
1

A Complete Version of the ADS Method
for Conformance Testing

January 14, 2019

Author:
G.J. van Cuyck
S4750411

First supervisor / assessor:
Prof. F.W. Vaandrager

F.Vaandrager@cs.ru.nl

Second supervisor / assessor:
J. Moerman

Joshua.moerman@cs.ru.nl

2

Table of Contents

Abstract ... 3

Introduction .. 3

Preliminaries ... 4

Finite state machines .. 4

Conformance testing ... 4

Families ... 5

Operators .. 6

Other definitions ... 6

The Wp method .. 8

Adaptive distinguishing sequences ... 8

Valid inputs ... 9

Generating an ADS .. 10

Hybrid ADS .. 10

Complete-ADS ... 10

m-Completeness ... 13

Termination ... 15

Comparison ... 15

Results ... 15

Conclusion ... 19

Future work ... 19

Bibliography .. 20

Appendix A: variable types ... 21

3

Abstract
Conformance testing has many uses, for instance to check the correctness of protocol
implementations [2] or to learn models from black box implementations [3]. The ADS method [1] can
be used for this purpose to good effect, but there are many cases where it is not applicable. In this
thesis we propose a new method based on the ADS method that can be applied to any reduced,
deterministic, fully defined finite state machine. We implement this new complete ADS method and
compare its results with that of a different ADS expansion, the hybrid ADS method [3]. The results of
this comparison show a significant improvement in test suite length in the cases where the regular
ADS method is not applicable.

Introduction
Conformance testing can be used to check if the behaviour of a finite state machine (FSM) is same as
that of a black box implementation[4]. There exist several different conformance testing algorithms
and many of these, such as the W [5, 6], Wp [7] and HIS [8] methods, need a set of state identifiers
to work. The performance of these algorithms depends largely on the length and number of state
identifiers that are used. The ADS method [1] uses adaptive distinguishing sequences to generate a
small set of state identifiers. It works very well, but there are many FSM’s to which it can’t be
applied. The hybrid ADS method solves this problem, but its results are much longer in the cases
where the regular ADS method is not applicable. In this thesis we describe a new way of generating a
set of state identifiers based on the ADS method, called the complete ADS method. It is applicable to
all deterministic, reduced, fully defined finite state machines.
In order to test the effectiveness of the new method, we implemented it and tested it on the
collection of benchmarks gathered by the Radboud university [9]. This collection contains around
335 FSM’s at the time of writing, 300 of which are suitable for use with the algorithm. The ones that
are not are either too massive in size, formatted improperly or only partially defined. The
implementation of our algorithm and some example benchmarks can be found online [10]. We also
ran the pre-existing implementation of the hybrid ADS method [11] on all of the valid benchmarks in
order to compare the effectiveness of our method to an existing solution. The results of this
comparison are mixed in the general case, but if we focus on just the benchmarks that are not
compatible with the ADS method, then we see a significant improvement. In addition to these tests,
we also give a proof that our algorithm always terminates, and that it gives correct output upon
termination.

4

Preliminaries
In this section, we present an overview of several concepts that will be used in this thesis. These

concepts are not new and further information can be found in many papers, for example Lee and

Yannakakis (1996) [4]. More specifically, we adopted several definitions from Moerman (2019) [12].

A list of the type of all the variables used in the thesis is included in Appendix A for clarity.

Finite state machines
The formal description of a finite state machine (FSM) consists of six parts:

1. A set of states, denoted as S.

2. A set of input symbols, denoted as I. These are all the possible “atomic” inputs that the

machine can accept.

3. A set of output symbols, denoted as O.

4. A state transition function, denoted as 𝛿. This function defines to what state the machine

moves if it receives a certain input, so its type is 𝛿 ∶ 𝑆 × 𝐼 → 𝑆.

5. An output function, denoted as 𝛾. This function describes what the output symbol is

corresponding to an input received in a certain state, so its type is 𝛾 ∶ 𝑆 × 𝐼 → 𝑂.

6. A starting state, denoted as s0. This is the state in which the machine begins its operations.

In this thesis we will use 𝑀 = {𝑆, 𝐼, 𝑂, 𝛿, 𝛾} and 𝑀′ = {𝑆′, 𝐼, 𝑂, 𝛿′, 𝛾′} to refer to instances of FSM’s. In

practice, FSM’s are often drawn like in Figure 1. An example of applying the formal definition to the

FSM in Figure 1 is S = {s1,s2,s3,s4}, I={y,x}, O={0,1} and s0=S1. Examples of the state transition function

and output function are 𝛿(𝑆1, 𝑦) = 𝑆2 and 𝛾(𝑆1, 𝑦) = 0

Figure 1: an example FSM, taken from [13]

The functions 𝛿 and 𝛾 can also be extended to work on sequences of inputs. We keep inputting one

symbol at a time and apply the next input in the state where we ended up with the previous one.

Take an input sequence aA where a represents the first input symbol and A represents the rest of

the sequence. Then formally 𝛿(𝑠, 𝑎𝐴) = 𝛿(𝛿(𝑠, 𝑎), 𝐴) and 𝛾(𝑠, 𝑎𝐴) = 𝛾(𝑠, 𝑎) ⋅ 𝛾(𝛿(𝑠, 𝑎), 𝐴), where

⋅ represents concatenation. Take for example the input sequence yxy and the FSM from figure 1.

Then 𝛿(𝑠1, 𝑦𝑥𝑦) = 𝛿(𝑠2, 𝑥𝑦) = 𝛿(𝑠2, 𝑦) = 𝑠4 and 𝛾(𝑠1, 𝑦𝑥𝑦) = 0 ⋅ 𝛾(𝑠2, 𝑥𝑦) = 0 ⋅ 1 ⋅ 𝛾(𝑠2, 𝑦) =

011.

Conformance testing
Conformance testing is the act of comparing a specification with an implementation of that

specification. The specification is often in the form of an FSM and the implementation is often called

the system under test (SUT). We assume that the behaviour of the SUT can be accurately described

by some unknown FSM, this means for example that it is assumed to be deterministic. The main

5

purpose of conformance testing is to find differences in behaviour between the specification and the

SUT. These differences correspond with bugs in the SUT, or with faults in the specification, and can

be used to fix them before they are discovered by users of the SUT. There exist several techniques to

prove certain properties of FSM’s, but in the general case proving the correctness of software is very

difficult. Conformance testing can be used to prove that the behaviour of software is semi-

equivalent to that of an FSM, and that it therefore also has all the nice properties proven for the

FSM.

The actual testing is done by applying a set of tests called a test suite (TS) to the SUT and then

comparing the output of the SUT with the expected output described in the specification. An

individual test is just a sequence of input symbols. A TS is complete (for a given M) if for every other

machine M’, not equivalent to M, there exists a test 𝑡 ∈ 𝑇𝑆 for which 𝛾(𝑠0, 𝑡) ≠ 𝛾′(𝑠0
′, 𝑡). This

means that by applying a complete TS for M to a SUT, we can determine if the SUT is an

implementation of M. It has however been proven that a complete and finite TS cannot exist if the

set of input symbols is not empty. This can be illustrated by the following example from Moerman

(2019) [12] seen in Figure 2. The left FSM produces only 0’s as outputs. The left FSM produces n 0’s

and then starts producing 1’s. We could create a test suite that is complete for a certain value of n,

but not one that can detect the difference for any n, as n can always be made 1 higher which would

require more tests in the test suite.

Figure 2: a) a simple FSM. b) a partial description of an FSM indistinguishable from the one on the left

This leads to a weakened definition called m-completeness. A test suite 𝑇𝑆 is m-complete for M if

for any M’, not equivalent to M and having at most m states, there exists a test 𝑡 ∈ 𝑇𝑆 for which

𝛾(𝑠0, 𝑡) ≠ 𝛾′(𝑠0
′, 𝑡). If a SUT passes all the tests in a test suite that is m-complete for M then that

means one of two things. Either the SUT’s behaviour is equal to that of M, or the SUT has more than

m states. Typically, Because the developers of the SUT actively tried to make an implementation of

M, most of the differences will be small mistakes where the only difference is a faulty output or a

transition to the wrong state. These kinds of mistakes usually do not introduce extra states, so

conformance testing is well suited to detect them. Conformance testing is however just that: testing,

not proving. It is always possible that there are still undetected errors left even after passing all the

tests.

Families
A family is an indexed set, where the elements are grouped in subsets and each index links to a

specific subset. It can also be seen as a function from its index type to a set of its element type. A

family 𝐹 with states as its indices is denoted as {𝐹𝑠}𝑠∈𝑆. And 𝐹𝑠 denotes the part of 𝐹 that is mapped

to 𝑠.

6

Operators
Below, 𝑋 and 𝑌 are sets of input sequences, 𝑍 is a set of input symbols, and 𝐹 is a family of input

sequences

𝑋 ⋅ 𝑌 denotes set concatenation, which is defined as

𝑋 ⋅ 𝑌 = {𝑥 ⋅ 𝑦 |𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌}

𝑍𝑛 denotes the set of sequences sampled over 𝑍 with length n. This is recursively defined as

𝑍0 = {𝜆} and 𝑍𝑛+1 = 𝑍𝑛 ⋅ 𝑍

Where 𝜆 denotes the empty sequence.

𝑍≤𝑛 denotes the set of all sequences sampled over 𝑍 with length n or less. This is defined as

𝑍≤𝑛 = ⋃ 𝑍𝑖

𝑛

𝑖=0

𝑍∗ denotes the set of all possible sequences sampled over 𝑍. This is defined as

𝑍∗ = ⋃ 𝑍𝑖

∞

𝑖=0

⋃ 𝐹 denotes the set obtained by flattening 𝐹 this set contains every element contained in one of the

subsets within 𝐹. This can be defined as

⋃ 𝐹 = {𝑥|∃ 𝑋 ∈ 𝐹, 𝑥 ∈ 𝑋}

𝑋 ⊙ 𝐹 is the concatenation of a set with a family. Its semantics are similar to regular set

concatenation, but now for every element in 𝑋 only a subset of 𝐹 is used. This assumes that 𝐹 can

be indexed using states. The formal definition is

𝑋 ⊙ 𝐹 = {x ⋅ y | x ∈ X, y ∈ 𝐹δ(𝑠0,x)}

Other definitions

State cover
A state cover is a set of input sequences that can be used to reach every state in an FSM. Formally, 𝑃

is a state cover for M iff

∀ 𝑠 ∈ 𝑆, ∃ 𝐴 ∈ 𝑃, 𝛿(𝑠0, 𝐴) = 𝑠

A state cover is used in a test suite if we want to run a test once for every state. A state cover with

minimal size can be easily generated by performing breadth first search on a graph representing the

transitions in an FSM, where each transition is labelled with its respective input symbol.

Transition cover
A transition cover is a set of input sequences that when executed traverses every transition in an

FSM at least once. For a deterministic FSM, every state has exactly one transition for every input

7

symbol. So for such a machine M, a transition cover 𝑄 can be generated by executing every possible

input in every possible state. Thus, if 𝑃 is a state cover for M then 𝑃 ⋅ 𝐼 is a transition cover for M.

State equivalence
Two states s and s’ are defined as equivalent (≈) if they produce the same series of outputs for

every possible series of inputs:

𝑠 ≈ 𝑠′ ↔ ∀ 𝐴 ∈ 𝐼∗, 𝛾(𝑠, 𝐴) = 𝛾(𝑠′, 𝐴)

FSM equivalence
Two FSM’s M and M’ are defined as equivalent if they have the same input alphabet and their

respective starting states are equal:

𝑀 ≈ 𝑀′ ↔ (𝐼 = 𝐼′ ∧ 𝑠0 ≈ 𝑠′0)

Reset operation
Most conformance testing algorithms, and all the ones discussed in this thesis, rely on the existence

of a reliable reset operation (R). This reset can be seen as a special input symbol that when entered

into the SUT, brings it back it to its initial state regardless of what state the SUT was in. If the SUT is a

piece of software, this can be done by terminating it and starting a fresh instance. If the SUT is a

machine this can often be done by cutting the power or holding the power button. This reset is

required when a test suite has more than one input sequence in order to transition from one test to

the next. However, not all systems have a reliable reset, which drastically reduces the available

options while testing. Even if R does exist, it might be really slow compared to the other inputs.

Because of this, it is usually recommended to use resets as little as possible while testing. An

important note is that the reset operation is not part of 𝐼 even though it is used as an input symbol.

This is because it needs to be reliable and is therefore not part of the system we are testing, which is

by definition not reliable.

Conformance testing algorithms that don’t rely on a reset operation fall outside the scope of this

thesis and are, for example, discussed in Rivest and Schapire (1993) [14]

State identifier
A state identifier is a set of input sequences that can be used to verify if the FSM is in a certain state.

This is done by making sure that it gives a different set of output sequences for its target state then

for any other state in the specification. Formally, a set of input sequences X is a state identifier for

𝑠 ∈ 𝑆 iff

∀ 𝑠′ ∈ 𝑆, 𝑠′ ≠ 𝑠 → ∃𝐴 ∈ 𝑋, 𝛾(𝑠′, 𝐴) ≠ 𝛾(𝑠, 𝐴)

Reduced FSM

An FSM is reduced if none of its states is equivalent to any of the other states, and all of its states are

reachable from the starting state. If two of the states in an FSM are equivalent then it is of course

impossible to generate a state identifier for them, and if states are unreachable from the starting

state then they have no effect on the output of the system. Because of these 2 points, most

conformance testing algorithms assume that the specification is in reduced form. This is not really a

8

restriction, because by using Hopcroft’s algorithm [15] any deterministic FSM can be reduced in

𝑂(|𝐼| ∗ 𝑛 log(𝑛)) time.

Fully defined FSM
An FSM is called fully defined if the transition and output functions are defined for every state input

combination. In other words, the domains of both 𝛾 and 𝛿 must be 𝑆 × 𝐼. The FSM’s we consider in

this thesis are fully defined by definition.

The Wp method
The Wp method [7] is an improvement over the older W method. [5, 6], both of which are general

ways to construct an m-complete test suite from several components. The Wp method requires a

state cover P, a transition cover Q and a family of state identifiers 𝒲, which contains a state

identifier for every state in the specification. The actual test suite is then defined as:

(𝑃 ⋅ 𝐼≤𝑘 ⋅ ⋃ 𝒲) ∪ ((𝑄 ⋅ 𝐼≤𝑘) ⊙ 𝒲)

Here, k is the number of extra states we want to check for. As can be seen from the definition, the

Wp method consists of two stages, which are then added together in a single test suite. The first part

checks if every state in the specification is also present in the SUT. The second part then checks if

every transition in the specification is also present in the SUT. The resulting test suite is m-complete

for m = n+k, where n is the number of states present in the specification. The Wp method does not

actually dictate how to calculate P, Q and W. When this is done in different ways, the resulting test

suites can vastly differ in size. Especially the average number of resets required for the state

identifiers has a big impact on the final output. In this thesis we propose a new way to calculate a set

of state identifiers 𝒲 using an adaptation of the ADS method.

Adaptive distinguishing sequences
An adaptive distinguishing sequence(ADS) is in fact not a sequence but a decision tree [1]. The nodes

are labelled with a sequence of input symbols, and the branches are labelled with an output symbol.

To use an ADS we enter the symbol at the root of the tree into the SUT, and then go down one of the

branches based on the observed output. We keep doing this until we are at a leaf node, which then

tells us in which state we were when we started. An example of such a tree belonging to the FSM in

Figure 4 can be seen in Figure 3. Lee and Yannakakis (1994) [1] have given an algorithm of

complexity O(p*n2) that constructs an ADS for a given FSM of maximum length n(n-1)/2. Here p is

the number of different input symbols, n is the number of states in the FSM and the length of an

ADS is the maximum number of input symbols needed to get from the root to a leaf node. Using an

ADS for state identification results in a single, longer input instead of multiple short ones. This means

that we need fewer resets and that the resulting test suite will be smaller. The main problem with

ADS’s is that they don’t always exist. In fact, for the used benchmarks it is more likely that a given

FSM does not have an ADS than that it does have one.

9

Valid inputs
An important concept when constructing an ADS is a valid input. An input sequence A is valid for a

set of states S iff ∀𝑠 𝑠′ ∈ 𝑆, 𝑠 ≠ 𝑠′ → (𝜆(𝑠, 𝐴) ≠ 𝜆(𝑠′, 𝐴) ∨ 𝛿(𝑠, 𝐴) ≠ 𝛿(𝑠′, 𝐴)). In other words, an

input is valid for a set of states if no two states from this set have the same output symbol and the

same output state when given that input. Take for instance the FSM in Figure 5. Applying the input a

will move both s1 and s2 to s1 with output 0. We don’t know in which of the two we were because

the output was the same, and in both cases we are now in s1. This gives us no options for ever

finding out whether we were in s1 or s2 without performing a reset. The input a is therefore called

invalid. Since the whole idea of an ADS is to identify in which state we are without performing a

reset, a node in an ADS can only contain input sequences that are valid for the states of that node. If

we look at Figure 5 again, we see that the input b is also invalid. This leaves no possible inputs for

the root of the ADS, so the FSM in Figure 5 has no ADS.

Figure 5:an example FSM without an ADS [1]

Figure 4: an example FSM [1] Figure 3: an ADS belonging to the FSM In Figure 4 [1]

10

Generating an ADS
The Lee/Yannakakis algorithm [1] for generating an ADS works in two steps. First it generates a

splitting tree from the specification, and then it generates an ADS from the splitting tree. The

splitting tree can be seen as a simplification of the problem where the effect of applying a new input,

moving to a new state, is ignored. The nodes contain a set of states and a sequence of input

symbols, and the edges are unmarked. When the input sequence of a node is applied to the states of

that node, some states will give different outputs than other states. The states can be grouped

based on their output, where states with the same output are in the same group. Each child of a

node corresponds to one of those groups. A complete splitting tree contains all the information

needed to split a group of nodes down to singletons, but we can’t just walk it down from the root to

a leaf node because it ignores the effects of the inputs. The ADS uses the splits described in the

splitting tree, but reorders them so that it does take these changes into account.

Hybrid ADS
Even when there is no ADS, the algorithm from Lee and Yannakakis can still return partial results that

are useful. If there is no ADS, then it is not possible to form a complete splitting tree. The partial tree

might however contain enough information to reduce the number of possible states we are in. For

some states it might even contain enough information to completely separate them from the others.

This partial information can be combined with the results of a different algorithm produces larger

results but is applicable in more cases. These combined results can then be used for state

identification more effectively than the results of the second algorithm could on their own. This idea

has been fully implemented with the HSI method [8] in the hybrid-ADS method [12].

Complete-ADS
In this thesis, we take a different approach to the same problem and then compare the results.

While the hybrid-ADS method focuses on complementing the incomplete splitting tree with different

results, we instead try to complete the splitting tree by loosening some restrictions. After we

construct the splitting tree, we use it to form a set of state identifiers, one for each state of the

specification. These state identifiers can then be used to form a test suite, for instance with the Wp

method.

The main change in restrictions is that we allow the use of resets, and therefore we can use invalid

input sequences as a last resort. The goal is to create a state identifier for every state using as few

resets as possible. However, finding such an optimal solution is p-space complete [1].To get around

this problem we use a greedy approach and only try to make locally optimal choices.

The main problem to solve is how to best pick an invalid input sequence if there are no valid options

left. How good or bad an invalid input is, is mainly determined by the state in which we apply it. If

we look at the FSM in Figure 5 again and we want to know whether we are in s3 or not, then the

input a is perfect for the job, even though it is invalid. If we were in state s1 however, b is a much

better choice. To describe this more formally, we introduce the concept of partial-validity. An input

sequence A is partially-valid for a state 𝑠 ∈ 𝑆 iff

∀ 𝑠′ ∈ 𝑆, 𝑠 ≠ 𝑠′ → (𝜆(𝑠, 𝐴) ≠ 𝜆(𝑠′, 𝐴) ∨ 𝛿(𝑠, 𝐴) ≠ 𝛿(𝑠′, 𝐴))

11

As long as we are in state s, an input sequence that is partially valid for s won’t require a reset and is

therefore just as good as an input sequence that is completely valid. So if there are valid inputs, we

use the regular ADS algorithm. When those run out and the regular algorithm would declare failure,

we instead do a case distinction over all the states that are left at that node. For each of those states

we try and find an input sequence that is partially-valid for that state. This essentially results in a

separate splitting tree for each state, where the focus of each tree is to remain partially-valid for

that state. However, sometimes it is not even possible to find an input sequence that is partially

valid for a state. Since we do want to complete the splitting tree, we chose an invalid input instead.

If this input splits the possible states into at least two groups, we made a little progress. Since the

FSM is reduced, it is always possible to find an input sequence that does this. We can solve the

invalid problem later by introducing resets when we construct the state identifiers from the splitting

tree.

The resulting splitting tree now has an extra dimension. Instead of a set of children and a single

separator, a node can now have multiple separators where each separator has its own set of

children. Each node now also contains a mapping from states to one particular separator and a set of

children, that is considered the best fit for that state.

To prevent the tree from growing exponentially, unneeded nodes can be pruned early. Every part of

the tree is specifically meant to separate a subset of states from all other states. This means that

child nodes in such a tree part that do not contain any of these target states are unnecessary. An

example of this is a node containing s1,s2,s3,s4,s5 with target set {s1}. This can happen if there was a

better separator available for the other states. The only purpose of this node is to differentiate s1

from the other states. Once this is accomplished, the children that don’t contain s1 do not need to

be expanded because they will never be reached. This also means that we don’t have to prioritize

looking for a completely valid separator, as a partially-valid one for s1 will perform equally well.

After we have constructed a splitting tree as outlined in the previous paragraphs, the next step is to

calculate a set of state identifiers from it. This is done one by one, once for each state, where the

current one is called the target state. We start by setting up two sets of states. The current set

contains the states where we could be right now, and the initial set contains the corresponding

states where we were at the beginning of the calculation. They are both initialized to contain all

possible states. Then we find the lowest common ancestor (lca) node in the splitting tree that

contains all the nodes in the current set. We only look at the part of the tree that is relevant for the

target state, using the mappings saved at each node. We apply the separator found there to the

target state and to each state in the current set, and then we concatenate it to the state identifier.

Here, applying means looking up the expected output symbol and state in the specification. Each

state in the current set that has a different output then the target state gets removed, along with

the corresponding state in the initial set. If the outputs are the same, the state in the current set gets

replaced with its output state. Then we replace the target state with its output state corresponding

to the separator. Next, we start over by finding the new lca of the remaining nodes in the current

set. At some point the current set will be reduced to just one state. If the initial set is still bigger than

1, it means that we need to do a reset. We concatenate a reset to the state identifier and make the

current set a copy of the initial set again. At some point the initial set will contain just one state, and

this will be the original target state for which we have constructed a state identifier.

12

These two steps of creating a splitting tree and a family of state identifiers are summarized by the

pseudocode of algorithm 1 and 2 respectively. To keep the code brief it omits several steps that

improve running time but do not affect the quality of the output such as when to prune unnecessary

nodes.

Algorithm 1

Input: a reduced FSM M.
Output: a splitting tree for M.
Create the root node which contains all states and add it to the worklist; 1
While the worklist is not empty: 2

Option1: for every node in the worklist: 3
 If the node only contains one state: 4
 Remove it from the worklist; 5
 Continue with the next node; 6
 If there exists a valid split based on output symbols: 7
 Do the split and add the new nodes to the worklist; 8
 Remove the current node from the worklist; 9

Option2: for every node in the worklist: 10
 If there exists a valid split based on output state: 11
 Do the split and add the new nodes to the worklist; 12
 Remove the current node from the worklist; 13
 Break from this loop and go back to Option1; 14

Option3: for the first node in the worklist: 15
 If there exists a partially valid split for every state in the node: 16
 Perform all the splits and add all the nodes to the worklist; 17
 Update the mapping of the node to store which split belongs to which state; 18
 Remove the current node from the worklist; 19
 Go back to Option1; 20

Option4: for the first node in the worklist: 21
 If there exists an (invalid) split: 22
 Perform partially valid splits where possible; 23
 Use invalid splits for the other states, 24

these can be found using Hopcroft’s algorithm[15]; 25
 Add all the nodes to the worklist; 26
 Update the mapping of the current node; 27
 Remove the current node from the worklist; 28
 Go back to Option1; 29
 Option5: if all else fails: 30
 Move the current node to the back of the worklist; 31
 Go back to Option3; 32
Return the now compete splitting tree; 33

13

Algorithm 2
Input: A reduced finite state machine M.
 A splitting tree for M as produced by algorithm 1.
Output: A family of state identifiers for M.

𝑠𝑡𝑎𝑡𝑒_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠 = an empty list; 1
For every state s in the FSM: 2
 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 = an empty list of input sequences; 3
 Buffer = an empty input sequence; 4
 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑠 5
 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 = all states in the FSM; 6
 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡 = all states in the FSM; 7
 Create a mapping between 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 and 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡; 8
 Initialize the mapping to map identical states to each other; 9
 While 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡. 𝑠𝑖𝑧𝑒() > 1: 10
 Find the lca of the current set in the splitting tree using 𝑡𝑎𝑟𝑔𝑒𝑡; 11
 𝐴 = the separator found at this lca; 12

For every state 𝑠𝑐 in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡: 13
 If 𝜆(𝑠𝑐 , 𝐴) ≠ 𝜆(𝑡𝑎𝑟𝑔𝑒𝑡, 𝐴): 14
 Remove 𝑠𝑐 from 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡; 15
 Remove the state mapped to 𝑠𝑐 from 𝑖𝑛𝑖𝑛𝑖𝑡𝑎𝑙_𝑠𝑒𝑡; 16
 Continue; 17
 Else: 18
 𝑠𝑐 = 𝛿(𝑠𝑐 , 𝐴); 19

 Update the mapping in such a way that the new 𝑠𝑐 20
still maps to the same state as before it got updated; 21

 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝛿(𝑡𝑎𝑟𝑔𝑒𝑡, 𝐴); 22
 𝐵𝑢𝑓𝑓𝑒𝑟 = 𝑏𝑢𝑓𝑓𝑒𝑟 ⋅ 𝐴 ; 23

If 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡. 𝑠𝑖𝑧𝑒() == 1: 24
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡; 25
Reset the mapping between 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 and 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡; 26
𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑏𝑢𝑓𝑓𝑒𝑟); 27
𝑏𝑢𝑓𝑓𝑒𝑟 = an empty list; 28

 𝑠𝑡𝑎𝑡𝑒_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟); 29
Return 𝑠𝑡𝑎𝑡𝑒_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠; 30

m-Completeness
Using the family of state identifiers as described previously, we can create an m-complete test suite

using the Wp-method. There exist several proofs of the m-completeness of the Wp-method. An

example one using bi-simulations can be found in Moerman (2019) [12]. So in order to prove that

the complete-ADS method can be used to create an m-complete test suite, we simply have to prove

that the algorithm returns a family of state identifiers. This proof follows from the following lemmas:

Lemma 1: the loop from line 10 to line 28 in algorithm 2(the loop) has the following invariant: the

partially calculated state identifier located in identifier and buffer can differentiate between s and

every state not in initial_set, where differentiating means that it gives a different output sequence.

Lemma 2: when the loop terminates the initial set contains just s

Combining the two lemmas gives the following conclusion:

14

when the loop terminates the now fully calculated state identifier located in identifier can

differentiate between s and every other state that is not s.

this means that identifier at that point behaves as a state identifier for s. Since the algorithm is run

for every state in the specification, when it terminates it has generated a state identifier for every

state in the specification, which together form a family of state identifiers.

The proof of lemma 1 requires the following additional lemma:

Lemma 3:

The lca of a set of states S has a separator A which satisfies ∃ 𝑠, 𝑠′ ∈ 𝑆, 𝜆(𝑠, 𝐴) ≠ 𝜆(𝑠′, 𝐴).

Proof lemma 3:

The lca of a set of states S is the node of the splitting tree that contains all states in s, and that has

no children that contain all states in S. Finding this node in the splitting tree is only defined for a

certain target state s, this limits the search for the lca to just that part of the tree which is relevant

for s. Since the lca is only required in algorithm 2, which has a variable 𝑡𝑎𝑟𝑔𝑒𝑡 of type state, any

references to an lca implicitly assume that the value of this variable has been used as the target for

finding the lca.

By definition of the splitting tree, applying a separator of a node to all states of that node gives at

least two different output sequences, where every different output sequence groups a subset of the

states together in a child node. None of these child nodes contain all states in S, and states in

different child nodes have different output sequences when given A. this means that the states of S

get mapped to at least two different child nodes, which means there are at least two different

output sequences. ∎

Proof lemma 1:

At the start of the first iteration of the loop the initial set contains every state in the specification.

This automatically means that lemma 1 holds, because there is no state that is not in the initial set.

Assume that the invariant holds at the start of the loop and that the separator for the lca of the

current set is A. Then there is at least one state sc in the current set for which 𝜆(𝑠𝑐 , 𝐴) ≠

𝜆(𝑡𝑎𝑟𝑔𝑒𝑡, 𝐴), which follows from lemma 3. Because the target, and the elements of the current set,

get updated every time something gets added to buffer, the target is equal to 𝛿(𝑠, 𝑏𝑢𝑓𝑓𝑒𝑟), and the

element in the current set that is linked to a state si in the initial set is equal to 𝛿(𝑠𝑖 , 𝑏𝑢𝑓𝑓𝑒𝑟). Since

the output for sc was not equal to the expected output 𝜆(𝑡𝑎𝑟𝑔𝑒𝑡, 𝐴), it is removed from the current

set, and its corresponding state si in the initial set is also removed. So sc = 𝛿(𝑠𝑖, 𝑏𝑢𝑓𝑓𝑒𝑟), target =

𝛿(𝑠, 𝑏𝑢𝑓𝑓𝑒𝑟) , and A differentiated between the two, which means that 𝜆(𝑠, 𝑏𝑢𝑓𝑓𝑒𝑟 ⋅ 𝐴) ≠

𝜆(𝑠𝑖, 𝑏𝑢𝑓𝑓𝑒𝑟 ⋅ 𝐴). This means that lemma 1 still holds at the end of the loop after 𝑠𝑖 has been

removed from the initial set and A has been concatenated to 𝑏𝑢𝑓𝑓𝑒𝑟. ∎

Proof lemma 2:

At every step of the loop, at least one state si gets removed from the initial set. Following from the

proof of lemma 1, this is the state for which 𝜆(𝑠, 𝑏𝑢𝑓𝑓𝑒𝑟 ⋅ 𝐴) ≠ 𝜆(𝑠𝑖, 𝑏𝑢𝑓𝑓𝑒𝑟 ⋅ 𝐴). It is easy to see

15

that this statement can never hold for si = s. since the loop continues repeating until the size of the

initial set is just 1, this means that in the end only s remains in the initial set. ∎

Termination
algorithms 1 and 2 will always terminate for any given valid input. A proof of this is given below.

Lemma 4: Algorithm 1 will always terminate for any given valid input.

Proof:

Every time a split is found and executed for a node, that node is removed from the worklist and the

new child nodes are added in. Nodes containing only one state are removed from the list without

adding new nodes. Child nodes are per definition smaller than the parent: they contain a strict

subset of the states of the parent node. This means that as long as we keep finding splits for every

node, eventually the worklist will be empty, and the algorithm will terminate. Because the input is a

reduced FSM, it is per definition always possible to find an input sequence that differentiates

between two non-equal states of the FSM. It is therefore always possible to find a split for any given

subset of states, and thus also for any given node. So algorithm 1 always terminates. ∎

Lemma 5: Algorithm 2 will always terminate for any given valid input.

Proof:

With every iteration of the loop at line 10, all states in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 that give an unexpected output

are removed from 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡. There is only one expected output, and because of lemma 3 there

are at least two different observed outputs. This means that 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 gets strictly smaller with

each iteration. When 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 gets smaller, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡 also gets smaller because the same

number of states is removed in line 16. If 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 reaches size one and can’t get smaller

anymore, it gets refilled to the same size as 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡 in line 25. The loop terminates when

𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡 reaches size one, and with every iteration of the loop 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡 get strictly smaller. This

means that after a finite number of iterations the initial_set reaches size one and the loop

terminates. The other loop at line 2 is a simple for each loop over a constant set so that always

terminates if its body terminates. This means that algorithm 2 always terminates. ∎

Comparison
The complete ADS method can be used to generate an m-complete test suite, but it is certainly not

the only way. In this section we compare our results with that of a different approach: the hybrid

ADS method.

Results
The complete ADS method has been fully implemented so that its results can be compared with

those of the hybrid ADS method. The hybrid ADS method was chosen to compare with because it

works very well in practice and it uses similar ideas. For the comparison an m-complete test suite

was generated for every compatible benchmark in the Radboud automata wiki [9], where

compatible means fully defined, deterministic, reduced finite state machines with more than 1 state.

Out of the 335 FSM benchmarks found at the wiki 300 passed these criteria. After generating the

test suites, the results of the hybrid ADS method and the complete ADS method where compared on

16

terms of length and number of resets, where the length of a test suite is defined as the number of

input symbols it contains plus the number of resets it contains. In order to find relations and trends

in the large amount of data, the data was grouped based on performance increase or decrease of

the complete versus the hybrid ads method. This grouping was done for different subsets of the

data, such as all benchmarks or only the ones with more than 200 states etc. Because the raw

comparison results are too long to be included in this thesis, even as an appendix, they are located

at the code repository in the Raw_data folder [10].

A graph showing some of the data for the whole dataset can be seen below. The graph shows for

instance that there are 121 benchmarks where the length of the test suite generated by the

complete ads method is 10% shorter, or an improvement, compared to that of the hybrid ads

method, as seen in the first blue bar. The graph also shows that there are 72 cases where the length

of the complete test suite is in fact 10% longer, or a deterioration, as shown by the third blue bar. All

values are cumulative, so a test suite that is 30% better is also 10% better etc.

Graph 1

Graph 1 shows that there are more cases where the complete ADS method gives an improvement

than where it deteriorates performance. It also shows that the gain in resets is generally higher than

the gain in length, which makes sense because the complete ADS method tries to minimize the

number of resets, but does not optimize for length at all. There is also a length improvement visible

because a lower number of resets in the state identifiers generally leads to a shorter test suite.

But even though the general trend seems to be one of improvement, there are still a lot of cases

where performance deteriorates significantly. Looking at the raw data there are even cases where

this is almost 200% which means that the resulting test suite is three times as long as the hybrid ADS

one.

121

65
72

39

135

105

61

29

0

20

40

60

80

100

120

140

160

>10% improvement >30% improvement >10% deterioration >30% deterioration

n
u

m
b

er
 o

f
ca

se
s

total number of benchmarks: 300

all benchmarks

length resets

17

The benchmarks that show improvement seem to have some common characteristics however, as

can be seen in Graph 2 and Graph 3. When Just looking at the bigger benchmarks in terms of either

number of states or input symbols the ratio between improvement and deterioration shifts

enormously.

Graph 2

Graph 3

But this still ignores one important aspect: the applicability of the ADS method. The whole idea

behind the complete ADS method is that it can be applied where the regular ADS method cannot.

Partial information gained by the ADS method can be used to identify a state as a member of a

46

16
13 13

46 45

13 13

0

5

10

15

20

25

30

35

40

45

50

>10% improvement >30% improvement >10% deterioration >30% deterioration

n
u

m
b

er
 o

f
ca

se
s

total number of benchmarks: 75

50 or more states

length resets

48

32

4 4

48 48

4 4

0

10

20

30

40

50

60

>10% improvement >30% improvement >10% deterioration >30% deterioration

n
u

m
b

er
 o

f
ca

se
s

total number of benchmarks: 83

50 or more input symbols

length resets

18

subset of the complete set of states. Graph 4 and Graph 5 show data about the cases where this

subset is bigger than half the size of the complete set of states. This means that the information gain

of the ADS method was less than 50%. This seems like a rather steep requirement, but by comparing

Graph 1,2,3 and 4 with each other we see that this holds true for about 60% of all decently sized

benchmarks. After filtering this way, Graph 4 and 5 show that the complete ADS method gives an

improvement in almost all of the remaining cases.

Graph 4

Graph 5

46

16

1 1

46 45

1 1

0

5

10

15

20

25

30

35

40

45

50

>10% improvement >30% improvement >10% deterioration >30% deterioration

n
u

m
b

er
 o

f
ca

se
s

total number of benchmarks: 47

50 or more states.
ADS gives less than 50% information

length resets

48

32

0 0

48 48

0 0
0

10

20

30

40

50

60

>10% improvement >30% improvement >10% deterioration >30% deterioration

n
u

m
b

er
 o

f
ca

se
s

total number of benchmarks: 48

50 or more input symbols.
ADS gives less than 50% information

length resets

19

Conclusion
In the general case the complete ADS method gives an improvement over the hybrid ADS method

more often than not. The complete ADS method does better on FSM’s that have a large number of

states, and even better on FSM’s that have a large number of input symbols. If we only look at the

cases where the ADS method does not give much information, then there is a significant

performance gain in almost 100% of the remaining cases. Since the number of resets decreased a lot

more than the length of the test suite, this performance gain will be even more pronounced in

situations where resets are more expensive than a single input symbol.

Future work
Calculating the information gain of the ADS method is much easier than generating an m-complete

test suite, so it seems possible to formulate a general rule that determines which method will give

better results based on the ADS information gain, the number of states and the number of input

symbols of an FSM. This rule could then be used to choose the best method for each specific case.

Specifying and testing such a rule will however not be a part of this thesis due to time constraints.

20

Bibliography

1. Lee, D., and Yannakakis, M.: ‘Testing finite-state machines: state identification and
verification’, IEEE Transactions on Computers, 1994, 43, (3), pp. 306-320.
DOI:10.1109/12.272431

2. Endo, A.T., and Simao, A.: ‘Model-Based Testing of Service-Oriented Applications via State
Models’. Proc. Proceedings of the 2011 IEEE International Conference on Services
Computing2011 pp. 432-439. DOI:10.1109/scc.2011.77

3. Smeenk, W., Moerman, J., Vaandrager, F., and Jansen, D.N.: ‘Applying Automata Learning to
Embedded Control Software’, 2015, 9407, pp. 67-83. DOI:10.1007/978-3-319-25423-4_5

4. Lee, D., and Yannakakis, M.: ‘Principles and methods of testing finite state machines-a
survey’, Proceedings of the IEEE, 1996, 84, (8), pp. 1090-1123. DOI:10.1109/5.533956

5. Chow, T.S.: ‘Testing Software Design Modeled by Finite-State Machines’, IEEE Transactions
on Software Engineering, 1978, SE-4, (3), pp. 178-187. DOI:10.1109/TSE.1978.231496

6. Vasilevskii, M.P.: ‘Failure diagnosis of automata’, Cybernetics, 1973, 9, (4), pp. 653-665.
DOI:10.1007/BF01068590

7. Fujiwara, S., v. Bochmann, G., Khendek, F., Amalou, M., and Ghedamsi, A.: ‘Test selection
based on finite state models’, IEEE Transactions on Software Engineering, 1991, 17, (6), pp.
591-603. DOI:10.1109/32.87284

8. Luo, G., Petrenko, A., and v. Bochmann, G.: ‘Selecting Test Sequences for Partially-Specified
Nondeterministic Finite State Machines’, in Mizuno, T., Higashino, T., and Shiratori, N. (Eds.):
‘Protocol Test Systems: 7th workshop 7th IFIP WG 6.1 international workshop on protocol
text systems’ (Springer US, 1995), pp. 95-110. DOI:10.1007/978-0-387-34883-4_6

9. http://automata.cs.ru.nl/Overview#Mealymachinebenchmarks, accessed October 22 2018.
10. https://gitlab.science.ru.nl/gvcuyck/complete-ads, accessed December 25 2018.
11. https://gitlab.science.ru.nl/moerman/hybrid-ads, accessed October 27 2018.
12. Moerman, J.: ‘Nominal techniques and black box testing for automata learning’ (phd thesis,

Radboud University, To appear: 2019, chapter 2)
13. Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A.R., and Yevtushenko, N.: ‘FSM-based

conformance testing methods: A survey annotated with experimental evaluation’,
Information and Software Technology, 2010, 52, (12), pp. 1286-1297.
DOI:10.1016/j.infsof.2010.07.001

14. Rivest, R.L., and Schapire, R.E.: ‘Inference of Finite Automata Using Homing Sequences’,
Information and Computation, 1993, 103, (2), pp. 299-347. DOI:10.1006/inco.1993.1021

15. Hopcroft, J.: ‘An n log n algorithm fro minimizing states in a finite automaton’, in Kohavi, Z.,
and Paz, A. (Eds.): ‘Theory of Machines and Computations’ (Academic Press, 1971), pp. 189-
196. DOI:10.1016/B978-0-12-417750-5.50022-1

http://automata.cs.ru.nl/Overview#Mealymachinebenchmarks
https://gitlab.science.ru.nl/gvcuyck/complete-ads
https://gitlab.science.ru.nl/moerman/hybrid-ads

21

Appendix A: variable types
The following list contains the type of every variable used in the thesis

Variable: type
a,b: input symbol
Z,A,t,𝑏𝑢𝑓𝑓𝑒𝑟: sequence of input symbols
X,Y,𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟: set of input sequences
𝜆: the empty sequence.
I: set of input symbols
O: set of output symbols
𝑠𝑡𝑎𝑡𝑒_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠: set of state identifiers
M,M’: FSM
TS: test suite
𝑃: a state cover, which is a set of input sequences.
𝑄: a transition cover, which is a set of input sequences.
s,s’,s0,target: state
sc state from the current set
si state from the initial set
S,𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡: set of states
Zs: state identifier for s
x,y: untyped elements of generic sets.
F: family of input sequences
𝛿: 𝑆 × 𝐼 → 𝑆
𝛾: 𝑆 × 𝐼 → 𝑂
n: natural number

