
Bachelor thesis
Computer Science

Radboud University

Optimization of the NTT function
on ARMv8-A SVE

Author:
Gia Linh Hoang
s4553519

First supervisor/assessor:
Dr. Peter Schwabe

peter@cryptojedi.org

Second assessor:
Prof. Dr. Lejla Batina

lejla@cs.ru.nl

June 25, 2018

Abstract

Quantum computers could break today’s (2018) public-key cryptosystems
if they are ever built. To prevent this from happening NIST started a
post-quantum cryptography standardization process [1]. Kyber [2] is a key
encapsulation mechanism for post-quantum cryptography submitted to this
process and got accepted to the first round. It uses the NTT function to
compute the product of two polynomials efficiently. In this research we will
optimize on assembly level the NTT function for Kyber on the ARMv8-
A SVE processor architecture, which comes with the new feature that the
vectors are scalable [3]. The NTT version made for this thesis could be
assumed to be optimized for ARMv8-A SVE.

Acknowledgements

I want to thank Peter Schwabe for being my supervisor, helping out with
optimizing the code and providing insights on the subject. Furthermore I
want to thank Lejla Batina for being the second assessor. Finally I want
to thank Thom Wiggers for taking the time to help with setting up the
ODROID-C2.

2

Contents

1 Introduction 3

2 Preliminaries 4
2.1 Kyber . 4
2.2 DFT, FFT and NTT . 5
2.3 Reduction methods . 6

2.3.1 Montgomery reduction 7
2.3.2 Barrett reduction . 7

2.4 ARMv8-A SVE . 7
2.4.1 Registers . 8
2.4.2 Most used registers and instructions 9
2.4.3 SVE vectorization . 11

3 Optimizing the NTT 15
3.1 NTT in Kyber . 15
3.2 Optimizing the seventh NTT level 16

3.2.1 The idea . 16
3.2.2 The route to assembly 18
3.2.3 Optimizing the assembly code 19

3.3 Optimizing the sixth NTT level 21
3.3.1 The idea . 21
3.3.2 The route to assembly 22

3.4 The levels 7 until 0 . 23
3.4.1 A code framework for the levels 6 until 0 25

3.5 Problems concerning vector lengths? 26
3.6 Interleave for vector length 128 28

3.6.1 Level 0 . 28
3.6.2 Level 1 . 30
3.6.3 Level 2 . 34

3.7 Interleaving for vector length 256 37
3.7.1 Level 0 . 37
3.7.2 Level 1 . 37
3.7.3 Level 2 . 37

1

3.7.4 Level 3 . 40
3.8 Interleaving for vector length 512 42

3.8.1 Level 0, 1 and 2 . 42
3.8.2 Level 3 . 42
3.8.3 Level 4 . 45

3.9 Interleaving for vector length 1024 45
3.9.1 Level 0, 1, 2 and 3 . 45
3.9.2 Level 4 . 46
3.9.3 Level 5 . 49

3.10 Interleaving for vector length 2048 49
3.10.1 Level 0, 1, 2 and 3 . 49
3.10.2 Level 4 . 49
3.10.3 Level 5 . 56
3.10.4 Level 6 . 56

4 Results 57
4.1 Counting instructions . 57
4.2 Summary . 59

5 Related Work 60

6 Conclusions 62

A Appendix 66
A.1 How to set up the compiler and emulator 66
A.2 How to compile and run code 67
A.3 Level 7 written out in C . 67
A.4 Level 7 compiled with O3 in assembly 67
A.5 Level 6 with 2 loops . 67
A.6 Code framework version . 67

A.6.1 Level 7 . 68
A.6.2 Level 6 . 68
A.6.3 Level 5 . 68

A.7 Interleaved version . 68

2

Chapter 1

Introduction

Many public-key cryptosystems which are used today (2018) are not se-
cure anymore if quantum computers are ever built, because their computing
power is drastically improved with respect to current computers [1]. There
has been a lot of research on quantum computers so it is not unlikely they
will be built in the future [1].

NIST wants to prevent quantum computers from breaking the current
public-key cryptosystems and started a post-quantum cryptography stan-
dardization process [1]. Kyber, a key encapsulation mechanism for post-
quantum cryptography [2], was one of the algorithms submitted to this
process and got accepted to the first round.

In Kyber the NTT function is used to compute the product of two poly-
nomials efficiently, because the naive multiplication of two polynomials has
a high running time because of the nested for loop in the computation. For
this thesis we will optimize the NTT function as it is implemented in Kyber
in assembly on ARMv8-A SVE.

The ARMv8-A SVE (Scalable Vector Extension) architecture was pre-
sented by ARM in 2016 at the Hot Chips symposium in Cupertino [3]. The
architecture comes with the new feature that vectors are scalable [3] and is
not implemented (yet), but the compiler and emulator are currently (May
2018) available on the ARM website [4] and can be run on ARMv8-A.

This leads to our research question: How to optimize the NTT function
in Kyber on ARMv8-A SVE?

After optimizing the NTT, we can check if it is really optimized by
counting the number of operations executed and compare them with the
number of operations for the less optimized version.

3

Chapter 2

Preliminaries

2.1 Kyber

NIST set up a post-quantum cryptography public-key algorithm contest
because they want to standardize an algorithm to be secure on comput-
ers nowadays and post-quantum ones. The research into building a post-
quantum computer is going on and today’s cryptography will not be secure
if large post-quantum computers will be implemented [1].

Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck, Schwabe,
Seiler and Stehlé submitted Kyber, which is a key encapsulation mechanism
for post-quantum cryptography [2], to this contest and it got accepted to
the first round.

The following explanation is a simplified version of Kyber, but shows the
main idea. We will look at the key generation, encapsulation and decapsula-
tion. Kyber has an active and passive part; in this thesis we will only discuss
the passive part which means that Kyber uses a passively secure encryption
as a building block.

We begin with defining the polynomial ring in which we operate: Rq =
Z7681[X]/(X256+1). The multiplication · is a coefficient-wise multiplication.
We also have a centred binomial distribution ψ to create noise which takes
as input ai, bi ∈ {0, 1} and gives an output

∑x
i=1 ai − bi.

Listing 2.8 shows the key generation algorithm, where Parse() samples
elements in Rq and Shake128() gives a secure random output. The algo-
rithm in the listing works with polynomials to keep it simple, but in the real
implementation of Kyber those are matrices over Rq. Listing 2.9 shows the
encapsulation of a key. Listing 2.10 shows the decryption of a message. In
these listings a letter with a hat stands for the NTT form of that variable.

1 r ← {0 ,1}256
2 â ← Parse (Shake128 (r))
3 (s , e) ← ψ
4 ŝ = NTT(s)
5 b = NTT−1 (ŝ · â) + e

4

6

7 PublicKey = (b , r)
8 PrivateKey = ŝ

Listing 2.1: Key generation

1 Input : (PublicKey pk = (b , r) , Message m)
2 â ← Parse (Shake128 (r))
3 (s’ , e’ , e”) ← ψ
4 ŝ’ = NTT(s’)
5 u = NTT−1 (â · ŝ’) + e’

6 b̂ = NTT(b)

7 v = NTT−1 (b̂ · ŝ’) + e”+ Encode (m)
8

9 Ciphertext = (u , v)

Listing 2.2: Encryption

1 Input : (Ciphertext c = (u , v) , PrivateKey s)
2 û = NTT(u)
3 κ = NTT−1 (û · ŝ)
4 m = Decode (v − κ)

Listing 2.3: Decryption

To encrypt we need to encode the message m in order to add noise for
security. This happens in the Encode() function. By choosing the centred
binomial distribution ψ we define how big the noise is. If the noise is too big,
there is a chance decryption does not give the correct plain text. Encode()
takes as input a vector of polynomials and encodes each polynomial and
outputs the byte arrays concatenated in one byte array [2]. The Decode()
function decodes the message. If the encoded integer in the message is close
to 0, the decoded bit is 0, if it is closer to 3840, the bit is 1.

We see that the NTT is used multiple times in Kyber, which is the part
we want to speed up.

2.2 DFT, FFT and NTT

The NTT is a specialization of the DFT, which stands for Discrete Fourier
Transform. The DFT maps a vector x to a vector y linearly [5]. The
difference between NTT and DFT is that NTT does a transform over the
quotient ring Z/pZ where DFT does it over the complex numbers [6].

The DFT can be computed with the Fast Fourier Transform (FFT) [7]
and has a long history [8]. In 1965 Cooley and Tukey described a general
form of the FFT [9] which was seen as a new version [8]. Following Fürer [7]
the DFT is a linear mapping of vector x = (x0, x1, . . . , xn−1)

T to vector y =
(y0, y1, . . . , yn−1)

T , which looks like: yk =
∑n−1

j=0 xj · ωjk, k ∈ {0, . . . n− 1}:

5

ω0·0 ω1·0 ω2·0 ω(n−1)·0

ω0·1 ω1·1 ω2·1 ω(n−1)·1

ω0·2 ω1·2 ω2·2 ω(n−1)·2

...
...

...
. . .

...
...

...
...

. . .
...

ω0·(n−1) ω1·(n−1) ω2·(n−1) ω(n−1)·(n−1)

·

x0

x1

x3
...
...

xn−1

=

y0

y1

y3
...
...

yn−1

For the n-th root of unity it holds that ωn = 1. If n is the smallest

integer such that k ∈ {1, . . . , n} and ωk = 1, then ω is the primitive n-th
root of unity [10]. The fact that it is a primitive n-th root of unity has the
effect that the NTT has an inverse. This property is used to compute the
multiplication of two polynomials efficiently.

To compute the inverse of the NTT of vector y, which is vector x, we
have the formula xj = 1

n ·
∑n−1

k=0 yk · ω−jk, j ∈ {0, . . . , n− 1}:

1

n
·

ω−0·0 ω−0·1 ω−0·2 ω−0·(n−1)

ω−1·0 ω−1·1 ω−1·2 ω−1·(n−1)

ω−2·0 ω−2·1 ω−2·2 ω−2·(n−1)

...
...

...
. . .

...
...

...
...

. . .
...

ω−(n−1)·0 ω−(n−1)·1 ω−(n−1)·2 ω−(n−1)·(n−1)

·

y0

y1

y3
...
...

yn−1

=

x0

x1

x3
...
...

xn−1

We can see the vectors x and y as polynomials, where each element in

the vector is a coefficient in the polynomial. With this we can compute
the product of two polynomials a and b as: DFT−1(DFT (a) · DFT (b)).
Generally we need to zero pad the polynomials for the DFT.

For Kyber we use a specialized version of the DFT, namely the negacyclic
NTT. So the product of two polynomials a and b is computed in Kyber as:
NTT−1(NTT (a) · NTT (b)), where · is a pointwise multiplication [11]. In
Kyber [11] we compute the NTT of a polynomial g =

∑255
i=0 giX

i. The
authors chose the constants ω = 3844, ψ =

√
ω = 62, n = 256, q = 7681.

The NTT of g is then computed as:
∑255

i=0(
∑255

j=0 ψ
jgjω

ij)Xi working over
the ring Rq = Zq[X]/(Xn + 1). This version of the DFT, the NTT, can be
used without zero padding because of the reduction modulo (Xn + 1).

2.3 Reduction methods

Kyber uses two reduction methods modulo q = 7681 in the NTT to com-
pute modular reductions faster. Those reductions are the Montgomery and

6

Barrett reductions. NewHope [12] was the first to propose this for the NTT
in lattice-based cryptography.

2.3.1 Montgomery reduction

In 1985 Montgomery introduced a modular reduction algorithm which is
faster than the schoolbook reduction modulo N [13]. This Montgomery
reduction is used in the NTT in Kyber to do faster reductions. The algo-
rithm needs as input: m = (mn−1 . . .m1m0)b and gcd(m, b) = 1, R = bn,
m′ = −m−1 mod b and T = (t2n−1 . . . t1t0) [14]:

1 A (= (a2n−1 . . . a1a0))← T
2 f o r in range (0 , n−1) :
3 ui ← aim

′ mod b
4 A← A+ uimb

i

5 A← A/bn

6 i f A ≥ m , do A← A−m
7 Return A ≡ T ·R−1 (mod m)

2.3.2 Barrett reduction

Another reduction method which is used in the NTT in Kyber is the Bar-
rett reduction introduced by Barrett [15]. The algorithm has as input
x = (x2k−1 . . . x1x0)b, m = (mk−1 . . .m1m0)b with mk−1 6= 0 and µ =
bb2k/mc [14]:

1 q1 ← bx/bk−1c, q2 ← q1 · µ, q3 ← bq2/bk+1c
2 r1 ← x mod bk+1, r2 ← q3 ·m mod bk+1, r ← r1 − r2
3 i f r < 0 , do r ← r + bk+1

4 whi le r ≥ m , do :
5 r ← r −m
6 Return r

2.4 ARMv8-A SVE

For this thesis we will optimize the NTT as it is implemented in Kyber on
ARMv8-A SVE (Scalable Vector Extension) architecture, which was pre-
sented by ARM in 2016 at the Hot Chips symposium in Cupertino [3]. It
is an extension to the ARMv8-A architecture [16], with key features which
are new compared to ARMv8-A. Two of those key features which are going
to be used in this thesis are:
• Vector registers are scalable
• Instructions can be predicated (relates to the scalable feature)

SVE has not been implemented (yet) but the compiler and emulator are
already available on the ARM website (May 2018) [4]. The compiler and

7

emulator can run on both ARMv8-A architecture and non-ARMv8-A pro-
cessors. Working with the non-ARMv8-A architecture requires more steps
to get it working. Appendix A.1 explains how to set up the compiler and
emulator on the ARMv8-A architecture based on the tutorial on the ARM
site [17]. Appendix A.2 explains how to use it. For this thesis an ODROID-
C2 (with ARMv8-A architecture) is used.

2.4.1 Registers

The ARMv8-A SVE manual describes the registers which are different from
the ARMv8-A registers. The descriptions of the following registers come
from the SVE manual [16]. SVE has four different classes of registers:
• Vector registers
• Predicate registers
• Scalar registers
• First fault registers (FFR)

Only the first three registers are relevant for this thesis, thus only those will
be discussed.

Vector Registers

Vector registers are the registers Z0-Z31. The size of the registers is defined
before the program is executed by passing it as a value to the emulator; on
real hardware this will be fixed by the hardware itself. This size holds for
all vector registers during compiling and can be a value between 128 and
2048 bits and is a multiple of 128 bits.

The elements in one vector register are all 8, 16, 32, 64 or 128 bits,
which is defined within an assembly instruction. Some instructions require
the length of an element as a parameter, defined in the ‘size specifier’ field.
For example add <Zd>.<T>, <Zn>.<T>, <Zm>.<T> adds up the values in
the first source vector Zn and second source vector Zm and stores the result
in the destination vector Zd. <T> is the size specifier and depending on the
instruction the size of elements in a vector could be:

Size specifier Length in bits

.q 128

.d 64

.s 32

.h 16

.b 8

Table 2.1: Size specifiers

8

Predicate registers

Predicate registers are the registers P0-P15. The length of a predicate reg-
ister is 1/8 the length of a vector register. For example if the vector length
is defined at 256 bits, the length of the predicate registers is 32 bits.

Because the vector lengths range between 128 and 1024 bits and a pred-
icate register is 1/8 the length of a vector register, the length of a predicate
register ranges between 16 and 256 bits. Thus, the elements in one predi-
cate register are all 1, 2, 4 or 8 bits. If the lowest bit of an element is 1 the
predicate element is true, and false if it is set at 0.

One predicate element is mapped to a vector element. The correspond-
ing vector element is active if the predicate element is true and inactive
otherwise. The state of such an predicate element can be seen as a flag state
in ‘traditional’ instruction sets.

To make use of scalable vectors, predicated instructions are needed. An
instruction which supports predication only affects the active elements of the
destination vector. The inactive elements are set to zero (zeroing predication
Pg/Z) or remain untouched (merging predication Pg/M).

To be able to execute those predicated instructions ARM introduced
governing predicates. One vector register is linked to a governing predicate
register. But one governing predicate register can be linked to multiple vec-
tor registers. This linking happens by mapping an element in the governing
predicate register to an element in the vector register. If the element in the
predicate register is set to TRUE, this means the corresponding element in
the vector register is active and inactive if the predicate register element is
FALSE.

Scalar registers

Scalar registers (X0-X30) are the ‘basic’ registers. They consist of 64-bit
single data elements. One scalar register can be used to hold a scalar element
or multiple registers can be used to hold elements of an array. When used
as an array, the first scalar register refers to the first element of the array,
the next register to the second element and so on.

When referred to W0-W30 registers, the first 32 bits of the elements of the
X0-X30 registers are meant. For example W0 represents the first 32 bits of
register X1. Register X31 or W31 does not exist, but can be used as a 64-bit
(XZR) or a 32-bit (WZR) zero register. It can also be used as the stack pointer
(SP) [18].

2.4.2 Most used registers and instructions

The following registers and instructions are relevant instructions and regis-
ters for this thesis, their description can be found in the manual [16]:

9

• Normally wzr and xzr are used as a zero register, and sometimes as
SP. In this thesis we use them as zero registers.

• mov dest, src: move src to dest.

• whilelo pred, A, B: go on if A is lower than B.

• lsl: logical shift left.

• msl: logical shift left, but fill the lower bits with ones [19].

• ld1h dest, governing scalable predicate register, [src, offset

register, lsl #1]: predicated load of half words (16 bit elements)
from addresses [src : src+(value in offset register*2)] to dest.

• st1h src, governing scalable predicate register, [dest, offset

register, lsl #1]: predicated store of half words from src to ad-
dresses [dest : dest+(value in offset register)*2].

• sub dest, src1, src2: dest = src1 - scr2.

• uzp1 dest, src1, src2: concatenate even numbered elements of src1
and src2 and place them in dest.

• uzp2 dest, src1, src2: does the same as uzp1, but with odd num-
bered elements.

src1 0 1 2 3

src2 4 5 6 7

dest 0 2 4 6

• trn1 dest, src1, src2: interleave even elements of src1 and src2
and place them in dest.

src1 0 1 2 3

src2 4 5 6 7

dest 0 4 2 6

• trn2 dest, src1, src2: does the same as trn1, but with odd num-
bered elements.

10

• zip1 dest, src1, src2: interleave between elements of the lower
halves of src1 and src2 and put the result in dest.

src1 0 1 2 3

src2 4 5 6 7

dest 0 4 1 5

• zip2 dest, src1, src2: does the same as zip1, but with the upper
halves of src1 and src2.

• ext dest.b, src1.b, src2.b, #imm: extract the bottom of src1

from the byte indicated in #imm, and fill the rest of dest with the rest
of src2.

• :lo12:address: group relocation, in this thesis it is used to initialize
the array zetas.

2.4.3 SVE vectorization

SVE vectorization will be used to optimize the NTT function. We will first
look at what vectorization is and then at vectorization on SVE.

Vectorization

A loop can be vectorized in order to let it run more efficiently. For example
let us consider the following code:

1 i n t A = {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8} ;
2 i n t B = {9 ,10 ,11 ,12 ,13 ,14 ,15 ,16} ;
3 i n t C [8] ;
4

5 f o r (i n t i = 0 ; i < 8 ; i++){
6 C[i] = A[i] + B[i] ;
7 }

Listing 2.4: Adding two arrays

We can see the loop iterates eight times, doing one addition every iteration.
A vectorized version of this code could be:

1 i n t A = {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8} ;
2 i n t B = {9 ,10 ,11 ,12 ,13 ,14 ,15 ,16} ;
3 i n t C [8] ;
4

5 f o r (i n t i = 0 ; i < 2 ; i+=4){
6 C[i : i +3] = A[i : i +3] + B[i : i +3] ;
7 }

Listing 2.5: Adding two arrays (vectorized version)

11

The loop iterates two times in this vectorized version. In each iteration four
additions are done in parallel; the following operations will happen in the
first iteration:

1 C[0] = A[0] + B [0] ;
2 C[1] = A[1] + B [1] ;
3 C[2] = A[2] + B [2] ;
4 C[3] = A[3] + B [3] ;

Listing 2.6: First iteration of vectorized version

And the second iteration:

1 C[4] = A[4] + B [4] ;
2 C[5] = A[5] + B [5] ;
3 C[6] = A[6] + B [6] ;
4 C[7] = A[7] + B [7] ;

Listing 2.7: Second iteration of vectorized version

Vectorization is much more efficient because operations are done in parallel,
which causes the program to run in less time.

SVE vectorization

Predicated instructions can run with different vector lengths, this is the
idea of SVE. We can see the difference between predicated instructions and
normal instructions in the following example.

The example.c program in the tutorial [17] initializes two arrays b and
c, each filled with 1024 random integers, subtracts c from b and stores
the result in array a. At last the program prints the result array a. The
subtract arrays() function in the program, the part that does subtraction,
is the interesting part. We can see this program listed below.

1 #de f i n e ARRAYSIZE 1024
2 i n t a [ARRAYSIZE] ;
3 i n t b [ARRAYSIZE] ;
4 i n t c [ARRAYSIZE] ;
5

6 void sub t r a c t a r r ay s (i n t ∗ r e s t r i c t a , i n t ∗ r e s t r i c t b , i n t ∗ r e s t r i c t c) {
7 f o r (i n t i = 0 ; i < ARRAYSIZE; i++){
8 a [i] = b [i] − c [i] ;
9 }

10 }

Listing 2.8: subtract arrays() of tutorial

If we put the subtract arrays() function in a C file and compile it to
assembly with optimization level 1 we get unpredicated instructions which
make use of scalar registers. The code is represented in Listing 2.6 (with
modified labels, added comments and removed compiler generated comments
to make it more clear):

12

1 . t ex t
2 . f i l e ” subt rac t . c”
3 . g l o b l s ub t r a c t a r r ay s
4 . p2a l i gn 2
5 . type subt ra c t a r ray s , @function
6

7 s ub t r a c t a r r ay s :
8 . c f i s t a r t p r o c
9 mov x8 , xzr //x8 = 0

10

11 . looptop :
12 l d r w9 , [x1 , x8] // load in b [x8]
13 l d r w10 , [x2 , x8] // load in a [x8]
14 sub w9 , w9 , w10 // c [x8] = b [x8] − a [x8]
15 s t r w9 , [x0 , x8] // s t o r e c [x8]
16 add x8 , x8 , #4 // increment x8
17 cmp x8 , #1, l s l #12 // i f x8 < 4096 , go on
18 b . ne . looptop // return to . looptop
19 r e t
20

21 . Lfunc end0 :
22 . s i z e sub t ra c t a r ray s , . Lfunc end0−s ub t r a c t a r r ay s
23 . c f i e ndp r o c

Listing 2.9: Assembly of subtract arrays() in level O1

When we compile this function to assembly with optimization level 3
we get following code (also with modified labels and removed comments to
make it more clear):

1 . t ex t
2 . g l o b l s ub t r a c t a r r ay s
3 . p2a l i gn 2
4 . type sub t ra c t a r ray s , @function
5

6 s ub t r a c t a r r ay s :
7 . c f i s t a r t p r o c
8 . c f i d e f c f a o f f s e t 0
9 or r w9 , wzr , #1024 // s t o r e 1024 in w9

10 mov x8 , xzr //x8 = 0
11 wh i l e l o p0 . s , xzr , x9 // i f (0 < x9) , proceed
12

13 . looptop :
14 //x0 = &a [0] , x1 = &b [0] , x2 = &c [0] , x9 = ar ray l ength
15 // z0 and z1 are temporary vec to r r e g i s t e r s
16 //VL = vector l ength
17 ld1w { z0 . s } , p0/z , [x1 , x8 , l s l #2] // load b [x8 : x8+VL] in z0
18 ld1w { z1 . s } , p0/z , [x2 , x8 , l s l #2] // load c [x8 : x8+VL] in z1
19 sub z0 . s , z0 . s , z1 . s // z0 = z0 − z1
20 st1w { z0 . s } , p0 , [x0 , x8 , l s l #2] // s t o r e z0 in a [x8 : x8+VL]
21 incw x8 // increment x8 by vec to r l ength
22 wh i l e l o p0 . s , x8 , x9 // i f x8 < x9 , go on
23 b . mi . looptop // i f x8 < x9 , re turn to . looptop

13

24 r e t
25 . c f i e ndp r o c

Listing 2.10: Assembly of subtract arrays() in level O3

In every iteration of the loop, parts of array b and c are loaded in:

17 ld1w { z0 . s } , p0/z , [x1 , x8 , l s l #2] // load b [x8 : x8+VL] in z0
18 ld1w { z1 . s } , p0/z , [x2 , x8 , l s l #2] // load c [x8 : x8+VL] in z1

At line 16, ld1w loads words (32 bit elements) of array b in vector registers
z0.s (also 32 bit elements) [16]. Here, x1 is the starting address of array
b, and x8 is the loop counter. Loading is done by computing the starting
address from where to load: starting address of b + x8·4. The same idea
also happens at line 17 for array c.

At line 20 x8 is incremented by the vector length in each iteration:

20 incw x8 // increment x8 by vec to r l ength

ld1w and st1w are linked with the predicate p0, which causes the load and
store to affect only the part of the array which is needed for that iteration;
the unnecessary parts will be set to zero (zeroing predication). Thus for ev-
ery iteration the predicated instructions take into account the vector length,
which makes it possible to run the code with any vector length.

14

Chapter 3

Optimizing the NTT

3.1 NTT in Kyber

The NTT is used in Kyber to compute the product of two polynomials. As
we can see in the code snippet below, the NTT function is implemented in
Kyber with a triple nested for-loop. The outer for-loop iterates through the
eight levels of the NTT and the inner loops iterate trough the elements of
the given array p while doing operations on those elements. The array p

represents the polynomial and the elements of p represent the coefficients of
this polynomial. This array always has 256 elements, thus the polynomial
has 256 coefficients. The array zetas is the precomputed power of ψ for
Kyber. montgomery reduce() and barrett reduce() are used instead of
the normal modulo operation in order to reduce the number of cycles [10].

1 extern const u i n t 16 t z e t a s [] ;
2 KYBERN = 256 ;
3 KYBERQ = 7681 ;
4

5 void ntt (u i n t 16 t ∗p) {
6 i n t l e v e l , s t a r t , j , k ;
7 u in t 16 t zeta , t ;
8 k = 1 ;
9

10 f o r (l e v e l = 7 ; l e v e l >= 0 ; l e v e l −−){
11 f o r (s t a r t = 0 ; s t a r t < KYBERN; s t a r t = j + (1<< l e v e l)) {
12 zeta = ze ta s [k++];
13 f o r (j = s t a r t ; j < s t a r t + (1<< l e v e l) ; ++j) {
14 t = montgomery reduce ((u i n t 32 t) ze ta ∗ p [j + (1<< l e v e l)]) ;
15 p [j + (1<< l e v e l)] = ba r r e t t r educ e (p [j] + 4∗KYBERQ − t) ;
16 p [j] = ba r r e t t r educ e (p [j] + t) ;
17 }
18 }
19 }
20 }

Listing 3.1: NTT function in C

15

3.2 Optimizing the seventh NTT level

3.2.1 The idea

The first level of the NTT is actually the seventh level. We will count from
7 to 0 for the levels. The seventh level is the first iteration of the most outer
for-loop in Listing 3.1. We can see that the seventh level only loops through
the second nested for-loop once, because the condition start < KYBER N is
not met anymore after one iteration. Thus for this level, the second nested
for-loop has not to be taken into account and we only have to look at the
third nested for-loop.

The seventh level of the NTT can be thought of as follows. Array p is
used to compute the new version of array p after the for-loop, which we will
call p’ from now on. In the first iteration we see:

p[0]’ = p[0] + (zeta · p[128])
p[128]’ = p[0] + 4 · 128 - (zeta · p[128])

This is represented graphically in Figure 3.1.

p[0] p[0]’

p[1] p[1]’
...

...

p[127] p[127]’

p[128] p[128]’

p[129] p[129]’
...

...

p[255] p[255]’

Figure 3.1: The first butterfly operation in level 7

This is a Gentleman-Sande butterfly operation of the FFT [20] which
happens pairwise for every p[j] and p[j+128] for j ∈ [0, . . . , 127]. In Figure
3.2 we can see the second butterfly operation p[1] * p[129]. Figure 3.3
displays what happens in the last operation p[127] * p[255](green lines).

16

p[0] p[0]’

p[1] p[1]’
...

...

p[127] p[127]’

p[128] p[128]’

p[129] p[129]’
...

...

p[255] p[255]’

Figure 3.2: The first and second butterfly operation in level 7

p[0] p[0]’

p[1] p[1]’
...

...

p[127] p[127]’

p[128] p[128]’

p[129] p[129]’
...

...

p[255] p[255]’

p low

p high

Figure 3.3: The first, second and last butterfly operation in level 7

We see that the operations are done independently, thus vectorization
can be done easily. The idea is to take p[128:255] (p high) to compute t.
Then we take p[0:127] (p low) to compute p[0:127]’ and p[128:255]’.
With vector length 2048 bits this all happens in one iteration of the loop,
instead of in 128 iterations when no vectorization has taken place.

From now on we will refer to one iteration of the second nested for-loop
in Listing 3.1 as a packet of butterfly operations. The inputs to a packet of
butterfly operations are a p low and a p high. For instance at this level,
the butterfly operations of p[0:127]’ (p low) and p[128:255]’ (p high)
happen in one iteration of this second nested for-loop, and thus one packet
of butterfly operations.

Every packet multiplies p high with an element of the array zetas

to compute p’. The first packet uses zetas[1], the second packet uses
zetas[2], and so on.

17

3.2.2 The route to assembly

To optimize the code in assembly, we first take the level out of the for-loop.
The ntt() function then becomes:

1 void ntt (u i n t 16 t ∗p) {
2 i n t l e v e l , s t a r t , j , k ;
3 u in t 16 t zeta , t ;
4

5 k = 1 ;
6

7 n t t l e v e l 7 (p , &k) ;
8

9 f o r (l e v e l = 6 ; l e v e l >= 0 ; l e v e l −−){
10 f o r (s t a r t = 0 ; s t a r t < KYBERN; s t a r t = j + (1<< l e v e l)) {
11 zeta = ze ta s [k++];
12 f o r (j = s t a r t ; j < s t a r t + (1<< l e v e l) ; ++j) {
13 t = montgomery reduce ((u i n t 32 t) ze ta ∗ p [j + (1<< l e v e l)]) ;
14

15 p [j + (1<< l e v e l)] = ba r r e t t r educ e (p [j] + 4∗KYBERQ − t) ;
16 p [j] = ba r r e t t r educ e (p [j] + t) ;
17 }
18 }
19 }
20 }

Then we rewrite the C function such that it does not contain any other
function calls. That way we can compile the C code to assembly using
optimization level O3 and understand the assembly code more easily. We
can then use the assembly code as a starting point and optimize it further.
So we have to write out montgomery reduce() and barrett reduce() in
nttlevel7(). The result of nttlevel7() can be seen in Appendix A.3.

When this is compiled to assembly with optimization level O3 we get
the assembly code in Appendix A.4. Lines 13-32 initialize the variables and
lines 33-84 represent the for-loop we take into account for this level. As we
can see, the compiler already optimized the code, but we could make it more
efficient.

The loop in Appendix A.4 does the following:

1. Line 34: compute the begin address of p.

2. Line 35:

35 ld1h { z5 . h} , p1/z , [x11 , x10 , l s l #1]

Take the upper half of p (= p[128:255] = p high), which is the grey
coloured part in the figure.

p[0] p[127] p[128] p[255]

18

3. Lines 36-37:

36 uunpklo z6 . s , z5 . h
37 uunpkhi z5 . s , z5 . h

Take the lower half of p high (vector register z5), zero extend each
element (16 bit) to double the size (32 bit) and place them in vector
register z6 using the instruction uunpklo. Do the same with the upper
half of p high and place the result in z5 using the instruction uunpkhi.

In instruction uunpklo z6.s,z5.h we use the size specifiers .s and
.h because z5.h has 16 bit elements and we turn them into 32 bit
elements in z6.s. The same applies to uunpkhi z5.s,z5.h.

z5.h p[128] p[129] · · · p[191] p[192] p[193] · · · p[255]

z6.s p[128]000 p[129]000 · · · p[191]000

z5.s p[192]000 p[193]000 · · · p[255]000

These operations must occur, because the elements in z5 are 16 bits,
but we need the elements to be 32 bits in order to do operations on
them without the elements overflowing.

4. Lines 38-54 (line 48 excluded): compute t and
KYBER Q quadrupled decremented.

5. Line 48: take the lower half of p (= p[0:127] = p low).

6. Lines 55-56: do the same with p low as done in step 3 with p high.

7. Lines 57-76: compute barrett param and barrett param2 using -KYBER Q.

8. Lines 78-81: combine the lower and upper half of barrett param and
barrett param2, because it was split in step 2 and 4.

9. Line 82-84: increment x8 (the loop counter) with the vector length
and continue with the loop if applicable.

3.2.3 Optimizing the assembly code

The code generated by the compiler was already optimized because it was
vectorized. But we can optimize it further, because in this version we work
with 16-bit instead of 32-bit elements while doing the Barrett reduce, which
the compiler did not optimize by itself. The optimized code can be seen in
Appendix A.6.1, where U means the upper half of an array and L means the
lower half.

19

Lines 13-31 initialize the variables, lines 33-70 represent the for-loop we
take into account for this level.

Lines 13-31 are the same as lines 13-32 in Appendix A.4 except for a
couple of lines. These include the orr x,xzr,y operations, with x and xzr

as the source registers and y the destination register. These are changed
into mov x,y because x OR xzr is the same as mov x,y but it is more in
the clear what happens here when using mov.

Furthermore, z4 was initialized in Appendix A.4 as z4.s, but we now
do 16 bit operations on z4, thus we initialize it as z4.h.

The loop in Appendix A.6.1 does the following:

1. Lines 33-51: the same as lines 33-52 in Appendix A.4.

2. Line 52:

52 uzp1 z6 . h , z6 . h , z5 . h

The operations after line 48 do not need to operate on 32 bits anymore,
so we can return to vector registers having 16 bits elements. This is
done by concatenating the lower and upper halves of t with instruction
uzp1.

In instruction uzp1 z6.h,z6.h,z5.h we use the size specifier .h be-
cause we split each 32 bit element of z6 and z5 in two 16 bit elements.
One containing an element of t and the other containing zero’s. We
now have z5 and z6 in the form of how it is represented in the two
upper bars in the figure below. Then executing uzp1 takes each t

element out of both source vector registers and puts them in z6.

z6.h t[0] 000 t[1] 000 · · · t[127] 000

z5.h t[128] 000 t[129] 000 · · · t[255] 000

z6.h t[0] t[1] · · · t[127] t[128] t[129] · · · t[255]

3. Line 54: the same as step 5 in section 3.2.2. We do not need to extend
the elements of p low to 32 bit like in Appendix A.4, because the
operations will not let the elements overflow as stated in the previous
item.

4. Lines 54-66: compute barrett param and barrett param2 and store
them respectively in p[0:127] and p[128:255].

5. Lines 68-70: the same as step 9 in section 3.2.2

20

3.3 Optimizing the sixth NTT level

3.3.1 The idea

This level differs from the seventh level, because it must use the second
nested for-loop in Listing 3.1. We now iterate twice through this for-loop,
thus we have two packets of butterfly operations.

The first packet of butterfly operations includes pairwise operations for
every p[j] and p[j+64] for j ∈ [0, 63]. In Figure 3.4 we can see what
happens in the first (black lines) and last operation (green lines).

p[0] p[0]’

p[1] p[1]’
...

...

p[63] p[63]’

p[64] p[64]’

p[65] p[65]’
...

...

p[127] p[127]’

Figure 3.4: The first and last operation of the first packet of butterfly oper-
ations

The operations in the second packet happen pairwise for every p[j] and
p[j+64] for j ∈ [64, 191]. In Figure 3.5 we can see what happens in the first
packet (explained in the paragraph above), and in the first (purple lines)
and last operation (yellow lines) of this second packet. We can also see
what parts are p low and what parts are p low.

21

p[0] p[0]’

p[1] p[1]’
...

...

p[63] p[63]’

p[64] p[64]’

p[65] p[65]’
...

...

p[127] p[127]’

p[128] p[128]’

p[129] p[129]’
...

...

p[191] p[191]’

p[192] p[192]’

p[193] p[193]’
...

...

p[255] p[255]’

p low

p high

p low

p high

Figure 3.5: The first and last operations of the two packets of butterfly
operations

3.3.2 The route to assembly

To optimize this level we could put the level in a separate function and look
at the assembly code like in the previous level. But when we do this, the
compiler does not use predicated instructions, but normal vector registers.
In order to optimize this level we use the optimized assembly code of the
previous level and modify it.

Because the sixth level does two packets of butterfly operations, it ac-
tually runs the assembly code of the seventh level twice. As we can see in
Appendix A.5 the loop of the seventh level is copied and pasted twice in this
level.

Besides copying we also change a couple of lines:

• In the first loop, p high is p[64:127] and p low is p[0:63].

• After the first loop we prepare a couple of variables for the second
loop:

– Re-initialize zeta

22

72 add x15 , x15 , w5 , l s l #1 //x10 =
ze ta s [z e t a count e r]

73 ld1rh { z2 . s } , p0/z , [x15] // broadcast x10 to z2
= zeta

– Increment k by 1

74 add w5 , w5 , #1 //w5 = w5 + 1 = ze ta count e r

– Set the loop counter (x8) to 0 again

75 mov x8 , xzr //x8 = 0 (32 b i t s)

• In the second loop, p high is p[192:255] and p low is p[128:191].

• At the end of the program we store the new value of k in RAM.

119 s t r w5 , [x1] //x1 = w5 = ze ta count e r to RAM

3.4 The levels 7 until 0

As we can see, there is a pattern across the levels and in the C code (Listing
3.1), the butterfly operations occur at a narrower range for a higher level.

The whole seventh level happens in one packet of butterfly operations.
With the first operation being p[0] * p[128], as seen in Figure 3.3.

The sixth level happens in two packets of butterfly operations. The first
operations for the packets can be seen in Figure 3.5 and they are:
• p[0] * p[64]

• p[128] * p[192]

The next level, the fifth one, has four packets of butterfly operations
with the first operations for each packet being:
• p[0] * p[32]

• p[64] * p[96]

• p[128] * p[160]

• p[192] * p[224]

This is also graphically displayed in Figure 3.6.

23

p[0] p[0]’
...

...

p[32] p[32]’
...

...

p[64] p[64]’
...

...

p[96] p[96]’
...

...

p[128] p[128]’
...

...

p[160] p[160]’
...

...

p[192] p[192]’
...

...

p[224] p[224]’

Figure 3.6: The first operation of each butterfly packet in level 5

The fourth level has eight packets of butterfly operations. The first
operations of each packet are:
• p[0] * p[16]

• p[32] * p[48]

• p[64] * p[80]

• p[96] * p[112]

• p[128] * p[144]

• p[160] * p[176]

• p[192] * p[208]

• p[224] * p[240]

We can see the pattern; the number of packets is doubled by each level.
And the addresses for the very first butterfly operation for a level is com-
puted by p[0] * p[1 << level].

For the first operations of the remaining packets we increase the ad-
dresses of p with 2(1 << level) for each level. Thus for the second packet it
would be p[0 + 2(1 << level) * p[(1 << level) + 2(1 << level)]. With
this in mind we can compute the first operations of each packet of butterfly
operations for the remaining levels.

24

3.4.1 A code framework for the levels 6 until 0

Now we see the pattern, the two loops of level six in Appendix A.5 can be
rewritten to one loop and then we can reuse the code for the following levels
after that.

The rewritten code for level six is represented in Appendix A.6.2 and
the main idea is: do one packet of butterfly operations in the loop .loop.
The number of packets is maintained by the outer loop, .loops.

To visualize what happens in this level, we can look back at Figure 3.5.
The same procedure takes place, but now the first packet of butterfly oper-
ations (black and green lines) happen in the first iteration of .loops, and
the second packet (purple and yellow lines) happen in the second iteration
of .loops.

Furthermore it has the following code fragments worth noticeable:

1. Set 1 << level, the number of butterfly operations per packet:

24 mov w9 , #64 //w9 = 64 = l e v e l s h i f t

2. Set the number of butterfly operations packets:

27 mov w16 , #2 // . l oops cond i t i on

3. Set 1 << level, the starting address of p high for one packet:

29 mov x10 , #64

4. Set 0, the starting address of p low

30 mov x12 , xzr

5. Increment x10 and x12 for the next (second) packet of butterfly oper-
ations

80 add x10 , x10 , #128
81 add x12 , x12 , #128

With a couple of those values changed for each level, we can reuse the
code in Appendix A.6.2 for the levels 5 up to and including 0. For example
for level 5, which code can be found in Appendix A.6.3:

1. Set 1 << level, the number of butterfly operations per packet:

24 mov w9 , #32 //w9 = 32 = l e v e l s h i f t

2. Set the number of butterfly operations packets:

27 mov w16 , #4 // . l oops cond i t i on

25

3. Set 1 << level, the starting address of p high for one packet:

29 mov x10 , #32

4. Increment x10 and x12 for the next packet of butterfly operations

80 add x10 , x10 , #64
81 add x12 , x12 , #64

The code for level 4 to 0 can be found in Appendix A.6.

3.5 Problems concerning vector lengths?

The optimized version of level 7 would run perfectly with all vector lengths.
If the vector length is 2048 and we have 16 bit integers in array p, we can
store 2048/16 = 128 elements per vector register. This means we can load
p low in one vector register and p high in one vector register. Then .loop

just runs one time. The code will also run for smaller vector lengths, then
.loop would run more times.

The optimized level 6 would run perfectly with vector length 1024. We
can then store 1024/16 = 64 elements in one vector register. Thus p low

could be stored in one vector register and this also applies to p high. But
we would think level 6 will not run with vector length 2048, because we want
to load in fewer elements than the vector length. However, this is handled
by the governing predicate p1. It only uses the part of the vector register
needed. Thus for vector length 2048, only the half of it would be used. This
means using vector length 2048 for level 6 does not actually use all of the
vector register.

This problem occurs for every level below the seventh level. To optimize
this, we can interleave elements in a vector register in order to use the space
in the register more efficiently. Interleaving means rearranging the elements
in a vector register. For instance we want to interleave elements in level 6 of
the NTT for vector length 2048. We rearrange the elements such that the
vector register is fully filled with elements. To create the new p high for
the first iteration we take p high of the first packet of butterfly operations
(p[64:127]) and p high of the second packet p[192:255], and we put them
behind each other in one register:

26

p high of

first packet

p[64]

p[65]
...

p[127]

p high of

second packet

p[192]

p[193]
...

p[255]

→

new p high

p[64]

p[65]
...

p[127]

p[192]

p[193]
...

p[255]

Figure 3.7: Create the new p high

We also create a new p low by putting the p low of the first packet of but-
terfly operations (p[0:63]) and the p low of the second packet (p[128:191])
in one register:

p low of

first packet

p[0]

p[1]
...

p[63]

p low of

second packet

p[128]

p[129]
...

p[191]

→

new p low

p[0]

p[1]
...

p[63]

p[128]

p[129]
...

p[191]

Figure 3.8: Create the new p low

Now that we created the new p high and p low we can go on with the
rest of the operations. As mentioned before in every packet of butterfly
operations p high multiplies with an element of the array zetas. For this
level we multiply zetas[2] with the the lower half of the new p high, and
zetas[3] with the upper half of the new p high. In order to do this we fill
a vector register with zetas[2] in the lower half and zetas[3] in the upper
half. We can then use the filled vector to multiply with the new p high in
one operation.

27

new p high

p[64]

p[65]
...

p[127]

p[192]

p[193]
...

p[255]

×

zetas

zetas[2]

zetas[2]
...

zetas[2]

zetas[3]

zetas[3]
...

zetas[3]

Figure 3.9: Multiply the new p high with zetas

After doing the rest of the operations we have to revert p to the old
format by taking the upper and lower half of new p high and put them
back in p high of the first packet and p high of the second packet. We will
also do this for the new p low.

We interleave for the following levels when:
• Level 7: never interleave
• Level 6: interleave if vector length > 1024
• Level 5: interleave if vector length > 512
• Level 4: interleave if vector length > 256
• Level 3: interleave if vector length > 128
• Level 2: interleave if vector length > 64
• Level 1: interleave if vector length > 32
• Level 0: interleave if vector length > 16

So if we want to make it more space efficient, we always have to interleave
in level 2,1 and 0, because the minimum vector length in SVE is 128. In the
following sections we will go through the interleaved levels for each vector
length. The code for each level can be found in Appendix A.7.

3.6 Interleave for vector length 128

3.6.1 Level 0

In level 0 a packet of butterfly operations consist of one butterfly operation.
Which means a butterfly operation happens on a pairwise level, thus every
even numbered element of p is a p low for a packet and every odd numbered
element is p high for a packet. We can make full use of the vector length by
putting the p low elements of every butterfly operation in one vector register
and all the p high elements in another register. The vector length is 128,

28

meaning we can store 128/16 = 8 elements in one vector register. Thus
we can store eight elements of p high in one register and eight elements of
p low in one register. Therefore we load the first (p1) and second (p2) eight
elements of p and interleave them to fill the new p low and p high:

p1.h

p[0]

p[1]
...

p[6]

p[7]

} p low

} p high

} p low

} p high

(a) p1

p2.h

p[8]

p[9]
...

p[14]

p[15]

} p low

} p high

} p low

} p high

(b) p2

Figure 3.10: Load in the first and second eight elements

Then we create the new p low and new p high:

uzp1 a.h,p1.h,p2.h

p[0]

p[2]

p[4]

p[6]

p[8]

p[10]

p[12]

p[14]

(a) The new p low

uzp2 b.h,p1.h,p2.h

p[1]

p[3]

p[5]

p[7]

p[9]

p[11]

p[13]

p[15]

(b) The new p high

Figure 3.11: The new p low and p high

In this level we need zetas[128:255], where each butterfly operation
needs one element of zetas. Thus for the first iteration we load in zetas[128:135]

to multiply with p high:

29

new p high

p[1]

p[3]

p[5]

p[7]

p[9]

p[11]

p[13]

p[15]

×

zetas

zetas[128]

zetas[129]

zetas[130]

zetas[131]

zetas[132]

zetas[133]

zetas[134]

zetas[135]

Figure 3.12: Multiply the new p high with zetas

After finishing the rest of the operations we need to revert p to the old
format:

zip1 c.h,a.h,b.h

p[0]

p[1]
...

p[6]

p[7]

(a) Original format of p1

zip2 d.h,a.h,b.h

p[8]

p[9]
...

p[14]

p[15]

(b) Original format of p2

Figure 3.13: The original format of p1 and p2

We will do this way of interleaving for every iteration. In each iteration
we load 16 elements, thus we need to iterate 256/16=16 times to complete
a whole array.

3.6.2 Level 1

The idea of interleaving is the same as for level 2; we put elements of p low

in a vector register and the elements of p high in one register.
In this level a packet of butterfly operations consists of two butterfly

operations, causing p low and p high being:

30

p1.h

p[0]

p[1]

p[2]

p[3]

p[4]

p[5]

p[6]

p[7]

p low

p high

p low

p high

(a) p1

p2.h

p[8]

p[9]

p[10]

p[11]

p[12]

p[13]

p[14]

p[15]

p low

p high

p high

p high

(b) p2

Figure 3.14: Load in the first and second eight elements

Then we get the even and odd elements of p1 (a) and p2 (b) in two
different registers and then create the new p low (c) and new p high (d):

31

uzp1 a.h,p1.h,p2.h

p[0]

p[2]

p[4]

p[6]

p[8]

p[10]

p[12]

p[14]

uzp2 b.h,p1.h,p2.h

p[1]

p[3]

p[5]

p[7]

p[9]

p[11]

p[13]

p[15]

→

(a) Even and odd ele-
ments

trn1 c.h,a.h,b.h

p[0]

p[1]

p[4]

p[5]

p[8]

p[9]

p[12]

p[13]

trn2 d.h,a.h,b.h

p[2]

p[3]

p[6]

p[7]

p[10]

p[11]

p[14]

p[15]

(b) The new p low and
new p high

Figure 3.15: Create the new p low and new p high

For the first iteration we need zetas[64:67], which we will get by load-
ing in zetas[64:71] and getting the first half of it:

32

z.h

zetas[64]

zetas[65]

zetas[66]

zetas[67]

zetas[68]

zetas[69]

zetas[70]

zetas[71]

uunpklo e.s,z.h

zetas[64]

zetas[65]

zetas[66]

zetas[67]

→

Figure 3.16: Get the lower half of z

Later on the new p high will be split in half and zero extended. We will
call the first half p highL and the other half p highU. zetas must be in the
same format as those two registers in order to be multiplied with them:

zip1 f.s,e.s,e.s

zetas[64]

zetas[64]

zetas[65]

zetas[65]

(a) zetas for p highL

zip2 g.s,e.s,e.s

zetas[66]

zetas[66]

zetas[67]

zetas[67]

(b) zetas for p highU

Figure 3.17: Create zetas for p highL and p highU

p highL.s

p[2]

p[3]

p[6]

p[7]

×

f.s

zetas[64]

zetas[64]

zetas[65]

zetas[65]

(a) Multiply p highL

with zetas

p highU.s

p[10]

p[11]

p[14]

p[15]

×

g.s

zetas[66]

zetas[66]

zetas[67]

zetas[67]

(b) Multiply p highU

with zetas

Figure 3.18: Multiply p high with zetas

Then we return to the old format of p after finishing the rest of the

33

operations by returning to the odd and even elements of p1 (h) and p2 (i)
and then the original format of p1 (j) and p2 (k):

trn1 h.h,c.h,d.h

p[0]

p[2]

p[4]

p[6]

p[8]

p[10]

p[12]

p[14]

trn2 i.h,c.h,d.h

p[1]

p[3]

p[5]

p[7]

p[9]

p[11]

p[13]

p[15]

→

(a) The odd and even el-
ements

zip1 j.h,h.h,i.h

p[0]

p[1]

p[2]

p[3]

p[4]

p[5]

p[6]

p[7]

zip2 k.h,h.h,i.h

p[8]

p[9]

p[10]

p[11]

p[12]

p[13]

p[14]

p[15]

(b) The original format
of p1 and p2

Figure 3.19: Return to the original format of p1 and p2

3.6.3 Level 2

For this level the idea is the same as for level 0 and 1.
A packet of butterfly operations consists of four butterfly operations, so

p high and p low are:

34

p1.h

p[0]

p[1]

p[2]

p[3]

p[4]

p[5]

p[6]

p[7]

p low (a1)

p high (b1)

(a) p1

p2.h

p[8]

p[9]

p[10]

p[11]

p[12]

p[13]

p[14]

p[15]

p low (c1)

p high (d1)

(b) p2

Figure 3.20: Load in the first and second eight elements

Then we interleave by putting the p lows (a1 and c1) in one register. A
p low or a p high in this level consists of 4 elements, which is 4 · 16 = 64
bits. This means we can use the .d specifier to move chunks of 64 bits in a
vector. So we can get the new p low in one instruction.

For the p highs (b1 and d1) we put them in two separate registers with
32-bit elements (they need to be 32 bits later on):

uzp1 a.d,p1.d,p2.d

a1

c1

(a) The new p low

uunpkhi b.s,p1.h

b1

(b) p highL

uunpkhi c.s,p2.h

d1

(c) p highU

Figure 3.21: Make the new p low and p highL and p highU

In the first iteration we need zetas[32:33]. Because p highL and
[p highU] are 32-bit we can load in zetas in 32 bit elements immediately:

35

ldrh d.s

zetas[32]

zetas[32]

zetas[32]

zetas[32]

(a) zetas for p highL

ldrh e.s

zetas[33]

zetas[33]

zetas[33]

zetas[33]

(b) zetas for p highU

Figure 3.22: Create zetas for p highL and p highU

Then we can multiply zetas with p highL and p highU:

p highL.s

p[4]

p[5]

p[6]

p[7]

×

d.s

zetas[32]

zetas[32]

zetas[32]

zetas[32]

(a) Multiply p highL

with zetas

p highU.s

p[12]

p[13]

p[14]

p[15]

×

e.s

zetas[33]

zetas[33]

zetas[33]

zetas[33]

(b) Multiply p highU

with zetas

Figure 3.23: Multiply p high with zetas

Later on the two halves (p highL and p highU) will be merged into the
new p high. We will call this new p high, f in the following operations.

After all the operations we need to get back to the old format of p1 and
p2:

uzp1 g.d,a.d,f.d

a1

b1

(a) The original format
of p1

uzp1 g.d,a.d,f.d

c1

d1

(b) The original format
of p2

Figure 3.24: Get back to the original format of p1 and p2

36

3.7 Interleaving for vector length 256

3.7.1 Level 0

Level 0 for vector length 256 uses the same method as for vector length
128, because in this level we can still interleave by taking the odd and even
elements in order to make the new p low and new p high; it is not affected
by the vector length. The difference is that we now work with 16 elements
in a vector register instead of 8 elements. Therefore p1, p2, the new p low

and the new p high contain 16 elements. For vector length 256 we have to
modify the code for vector length 128 so that it loads in 16 elements for p1
and 16 for p2.

3.7.2 Level 1

The method for level 1 also stays the same, as interleaving by taking the
odd and even elements and thereafter the trn1 and trn2 of those elements
is not affected by the vector length. Like for level 0, we have to modify
the code such that it loads in 16 elements for p1 and 16 for p2 instead of 8
elements.

3.7.3 Level 2

Creating the new p low can be done in the same way as in level 2 for vector
length 128, because interleaving by taking chunks of 64-bit elements is not
affected by the vector length. But we cannot create p highL and p highU

directly from p1 and p2 as we did for vector length 256, thus we use the
same method for p low for p high:

37

p1.h

p[0]
...

p[3]

p[4]
...

p[7]

p[8]
...

p[11]

p[12]
...

p[15]

p low (a1)

p high (b1)

p low (a2)

p high (b2)

(a) p1

p2.h

p[16]
...

p[19]

p[20]
...

p[23]

p[24]
...

p[27]

p[28]
...

p[31]

p low (c1)

p high (d1)

p low (c2)

p high (d2)

(b) p2

Figure 3.25: Load in the first and second 16 elements

Then we get the p lows of p1 (a1 and a2) and p2 (c1 and c2) to create
the new p low (a) and we do the same for the p highs to create the new
p high (b):

uzp1 a.d,p1.d,p2.d

a1

a2

c1

c2

(a) The new p low

uzp2 b.d,p1.d,p2.d

b1

b2

d1

d2

(b) The new p high

Figure 3.26: Create the new p low and new p high

To get zetas in the right format we also use the same method as in level
1 for vector length 128. Now we need zetas[32:35] for the first iteration,
zetas[32:33] for p highL and zetas[34:35] for p highU. This can be done
by first getting the half of the loaded in zetas it and zipping until we get
the right format:

38

z.h

zetas[32]

zetas[33]

zetas[34]

zetas[35]
...

zetas[46]

zetas[47]

uunpklo c.s,z.h

zetas[32]

zetas[33]

zetas[34]

zetas[35]
...

zetas[39]

→

Figure 3.27: Get the lower half of z

And then we zip until we have the right format of zetas to be multiplied
with p highL (e) and p highU (f):

zip1 d.s,c.s,c.s

zetas[32]

zetas[32]

zetas[33]

zetas[33]

zetas[34]

zetas[34]

zetas[35]

zetas[35]

→

(a) The first zip

zip1 e.s,d.s,d.s

zetas[32]

zetas[32]

zetas[32]

zetas[32]

zetas[33]

zetas[33]

zetas[33]

zetas[33]

zip2 f.s,d.s,d.s

zetas[34]

zetas[34]

zetas[34]

zetas[34]

zetas[35]

zetas[35]

zetas[35]

zetas[35]

(b) The right format of
zetas

Figure 3.28: The right format of zetas for p highL and p highU

39

To go back to the original format of p1 (g) and p2 (h) we do:

zip1 g.d,a.d,b.d

a1

b1

a2

b2

(a) The original format
of p1

zip2 h.d,a.d,b.d

c1

d2

c1

d2

(b) The original format
of p2

Figure 3.29: Return to the original format of p1 and p2

3.7.4 Level 3

In level 3 p low and p high are the halves of a vector length, which means
we can merge the lower halves of p1 (a) and p2 (b) to get the new p low

(c). For p highL (d) we take the upper half of p1, and for p highU (e) the
upper half of p2:

p1.h

p[0]
...

p[7]

p[8]
...

p[15]

p low (a1)

p high (b1)

(a) p1

p2.h

p[16]
...

p[23]

p[24]
...

p[31]

p low (c1)

p high (d1)

(b) p2

Figure 3.30: Load in the first and second 16 elements

40

uunpklo a.s,p1.h

a1

uunpklo b.s,p2.h

c1

→

(a) The lower halves of
p1 and p2

uzp1 c.h,a.h,b.h

a1

c1

(b) The new p low

Figure 3.31: Create the new p low

uunpkhi d.s,p1.h

b1

(a) p highL

uunpkhi e.s,p2.h

d1

(b) p highU

Figure 3.32: Create p highL and p highU

For this level we load in zetas the same way as for level 2 for vector
length 128; we load in zetas for p highL immediately and this also holds
for zetas for p highU.

We go back to the original format of p1 (k) and p2 (l) by taking the
halves (g,h,i,j) and merging them again. Later in the program p highL

and p highU are merged in one register, let it be register f.

41

uunpklo g.s,c.h

a1

uunpklo h.s,f.h

b1

uunpkhi i.s,c.h

c1

uunpkhi j.s,f.h

d1

→

→

(a) The odd and even el-
ements

uzp1 k.h,g.h,i.h

a1

b1

uzp1 l.h,h.h,j.h

c1

d1

(b) The original format
of p1 and p2

Figure 3.33: Return to the original format of p1 and p2

3.8 Interleaving for vector length 512

3.8.1 Level 0, 1 and 2

Level 0, 1 and 2 are done in the same way as for vector length 256, because
the methods used are not affected by the vector length. We do have to
change some constants so that we load in 32 elements instead of 16 elements
for p1 and p2.

3.8.2 Level 3

For level 3 we also make use of the .d specifier; a p low or p high consists
of 8 elements, which means it is 8 · 16 = 128 bits long, so using this specifier
we would work with halves of the elements. It would be more convenient to
work with the .q specifier, but we would then need the operation uzp1 and
uzp2 which do not support .q.

We load in p1 and p2 and get the lower halves of the p lows and p highs
in two separate registers (a and b); in which we we indicate the lower part
of a p low or p high with a ‘L’ and the upper part with a ‘U’. Then we
shuffle them to the new p low (c) and new p high (d):

42

p1.h

p[0]
...

p[7]

p[8]
...

p[15]

p[16]
...

p[23]

p[24]
...

p[31]

p low (a1)

p high (b1)

p low (a2)

p high (b2)

(a) p1

p2.h

p[32]
...

p[39]

p[40]
...

p[47]

p[48]
...

p[55]

p[56]
...

p[63]

p low (c1)

p high (d1)

p low (c2)

p high (d2)

(b) p2

Figure 3.34: Load in the first and second 32 elements

43

uzp1 a.d,p1.d,p2.d

a1L

b1L

a2L

b2L

c1L

d1L

c2L

d2L

uzp2 b.d,p1.d,p2.d

a1U

b1U

a2U

b2U

c1U

d1U

c2U

d2U

→

(a) The lower and upper
halves of the p lows and
p highs

trn1 c.d,a.d,b.d

a1L

a1U

a2L

a2U

c1L

c1U

c2L

c2U

trn2 d.d,a.d,b.d

b1L

b1U

b2L

b2U

d1L

d1U

d2L

d2U

(b) The new p low and
new p high

Figure 3.35: Create the new p low and new p high

We load in zetas the same way as we did in level 2 for vector length
256. We now do an extra zip1 after the first zip1.

To go back at the original format of p1 (g) and p2 (h) we first get the
lower halves of the p lows and p highs in a register (e) and the upper halves
in a register (f):

44

trn1 e.d,c.d,d.d

a1L

b1L

a2L

b2L

c1L

d1L

c2L

d2L

trn2 f.d,c.d,d.d

a1U

b1U

a2U

b2U

c1U

d1U

c2U

d2U

→

(a) The lower and upper
halves of the p lows and
p highs

zip1 g.d,e.d,f.d

a1L

a1U

b1L

b1U

a2L

a2U

b2L

b2U

zip2 h.d,e.d,f.d

c1L

c1U

d2L

d2U

c1L

c1U

d2L

d2U

(b) The original format
of p1 and p2

Figure 3.36: Go back to the original format of p1 and p2

3.8.3 Level 4

Level 4 is the same as level 3 for vector length 256, because a p low or
p high is again the half of the vector length.

3.9 Interleaving for vector length 1024

3.9.1 Level 0, 1, 2 and 3

Those levels are done in the same way as for vector length 512, because the
way it has been done is not affected by the vector length. But we also do not
have to forget to change some constants so p1 and p2 consist of 64 elements
instead of 32 elements.

45

3.9.2 Level 4

For level 4 we take the lower and upper parts of p1 and p2 to work with
them:

p1.h

p[0]
...

p[15]

p[16]
...

p[31]

p[32]
...

p[47]

p[48]
...

p[63]

p low (a1)

p high (b1)

p low (a2)

p high (b2)

(a) p1

p1.h

p[64]
...

p[79]

p[80]
...

p[95]

p[96]
...

p[111]

p[112]
...

p[127]

p low (c1)

p high (d1)

p low (c2)

p high (d2)

(b) p2

Figure 3.37: Load in the first and second 64 elements

uunpklo a.s,p1.h

a1

b1

uunpkhi b.s,p1.h

a2

b2

(a) The lower and upper
halves of p1

uunpklo c.s,p1.h

c1

d2

uunpkhi d.s,p2.h

c2

d2

(b) The lower and upper
halves of p2

Figure 3.38: Getting the lower and upper halves of p1 and p2

Then we zip the elements, so the elements of the halves become inter-
twined. We indicate an intertwined p low or p high by a apostrophe, for
instance zip1 e.s,a.s,b.s, gives us {p[0], p[32], p[1], p[33], ...,

46

p[15], p[47]}, which we will indicate by {a1’, a2’, ...a1’, a2’}.
Then we shuffle the zipped elements to get a the lower and upper halves

of the new p low:

zip1 e.s,a.s,b.s

a1’

a2’
...

a1’

a2’

zip1 f.s,c.s,d.s

c1’

c2’
...

c1’

c2’

→

→

(a) The zip operation

uzp1 g.s,e.s,e.s

a1

a1

uzp2 h.s,e.s,e.s

a2

a2

uzp1 i.s,f.s,f.s

c1

c1

uzp2 j.s,f.s,f.s

c2

c2

→

→

(b) Shuffle the zipped el-
ements

ext k.b,g.b,h.b,#64

a1

a2

ext l.b,i.b,j.b,#64

c1

c2

(c) Halves of the new
p low

Figure 3.39: Return to the original format of p1 and p2

We will also do this to get the lower and upper halves of the new p high:

47

zip2 m.s,a.s,b.s

b1’

b2’
...

b1’

b2’

zip2 n.s,c.s,d.s

d1’

d2’
...

d1’

d2’

→

→

(a) The zip operation

uzp1 o.s,m.s,m.s

a1

a1

uzp2 p.s,m.s,m.s

a2

a2

uzp1 q.s,n.s,n.s

c1

c1

uzp2 r.s,n.s,n.s

c2

c2

→

→

(b) Shuffle the zipped el-
ements

ext s.b,o.b,p.b,#64

a1

a2

ext t.b,q.b,r.b,#64

c1

c2

(c) Halves of the new
p high

Figure 3.40: Return to the original format of p1 and p2

Now we can make the new p low and new p high with the created halves:

uzp1 u.h,k.h,l.h

a1

a2

c1

c2

(a) The new p low

uzp1 v.h,s.h,t.h

b1

b2

d1

d2

(b) The new p high

Figure 3.41: Create p highL and p highU

Loading in zetas happens in the same way as for level 2 for vector length
256. But now we do three zip1s instead of one at the beginning.

To get back to the original format of p1 and p2 we get the lower and
upper halves of the new p low and new p high, zip them and shuffle them.
It is actually the same method as making the new p low and new p high,
but now the input is different:

48

uunpklo a.s,u.h

a1

a2

uunpkhi c.s,u.h

c1

c2

(a) The lower and upper
halves of the new p low

uunpklo b.s,v.h

b1

b2

uunpkhi d.s,v.h

d1

d2

(b) The lower and upper
halves of the new p high

Figure 3.42: Getting the lower and upper halves of p1 and p2

3.9.3 Level 5

Level 5 is the same as level 4 for vector length 512, because a p low or
p high is again the half of the vector length. We also have to change the
constants so that they load in 64 elements instead of 32 elements.

3.10 Interleaving for vector length 2048

3.10.1 Level 0, 1, 2 and 3

Also for vector length 2048 level 0, 1, 2 and 3 use the same method. We
now load in 128 elements instead of 64 elements for p1 and p2.

3.10.2 Level 4

For level 4 we will take the upper and lower halves of p1 and p2:

49

p1.h

p[0]
...

p[15]

p[16]
...

p[31]

p[32]
...

p[47]

p[48]
...

p[63]

p[64]
...

p[79]

p[80]
...

p[95]

p[96]
...

p[111]

p[112]
...

p[127]

p low (a1)

p high (b1)

p low (a2)

p high (b2)

p low (a3)

p high (b3)

p low (a4)

p high (b4)

(a) p1

p1.h

p[128]
...

p[143]

p[144]
...

p[159]

p[160]
...

p[175]

p[176]
...

p[191]

p[192]
...

p[107]

p[208]
...

p[223]

p[224]
...

p[239]

p[240]
...

p[255]

p low (c1)

p high (d1)

p low (c2)

p high (d2)

p low (c3)

p high (d3)

p low (c4)

p high (d4)

(b) p2

Figure 3.43: Load in the first and second 128 elements

50

uunpklo a.s,p1.h

a1

b1

a2

b2

uunpkhi b.s,p1.h

a3

b3

a4

b4

(a) The lower and upper
halves of p1

uunpklo c.s,p2.h

c1

d1

c2

d2

uunpkhi d.s,p2.h

c3

d3

c4

d4

(b) The lower and upper
halves of p2

Figure 3.44: Getting the lower and upper halves of p1 and p2

We can than zip the halves so they become intertwined:

51

zip1 e.s,a.s,b.s

a1’

a3’

a1’

a3’
...

b1’

b3’

b1’

b3’

zip2 f.s,a.s,b.s

a2’

a4’

a2’

a4’
...

b2’

b4’

b2’

b4’

(a) The zip operations

zip1 g.s,c.s,d.s

c1’

c3’

c1’

c3’
...

d1’

d3’

d1’

d3’

zip2 h.s,c.s,d.s

c2’

c4’

c2’

c4’
...

d2’

d4’

d2’

d4’

(b) More zip operations

Figure 3.45: Getting the zipped parts

Then we shuffle the zipped parts to get the lower and upper halves of
the new p low:

52

uunpklo g.d,e.s

a1’

a3’
...

a1’

a3’

uunpklo h.d,f.s

a2’

a4’
...

a2’

a4’

→

(a) Get the lower halves
of the zipped registers

uzp1 i.d,g.d,h.d

a1

a2

uzp2 j.d,g.d,h.d

a3

a4

→

(b) Quarters of the new
p low

uzp1 k.s,i.s,j.s

a1

a2

a3

a4

(c) Lower half of the new
p low

Figure 3.46: Create the lower half of the new p low

uunpklo l.d,g.s

c1’

c3’
...

c1’

c3’

uunpklo m.d,h.s

c2’

c4’
...

c2’

c4’

→

(a) Get the lower halves
of the zipped registers

uzp1 n.d,l.d,m.d

c1

c2

uzp2 o.d,l.d,m.d

c3

c4

→

(b) Quarters of the new
p low

uzp1 p.s,n.s,o.s

c1

c2

c3

c4

(c) Upper half of the new
p low

Figure 3.47: Create the upper half of the new p low

53

Then we get the new p low (q) by merging k and p. The new p high

(r) is created in the same way, but then we take the upper halves instead of
lower halves of the zipped registers:

uzp1 q.h,k.h,p.h

a1

a2

a3

a4

c1

c2

c3

c4

(a) The new p low

r

b1

b2

b3

b4

d1

d2

d3

d4

(b) The new p high

Figure 3.48: Create the new p low and new p high

Getting zetas in the format we want is done in the same way as for level
4 for vector length 1024.

To go back to the old format of p1 and p2 we first take the lower halves
of the new p low and new p high:

uunpklo s.s,q.h

a1

a2

a3

a4

(a) The lower half of the
new p low

uunpklo t.s,r.h

b1

b2

b3

b4

(b) The lower half of the
new p high

Figure 3.49: Get the lower halves of the new p low and new p high

Then we can go back to the old format of p1:

54

uunpklo u.d,s.s

a1

a2

uunpkhi v.d,s.s

a3

a4

uunpklo w.d,s.s

b1

b2

uunpkhi x.d,s.s

b3

b4

→

(a) The first two quarters
of the new p low and of
the new p high

zip1 y.d,u.d,v.d

a1’

a3’
...

a1’

a3’

zip2 z.d,u.d,v.d

a2’

a4’
...

a2’

a4’

zip1 aa.d,w.d,x.d

b1’

b3’
...

b1’

b3’

zip2 ab.d,w.d,x.d

b2’

b4’
...

b2’

b4’

→

(b) zip those elements

uzp1 ac.d,y.d,aa.d

a1

b1

uzp1 ad.d,z.d,ab.d

a2

b2

uzp2 ae.d,y.d,aa.d

a3

b3

uzp2 af.d,z.d,ab.d

a4

b4

(c) All the quarters of
the original format of p1

Figure 3.50: Create the quarters of the original format of p1

Finally we merge those quarters to get back to the original format of p1:

55

uzp1 ag.s,ac.s,ad.s

a1

b1

a2

b2

uzp1 ah.s,ae.s,af.s

a3

b3

a4

b4

→

(a) Get the lower and up-
per half of the original
format of p1

uzp1 ai.h,ag.h,ah.h

a1

b1

a2

b2

a3

b3

a4

b4

(b) The original format
of p1

Figure 3.51: The right format of zetas for p highL and p highU

To get back to the original format of p2 we can do it in the same way.

3.10.3 Level 5

The code for this level is the same as for level 4 for vector length 1024. The
difference is that we load in 128 elements for p1 and p2 and that we do four
zips to get zetas in the right format.

3.10.4 Level 6

Level 6 is the same as level 5 for vector length 1024, because a p low or
p high is again the half of the vector length. Here we also have to load in a
different amount of elements compared to level 5 for vector length 1024.

56

Chapter 4

Results

The interleaved version should work more efficient because it makes full use
of the vector length, which means that the loop iterates less times. In order
to check if it really is more efficient, we have to benchmark the code by
counting clock cycles. However, we do not have the right equipment for
this because hardware running SVE does not exist yet. The best option
to measure the code is then to count the number of instructions executed
because this relates to the number of clock cycles.

We can count the number of instructions by grouping the instructions
by their category:

Group Instructions

Load/Store ldrsw, ld1h, ld1rh, str, st1h

Move
mov, movprfx, uzp1, uzp2, uunpklo, uunpkhi,

zip1, zip2, trn1, trn2, ext

Predicate ptrue, b.mi, whilelo, inch

Operations add, adrp, sub, mul, and, mad, mla, lsr

Table 4.1: Instructions grouped by category

4.1 Counting instructions

We then have the following number of instructions for the whole NTT for
each vector length, where the non-interleaved code can be found in Appendix
A.6 and the interleaved version in Appendix A.7:

• Vector length 2048:

57

Group Nr. of instructions

Load/Store 1291

Move 1630

Predicate 1543

Operations 6898

Total 11362

(a) Non-interleaved

Group Nr. of instructions

Load/Store 43

Move 302

Predicate 48

Operations 209

Total 602

(b) Interleaved

• Vector length 1024:

Group Nr. of instructions

Load/Store 1295

Move 1635

Predicate 1546

Operations 6920

Total 11396

(a) Non-interleaved

Group Nr. of instructions

Load/Store 85

Move 377

Predicate 84

Operations 406

Total 952

(b) Interleaved

• Vector length 512:

Group Nr. of instructions

Load/Store 1311

Move 1655

Predicate 1558

Operations 7008

Total 11532

(a) Non-interleaved

Group Nr. of instructions

Load/Store 165

Move 462

Predicate 154

Operations 796

Total 1577

(b) Interleaved

• Vector length 256:

58

Group Nr. of instructions

Load/Store 1359

Move 1715

Predicate 1594

Operations 7272

Total 11940

(a) Non-interleaved

Group Nr. of instructions

Load/Store 319

Move 727

Predicate 290

Operations 1568

Total 2904

(b) Interleaved

• Vector length 128:

Group Nr. of instructions

Load/Store 1487

Move 1875

Predicate 1690

Operations 7976

Total 13028

(a) Non-interleaved

Group Nr. of instructions

Load/Store 617

Move 1088

Predicate 554

Operations 3096

Total 5355

(b) Interleaved

4.2 Summary

Summarizing the results we get the following table:

Vector length Non-interleaved Interleaved

2048 11362 602

1024 11396 952

512 11532 1577

256 11940 2904

128 13028 5355

Table 4.2: Number of instructions

59

Chapter 5

Related Work

This research is not the first one to optimize the NTT function. It has been
optimized multiple times for different architectures.

Alkim, Jakubeit and Schwabe also optimized the NTT in NewHope,
which is a post-quantum key exchange protocol created by Alkim, Ducas,
Pöppelmann and Schwabe [12], on ARM Cortex-M [21].

Pöppelmann, Oder and Güneysu optimized the NTT on 8-bit ATxmega
microcontrollers [22]. Liu, Seo, Roy, Großschädl, Kim and Verbauwhede
also optimized the NTT, on 8-bit AVR processors [23].

There were also researches like this thesis optimizing the NTT using
vector instructions. Güneysu, Oder, Pöppelmann and Schwabe optimized
the NTT on Intel’s Sandy Bridge and Ivy Bridge microarchitectures using
floats [24]. Streit and De Santis did this on NEON for NewHope [25]. Also
Seiler optimized the NTT function [26], but on an Intel instruction set ar-
chitecture, namely AVX2.

The NTT of ten levels for polynomial length 1024 was optimized on
ARMv8-A. The implementation of Streit and De Santis outperforms the
C reference implementation of NewHope by 8.3 times. The optimization
measures included three alternatives of the reduce functions and full vector-
ization of all ring operations [25]. In their implementation they have:

1. Merged levels: the first four levels are merged and the last six levels
are merged.

2. Loaded in the elements in level 0 interleaved.
3. Interleaved the elements in level 1, by using the transpose function

trn.
The operations addition, subtraction and multiplication were vectorized and
interleaved in order to make them more efficient.

Seiler optimized the NTT for AVX2 (256-bit registers) with polynomial
length 256 using integers. In this implementation extra reduction functions
are called in the third and sixth level. In level 4 up and including 7 (or
with our definition, level 3, 2, 1 and 0) Seiler interleaved elements, because

60

that is more efficient. In the original implementation a single precomputed
root is loaded in and then broadcasted and shuffled. This implementation
loads in precomputed vectors of roots so that it can be loaded directly in
a vector register. This optimized NTT version of Seiler is faster than the
original one in Kyber; it is used in the submitted version of Kyber to the
NIST post-quantum cryptography standardization process [26].

61

Chapter 6

Conclusions

For this research we optimized the NTT function as it is implemented for
Kyber on ARMv8-A SVE. The ARMv8-A SVE’s key feature is that vectors
are scalable. Previous work also optimized the NTT on different vector
architectures, namely on ARMv8-A and AVX.

In an attempt to optimize the NTT we vectorized code and interleaved
elements in assembly. We then compared the number of instructions for
the non-interleaved and interleaved code for all vector lengths. The number
of instructions for the interleaved version were significant lower than for
the non-interleaved version for each vector length. For the non-interleaved
version the number of instructions fluctuated around 12000 instructions for
each vector length, but for the interleaved version it was clearly visible that
the number of instructions depended on the vector length.

We cannot state for sure that this version is really optimized, because we
do not have the equipment to measure it precisely. But we do have counted
the number of instructions, which resulted in the interleaved version having
significant less instructions than the non-interleaved version. So we can as-
sume that this version of the NTT in Kyber is optimized for ARMv8-A SVE.
Further work could be benchmarking the code with the right equipment to
check if this version of the NTT is indeed faster.

62

Bibliography

[1] “Post-Quantum cryptography.” https://csrc.nist.gov/Projects/

Post-Quantum-Cryptography, 29-5-2018 (accessed 30-5-2018).

[2] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyuba-
shevsky, J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYS-
TALS–Kyber: algorithm specification and supporting documentation..”
Submission to the NIST Post-Quantum Cryptography Standardiza-
tion Project, 2017. https://cryptojedi.org/papers/kybernist-

20171130.pdf.

[3] N. Stephens, “Technology update: The scalable vector extension
(SVE) for the Armv8-A architecture.” https://community.arm.com/

processors/b/blog/posts/technology-update-the-scalable-

vector-extension-sve-for-the-armv8-a-architecture, 22-08-
2016 (accessed 17-02-2018).

[4] “Installing Arm Instruction Emulator.” https://developer.arm.com/

products/software-development-tools/hpc/arm-instruction-

emulator/installing-arm-instruction-emulator, (accessed 23-05-
2018).

[5] M. Fürer, “Faster integer multiplication,” SIAM Journal On Comput-
ing, vol. 39, pp. 979–1005, 2009. https://ivv5hpp.uni-muenster.

de/u/cl/WS2007-8/mult.pdf.

[6] E. W. Weisstein, “Number theoretic transform.” http:

//mathworld.wolfram.com/NumberTheoreticTransform.html,
(accessed 18-02-2018).

[7] M. Fürer, “Faster Integer Multiplication.” http://citeseerx.

ist.psu.edu/viewdoc/download?doi=10.1.1.129.3775&rep=

rep1&type=pdf, 2007.

[8] J. W. Cooley, P. A. W. Lewis, Peter, and D. Welch, “Historical
notes on the fast fourier transform,” IEEE Trans. Audio Electroacoust,
1967. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.467.7209&rep=rep1&type=pdf.

63

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://cryptojedi.org/papers/kybernist-20171130.pdf
https://cryptojedi.org/papers/kybernist-20171130.pdf
https://community.arm.com/processors/b/blog/posts/technology-update-the-scalable-vector-extension-sve-for-the-armv8-a-architecture
https://community.arm.com/processors/b/blog/posts/technology-update-the-scalable-vector-extension-sve-for-the-armv8-a-architecture
https://community.arm.com/processors/b/blog/posts/technology-update-the-scalable-vector-extension-sve-for-the-armv8-a-architecture
https://developer.arm.com/products/software-development-tools/hpc/arm-instruction-emulator/installing-arm-instruction-emulator
https://developer.arm.com/products/software-development-tools/hpc/arm-instruction-emulator/installing-arm-instruction-emulator
https://developer.arm.com/products/software-development-tools/hpc/arm-instruction-emulator/installing-arm-instruction-emulator
https://ivv5hpp.uni-muenster.de/u/cl/WS2007-8/mult.pdf
https://ivv5hpp.uni-muenster.de/u/cl/WS2007-8/mult.pdf
http://mathworld.wolfram.com/NumberTheoreticTransform.html
http://mathworld.wolfram.com/NumberTheoreticTransform.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.3775&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.3775&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.3775&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.467.7209&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.467.7209&rep=rep1&type=pdf

[9] J. W. Cooley and J. W. Tukey, “An Algorithm for the Ma-
chine Calculation of Complex Fourier Series,” 1965. https:

//www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-

0178586-1/S0025-5718-1965-0178586-1.pdf.

[10] P. Jakubeit, “Newhope for ARM,” Master’s thesis, Radboud University
Nijmegen, 2016.

[11] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS – kyber: a CCA-
secure module-lattice-based KEM,” in 2018 IEEE European Sympo-
sium on Security and Privacy, EuroS&P 2018, (London, United King-
dom), IEEE, April 2018. https://cryptojedi.org/papers/kyber-

20180226.pdf.

[12] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-
quantum key exchange – a new hope,” in Proceedings of the 25th
USENIX Security Symposium, USENIX Association, 2016. Docu-
ment ID: 0462d84a3d34b12b75e8f5e4ca032869, http://cryptojedi.

org/papers/#newhope.

[13] P. L. Montgomery, “Modular multiplication without trial divi-
sion,” Mathematics of Computation, pp. 44(170):419–521, 1985.
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-

1985-0777282-X/S0025-5718-1985-0777282-X.pdf.

[14] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
applied Cryptography. CRC Press, 1996. http://cacr.uwaterloo.ca/
hac/.

[15] P. Barrett, Implementing the Rivest Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor. Lec-
ture Notes in Computer Science, 2000. https://link.springer.com/
chapter/10.1007/3-540-47721-7 24.

[16] ARM, ARM R© Architecture Reference Manual Supplement The Scalable
Vector Extension (SVE), for ARMv8-A, 2017. https://static.docs.
arm.com/ddi0584/a/DDI0584A b SVE supp armv8A.pdf.

[17] “Getting Started.” https://developer.arm.com/products/

software-development-tools/hpc/arm-instruction-emulator/

get-started, (accessed 23-05-2018).

[18] “Registers in AArch64 state.” http://infocenter.arm.com/help/

index.jsp?topic=/com.arm.doc.dui0801b/BABBGCAC.html, 2014
(accessed 29-03-18).

64

https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://cryptojedi.org/papers/kyber-20180226.pdf
https://cryptojedi.org/papers/kyber-20180226.pdf
http://cryptojedi.org/papers/#newhope
http://cryptojedi.org/papers/#newhope
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
https://link.springer.com/chapter/10.1007/3-540-47721-7_24
https://link.springer.com/chapter/10.1007/3-540-47721-7_24
https://static.docs.arm.com/ddi0584/a/DDI0584A_b_SVE_supp_armv8A.pdf
https://static.docs.arm.com/ddi0584/a/DDI0584A_b_SVE_supp_armv8A.pdf
https://developer.arm.com/products/software-development-tools/hpc/arm-instruction-emulator/get-started
https://developer.arm.com/products/software-development-tools/hpc/arm-instruction-emulator/get-started
https://developer.arm.com/products/software-development-tools/hpc/arm-instruction-emulator/get-started
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0801b/BABBGCAC.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0801b/BABBGCAC.html

[19] ARM, ARMv8 Instruction Set Overview, 2011. https://www.

element14.com/community/servlet/JiveServlet/previewBody/

41836-102-1-229511/ARM.Reference Manual.pdf.

[20] W. Gentleman and G. Sande, “Fast fourier transforms - for fun and
profit,” in Fall Joint Computer Conference, vol. 29, pp. 563–578,
1966. https://www.computer.org/csdl/proceedings/afips/1966/

5068/00/50680563.pdf.

[21] E. Alkim, P. Jakubeit, and P. Schwabe, “A new hope on arm cortex-
m,” in Security, Privacy, and Advanced Cryptography Engineering
(C. Carlet, A. Hasan, and V. Saraswat, eds.), vol. 10076 of Lec-
ture Notes in Computer Science, pp. 332–349, Springer-Verlag Berlin
Heidelberg, 2016. Document ID: c7a82d41d39c535fd09ca1b032ebca1b,
http://cryptojedi.org/papers/#newhopearm.

[22] Z. Liu, T. Pöppelmann, T. Oder, H. Seo, S. S. Roy, T. Güneysu,
J. Großschädl, H. Kim, and I. Verbauwhede, “High-performance ideal
lattice-based cryptography on 8-bit AVR microcontrollers,” ACM
Trans. Embedded Comput. Syst., vol. 16, no. 4, pp. 117:1–117:24, 2017.
https://eprint.iacr.org/2015/382.pdf.

[23] Z. Liu, H. Seo, S. S. Roy, H. Kim, and I. Verbauwhede, “Efficient
RingLWE encryption on 8-bit AVR processors,” in Handschuh (Eds.),
CHES 2015, Vol. 9293 of LNCS, pp. 663–682, Springer, 2015. https:

//eprint.iacr.org/2015/410.pdf.

[24] T. Güneysu, T. Oder, T. Pöppelmann, and P. Schwabe, “Software
speed records for lattice-based signatures,” in Post-Quantum Cryptog-
raphy (P. Gaborit, ed.), vol. 7932 of Lecture Notes in Computer Sci-
ence, pp. 67–82, Springer-Verlag Berlin Heidelberg, 2013. Document ID:
d67aa537a6de60813845a45505c313, http://cryptojedi.org/papers/
#lattisigns.

[25] S. Streit and F. D. Santis, “Post-Quantum Key Exchange on ARMv8-A
– A New Hope for NEON made Simple.” Cryptology ePrint Archive,
Report 2017/388, 2017. https://eprint.iacr.org/2017/388.

[26] G. Seiler, “Faster AVX2 optimized NTT multiplication for Ring-LWE
lattice cryptography.” Cryptology ePrint Archive, Report 2018/039,
2018. https://eprint.iacr.org/2018/039.

[27] “”module” load command does not work.” https://askubuntu.com/

questions/343692/module-load-command-does-not-work/343721,
10-9-2013 (accessed 24-5-2018).

[28] “Download and install Arm Compilers and Libraries,” (accessed 24-5-
2018.

65

https://www.element14.com/community/servlet/JiveServlet/previewBody/41836-102-1-229511/ARM.Reference_Manual.pdf
https://www.element14.com/community/servlet/JiveServlet/previewBody/41836-102-1-229511/ARM.Reference_Manual.pdf
https://www.element14.com/community/servlet/JiveServlet/previewBody/41836-102-1-229511/ARM.Reference_Manual.pdf
https://www.computer.org/csdl/proceedings/afips/1966/5068/00/50680563.pdf
https://www.computer.org/csdl/proceedings/afips/1966/5068/00/50680563.pdf
http://cryptojedi.org/papers/#newhopearm
https://eprint.iacr.org/2015/382.pdf
https://eprint.iacr.org/2015/410.pdf
https://eprint.iacr.org/2015/410.pdf
http://cryptojedi.org/papers/#lattisigns
http://cryptojedi.org/papers/#lattisigns
https://eprint.iacr.org/2017/388
https://eprint.iacr.org/2018/039
https://askubuntu.com/questions/343692/module-load-command-does-not-work/343721
https://askubuntu.com/questions/343692/module-load-command-does-not-work/343721

Appendix A

Appendix

A.1 How to set up the compiler and emulator

This setup was done on an ODROID-C2 with Ubuntu Mate 16.04.4. The
ARM compiler for HPC had version 18.0 and the ARM instruction emulator
had version 1.2.1.

Following the tutorial on the website [17] and a thread on Stack Overflow
[27] we had to do the next steps:

1. Downloading and installing the compiler [28]:

(a) Download the package Arm Compiler for HPC at https://silver.
arm.com/browse. For this we need an ARM account, which can
be easily set up for free.

(b) Extract the package and run the shell script as root.

(c) We then set the environment modules. We first need to in-
stall environment-modules. For Ubuntu we need to configure the
environment-modules by running add.modules. Then we com-
ment the second last and comment the last line in ./bashrc [27]:

#module() { eval ‘/usr/Modules/$MODULE VERSION/bin/modulecmd $modules shell $*‘; }
module() { eval ‘/usr/bin/modulecmd $modules shell $*‘; }

2. Downloading and installing the emulator [4]:

(a) Download the emulator at https://developer.arm.com/products/
software-development-tools/hpc/arm-instruction-emulator/

download

(b) We can then extract the package and run the shell script as root.

3. Setting the modules: Now we can set the environment modules with
the following commands:

66

https://silver.arm.com/browse
https://silver.arm.com/browse
https://developer.arm.com/products/software-development-tools/hpc/arm-instruction-emulator/download
https://developer.arm.com/products/software-development-tools/hpc/arm-instruction-emulator/download
https://developer.arm.com/products/software-development-tools/hpc/arm-instruction-emulator/download

export MODULEPATH=$MODULEPATH:/opt/arm/modulefiles/

module load Generic-AArch64/Ubuntu/16.04/arm-hpc-compiler/18.0

module load Generic-AArch64/Ubuntu/14.04/arm-instruction-emulator/1.2.1

We can change 18.0 and 1.2.1 to the version we are using, and the
version of the OS can also be changed. The available modules can
be found with the command module avail after running the export

command in the code box above.

A.2 How to compile and run code

Before we can run any code we need to load the modules as described at step
3 in Appendix A.1. To compile an example.c file with optimization level 3
and run it with vector length 256 we execute the following commands:

armclang -O3 -march=armv8-a+sve -o example example.c

armie -msve-vector-bits=256 ./example

We can change the optimization level to 2, 1 or 0. To compile from C to
assembly we run:

armclang -O3 -march=armv8-a+sve -S -o example.s example.c

A.3 Level 7 written out in C

https://github.com/LittleberryPi/bachelor-thesis-code/blob/master/

Level7 written out.c

A.4 Level 7 compiled with O3 in assembly

https://github.com/LittleberryPi/bachelor-thesis-code/blob/master/

Level7 O3.s

A.5 Level 6 with 2 loops

https://github.com/LittleberryPi/bachelor-thesis-code/blob/master/

Level6 2loops.s

A.6 Code framework version

https://github.com/LittleberryPi/bachelor-thesis-code/tree/master/

framework

67

https://github.com/LittleberryPi/bachelor-thesis-code/blob/master/Level7_written_out.c
https://github.com/LittleberryPi/bachelor-thesis-code/blob/master/Level7_written_out.c
https://github.com/LittleberryPi/bachelor-thesis-code/blob/master/Level7_O3.s
https://github.com/LittleberryPi/bachelor-thesis-code/blob/master/Level7_O3.s
https://github.com/LittleberryPi/bachelor-thesis-code/blob/master/Level6_2loops.s
https://github.com/LittleberryPi/bachelor-thesis-code/blob/master/Level6_2loops.s
https://github.com/LittleberryPi/bachelor-thesis-code/tree/master/framework
https://github.com/LittleberryPi/bachelor-thesis-code/tree/master/framework

A.6.1 Level 7

https://github.com/LittleberryPi/bachelor-thesis-code/blob/master/

framework/function7.s

A.6.2 Level 6

https://github.com/LittleberryPi/bachelor-thesis-code/blob/master/

framework/function6.s

A.6.3 Level 5

https://github.com/LittleberryPi/bachelor-thesis-code/blob/master/

framework/function5.s

A.7 Interleaved version

https://github.com/LittleberryPi/bachelor-thesis-code/tree/master/

interleaved

68

https://github.com/LittleberryPi/bachelor-thesis-code/blob/master/framework/function7.s
https://github.com/LittleberryPi/bachelor-thesis-code/blob/master/framework/function7.s
https://github.com/LittleberryPi/bachelor-thesis-code/blob/master/framework/function6.s
https://github.com/LittleberryPi/bachelor-thesis-code/blob/master/framework/function6.s
https://github.com/LittleberryPi/bachelor-thesis-code/blob/master/framework/function5.s
https://github.com/LittleberryPi/bachelor-thesis-code/blob/master/framework/function5.s
https://github.com/LittleberryPi/bachelor-thesis-code/tree/master/interleaved
https://github.com/LittleberryPi/bachelor-thesis-code/tree/master/interleaved

	Introduction
	Preliminaries
	Kyber
	DFT, FFT and NTT
	Reduction methods
	Montgomery reduction
	Barrett reduction

	ARMv8-A SVE
	Registers
	Most used registers and instructions
	SVE vectorization

	Optimizing the NTT
	NTT in Kyber
	Optimizing the seventh NTT level
	The idea
	The route to assembly
	Optimizing the assembly code

	Optimizing the sixth NTT level
	The idea
	The route to assembly

	The levels 7 until 0
	A code framework for the levels 6 until 0

	Problems concerning vector lengths?
	Interleave for vector length 128
	Level 0
	Level 1
	Level 2

	Interleaving for vector length 256
	Level 0
	Level 1
	Level 2
	Level 3

	Interleaving for vector length 512
	Level 0, 1 and 2
	Level 3
	Level 4

	Interleaving for vector length 1024
	Level 0, 1, 2 and 3
	Level 4
	Level 5

	Interleaving for vector length 2048
	Level 0, 1, 2 and 3
	Level 4
	Level 5
	Level 6

	Results
	Counting instructions
	Summary

	Related Work
	Conclusions
	Appendix
	How to set up the compiler and emulator
	How to compile and run code
	Level 7 written out in C
	Level 7 compiled with O3 in assembly
	Level 6 with 2 loops
	Code framework version
	Level 7
	Level 6
	Level 5

	Interleaved version

