
Student B: Fijner dan die andere tooltjes die we hadden om te tekenen.
[instemmende ja]
Student B: Daar duurde het heel lang voordat je het goede had gevonden
en dan zeg maar in de goede plek had gesleept.
00:30
Researcher: Wat voor tool hadden jullie vorig jaar?
Student A: Je had allemaal figuurtjes gewoon. En dat was niet gewoon dat
je aan kan klikken wat wat is, maar dan had je gewoon een rondje en een
driehoekje...
Researcher: Dan moet je nog zelf onthouden welk vormpje waar bij hoort?
Student A: Dat ook nog en dan moet je ze nog naar de goede plek slepen
en pijlen trekken. Ja, dat was wel minder, maar dit werkt een stuk beter.
00:54
Researcher: Er zijn wat bugs, zoals bijvoorbeeld als je in een while loop zit
dat je geen plus-knopje er onder staat. Die zijn jullie al tegen gekomen en
jullie bij een if in een while. Sorry, daar moet inderdaad een knopje zijn.
Verder heb ik... Zijn er nog andere dingen waar jullie je aan storen? De op-
maak, de, de..
01:19
Student B: Ja, je kan niet zo veel typen in zo’n vakje
Student C: Ja, en het is daardoor ook stel je moet heel veel variabelen
definieren. Stel je moet er 5 definieren. 5 van die grote vakken dat is meteen
echt heel [wordt onderbroken]
Student A: dat je er meerdere onder elkaar kan zetten ook.
Student C: Ook al is het niet hetzelfde ding. Het is meer van links naar
rechts, maar ook gewoon meer regels.
Researcher: Dat houdt het wat compacter ja. Maar tegelijkertijd dwingt het
formaat een beetje dat jullie alles in kleine elementaire stapjes moeten doen.
Student C: Ja, maar dat is een beetje te erg denk ik.
Researcher: Te erg ja.
Student C: Natuurlijk hoef je geen hele volle zinnen uit gaan schrijven enzo,
maar dat snap je denk ik zelf ook wel.
Student A: Misschien ”dit was de eerste klasmethode” en dan de volgende

41

keer mag je wat meer tekst geven. Dat ze eerst leren dat ze compact moeten
schrijven, want we zijn nu wel een beetje. . .
Student C: Ja, dat helpt ja.
Researcher: Eerst mensen compact leren schrijven. Twee versies van de tool
maken met zo’n klein vinkje rechtsboven.
Student A: Twee versies ja, haha.
02:28
Researcher: Hebben jullie de pre- en de postconditie nog gebruikt ergens
tussendoor?
Student B: Ja één keer.
Student D: Één keer, maar niet echt.
Researcher: Daar zit ook nog een leuke bug in, die hebben jullie nog niet
opgemerkt zo te zien.
Student B: Nee.
Researcher: Je kunt hier ook typen in zo’n vakje, dat is cool. [text disappears
on overflow]
02:52
Researcher: Heeft een van jullie ooit... Wat vinden jullie er van als je ele-
menten kan slepen? Dat je gewoon even dit stukje er uit kan slepen.
Student A: Dat je het even apart kan zetten en dan later er in. Dat is hand-
iger misschien, want nu hadden we dat plusje, toen hadden we uiteindelijk
uitgevonden dat er ook nog een textblokje er onder kreeg als je bij het object
er boven weer op plusje drukt en dan weer gewoon, een while-loop was het
volgens mij, neer zette en moet je daarna weer alles overtypen.
Student C: Ja dus dat je zeg maar we hadden dan... [interrupted]
Student A: . . . dat plusje dat in het midden onderin wat.. [interrupted, Stu-
dent A en Student C are talking simultanously]
Student C: Voor de if een statement gezet en daar voor weer een if en dan
alles. . .
Researcher: . . . overtypen.
Student C: Dan werkt het wel, maar dat is wel een omweg.
Student B: Als je dan een stapje bent vergeten dat je dan weer terug kan
eventueel, is misschien handig.
Student C: Of uberhaupt dat je ook niet per se alleen apart kan zetten, maar
ook gewoon kunt verslepen binnen het stroomdiagram. Dat lijkt me sowieso
handig. Dan hoef je eigenlijk nooit meer iets over te typen.
04:02
Reseacher: Dan heb ik nog. . . De vraag: ik heb van de vorige keer een screen-
shot gemaakt. Dat deze tekst hier doorheen liep. Dat is nu gefixt.
[Researcher shows “171120 Group 1 #1 [1:07, 640]”]
Reseacher: Maar sommige dingen zijn niet gefixt. Zoals hier
[Reseacher shows “171120 Group 3 #1 [2:23, 160]”]
Reseacher: dit kruisje valt half weg, waarom weet ik zelf ook nog niet hele-
maal, maar hij valt half weg.

42

04:25
Researcher: Dat was bij jullie trouwens [points at group 3] ook bij jullie was,
ja hier staat de debugger open. Als hier zo’n if bijvoorbeeld veel breder is
getypt, dan komt hij over de lijntjes. Stoort jullie dat of maakt het eigenlijk
helemaal geen bal uit?
Student D: Nee
Student C: Nee, is niet echt belangrijk
Reseacher: Het idee is duidelijk, dus alles is top?
[students mumble agreeingly]
Student D: Hier, het kruisje, als het lastig te klikken is, dan kan het irritant
zijn, omdat de lijntjes niet zo perfect lopen.
Student A: Dat is voor mensen met zware OCD.
Researcher: Welkom bij informatica.
05:04
Reseacher: Dan heb ik nog een knopje er bij verzonnen afgelopen week, om-
dat ik die hitbox niet kon fixen dacht ik: ik ga jullie afleiden met andere
mooie knopjes. Heeft één van jullie dat knopje al gebruikt? Wat stond er op
dat knopje?
[silence]
Reseacher: OK, ik zou zeggen, probeer hem straks even uit en kijk of dat
het bevalt, want ik merkte dat jullie te veel overtypten enzo, dus dat is
naar. Test hem even uit voor me en zeg “oooh dit is stuk”, dan kan ik weer
vooruit. Vind ik fijn.
05:32
Reseacher: Verder nog één laatste vraag: zou je liever dit gebruiken of op
papier werken?
Student A: Ik vind dit wel overzichtelijk
[students mumble agreeingly]
Student C: En je hoeft niet meer te gummen enzo, dus het gaat wel sneller
05:48
Student B: Ik vind het wel fijn dat je nog iets makkelijk er iets bij kan schri-
jven, misschien is dat ook nog wel een goede toevoeging.
Reseacher: Wat voor dingen zou je er bij willen schrijven? Want dit [interrupted]
Student B: Misschien als je echt grotere stroomdiagrammen maakt, dat je
dan er bij kan zetten van “dit doet dit” en “hier moet ik nog even naar
kijken” of “denk hier bij aan verwijzing naar een ander stroomdiagram dat
je hebt gemaakt”
Student A: Je hebt ook bij de eerste en de laatste een tekstblokje er naast
staan waar je waarden in kan geven. Misschien kun je dan een plusje aan de
rechterkant maken dat zo’n blokje er bij geeft
Reseacher: Oh dat ziet er wel gelikt uit. Ja dat is een goede, hier had ik nog
niet over nagedacht. Ja, cool, bedankt!

43

8.3 Video quotes

Only the relevant quotes are transcribed and given with a time indication.

8.3.1 Pre-test: Group 2

4:25 “We hebben een probleem. Hij wordt niet groter als de tekst er niet
meer oppast.”
19:45 “Als je backspace doet dan doet ie dat [wijst naar computerscherm].
Dan doet ie een pagina terug. Alleen dat doet hij ook als je gewoon wel in
het vakje zit.”
25:28 “Kan je dat niet slepen ofzo?” “Nee.”
25:40 “Oh, knippen en plakken werkt hier ook niet.”

8.3.2 Pre-test: Group 3

6:45 “OK laat maar, het is goed”

8.3.3 Main test: Group 2

18:00 “Die kan niet weg.”

44

	Introduction
	Background
	The Problem: Learning to Program
	The solution: Flowcharts
	Digital Flowcharts
	Drawing Flowcharts
	Nielsen's Heuristics: Guidelines to Usability

	Tool development
	Requirements
	The programming language
	JavaScript
	Elm
	Conclusion

	Designing Flowchart Manipulation
	Selection bar
	Drag and drop
	Overlay buttons
	Conclusion

	Implementation
	Model
	Update
	View
	Technical limitations
	Other functionalities

	Methodology
	Research question
	Measuring environment
	Empiric variables

	Results
	Discussion
	Interpretation
	Add and delete nodes
	Choose node type
	Edit content

	Remarks

	Conclusions
	Related Work
	Future work

	Appendix
	Interview questions
	Interview transcriptions
	Group 1
	Group 2 and 3

	Video quotes
	Pre-test: Group 2
	Pre-test: Group 3
	Main test: Group 2

