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Abstract 
Conformance testing has many uses, for instance to check the correctness of protocol 
implementations [2] or to learn models from black box implementations [3]. The ADS method [1] can 
be used for this purpose to good effect, but there are many cases where it is not applicable. In this 
thesis we propose a new method based on the ADS method that can be applied to any reduced, 
deterministic, fully defined finite state machine. We implement this new complete ADS method and 
compare its results with that of a different ADS expansion, the hybrid ADS method [3]. The results of 
this comparison show a significant improvement in test suite length in the cases where the regular 
ADS method is not applicable.   

Introduction 
Conformance testing can be used to check if the behaviour of a finite state machine (FSM) is same as 
that of a black box implementation[4]. There exist several different conformance testing algorithms 
and many of these, such as the W [5, 6], Wp [7] and HIS [8] methods, need a set of state identifiers 
to work. The performance of these algorithms depends largely on the length and number of state 
identifiers that are used. The ADS method [1] uses adaptive distinguishing sequences to generate a 
small set of state identifiers. It works very well, but there are many FSM’s to which it can’t be 
applied. The hybrid ADS method solves this problem, but its results are much longer in the cases 
where the regular ADS method is not applicable. In this thesis we describe a new way of generating a 
set of state identifiers based on the ADS method, called the complete ADS method. It is applicable to 
all deterministic, reduced, fully defined finite state machines.  
In order to test the effectiveness of the new method, we implemented it and tested it on the 
collection of benchmarks gathered by the Radboud university [9]. This collection contains around 
335 FSM’s at the time of writing, 300 of which are suitable for use with the algorithm. The ones that 
are not are either too massive in size, formatted improperly or only partially defined. The 
implementation of our algorithm and some example benchmarks can be found online [10]. We also 
ran the pre-existing implementation of the hybrid ADS method [11] on all of the valid benchmarks in 
order to compare the effectiveness of our method to an existing solution. The results of this 
comparison are mixed in the general case, but if we focus on just the benchmarks that are not 
compatible with the ADS method, then we see a significant improvement. In addition to these tests, 
we also give a proof that our algorithm always terminates, and that it gives correct output upon 
termination. 
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Preliminaries 
In this section, we present an overview of several concepts that will be used in this thesis. These 

concepts are not new and further information can be found in many papers, for example Lee and 

Yannakakis (1996) [4]. More specifically, we adopted several definitions from Moerman (2019) [12]. 

A list of the type of all the variables used in the thesis is included in Appendix A for clarity. 

Finite state machines 
The formal description of a finite state machine (FSM) consists of six parts:  

1. A set of states, denoted as S. 

2. A set of input symbols, denoted as I. These are all the possible “atomic” inputs that the 

machine can accept.  

3. A set of output symbols, denoted as O. 

4. A state transition function, denoted as 𝛿. This function defines to what state the machine 

moves if it receives a certain input, so its type is 𝛿 ∶ 𝑆 ×  𝐼 → 𝑆. 

5. An output function, denoted as 𝛾. This function describes what the output symbol is 

corresponding to an input received in a certain state, so its type is 𝛾 ∶ 𝑆 ×  𝐼 → 𝑂. 

6. A starting state, denoted as s0. This is the state in which the machine begins its operations. 

In this thesis we will use 𝑀 = {𝑆, 𝐼, 𝑂, 𝛿, 𝛾} and 𝑀′ = {𝑆′, 𝐼, 𝑂, 𝛿′, 𝛾′} to refer to instances of FSM’s. In 

practice, FSM’s are often drawn like in Figure 1. An example of applying the formal definition to the 

FSM in Figure 1 is S = {s1,s2,s3,s4}, I={y,x}, O={0,1} and s0=S1. Examples of the state transition function 

and output function are 𝛿(𝑆1, 𝑦) = 𝑆2 and 𝛾(𝑆1, 𝑦) = 0 

 

Figure 1: an example FSM, taken from [13] 

The functions 𝛿 and 𝛾 can also be extended to work on sequences of inputs. We keep inputting one 

symbol at a time and apply the next input in the state where we ended up with the previous one. 

Take an input sequence aA where a represents the first input symbol and A represents the rest of 

the sequence. Then formally 𝛿(𝑠, 𝑎𝐴) =  𝛿(𝛿(𝑠, 𝑎), 𝐴) and 𝛾(𝑠, 𝑎𝐴) = 𝛾(𝑠, 𝑎) ⋅ 𝛾(𝛿(𝑠, 𝑎), 𝐴), where 

⋅ represents concatenation. Take for example the input sequence yxy and the FSM from figure 1. 

Then 𝛿(𝑠1, 𝑦𝑥𝑦) = 𝛿(𝑠2, 𝑥𝑦) = 𝛿(𝑠2, 𝑦) =  𝑠4 and 𝛾(𝑠1, 𝑦𝑥𝑦) = 0 ⋅ 𝛾(𝑠2, 𝑥𝑦) = 0 ⋅ 1 ⋅ 𝛾(𝑠2, 𝑦) =

011. 

Conformance testing 
Conformance testing is the act of comparing a specification with an implementation of that 

specification. The specification is often in the form of an FSM and the implementation is often called 

the system under test (SUT). We assume that the behaviour of the SUT can be accurately described 

by some unknown FSM, this means for example that it is assumed to be deterministic. The main 
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purpose of conformance testing is to find differences in behaviour between the specification and the 

SUT. These differences correspond with bugs in the SUT, or with faults in the specification, and can 

be used to fix them before they are discovered by users of the SUT. There exist several techniques to 

prove certain properties of FSM’s, but in the general case proving the correctness of software is very 

difficult. Conformance testing can be used to prove that the behaviour of software is semi-

equivalent to that of an FSM, and that it therefore also has all the nice properties proven for the 

FSM.  

The actual testing is done by applying a set of tests called a test suite (TS) to the SUT and then 

comparing the output of the SUT with the expected output described in the specification. An 

individual test is just a sequence of input symbols. A TS is complete (for a given M) if for every other 

machine M’, not equivalent to M, there exists a test 𝑡 ∈ 𝑇𝑆 for which 𝛾(𝑠0, 𝑡) ≠ 𝛾′(𝑠0
′, 𝑡). This 

means that by applying a complete TS for M to a SUT, we can determine if the SUT is an 

implementation of M. It has however been proven that a complete and finite TS cannot exist if the 

set of input symbols is not empty. This can be illustrated by the following example from Moerman 

(2019) [12] seen in Figure 2. The left FSM produces only 0’s as outputs. The left FSM produces n 0’s 

and then starts producing 1’s. We could create a test suite that is complete for a certain value of n, 

but not one that can detect the difference for any n, as n can always be made 1 higher which would 

require more tests in the test suite. 

 

Figure 2: a) a simple FSM. b) a partial description of an FSM indistinguishable from the one on the left 

This leads to a weakened definition called m-completeness.  A test suite 𝑇𝑆 is m-complete for M if 

for any M’, not equivalent to M and having at most m states, there exists a test 𝑡 ∈ 𝑇𝑆 for which 

𝛾(𝑠0, 𝑡) ≠ 𝛾′(𝑠0
′, 𝑡). If a SUT passes all the tests in a test suite that is m-complete for M then that 

means one of two things. Either the SUT’s behaviour is equal to that of M, or the SUT has more than 

m states. Typically,  Because the developers of the SUT actively tried to make an implementation of 

M, most of the differences will be small mistakes where the only difference is a faulty output or a 

transition to the wrong state. These kinds of mistakes usually do not introduce extra states, so 

conformance testing is well suited to detect them. Conformance testing is however just that: testing, 

not proving. It is always possible that there are still undetected errors left even after passing all the 

tests. 

Families 
A family is an indexed set, where the elements are grouped in subsets and each index links to a 

specific subset. It can also be seen as a function from its index type to a set of its element type. A 

family 𝐹 with states as its indices is denoted as {𝐹𝑠}𝑠∈𝑆. And 𝐹𝑠 denotes the part of 𝐹 that is mapped 

to 𝑠. 
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Operators 
Below, 𝑋 and 𝑌 are sets of input sequences, 𝑍 is a set of input symbols, and 𝐹 is a family of input 

sequences  

𝑋 ⋅  𝑌 denotes set concatenation, which is defined as  

𝑋 ⋅  𝑌 =  {𝑥 ⋅ 𝑦 |𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌} 

𝑍𝑛 denotes the set of sequences sampled over 𝑍 with length n. This is recursively defined as  

𝑍0 = {𝜆} and 𝑍𝑛+1 = 𝑍𝑛 ⋅ 𝑍 

Where 𝜆 denotes the empty sequence. 

𝑍≤𝑛 denotes the set of all sequences sampled over 𝑍 with length n or less. This is defined as 

𝑍≤𝑛 = ⋃ 𝑍𝑖

𝑛

𝑖=0

 

𝑍∗ denotes the set of all possible sequences sampled over 𝑍. This is defined as  

𝑍∗ = ⋃ 𝑍𝑖

∞

𝑖=0

 

⋃ 𝐹 denotes the set obtained by flattening 𝐹 this set contains every element contained in one of the 

subsets within 𝐹. This can be defined as 

⋃ 𝐹 = {𝑥|∃ 𝑋 ∈ 𝐹, 𝑥 ∈ 𝑋} 

𝑋 ⊙ 𝐹  is the concatenation of a set with a family. Its semantics are similar to regular set 

concatenation, but now for every element in 𝑋 only a subset of 𝐹 is used. This assumes that 𝐹 can 

be indexed using states. The formal definition is 

𝑋 ⊙ 𝐹 = {x ⋅ y | x ∈  X, y ∈  𝐹δ(𝑠0,x)} 

Other definitions 

State cover 
A state cover is a set of input sequences that can be used to reach every state in an FSM. Formally, 𝑃 

is a state cover for M iff 

∀ 𝑠 ∈ 𝑆, ∃ 𝐴 ∈ 𝑃, 𝛿(𝑠0, 𝐴) = 𝑠 

A state cover is used in a test suite if we want to run a test once for every state. A state cover with 

minimal size can be easily generated by performing breadth first search on a graph representing the 

transitions in an FSM, where each transition is labelled with its respective input symbol. 

Transition cover 
A transition cover is a set of input sequences that when executed traverses every transition in an 

FSM at least once. For a deterministic FSM, every state has exactly one transition for every input 
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symbol. So for such a machine M, a transition cover 𝑄 can be generated by executing every possible 

input in every possible state. Thus, if 𝑃 is a state cover for M then 𝑃 ⋅  𝐼 is a transition cover for M. 

State equivalence 
Two states s and s’ are defined as equivalent (≈) if they produce the same series of outputs for 

every possible series of inputs: 

𝑠 ≈ 𝑠′ ↔  ∀ 𝐴 ∈ 𝐼∗, 𝛾(𝑠, 𝐴) =  𝛾(𝑠′, 𝐴) 

FSM equivalence 
Two FSM’s M and M’ are defined as equivalent if they have the same input alphabet and their 

respective starting states are equal: 

𝑀 ≈ 𝑀′ ↔  (𝐼 = 𝐼′ ∧ 𝑠0 ≈ 𝑠′0) 

Reset operation 
Most conformance testing algorithms, and all the ones discussed in this thesis, rely on the existence 

of a reliable reset operation (R). This reset can be seen as a special input symbol that when entered 

into the SUT, brings it back it to its initial state regardless of what state the SUT was in. If the SUT is a 

piece of software, this can be done by terminating it and starting a fresh instance. If the SUT is a 

machine this can often be done by cutting the power or holding the power button. This reset is 

required when a test suite has more than one input sequence in order to transition from one test to 

the next. However, not all systems have a reliable reset, which drastically reduces the available 

options while testing. Even if R does exist, it might be really slow compared to the other inputs. 

Because of this, it is usually recommended to use resets as little as possible while testing. An 

important note is that the reset operation is not part of 𝐼 even though it is used as an input symbol. 

This is because it needs to be reliable and is therefore not part of the system we are testing, which is 

by definition not reliable. 

Conformance testing algorithms that don’t rely on a reset operation fall outside the scope of this 

thesis and are, for example, discussed in Rivest and Schapire (1993) [14] 

State identifier 
A state identifier is a set of input sequences that can be used to verify if the FSM is in a certain state. 

This is done by making sure that it gives a different set of output sequences for its target state then 

for any other state in the specification. Formally, a set of input sequences X is a state identifier for 

𝑠 ∈ 𝑆 iff 

∀ 𝑠′ ∈ 𝑆, 𝑠′ ≠ 𝑠 → ∃𝐴 ∈ 𝑋, 𝛾(𝑠′, 𝐴) ≠ 𝛾(𝑠, 𝐴) 

Reduced FSM 

An FSM is reduced if none of its states is equivalent to any of the other states, and all of its states are 

reachable from the starting state. If two of the states in an FSM are equivalent then it is of course 

impossible to generate a state identifier for them, and if states are unreachable from the starting 

state then they have no effect on the output of the system. Because of these 2 points, most 

conformance testing algorithms assume that the specification is in reduced form. This is not really a 
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restriction, because by using Hopcroft’s algorithm [15] any deterministic FSM can be reduced in 

𝑂(|𝐼| ∗ 𝑛 log(𝑛)) time.  

Fully defined FSM 
An FSM is called fully defined if the transition and output functions are defined for every state input 

combination. In other words, the domains of both 𝛾 and 𝛿 must be 𝑆 ×  𝐼. The FSM’s we consider in 

this thesis are fully defined by definition. 

The Wp method 
The Wp method [7] is an improvement over the older W method. [5, 6], both of which are general 

ways to construct an m-complete test suite from several components. The Wp method requires a 

state cover P, a transition cover Q and a family of state identifiers 𝒲, which contains a state 

identifier for every state in the specification. The actual test suite is then defined as: 

(𝑃 ⋅  𝐼≤𝑘 ⋅  ⋃ 𝒲 )  ∪  ((𝑄 ⋅ 𝐼≤𝑘) ⊙ 𝒲  ) 

Here, k is the number of extra states we want to check for. As can be seen from the definition, the 

Wp method consists of two stages, which are then added together in a single test suite. The first part 

checks if every state in the specification is also present in the SUT. The second part then checks if 

every transition in the specification is also present in the SUT. The resulting test suite is m-complete 

for m = n+k, where n is the number of states present in the specification. The Wp method does not 

actually dictate how to calculate P, Q and W. When this is done in different ways, the resulting test 

suites can vastly differ in size. Especially the average number of resets required for the state 

identifiers has a big impact on the final output. In this thesis we propose a new way to calculate a set 

of state identifiers 𝒲 using an adaptation of the ADS method.  

Adaptive distinguishing sequences 
An adaptive distinguishing sequence(ADS) is in fact not a sequence but a decision tree [1]. The nodes 

are labelled with a sequence of input symbols, and the branches are labelled with an output symbol. 

To use an ADS we enter the symbol at the root of the tree into the SUT, and then go down one of the 

branches based on the observed output. We keep doing this until we are at a leaf node, which then 

tells us in which state we were when we started. An example of such a tree belonging to the FSM in 

Figure 4 can be seen in Figure 3. Lee and Yannakakis (1994) [1] have given an algorithm of 

complexity O(p*n2) that constructs an ADS for a given FSM of maximum length n(n-1)/2. Here p is 

the number of different input symbols, n is the number of states in the FSM and the length of an 

ADS is the maximum number of input symbols needed to get from the root to a leaf node. Using an 

ADS for state identification results in a single, longer input instead of multiple short ones. This means 

that we need fewer resets and that the resulting test suite will be smaller. The main problem with 

ADS’s is that they don’t always exist. In fact, for the used benchmarks it is more likely that a given 

FSM does not have an ADS than that it does have one. 
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Valid inputs 
An important concept when constructing an ADS is a valid input. An input sequence A is valid for a 

set of states S iff ∀𝑠 𝑠′ ∈ 𝑆, 𝑠 ≠ 𝑠′ → (𝜆(𝑠, 𝐴) ≠ 𝜆(𝑠′, 𝐴) ∨ 𝛿(𝑠, 𝐴) ≠ 𝛿(𝑠′, 𝐴)). In other words, an 

input is valid for a set of states if no two states from this set have the same output symbol and the 

same output state when given that input. Take for instance the FSM in Figure 5. Applying the input a 

will move both s1 and s2 to s1 with output 0. We don’t know in which of the two we were because 

the output was the same, and in both cases we are now in s1. This gives us no options for ever 

finding out whether we were in s1 or s2 without performing a reset. The input a is therefore called 

invalid. Since the whole idea of an ADS is to identify in which state we are without performing a 

reset, a node in an ADS can only contain input sequences that are valid for the states of that node. If 

we look at Figure 5 again, we see that the input b is also invalid. This leaves no possible inputs for 

the root of the ADS, so the FSM in Figure 5 has no ADS. 

 

Figure 5:an example FSM without an ADS [1] 

Figure 4: an example FSM [1]  Figure 3: an ADS belonging to the FSM In Figure 4 [1] 
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Generating an ADS 
The Lee/Yannakakis algorithm [1] for generating an ADS works in two steps. First it generates a 

splitting tree from the specification, and then it generates an ADS from the splitting tree. The 

splitting tree can be seen as a simplification of the problem where the effect of applying a new input, 

moving to a new state, is ignored. The nodes contain a set of states and a sequence of input 

symbols, and the edges are unmarked. When the input sequence of a node is applied to the states of 

that node, some states will give different outputs than other states. The states can be grouped 

based on their output, where states with the same output are in the same group. Each child of a 

node corresponds to one of those groups. A complete splitting tree contains all the information 

needed to split a group of nodes down to singletons, but we can’t just walk it down from the root to 

a leaf node because it ignores the effects of the inputs. The ADS uses the splits described in the 

splitting tree, but reorders them so that it does take these changes into account. 

Hybrid ADS 
Even when there is no ADS, the algorithm from Lee and Yannakakis can still return partial results that 

are useful. If there is no ADS, then it is not possible to form a complete splitting tree. The partial tree 

might however contain enough information to reduce the number of possible states we are in. For 

some states it might even contain enough information to completely separate them from the others. 

This partial information can be combined with the results of a different algorithm produces larger 

results but is applicable in more cases. These combined results can then be used for state 

identification more effectively than the results of the second algorithm could on their own. This idea 

has been fully implemented with the HSI method [8] in the hybrid-ADS method [12]. 

Complete-ADS 
In this thesis, we take a different approach to the same problem and then compare the results. 

While the hybrid-ADS method focuses on complementing the incomplete splitting tree with different 

results, we instead try to complete the splitting tree by loosening some restrictions. After we 

construct the splitting tree, we use it to form a set of state identifiers, one for each state of the 

specification. These state identifiers can then be used to form a test suite, for instance with the Wp 

method. 

The main change in restrictions is that we allow the use of resets, and therefore we can use invalid 

input sequences as a last resort. The goal is to create a state identifier for every state using as few 

resets as possible. However, finding such an optimal solution is p-space complete [1].To get around 

this problem we use a greedy approach and only try to make locally optimal choices. 

The main problem to solve is how to best pick an invalid input sequence if there are no valid options 

left. How good or bad an invalid input is, is mainly determined by the state in which we apply it. If 

we look at the FSM in Figure 5 again and we want to know whether we are in s3 or not, then the 

input a is perfect for the job, even though it is invalid. If we were in state s1 however, b is a much 

better choice. To describe this more formally, we introduce the concept of partial-validity. An input 

sequence A is partially-valid for a state 𝑠 ∈ 𝑆 iff 

∀ 𝑠′ ∈ 𝑆, 𝑠 ≠ 𝑠′ →  (𝜆(𝑠, 𝐴) ≠ 𝜆(𝑠′, 𝐴) ∨  𝛿(𝑠, 𝐴) ≠ 𝛿(𝑠′, 𝐴) ) 
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As long as we are in state s, an input sequence that is partially valid for s won’t require a reset and is 

therefore just as good as an input sequence that is completely valid. So if there are valid inputs, we 

use the regular ADS algorithm. When those run out and the regular algorithm would declare failure, 

we instead do a case distinction over all the states that are left at that node. For each of those states 

we try and find an input sequence that is partially-valid for that state. This essentially results in a 

separate splitting tree for each state, where the focus of each tree is to remain partially-valid for 

that state. However, sometimes it is not even possible to find an input sequence that is partially 

valid for a state. Since we do want to complete the splitting tree, we chose an invalid input instead. 

If this input splits the possible states into at least two groups, we made a little progress. Since the 

FSM is reduced, it is always possible to find an input sequence that does this. We can solve the 

invalid problem later by introducing resets when we construct the state identifiers from the splitting 

tree. 

The resulting splitting tree now has an extra dimension. Instead of a set of children and a single 

separator, a node can now have multiple separators where each separator has its own set of 

children. Each node now also contains a mapping from states to one particular separator and a set of 

children, that is considered the best fit for that state.  

To prevent the tree from growing exponentially, unneeded nodes can be pruned early. Every part of 

the tree is specifically meant to separate a subset of states from all other states. This means that 

child nodes in such a tree part that do not contain any of these target states are unnecessary. An 

example of this is a node containing s1,s2,s3,s4,s5 with target set {s1}. This can happen if there was a 

better separator available for the other states. The only purpose of this node is to differentiate s1 

from the other states. Once this is accomplished, the children that don’t contain s1 do not need to 

be expanded because they will never be reached. This also means that we don’t have to prioritize 

looking for a completely valid separator, as a partially-valid one for s1 will perform equally well. 

After we have constructed a splitting tree as outlined in the previous paragraphs, the next step is to 

calculate a set of state identifiers from it. This is done one by one, once for each state, where the 

current one is called the target state. We start by setting up two sets of states. The current set 

contains the states where we could be right now, and the initial set contains the corresponding 

states where we were at the beginning of the calculation. They are both initialized to contain all 

possible states. Then we find the lowest common ancestor (lca) node in the splitting tree that 

contains all the nodes in the current set. We only look at the part of the tree that is relevant for the 

target state, using the mappings saved at each node. We apply the separator found there to the 

target state and to each state in the current set, and then we concatenate it to the state identifier. 

Here, applying means looking up the expected output symbol and state in the specification. Each 

state in the current set that has a different output then the target state gets removed, along with 

the corresponding state in the initial set. If the outputs are the same, the state in the current set gets 

replaced with its output state. Then we replace the target state with its output state corresponding 

to the separator. Next, we start over by finding the new lca of the remaining nodes in the current 

set. At some point the current set will be reduced to just one state. If the initial set is still bigger than 

1, it means that we need to do a reset. We concatenate a reset to the state identifier and make the 

current set a copy of the initial set again. At some point the initial set will contain just one state, and 

this will be the original target state for which we have constructed a state identifier.  
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These two steps of creating a splitting tree and a family of state identifiers are summarized by the 

pseudocode of algorithm 1 and 2 respectively. To keep the code brief it omits several steps that 

improve running time but do not affect the quality of the output such as when to prune unnecessary 

nodes. 

Algorithm 1 

Input: a reduced FSM M. 
Output: a splitting tree for M.
Create the root node which contains all states and add it to the worklist; 1 
While the worklist is not empty: 2 

Option1: for every node in the worklist: 3 
  If the node only contains one state: 4 
   Remove it from the worklist; 5 
   Continue with the next node; 6 
  If there exists a valid split based on output symbols: 7 
   Do the split and add the new nodes to the worklist; 8 
   Remove the current node from the worklist; 9 

Option2: for every node in the worklist: 10 
  If there exists a valid split based on output state: 11 
   Do the split and add the new nodes to the worklist; 12 
   Remove the current node from the worklist; 13 
   Break from this loop and go back to Option1; 14 

Option3: for the first node in the worklist: 15 
  If there exists a partially valid split for every state in the node: 16 
   Perform all the splits and add all the nodes to the worklist; 17 
   Update the mapping of the node to store which split belongs to which state; 18 
   Remove the current node from the worklist; 19 
   Go back to Option1; 20 

Option4: for the first node in the worklist: 21 
  If there exists an (invalid) split: 22 
   Perform partially valid splits where possible; 23 
   Use invalid splits for the other states, 24 

these can be found using Hopcroft’s algorithm[15]; 25 
   Add all the nodes to the worklist; 26 
   Update the mapping of the current node; 27 
   Remove the current node from the worklist; 28 
   Go back to Option1; 29 
 Option5: if all else fails: 30 
  Move the current node to the back of the worklist; 31 
  Go back to Option3; 32 
Return the now compete splitting tree; 33 
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Algorithm 2 
Input:  A reduced finite state machine M. 
 A splitting tree for M as produced by algorithm 1. 
Output: A family of state identifiers for M.
 
𝑠𝑡𝑎𝑡𝑒_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠 = an empty list; 1 
For every state s in the FSM: 2 
 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 = an empty list of input sequences; 3 
 Buffer = an empty input sequence; 4 
 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑠 5 
 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 = all states in the FSM; 6 
 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡 = all states in the FSM; 7 
 Create a mapping between 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 and 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡; 8 
 Initialize the mapping to map identical states to each other; 9 
 While 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡. 𝑠𝑖𝑧𝑒()  >  1: 10 
  Find the lca of the current set in the splitting tree using 𝑡𝑎𝑟𝑔𝑒𝑡; 11 
  𝐴 = the separator found at this lca; 12 

For every state 𝑠𝑐 in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡: 13 
  If 𝜆(𝑠𝑐 , 𝐴) ≠  𝜆(𝑡𝑎𝑟𝑔𝑒𝑡, 𝐴): 14 
   Remove 𝑠𝑐 from 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡; 15 
   Remove the state mapped to 𝑠𝑐 from 𝑖𝑛𝑖𝑛𝑖𝑡𝑎𝑙_𝑠𝑒𝑡; 16 
   Continue; 17 
  Else: 18 
   𝑠𝑐 = 𝛿(𝑠𝑐 , 𝐴); 19 

 Update the mapping in such a way that the new 𝑠𝑐  20 
still maps to the same state as before it got updated; 21 

  𝑡𝑎𝑟𝑔𝑒𝑡 = 𝛿(𝑡𝑎𝑟𝑔𝑒𝑡, 𝐴); 22 
  𝐵𝑢𝑓𝑓𝑒𝑟 = 𝑏𝑢𝑓𝑓𝑒𝑟 ⋅ 𝐴 ; 23 

If 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡. 𝑠𝑖𝑧𝑒() == 1: 24 
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 =  𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡; 25 
Reset the mapping between 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 and 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡; 26 
𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑏𝑢𝑓𝑓𝑒𝑟); 27 
𝑏𝑢𝑓𝑓𝑒𝑟 = an empty list; 28 

 𝑠𝑡𝑎𝑡𝑒_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟); 29 
Return 𝑠𝑡𝑎𝑡𝑒_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠; 30 
 

m-Completeness 
Using the family of state identifiers as described previously, we can create an m-complete test suite 

using the Wp-method. There exist several proofs of the m-completeness of the Wp-method. An 

example one using bi-simulations can be found in Moerman (2019) [12]. So in order to prove that 

the complete-ADS method can be used to create an m-complete test suite, we simply have to prove 

that the algorithm returns a family of state identifiers. This proof follows from the following lemmas: 

Lemma 1: the loop from line 10 to line 28 in algorithm 2(the loop) has the following invariant: the 

partially calculated state identifier located in identifier and buffer can differentiate between s and 

every state not in initial_set, where differentiating means that it gives a different output sequence. 

Lemma 2: when the loop terminates the initial set contains just s 

Combining the two lemmas gives the following conclusion: 
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when the loop terminates the now fully calculated state identifier located in identifier can 

differentiate between s and every other state that is not s. 

this means that identifier at that point behaves as a state identifier for s. Since the algorithm is run 

for every state in the specification, when it terminates it has generated a state identifier for every 

state in the specification, which together form a family of state identifiers. 

The proof of lemma 1 requires the following additional lemma: 

Lemma 3: 

The lca of a set of states S has a separator A which satisfies ∃ 𝑠, 𝑠′ ∈ 𝑆, 𝜆(𝑠, 𝐴) ≠ 𝜆(𝑠′, 𝐴). 

Proof lemma 3: 

The lca of a set of states S is the node of the splitting tree that contains all states in s, and that has 

no children that contain all states in S. Finding this node in the splitting tree is only defined for a 

certain target state s, this limits the search for the lca to just that part of the tree which is relevant 

for s. Since the lca is only required in algorithm 2, which has a variable 𝑡𝑎𝑟𝑔𝑒𝑡 of type state, any 

references to an lca implicitly assume that the value of this variable has been used as the target for 

finding the lca.  

By definition of the splitting tree, applying a separator of a node to all states of that node gives at 

least two different output sequences, where every different output sequence groups a subset of the 

states together in a child node. None of these child nodes contain all states in S, and states in 

different child nodes have different output sequences when given A. this means that the states of S 

get mapped to at least two different child nodes, which means there are at least two different 

output sequences.           ∎ 

Proof lemma 1: 

At the start of the first iteration of the loop the initial set contains every state in the specification. 

This automatically means that lemma 1 holds, because there is no state that is not in the initial set. 

Assume that the invariant holds at the start of the loop and that the separator for the lca of the 

current set is A. Then there is at least one state sc in the current set for which 𝜆(𝑠𝑐 , 𝐴) ≠

𝜆(𝑡𝑎𝑟𝑔𝑒𝑡, 𝐴), which follows from lemma 3. Because the target, and the elements of the current set, 

get updated every time something gets added to buffer, the target is equal to 𝛿(𝑠, 𝑏𝑢𝑓𝑓𝑒𝑟), and the 

element in the current set that is linked to a state si in the initial set is equal to 𝛿(𝑠𝑖 , 𝑏𝑢𝑓𝑓𝑒𝑟). Since 

the output for sc was not equal to the expected output 𝜆(𝑡𝑎𝑟𝑔𝑒𝑡, 𝐴), it is removed from the current 

set, and its corresponding state si in the initial set is also removed. So sc = 𝛿(𝑠𝑖, 𝑏𝑢𝑓𝑓𝑒𝑟), target = 

𝛿(𝑠, 𝑏𝑢𝑓𝑓𝑒𝑟) , and A differentiated between the two, which means that 𝜆(𝑠, 𝑏𝑢𝑓𝑓𝑒𝑟 ⋅  𝐴) ≠ 

𝜆(𝑠𝑖, 𝑏𝑢𝑓𝑓𝑒𝑟 ⋅  𝐴). This means that lemma 1 still holds at the end of the loop after 𝑠𝑖 has been 

removed from the initial set and A has been concatenated to 𝑏𝑢𝑓𝑓𝑒𝑟.     ∎ 

Proof lemma 2: 

At every step of the loop, at least one state si gets removed from the initial set. Following from the 

proof of lemma 1, this is the state for which  𝜆(𝑠, 𝑏𝑢𝑓𝑓𝑒𝑟 ⋅  𝐴) ≠ 𝜆(𝑠𝑖, 𝑏𝑢𝑓𝑓𝑒𝑟 ⋅  𝐴). It is easy to see 
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that this statement can never hold for si = s. since the loop continues repeating until the size of the 

initial set is just 1, this means that in the end only s remains in the initial set.    ∎ 

Termination 
algorithms 1 and 2  will always terminate for any given valid input. A proof of this is given below. 

Lemma 4: Algorithm 1 will always terminate for any given valid input. 

Proof: 

Every time a split is found and executed for a node, that node is removed from the worklist and the 

new child nodes are added in. Nodes containing only one state are removed from the list without 

adding new nodes. Child nodes are per definition smaller than the parent: they contain a strict 

subset of the states of the parent node. This means that as long as we keep finding splits for every 

node, eventually the worklist will be empty, and the algorithm will terminate. Because the input is a 

reduced FSM, it is per definition always possible to find an input sequence that differentiates 

between two non-equal states of the FSM. It is therefore always possible to find a split for any given 

subset of states, and thus also for any given node. So algorithm 1 always terminates.   ∎ 

Lemma 5: Algorithm 2 will always terminate for any given valid input. 

Proof: 

With every iteration of the loop at line 10, all states in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 that give an unexpected output 

are removed from 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡. There is only one expected output, and because of lemma 3 there 

are at least two different observed outputs. This means that 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 gets strictly smaller with 

each iteration. When 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 gets smaller, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡 also gets smaller because the same 

number of states is removed in line 16. If 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡 reaches size one and can’t get smaller 

anymore, it gets refilled to the same size as 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡 in line 25. The loop terminates when 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡 reaches size one, and with every iteration of the loop 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡 get strictly smaller. This 

means that after a finite number of iterations the initial_set reaches size one and the loop 

terminates. The other loop at line 2 is a simple for each loop over a constant set so that always 

terminates if its body terminates. This means that algorithm 2 always terminates.   ∎ 

Comparison 
The complete ADS method can be used to generate an m-complete test suite, but it is certainly not 

the only way. In this section we compare our results with that of a different approach: the hybrid 

ADS method. 

Results 
The complete ADS method has been fully implemented so that its results can be compared with 

those of the hybrid ADS method. The hybrid ADS method was chosen to compare with because it 

works very well in practice and it uses similar ideas. For the comparison an m-complete test suite 

was generated for every compatible benchmark in the Radboud automata wiki [9], where 

compatible means fully defined, deterministic, reduced finite state machines with more than 1 state. 

Out of the 335 FSM benchmarks found at the wiki 300 passed these criteria. After generating the 

test suites, the results of the hybrid ADS method and the complete ADS method where compared on 
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terms of length and number of resets, where the length of a test suite is defined as the number of 

input symbols it contains plus the number of resets it contains. In order to find relations and trends 

in the large amount of data,  the data was grouped based on performance increase or decrease of 

the complete versus the hybrid ads method. This grouping was done for different subsets of the 

data, such as all benchmarks or only the ones with more than 200 states etc.  Because the raw 

comparison results are too long to be included in this thesis, even as an appendix, they are located 

at the code repository in the Raw_data folder [10]. 

A graph showing some of the data for the whole dataset can be seen below. The graph shows for 

instance that there are 121 benchmarks where the length of the test suite generated by the 

complete ads method is 10% shorter, or an improvement, compared to that of the hybrid ads 

method, as seen in the first blue bar. The graph also shows that there are 72 cases where the length 

of the complete test suite is in fact 10% longer, or a deterioration, as shown by the third blue bar. All 

values are cumulative, so a test suite that is 30% better is also 10% better etc. 

 

 

Graph 1 

Graph 1 shows that there are more cases where the complete ADS method gives an improvement 

than where it deteriorates performance. It also shows that the gain in resets is generally higher than 

the gain in length, which makes sense because the complete ADS method tries to minimize the 

number of resets, but does not optimize for length at all. There is also a length improvement visible 

because a lower number of resets in the state identifiers generally leads to a shorter test suite.  

But even though the general trend seems to be one of improvement, there are still a lot of cases 

where performance deteriorates significantly. Looking at the raw data there are even cases where 

this is almost 200% which means that the resulting test suite is three times as long as the hybrid ADS 

one. 
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The benchmarks that show improvement seem to have some common characteristics however, as 

can be seen in Graph 2 and Graph 3. When Just looking at the bigger benchmarks in terms of either 

number of states or input symbols the ratio between improvement and deterioration shifts 

enormously.  

 

Graph 2 

 

Graph 3 

But this still ignores one important aspect: the applicability of the ADS method. The whole idea 

behind the complete ADS method is that it can be applied where the regular ADS method cannot. 

Partial information gained by the ADS method can be used to identify a state as a member of a 
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subset of the complete set of states. Graph 4 and Graph 5 show data about the cases where this 

subset is bigger than half the size of the complete set of states. This means that the information gain 

of the  ADS method was less than 50%. This seems like a rather steep requirement, but by comparing 

Graph 1,2,3 and 4 with each other we see that this holds true for about 60% of all decently sized 

benchmarks. After filtering this way, Graph 4 and 5 show that the complete ADS method gives an 

improvement in almost all of the remaining cases. 

 

Graph 4 

 

Graph 5 
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Conclusion 
In the general case the complete ADS method gives an improvement over the hybrid ADS method 

more often than not. The complete ADS method does better on FSM’s that have a large number of 

states, and even better on FSM’s that have a large number of input symbols. If we only look at the 

cases where the ADS method does not give much information, then there is a significant 

performance gain in almost 100% of the remaining cases. Since the number of resets decreased a lot 

more than the length of the test suite, this performance gain will be even more pronounced in 

situations where resets are more expensive than a single input symbol. 

Future work 
Calculating the information gain of the ADS method is much easier than generating an m-complete 

test suite, so it seems possible to formulate a general rule that determines which method will give 

better results based on the ADS information gain, the number of states and the number of input 

symbols of an FSM. This rule could then be used to choose the best method for each specific case. 

Specifying and testing such a rule will however not be a part of this thesis due to time constraints. 
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Appendix A: variable types 
The following list contains the type of every variable used in the thesis 

Variable:   type 
a,b:     input symbol 
Z,A,t,𝑏𝑢𝑓𝑓𝑒𝑟:   sequence of input symbols 
X,Y,𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟:   set of input sequences 
𝜆:    the empty sequence. 
I:    set of input symbols 
O:    set of output symbols 
𝑠𝑡𝑎𝑡𝑒_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠:  set of state identifiers 
M,M’:     FSM 
TS:    test suite 
𝑃:    a state cover, which is a set of input sequences. 
𝑄:    a transition cover, which is a set of input sequences. 
s,s’,s0,target:   state 
sc    state from the current set 
si    state from the initial set 
S,𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑡: set of states 
Zs:    state identifier for s 
x,y:    untyped elements of generic sets.    
F:    family of input sequences 
𝛿:    𝑆 ×  𝐼 → 𝑆 
𝛾:    𝑆 ×  𝐼 → 𝑂 
n:    natural number 
 
 


