
Bachelor thesis
Computer Science

Radboud University

Performing an online template attack on two
different implementations of FourQ

Author:
Ischa Stork
s4483111

First supervisor/assessor:
prof. dr. Lejla Batina

lejla@cs.ru.nl

Second supervisor/assessor:
MSc Niels Samwel
nsamwel@cs.ru.nl

August 17, 2018

Abstract

Online template attack is a recently developed side channel attack that can
be performed on a widespread number of crypto schemes. In this thesis
two different implementations of FourQ are analysed and an attempt is
made to perform an online template attack on said implementations on an
ARM Cortex-M4 microcontroller. The attack was successfully modified to
work on the windowed scalar multiplication version of FourQ, however I was
unsuccessful in modifying the attack so that it would work on the efficient
version of FourQ. Ultimately, I conclude that it is possible to tailor the
attack so that it works on windowed scalar multiplications schemes but that
it is hard in specific cases, e.g. when such schemes use scalar decomposition.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Elliptic curves . 5

2.1.1 Fundamentals . 5
2.1.2 (Twisted) Edwards curves 6
2.1.3 Elliptic curve point multiplication 7

2.2 FourQ . 9
2.2.1 Fundamentals . 9
2.2.2 Implementation . 10
2.2.3 Scalar multiplication without endomorphisms 10
2.2.4 Scalar multiplication with endomorphisms 12

2.3 Side channel analysis . 16
2.3.1 Fundamentals . 16
2.3.2 Simple power analysis (SPA) 16
2.3.3 Differential power analysis (DPA) 16
2.3.4 Online template attacks 17

3 Attack on FourQ without endomorphisms 19
3.1 Setup . 19
3.2 Adapting OTA . 20
3.3 The attack . 21
3.4 Results . 22
3.5 Suggestions for further improvement 23

4 Attack on FourQ with endomorphisms 24
4.1 Adapting OTA . 24

4.1.1 Analyzing the routine 24
4.1.2 Reversing the decomposition 25
4.1.3 Reversing the recoding 25

4.2 The attack . 26

5 Related Work 29

1

6 Future work 30

7 Conclusions 31

2

Chapter 1

Introduction

Traditional assymetric cryptosystems rely on hard problems such as the
integer factorisation problem or the discrete logarithm problem for their se-
curity. A cryptosystem like RSA has remain secure for decades using the
integer factorisation problem, but ever increasing computing power in com-
bination with more complex factorisation algorithms force people to pick
larger security parameters (e.g. prime factors), which in turn results into
larger computations. This is bad in the modern day where even the smallest
devices use cryptography to ensure their security.

This is where elliptic curves come into play, they allow us to pick relatively
small security parameters even though providing equal security strength.
One of these elliptic curves is FourQ, this curve combines state-of-the-art
elliptic curve principles to acquire a very efficient curve. However, even if
we assume that all the curve parameters were carefully chosen (meaning
there is no trivial way to break the scheme) that does not necessarily mean
that the curve is inherently secure. There are other techniques to attack the
curve, one of which is side channel analysis.

Side channel analysis is different way to attack encryption schemes. Instead
of targeting the (mathematical) foundation of the scheme, the main focus
lies on attacking the implementation of said scheme. This technique exploits
the fact that one can measure certain physical aspects like power usage or
electromagnetic radiation during computations. An Online Template At-
tack (OTA) is a sophisticated attack that is specifically useful for attacking
schemes that make use of modular exponentiation or methods that are anal-
ogous to modular exponentiation. The attack can be used on a wide range
of elliptic curves and additionally can be easily adapted to fit specific curves.

In this case, an online template attack is performed on two different FourQ
implementations. The first version uses a basic windowed scalar multiplica-

3

tion, while the second version of the algorithm implements scalar decompo-
sition for more efficiency. The standard online template attack is adapted
so that it can be applied on both implementations.

The structure of this paper is as follows. The first chapter contains some
general background information about elliptic curves and side channel anal-
ysis. Additionally, both FourQ and online template attacks are discussed
in detail. As for FourQ, both implementations are discussed separately to
maintain a clear boundary between them.
In the second chapter, it is described how the attack is performed on the
windowed scalar version. More specifically, there is some information about
the setup, analysis of the scalar multiplication algorithm and adaption of
the attack in order to work on said algorithm. Lastly, we discuss the results
and make some suggestions on how to improve these results.

In the third chapter the focus shifts towards the efficient implementation
of FourQ, it is argued that in order to generate templates for the attack it is
necessary to reverse the recoding and decomposition phase. Both reversion
schemes are defined and an attempt is made to use them in order to perform
the attack.

4

Chapter 2

Preliminaries

2.1 Elliptic curves

2.1.1 Fundamentals

An elliptic curve defines a set of points by using the formula:

y2 = x3 + ax+ b

Furthermore, an elliptic curve is defined over a field, which means that a
specific field is used to define a new field structure. A point P on the curve
is then an element in this new field. Following the group axioms, there must
be an identity element and an inverse element for every point. The identity
element of an elliptic curve is called the point at infinity (O), which is an
imaginary element. The inverse of a point P = (x, y) can just be written as
−P = (x,−y).

Additionally, there are two operations that can be performed on points on
the curve: addition and doubling. These operations have specific formulas
based on which form the curve formula has (the aforementioned formula is
in Weierstrass form).

Given two points P and Q, the point addition R = P + Q can be com-
puted as follows. First, the slope of the line goes through both P and Q is
computed:

λ =
yp−yq
xp−xq

Next, the coordinates of a point R can be computed:

xr = λ2 − xp − xq
yr = yp + λ(xr − xp)

5

Doubling is very similar to addition, the difference is the way the slope is
computed (because there is only one point, the difference between the points
cannot be used). Instead, the slope can be computed as follows:

λ =
3x2p+a

2y1

where a is the parameter from the curve equation. Using this slope, the
value of a point R = 2P can be computed be using the aforementioned for-
mulas. Figure 2.1 and 2.2 show point addition and doubling on Weistrass
curves from a geometrical point of view. For doubling, the slope is necessary
because 2P can be found by finding another point P ′ on the tangent line of
P. Mirroring this point on the x− axis yields R = 2P .

For cryptography purposes, the elliptic curve is often defined over a prime

Figure 2.1: Point addition Figure 2.2: Point doubling

field Fp. The points on the curve are those points (x, y) with x, y < p for
which the equation y2 = x3 + ax+ b holds. Counting the number of points
on the curve can be hard, but several methods have been devised that make
it possible.

The elliptic curve cryptography principle is analogous to the discrete loga-
rithm problem (DLP). DLP relies on the fact that given a, x and ab = x it is
difficult to find b whereas with elliptic curves we are given two points P and
Q and the problem is finding a k for which Q = kP . There are various ways
to compute kP , some of which are discusses in one of the next chapters.

2.1.2 (Twisted) Edwards curves

Edwards curves [4] are a special kind of elliptic curves, they are interest-
ing from a cryptography perspective because they allow more efficient point
arithmetic than Weistrass curves. Edwards curves are defined using a dif-
ferent equation which introduces a parameter d:

x2 + y2 = 1 + dx2y2

6

Edwards curves make it possible to use another coordinate system, i.e. the
extended twisted Edwards coordinates. An affine point P = (x, y) can be
represented as extended twisted Edwards coordinates [7] (X : Y : Z : T)
for x = X/Z, y = Y/Z and x · y = T/Z. These coordinates can be used by
different addition and doubling formulas. The definition of these formulas
is not relevant in this case. These formulas are also harder to visualize
geometrically speaking, whereas the Weistrass formulas are rather intuitive.

2.1.3 Elliptic curve point multiplication

Double-and-add algorithm

The most basic point multiplication algorithm is double-and-add. Given
a scalar k, we take its binary representation k0 + 2k1 + 22k2 + ... + 2nkn
where n+ 1 is the number of bits in the binary representation. This binary
representation is then used in one of the two versions of this algorithm: the
left-to-right algorithm or the right-to-left algorithm. The left-to-right algo-
rithm starts with the most significant bits while the right-to-left algorithm
begins with the least significant bits. Both version work by processing one
bit at a time, if a bit is zero then the intermediate point is only doubled.
Alternatively, if this bit is 1 then an additional point addition is performed.
This is done for all bits of the scalar.

Algorithm 2.1: Left-to-Right

1 input : k = k0 + 2k1 + ...2nkn, P
2 output : Q = kP
3 begin
4 R ← P
5 Q ← 0
6 f o r i from 0 to n
7 i f ki = 1 then
8 Q ← Q+R
9 R ← 2 ·R

10 end
11 return Q
12 end

Algorithm 2.2: Right-to-left

1 input : k = k0 + 2k1 + ...2nkn, P
2 output : Q = kP
3 begin
4 Q ← 0
5 f o r i from n to 0
6 Q ← 2 · P
7 i f ki = 1 then
8 Q ← Q+ P
9 end

10 return Q
11 end

Windowed scalar multiplication

Another approach is the windowed scalar multiplication. Instead of process-
ing the scalar bit by bit, the scalar is divided into chunks of a given size, these
chunks are called windows. The window size w can be chosen arbitrarily, but
it is often 4. Thus, the scalar is written as k = k0 + 2wk1 + 22wk2 + ...2nwkn
where n is the number of windows. The upside of this algorithm is that
it uses fewer point additions. Point additions are typically more computa-

7

tionally expensive than point doublings, which is why many efficient scalar
multiplication routines try to minimize the number of additions.

The algorithm works by processing one window at a time, starting with
the window that corresponds to the most significant bits. For every itera-
tion (window) the input point is doubled w times where w is the window
size. Subsequently a point is added, but only if the value of the current
window, i.e. ki is not equal to zero. The points that are added are retrieved
from a precomputed table, this table consists of the points P, 2P, ..., 2w−1P .
Using such a table further lowers the number of additions as the points in
this table only have to computed once.

Algorithm 2.3: Windowed scalar multiplication

1 input : k = k0 + 2wk1 + 22wk2 + ...2nwkn, P, w
2 output : Q = k ∗ P
3 begin
4 t ab l e ← precompute table (k , P)
5

6 Q ← 0
7 f o r i from n to 0
8 Q ← 2w ·Q
9 i f ki > 0 then

10 Q ← Q+ table[ki]
11 end
12 end

GLV Decomposition

Another approach on scalar multiplication is Gallant-Lambert-Vanstone (GLV)
decomposition [6]. Similar to windowed scalar multiplication, the goal is to
minimize the number of point additions and/or doublings. This is achieved
by replacing these operations by an evaluation of an endomorphism. An
endomorphism is a map φ : E → E for which φ(O) = O. Thus, there is
a map which maps every point on some curve E to another point in said
curve. An endomorphism that is often used for scalar decomposition is the
Frobenius endomorphism φ : E → E defined as

(x, y)→ (xq, yq)

This endomorphism map is simply exponentiation of the point coordinates,
which can be done in linear time. Suppose that we want to compute kP
where k is some scalar and P is some point on a curve. Using GLV, it is
possible to compute kP = k1P + k2φ(P) for some k1 and k2. Finding these
two sub scalars k1 and k2 is the decomposition part of the algorithm.

There are multiple ways to perform the decomposition, but one of them
is explained in the original GLV paper. The goal is to generate two small

8

integers k1 + k2λ (mod n) where λ is the root of the characteristic polyno-
mial of φ. They have to be small because otherwise there is not going to be
a significant speedup in comparison with other multiplication schemes. It is
also possible to see k1, k2 as two vectors (k1, k2) ∈ Z×Z, who again have to
be small. Furthermore, lets say there is a homomorphism f : Z × Z → Zn
defined by (i, j)→ (i, λj) mod n. A homomorphism is a map for which the
group operations are preserved, but unlike an endomorphism the domain
and codomain are not necessarily equivalent. Now, the goal is to find a vec-
tor u ∈ Z×Z for which f(u) = k. Finding such an u for which the this holds
is trivial, i.e. if u = (k, 0) then f(u) = k, but this is not a good solution as
one of the components is not small.

The suggested approach for finding this small vectors first computes two
linearly independent vectors v1, v2 such that f(v1) = f(v2) = 0. It is then
possible to find a v that is close to (k, 0) in the integer lattice generated by
v1 and v2. Consequently, u = (k, 0) − v with f(u) = f((k, 0)) − f(v) = k.
Finding linearly independent vectors and subsequently finding a vector close
to the integer lattice can be done by using lattice basis reduction algorithms
like LLL[10].

2.2 FourQ

2.2.1 Fundamentals

FourQ[3] is an extremely efficient curve because it combines state-of-the-art
elliptic curve cryptography techniques. The result is a curve that is a poten-
tial successor of current standard curves as defined by NIST, which makes
this curve an interesting research topic.

More formally, FourQ is defined as a complete twisted Edwards curve E(Fp2) :
−x2 + y2 = 1 + dx2y2 where the quadratic extension field Fp2 is defined
as Fp2 = Fp(i) for i2 = −1. Furthermore, p is the conveniently chosen
Mersenne prime 2127 − 1. All operations are performed on the subgroup
E(Fp2)[N] where N is a 246-bit prime number. The neutral element on the
field is defined as O = (0, 1) and the inverse of a point P = (x, y) is defined
as −P = (−x, y).

The curve has a Weierstrass form Ew and two Twisted Edwards forms Ê
and E . The first form makes it possible to use affine coordinates while
the last form enables fast addition formulas using the Extended Twisted
coordinates. However, the Ew is not isomorphic with E , which is why an
additional Twisted Edwards form Ê has to be introduced. The are two
mappings δ : Ew → Ê and τ : Ê → E : and its respective duals δ−1 and τ−1

available to switch between these forms.

9

2.2.2 Implementation

Several FourQ implementations can be found on Github [12], including an
ARM implementation with countermeasures. Initially, the idea was to use
this implementation, disable the countermeasures and try to perform the
attack. However, this implementation (which was originally written for a
ARM Discovery board) in combination with the wrapper code used to com-
municate with the microcontroller resulted in unwanted behavior, e.g. a
stack overflow. Attempts to fix this behavior were unsuccessful.

Fortunately, a 32-bit implementation was also available, so this version of
the code was used for the attack. Additionally, it also contains a scalar
multiplication where the endomorphisms are not used to speed up the mul-
tiplication. This scalar multiplication is more straight forward and therefore
it is the first target of the attack.

2.2.3 Scalar multiplication without endomorphisms

The scalar multiplication of this implementation uses the following steps:

1. Reduce the scalar modulo the curve order;
2. Convert the scalar to an odd scalar;
3. Precompute the lookup table;
4. Recode the (possible reduced) scalar into pairs of digits and masks;
5. Perform the scalar multiplication using the digits and masks.

Modular reduction

The scalar is reduced modulo the curve order for efficiency. Instead of using
standard modulo operation, Montgomery arithmetic [14] is used because it
is more efficient. Additionally, this makes the operation resistant against
timing attacks and alike because the arithmetic is performed in constant
time.

Conversion to odd

After the modular reduction it is checked whether the scalar is an odd num-
ber. The scalar has to be an odd number because the digits and masks that
are generated during the recoding phase can only represent odd numbers.
Converting the scalar is done by adding the curve order, ultimately this
means every scalar k is in the set {1, 3, 5, ..., 2#E(Fp)− 1}.

Precomputing the lookup table

The lookup table consists of all points P, 3P, 5P, ...15P , these points are
simply computed by doubling the P and adding this 2P to the initial P.

10

This will generate the aforementioned sequence. The negative points do not
have to be explicitly computed as these can just be computed by taking the
negative value of the x-coordinate. This means only 8 points have to be
computed in total.

Recoding the scalar

Figure 2.3: Recoding the scalar k into digit/mask pairs

The recoding phase is necessary to facilitate the main loop of the scalar
multiplication. The scalar is recoded into a set of digits {d1, ..., d63} and
masks {m1, ...,m63} where di ∈ {0, ..., 7} and mi ∈ {0, 1}. The recode phase
is performed by consuming 4 bits of the scalar at a time, until no bits are
left. The recode phase begins with the least significant 4 bits. The 5th least
significant is equal to the mask bit. The 4 bits are converted into a digit
based on this 5th (mask) bit, namely if this bit is equal to 1 then the digit
becomes ki−1

2 , where ki are the 4 bits being processed. Similarly, if the mask

is 0 then the digit is equal to (15−ki)−1)
2 .

Main loop of the scalar multiplication

This implementation uses a windowed version of the scalar multiplication
with window size w = 4. Before the main loop, the last digit and mask are
used to initialise our point P. The main loop, consisting of 62 iterations,
starts by processing the most significant bits first which corresponds to the
”highest (indexed)” digits and masks. For every iteration, P is doubled 4
times and afterwards a intermediate point R from the precomputed table is
either added or subtracted. Point R is defined as R = 2 · di + 1 where di is
the digit value of the current iteration i. This point is added if the mask mi

is 1 and subtracted if the mask mi is 0.

As a simple example, suppose we have scalar k = 1. Trivially, this means
that if the input is point P then the resulting point is also P. The scalar

11

1 corresponds to 62 digit/mask pairs of (7, 0). This digit/mask pair is a
subtraction (mask is 0) of point R = 2 · 7 + 1 = 15. Ultimately, this means
for each of the 62 iterations P is first multiplied with 16 and subsequently
15P is subtracted. The sequence ((16 · P − 15P) · 16) − 15P) is generated
which ultimately evaluates to P, which was expected.

2.2.4 Scalar multiplication with endomorphisms

The FourQ scalar multiplication routine consists of the following steps:

1. Computing the endomorphisms φ(P), ψ(P), ψ(φ(P)) using explicit
formulas;

2. Generate the lookup table using the precomputed endomorphisms;
3. Decomposing the scalar k into a multiscalar (k1, k2, k3, k4)
4. Recoding the multiscalar (k1, k2, k3, k4) into pairs of digits and masks.
5. Performing the windowed scalar multiplication using the acquired pairs

of digits and masks and the lookup table.

Computing the endomorphisms

The first step is to compute φ(P), ψ(P), ψ(φ(P)). This is done by evaluating
the explicit formulas that can be found in the FourQ paper. Even though
ψ(φ(P)) = φ(ψ(P)) the former is chosen as evaluating ψ is much faster than
φ. Ultimately this means φ is only evaluated once and ψ twice (per scalar
multiplication).

Generating the lookup table

Secondly, all the points in the lookup table are generated. These are the
points:

T [i] = P + [i0]φ(P) + [i1]ψ(P) + [i2]ψ(φ(P)) for i = (i2, i1, i0)2 in 0 ≤ 1 < 7

Since the basic elements φ(P), ψ(P) and ψ(φ(P)) were already computed in
the previous steps, it is simply a matter of adding these points in a smart
order so that there are no redundant computations.

Decomposing the scalar

After generating the lookup table, the scalar k ∈ [0, 2256) is decomposed
into a 4-dimensional multiscalar (a1, a2, a3, a4) ∈ Z4 such that k = a1 +
a2λφ + a3λψ + a4λφλψ (mod N) where 0 ≤ ai ≤ 264 − 1 for i = 1, 2, 3, 4
and such that a1 is odd. These λφ and λψ are the eigenvalues of the endo-
morphisms φ and ψ which can be precomputed using the curve’s parameters.

This 4-dimensional GLV decomposition[13] is a more sophisticated version

12

of the standard GLV decomposition as discussed in 2.1.3. Instead of only
using the Frobenius endomorphism φ another endomorphism ψ is used to
further reduce the scalar k.

The use of another endomorphism makes the decomposition process sig-
nificantly more difficult. That being said, one of the big upsides of this
particular decomposition is the fact that many values are independent of
the scalar. Therefore these values can be precomputed.

In essence, the decomposition is similar to the standard GLV decomposi-
tion. There is a zero decomposition lattice

L = 〈(z1, z2, z3, z4) ∈ Z4|z1 + z2λφ + z3λψ + z4λφλψ = 0 (mod N) 〉

and there is a trivial vector k = (k, 0, 0, 0). In combination, they form
the lattice coset (k, 0, 0, 0) + L. Given a basis B = (b1, b2, b3, b4) of L
and a scalar k the Babai rounding technique makes it possible to com-
pute (α1, α2, α3, α4) ∈ Q4 for which (k, 0, 0, 0) =

∑4
i=1 αibi. Subsequently it

computes the required multiscalar

(a1, a2, a3, a4) = (k, 0, 0, 0)−
∑4

i=1 bαie · bi

The basis of L is important as it is used for every scalar decomposition and
it impacts the speed of the decomposition. Luckily, this basis can be pre-
computed using the curve’s parameters. Furthermore αi = α̂i · k/N where
α̂i are predefined constants.

For every scalar decomposition four roundings bαie = bα̂i · k/Ne have to

be computed, it is more efficient to precompute `i =
⌊
α̂i
N · µ

⌉
where µ is a

chosen power of 2. These constants can then be used at run time to compute⌊
`i·k
µ

⌋
=

⌊⌊
α̂i
N
·µ
⌉
·k

µ

⌉
= bα̂i · k/Ne. The division of µ can be done by a simply

bit shift.

On the flip side, this approach sometimes yields the wrong result, i.e. the
resulting may be off by 1. Supposedly, choosing a high µ decreases the
possibility of this error, but this is not enough as the occurence of such an
error could leak information about the key. Thus the error has to be fully
eliminated.

The approximation will either be the correct value
⌊
α̂i
N · k

⌉
or the incorrect

value
⌊
α̂i
N · k

⌉
−1. In order to remove this roundoff error, the approximation

bαie is substituted by α̃i = bαie − εi where εi ∈ 0, 1 for i = 1, 2, 3, 4. By
using this substitution all possible errors are accounted for.

13

The last step of the decomposition is to make sure that the multiscalar is in
fact odd (i.e. a1 is odd) as this is required by the recoding phase. In order to
accomplish this, two vectors c = 5b2−3b3 + 2b4 and c′ = 5b2−3b3 + 3b4 ∈ L
can be precomputed such that either (a1, a2, a3, a4) + c or (a1, a2, a3, a4) + c′

will have an odd a1. Choosing which vector is added can be implemented
by using a bit mask.

Ultimately, the multiscalar (a1, a2, a3, a4) is defined as

a1 = k − ã1 · b1[1]− ã2 · b2[1]− ã3 · b3[1]− ã4 · b4[1]
a2 = − ã1 · b1[2]− ã2 · b2[2]− ã3 · b3[2]− ã4 · b4[2]
a3 = − ã1 · b1[3]− ã2 · b2[3]− ã3 · b3[3]− ã4 · b4[3]
a4 = − ã1 · b1[4]− ã2 · b2[4]− ã3 · b3[4]− ã4 · b4[4]

where k is the original scalar, ã1 =
⌊
`i·m
µ

⌋
and bi are the Babai-optimal

basis.

Recoding the multiscalar

After decomposing, there is a recoding phase similar to the recoding phase
described earlier. The multiscalar (a1, a2, a3, a4) is converted into pairs
of digits (d64, ..., d0) with 0 ≤ di ≤ 7 and masks (m64, ...,m0) with every
mi ∈ {−1, 0}.

These digits and masks are used in the implementer version of the GLV-
SAC representation[5]. In this representation one of the scalars kj ∈ k
becomes the ”sign-aligner”, i.e. the column which determines the sign of
the other columns. In case of FourQ, which has 4 scalars (a1, a2, a3, a4), this
”sign-aligner” is the first sub scalar a1. The recoding converts this scalar to
a set of mask values. The other scalars a2, a3, a4 are used to compute the
digits.

The column that determines the sign has one restriction: it has to be odd.
The decomposition phase conveniently takes care of this. This restriction
is necessary because it enables conversion to a full signed nonzero repre-
sentation. Since there are no ”0” values all additions or subtractions will
be non-trivial, which guarantees a constant time routine. Formally, the re-
sulting sign column is denoted as bJ = bJ0 , ..., b

J
64. This conversion is done

by taking every bit string 00...1 of a certain length in the column and re-
placing it by a bit string 11̄...1̄ of the same length. One can see easily that
1 · 2n-1 · 2n−1...-1 · 20 = 0 · 2n + 0 · 2n−1 + ...+ 1 · 20 for some arbitrary n.

The value (either -1 or 1) of the sign column at a specific position i also

14

directly impacts the possible values for the other columns at that same po-
sition, denoted as bji . In particular, the only values bji are in {0, Bj

i }. Thus
if the sign column is negative at position i then the other columns are also
negative (or zero) at that same position i. This makes sure that a digit
can not be represented in multiple ways. For example, the digit 1 can only
be represented as b = (1, 0, 0, 1) = 0 · 22 + 0 · 2 + 1 · 1 = 1 and not by
b = (1, 0, 1,−1) = 0 · 22 + 1 · 2− 1 · 1 = 1.

After that the ”sign-aligner” has been computed using the aforementioned
method, the other columns are converted. this is done by consuming all
columns bj bit by bit. Every bit bji of the output column is computed by
multiplying the first bit of input scalar with the corresponding sign mask:

bji = kj0 · bJi . Subsequently the scalar ki is reduced: ki = bki/2c −
⌊
bji/2

⌋
.

A nice example of the entire conversion can be found in [[5], §3.1].
k1

k2

k3

k4

 =

0 1 0 1 1

0 0 1 1 0

0 1 1 1 0

0 0 0 1 1

 =

1 1̄ 1 1̄ 1

1 1̄ 0 1̄ 0

1 0 0 1̄ 0

0 0 1 1̄ 1

This example contains a multiscalar (k1, k2, k3, k4), whose components have
less bits (5) than the FourQ multiscalar (64) but this is irrelevant as the
conversion itself is identical. k1 is the sign-aligner and conversion of 0 + 0 +
...+ 1 with 1−1−1...−1 is clearly visible. The digits (d4, ...d0) can be read
from the columns in the final matrix. d4 = (1, 1, 0) = 6, d3 = (−1, 0, 0) = 4,
etc. Similarly, the masks (m4, ...,m0) are just the values in the first row,
m4 = k1

4 = 1,m3 = k1
3 = −1, etc.

Performing the scalar multiplication

For the actual scalar multiplication the initial result point is first set using
the last digit and mask. The last last mask is always -1, which means the
initial point is always positive. After that, the other digits are processed digit
by digit, starting with the highest digit. For every digit, the point is doubled
once and one point from the lookup table is added. A mask of -1 corresponds
to adding a point while a mask of 0 means subtraction of that point. The
point that is added is determined by the digit, for example di = 5 = (1,0,1)2

means point P + 1 · φ(P) + 0 ·ψ(P) + 1 ·ψ(φ(P)) = P + φ(P) +ψ(φ(P)) is
either added or subtracted.

15

2.3 Side channel analysis

2.3.1 Fundamentals

Side channel analysis (SCA) is based on the fact that certain physical as-
pects can be measured during computations, these measurements can then
be used to distinguish specific operations of the computation. The most
basic form of SCA is a timing attack [8], which means it is measured how
long the computations take. In the context of double-and-add, an addition
is only performed if the bit being processed is a ’1’. This means that keys
which have a lot of ones will have a longer computation time than a key with
a small number of ones. Ultimately this means you can extract information
about the key.

Another interesting physical aspect that can be exploited is the power us-
age of a computation. The power measurement of a computation is called
a power trace. Such a trace consists of samples, which are basically values
that indicate how much power was used at a specific time during the com-
putation. Fundamentally, there are two different approach for power based
side channel analysis: vertical and horizontal. The former involves taking
multiple power traces in an attempt to find a (statistical) pattern. In the
latter approach, only one trace is analysed and the goal is to find a pattern
by looking at the trace horizontally. Below one horizontal (SPA) and one
vertical attack (DPA) is discussed more in depth.

2.3.2 Simple power analysis (SPA)

Simple power analysis [9] is the most basic form of power analysis. It involves
visually interpreting the traces in order to recognise certain operations. For
example, if we consider an RSA implementation which uses exponentiation
by squaring, we could distinguish the square and multiply operations. These
operations directly relate to the bits of the RSA key. Ultimately, this means
that secret keys used can be directly retrieved without any difficult (statis-
tical) analysis. There can be situations when even one trace is sufficient to
retrieve the keys.

2.3.3 Differential power analysis (DPA)

SPA can be easily prevented by implementing the exponentiation without
branching. When targeting such an implementation, Differential power anal-
ysis becomes a more suitable approach. DPA is a statistical approach which
makes it possible to detect smaller variations of the data but unlike SPA,
DPA always requires many traces to retrieve the key.

For the attack, first an intermediate variable is chosen that can be ultimately

16

used to distinguish a correct and an incorrect hypotheses. Subsequently, a
set of all possible values for this intermediate variable is generated. The
value of the intermediate variable is computed for all of these inputs and
the corresponding traces are grouped into two subsets. For both subsets
the average curve is computed, these averages curves can be used to get the
differential curve. This differential curve will only show a peak if the right
key was guessed. If the guessed key was wrong then the differential curve
will be flat.

2.3.4 Online template attacks

Description

An online template attack [1] is a more sophisticated technique, it makes
use of the fact that one can guess which point is being doubled during an it-
eration of the scalar multiplication. The attack begins by obtaining a power
trace of the encryption operation when the target scalar is used, this trace
is the so called target trace.

The goal is to determine the bit(s) used in every iteration of the scalar
multiplication of the target trace, similar to SPA. Suppose a right-to-left
version (Algorithm 2.2) of the double-and-add scalar multiplication is being
used. In every iteration a point is being doubled regardless of the bit value,
the exact point that is being doubled at a certain iteration is unknown be-
cause we do not know the scalar. However, it is possible to make an educated
guess.

More specifically, in the first iteration of this algorithm P is doubled. After
that, if kn = 1, P is added to the result of the doubling, this means that in
the second iteration the intermediate result is either O or P . The doubling
in the second iteration allows you to distinguish these points. In particular,
one could send two scalars k = 0 and k = 1 and retrieve traces of the com-
putations with these scalars as input. The next step is to correlate both of
these template traces with the target trace. Only the doubling in the second
iteration of each template trace is correlated with the doubling in the second
iteration of the target trace, as this is the part of the trace that is dependent
of the (first) bit value.

This process can be repeated, that is, the doubling in the third iteration
allows you to determine the second bit of the scalar, the fourth iteration the
third bit and so fort. Following this principle, all bits of the scalar can be
retrieved.

17

Correlation

The Pearson correlation coefficient is the most widely used correlation co-
efficient. The coefficient gives a value between −1 and 1 based on how well
two variables are linearly correlated. The coefficient can be computed as
follows:

r =
∑n
i=1(xi−x̄)(yi−ȳ)√∑n

i=1(xi−x̄)2
√∑n

i=1(yi−ȳ)

The covariance of the variables x and y is divided by the product of
their respective standard deviations. The covariance measures the similarity
between x and y. Dividing this by the product of the standard deviations
results in a weighted coefficient between -1 and 1 disregarding the (possibly
small) variety of the input variables.

18

Chapter 3

Attack on FourQ without
endomorphisms

3.1 Setup

The target of the attack is an ARM Cortex M4 (Blue) with most of the
capacitors removed in order to reduce noise. The board is connected in
series to an 2GHz LeCroy oscilloscope (Orange) and a separate power source
(Red). The oscilloscope is configured at a sampling rate of 250Ms/s, this
means the traces will consist of roughly 15 million samples. Every single
sample has a value between 0 and 256. A trigger (green) makes it possible to
starting measuring on demand and stop when the computation has finished.
The probe (purple) actually measures the power and is directly connected
to the oscilloscope.

Figure 3.1: Setup for the attack, different parts are highlighted and ex-
plained below

19

3.2 Adapting OTA

The paper on online template attack discusses various situations where such
an attack can be used and how to adapt the attack. The most basic appli-
cation of this attack is performed on the double-and-add-always algorithm.
For this algorithm, there are only two templates per iteration (2P and 3P),
which means only two traces per iteration. In an ideal situation, when there
is not much noise, even one template could suffice. If the correlation of the
correct template is significantly higher than the correlation for the incorrect
template, a threshold could be introduced that separates the correct and
wrong templates. This would remove the necessity to get a trace for both
templates.

However, FourQ works differently: there are a 8 precomputed points (P,
3P, 5P, ..., 15P) that are either added or subtracted at every iteration.
This makes a total of 16 possibilities for every iteration and therefore 16
templates. After the recoding phase there are 63 digits and corresponding
masks, with the main loop of the scalar multiplication consisting of 62 iter-
ations. The last digit mask pair (d63,m63) is always equal to (0, 1) because
this is used to initialise point P, which is the point will be multiplied.

Ultimately, this means that 16 templates have to be constructed for 61
iterations, with the first iteration being the exception. This iteration has
fewer templates because not all digits and masks are possible (a direct result
of the modular reduction). In particular, we know that the scalar is in the
range (1, 2#E(Fp)− 1). Only scalars build with the digit/mask pairs (5, 0),
(6, 0) and (7, 0) in the first iteration yield integers that are in this range,
therefore there are only 3 templates for the first iteration.

Construction of these templates (scalars) given the digits and masks is rather
straightforward. It is just a matter of mimicking the windowed routine that
is used for the scalar multiplication. However, instead of working on some
point P we just use an integer k.

Algorithm 3.1: Constructing a scalar

1 input : i n t [] d , i n t [] m
2 output : i n t k
3 begin
4 k ← 1
5 f o r i ← 62 to 1
6 k ← k ∗ 16
7 i f m[i] = 1 then
8 k ← k + d [i] ∗ 2 + 1
9 e l se

10 k ← k − d [i] ∗ 2 + 1
11 end
12 return k
13 end

20

3.3 The attack

The first step is to retrieve the target trace, this is the trace contains the
computation with the (target) scalar. After that 62 iterations are performed
to retrieve all the digit/mask pairs. For every iteration, all 16 possible
templates are generated and corresponding traces are obtained, these traces
are compared with the target trace by computing the Pearson correlation
coefficient. The digit/mask pair with the highest correlation is chosen and
stored so that it can be used in the next iteration. Ultimately, when all 62
iterations have completed we can build the scalar and check whether it is
equal to our target scalar.

Algorithm 3.2: Online template attack

1 input : i n t t a r g e t s c a l a r
2 output : bool s u c c e s s
3 begin
4 t a r g e t t r a c e = t r a c e (t a r g e t s c a l a r)
5

6 k e y d i g i t s ← [0]
7 key masks ← [1]
8 f o r i ← 1 to 62
9 c o r r e l a t i o n s ← []

10 f o r d ← 1 to 7
11 f o r m ← 0 to 1
12 d i g i t s ← [d] + k e y d i g i t s
13 masks ← [m] + key masks
14 pad (d i g i t s , 7 , 62)
15 pad (masks , 0 , 62)
16

17 t e m p l a t e s c a l a r ← recode (d i g i t s , masks)
18 t emp la t e t r a c e = t r a c e (t e m p l a t e s c a l a r)
19

20 c o r r e l a t i o n ← c o r r e l a t e (t emplate t race , t a r g e t t r a c e)
21 append (c o r r e l a t i o n s , c o r r e l a t i o n)
22 end
23 end
24 b e s t d i g i t , best mask = max(c o r r e l a t i o n s)
25 prepend (k e y d i g i t s , b e s t d i g i t)
26 prepend (key mask , best mask)
27 end
28 s c a l a r = recode (k e y d i g i t s , key masks)
29 return s c a l a r == t a r g e t s c a l a r
30 end

After the key digits and masks are retrieved, reconstructing the scalar is
not always trivial. The scalar may have been reduced modulo the subgroup
order and subsequently converted to odd. The conversion to odd is simply
an addition with the subgroup order, which is very convenient because the
modular reduction makes sure that all scalars are lower than the subgroup.
Scalars that are higher than the subgroup are scalars that are converted to
odd, this allows us to distinguish odd scalars and scalars that were even and
converted to odd.

21

The modular reduction is more difficult, there is no trick we can apply
to return the scalar that was used. However, the difference between the
scalar length (256 bits) and the curve order (246 bits) is only 10 bits which
corresponds to about 210 possible variations. This can be brute forced by
consumer grade hardware.

3.4 Results

Figure 3.2: The difference in correlation between a correct template (red
line) and an incorrect template (blue).

The initial results when running the aforementioned algorithm were some-
what unsatisfying, eventhough the difference in correlation between correct
templates and incorrect templates was often significant (i.e. 0.98− 1 corre-
lation for correct template and < 0.93 for incorrect) there were also some
deviations. That is, the correlation with the correct templates is not consis-
tently ∼ 0.99, but irregular correlations of ∼ 0.35 also occur. This makes it
hard to ”retrieve” the scalar consistently, because one wrong digit or mask
immediately makes the entire online template attack invalid.

To overcome this problem, more than one trace per template is retrieved
and the trace with the highest correlation is selected. This will make sure
that the correct template will have an correlation close to 1. However, this
approach also has a few downsides. For starters, the number of traces in-
creases significantly, especially because in our case just adding one extra
trace is not enough.

Also, because the trace with the highest correlation is chosen for every tem-
plate the correlations are going to be high for every template. This might
not be a problem for the first couple of iterations, but as the iterations
increase the offsets become somewhat misaligned reducing the correlation
with the correct template.

Ultimately, applying this procedure yielded a success rate close to 50%,
but this success rate can be improved by finding the cause of the deviations.
One could also further increase the number of traces per template, but as

22

this does not fix the underlying problem therefore some might call this bad
practice.

3.5 Suggestions for further improvement

The fact that there are 61 iterations with 16 templates each iteration means
that roughly 1000 traces have to be measured, processed and correlated.
This is a very time-consuming process, it would be advantageous if we could
reduce the number of traces. Similar to the situation in (2.1) we could come
up with a threshold that instantly classifies a template as correct. Assuming
an even distribution of digits and masks, this would mean that the run time
is halved. Care must be taken when choosing such a threshold, as overfitting
might be a concern.

23

Chapter 4

Attack on FourQ with
endomorphisms

4.1 Adapting OTA

4.1.1 Analyzing the routine

The goal is to attack the efficient FourQ implementation in a similar fash-
ion. Again, the first step perform the actual online template attack. If the
attack succeeds then it is known which digits and masks were used. The
next step is scalar reconstruction, i.e. converting the digits and masks into
the original scalar, as this is the secret value of interest.

The scalar multiplication routine has a main loop that consists of 64 it-
erations. In every iteration the point is first doubled and subsequently a
point from the lookup table is added. Thus, the doubling of iteration i+ 1
depends on the addition of iteration i, which in theory makes the loop vul-
nerable for a online template attack. The table consists of 8 points in total,
which means that including the negative points there are again 16 templates
for every iteration.

Template generation however, is significantly more difficult. This begins by
the fact that the points in the lookup table are less predictable, i.e. where in
the previous case the lookup table consisted of the points P, ..., 15P whereas
the lookup table now has the points P, ..., P + φ(P) + ψ(P) + ψ(φ(P)).

Additionally, it is important to keep in mind that the templates are in fact
scalars. That being said, the template scalar that is given as input is not
equal to the scalar that is being used at the recoding phase because scalar
decomposition is applied before the recoding. This means that in order to
generate correct templates, not only the recoding phase has to be reversed

24

but also the decomposition phase. This is also necessary to reconstruct the
scalar when the attack is finished, i.e. after the correct digits and masks
have been retrieved.

4.1.2 Reversing the decomposition

Given a multiscalar (a1, a2, a3, a4) the goal is to find the original scalar k.
The multiscalar (a1, a2, a3, a4) is defined as

a1 = k − ã1 · b1[1]− ã2 · b2[1]− ã3 · b3[1]− ã4 · b4[1]
a2 = − ã1 · b1[2]− ã2 · b2[2]− ã3 · b3[2]− ã4 · b4[2]
a3 = − ã1 · b1[3]− ã2 · b2[3]− ã3 · b3[3]− ã4 · b4[3]
a4 = − ã1 · b1[4]− ã2 · b2[4]− ã3 · b3[4]− ã4 · b4[4]

where bi are constants and α̃i =
⌊
`i·k
µ

⌋
for which µ = 2256 and `i are con-

stants. The first equation a1 is the sign-aligner (mask) column which is
slightly different than the other columns which are used to generate the dig-
its. The problem with using these equations to find k is that you have to
find a solution for k which holds for all equations. Simply using a1 to find
k will not be sufficient as this solution is only correct for a1. Additionally,
the floor rounding is used for computing ãi which may be a problem when
rewriting these equations.

Alternatively, one could use the equivalence k ≡ a1+a2λφ+a3λψ+a4λψλφ (mod N)
to find the original k. It seems to be a matter of simply plugging in the val-
ues a1, a2, a3, a4 as the eigenvalues λψ and λφ can explicitly be computed
using the curve’s parameters:

λψ = 4 · p+ 1

r
(mod N) λφ = 4 · (p− 1)r3

(p+ 1)2V
(mod N)

where p = 2127 − 1, N is the order of the subgroup and V and r are fixed
constants.

4.1.3 Reversing the recoding

Reversing the scalar recoding can also be done in two ways: rewriting the
digits and masks as b1 = (m64, ...,m0) and bj = (d64[j − 1], ..., d0[j − 1])
where di[k] is the kth bit of the ith digit. Another approach is to use the
pairs of digits and masks directly. The first approach has the disadvantage
that roundings are used which can be difficult in a reversing situation. The
latter approach is easier, the implementation version of the algorithm con-
tains solely simple algebraic operations such as additions, subtractions and
bit shifts.

25

The masks are computed using only a1, therefore with only the masks it
should be possible to retrieve a1. The loop in the recoding reverses the bits,
i.e. the least significant bits become the most significant bits. Additionally,
for every iteration i the (i + 1)th bit is selected as resulting bit. This means
that the 0th bit is not in m, however since a1 is odd we already know this
bit. Ultimately, this means we can define a1 as follows:

a1 = (0,m63, ...,m1, 1)2

Converting the digits to a2, a3, a4 is similar. Every digit is defined as di
= 4a4 + 2a3 + a2, but in order to find the original a2, a3, a4 it is neces-
sary to find out how the scalar is being reduced. The scalar is reduced by
aj = (aj >> 1) + c, which means to get the original aj the value of c has to
be subtracted and shifted back, i.e. aj = 1 << (aj − c).

However, the bit that was shifted during the recoding is lost. Simply shifting
back once does not restore this value, it simply appends a zero. Instead of
only doing a shift back, the bit that was lost has to be added. This bit is
stored in di as described earlier, and can thus be extracted using a mask:
aj = di >> j.

The full reversing routine (4.2) is given below, next to the original recoding
scheme (4.1).

Algorithm 4.1: Original recoding

1 input : aj = (0, aj [63], ..., aj [0]) for 1 ≤ j ≤ 4
2 output : (d64, ..., d0) , (m64, ...,m0)
3 begin
4 m64 = −1
5 f o r i from 0 to 63
6 di ← 0
7 mi ← −a1[i+ 1]
8 f o r j from 2 to 4
9 di ← di + (aj [0] << (j − 2))

10 c← (a1[i+ 1]|aj [0])a1 [i+ 1]
11 aj ← (aj >> 1) + c
12

13 return (d64, ..., d0), (m64, ...,m0)
14 end

Algorithm 4.2: Reverse recoding

1 input : (d64, ..., d0) , (m64, ...,m0)
2 output : aj = (0, aj [63], ..., aj [0]) for 1 ≤ j ≤ 4
3 begin
4 a0 ← 1
5 f o r i from 0 to 63
6 a1 ← −m1[i+ 1]
7 f o r j from 2 to 4
8 bit← (d[i] >> (j − 2))&1
9 ai ← ai − (a1[i]|bit) + bit

10

11 return
aj = (0, aj [63], ..., aj [0]) for 1 ≤ j ≤ 4

12 end

4.2 The attack

As noted before, the main loop consists of 64 iterations starting with the
highest indexed digits. These digits correspond to the least significant bits
in the multiscalar, e.g. d63 corresponds to aj [1] for j ∈ 2, 3, 4. The goal
is to find all digits and masks, starting with this d63 and m63 as it is the

26

digit/mask pair used in the first iteration. In order to find the correct value
for this pair all possible pairs of digits and masks have to be generated, these
pairs are then converted to scalars by first applying the reverse recoding and
subsequently applying the reverse decomposition. Similar to before, these
scalars are used as input to retrieve the template traces that are matched
with the target trace to find the correct digit/mask pair.

When the implementation without endomorphism was attacked, it was suf-
ficient to fill in unknown digits with 7’s and masks with 0’s, which would
directly correspond to 0’s in the template scalar. This was perfect in a sense
that the resulting scalars were very predictable which made it easier to make
the scalars fit a specific format (e.g. smaller than the subgroup order N).
In this case, padding is more difficult because of the intermediate decompo-
sition phase. For the attack, the digits/mask pairs that are generated are
converted into a scalar which is used as input. The FourQ routine will de-
compose and recode this scalar, but as it turns out the resulting digit/mask
pairs are not always equal to the initial digit/mask pairs.

Experiments show that for low scalars, i.e. scalars lower than 264, the

Figure 4.1: Overview of the different forms of the scalar, the conversions on
top are performed by FourQ while the conversions below are necessary to
build the template scalars

reverse recoding and decomposition is almost always correct, which means
that decomposing and recoding this scalar again will result in the original
digit and mask values. However, when higher scalars are generated the re-
sulting digits and masks are almost always incorrect. For example, scalars
bigger than 2246 will always result in incorrect digit/mask pairs. This incon-
sistency stems from the fact there are multiple scalars whose decomposition
result in the same multiscalar. This is really problematic as for OTA to
work the generated template scalars need to be reliable.

27

The main problem is that it is not possible to predict whether a scalar will
be correct. In particular, when trying to find the first digit/mask pair, all
values for d63 and m63 have to be tried. To make a template, the remaining
digit and masks could for example be randomized, but the chance that con-
verting these digits and masks result in a correct scalar is very slim. Brute
forcing to find a correct template is not an option as the number of options
is simply too big. Additionally, it would mean brute forcing 16 templates
for all 64 iterations. This is simply an infeasible amount of possibilities.

Nevertheless, lets suppose that it would be possible to find such digits, in
that case we could launch an attack similar like the attack that was used on
the windowed scalar multiplication version of FourQ. The following algo-
rithm could function as a boilerplate for such an attack. In this boilerplate,
unrecode is the reverse recoding function that was defined earlier and un-
decompose is the equivalence to compute k. The pad function is what still
needs to be defined.

Algorithm 4.3: Boilerplate for an Online template attack on FourQ
1 input : i n t t a r g e t s c a l a r
2 output : bool s u c c e s s
3 begin
4 t a r g e t t r a c e = t ra c e (t a r g e t s c a l a r)
5

6 k e y d i g i t s ← []
7 key masks ← []
8 f o r i ← 1 to 64
9 c o r r e l a t i o n s ← []

10 f o r d ← 1 to 7
11 f o r m ← 0 to 1
12 d i g i t s ← [d] + k e y d i g i t s
13 masks ← [m] + key masks
14 pad (d i g i t s , ? , 64)
15 pad (masks , ? , 64)
16

17 m u l t i s c a l a r ← unrecode (d i g i t s , masks)
18 t e m p l a t e s c a l a r ← undecompose (m u l t i s c a l a r)
19 t emp la t e t r a c e = t r a c e (t e m p l a t e s c a l a r)
20

21 c o r r e l a t i o n ← c o r r e l a t e (t emplate t race , t a r g e t t r a c e)
22 append (c o r r e l a t i o n s , c o r r e l a t i o n)
23 end
24 end
25 b e s t d i g i t , best mask = max(c o r r e l a t i o n s)
26 prepend (k e y d i g i t s , b e s t d i g i t)
27 prepend (key mask , best mask)
28 end
29 s c a l a r = undecompose (unrecode (k e y d i g i t s , key masks))
30 return s c a l a r == t a r g e t s c a l a r
31 end

28

Chapter 5

Related Work

As of now, there are not many papers discussing the practicalities of on-
line template attacks, however there are papers which discuss side channel
analysis of FourQ. Z. Liu et al. [11] have written an extensive paper on
side channel analysis of FourQ. In their paper, they implement the three
countermeasures proposed by Coron [2] in such a way that overhead on
the scalar mulitplication is minimal. These countermeasures(point blinding,
scalar randomization and projective coordinate randomization) are mostly
useful against vertical attacks. The authors further attempt to perform DPA
on their protected scheme and show that the countermeasures significantly
increase the effort necessary to perform such an attack. Using this knowl-
edge, they claim that the countermeasures also protect the implementation
against similar (vertical) attacks, such as refined power attack, doubling
attack and several correlation and collision attacks.

29

Chapter 6

Future work

The attack on the efficient version of FourQ was unsuccessful. However, this
does not mean that it is impossible. The only thing that makes this attack
difficult is the decomposition, without it executing the attack would be very
similar to the attack on the first version of the algorithm.

One approach at making the attack work is by reversing the decomposition
using the derived formulas. This approach at reversing the decomposition
is more difficult because there is a set of equations for which the scalar k
has to hold. Alternatively, one could take another look at generating cor-
rect templates by using the equivalence, there could exist a method which
cleverly chooses the digits and masks to ensure a correct scalar.

Additionally, it would be interesting to see if an online template attack
can be used if one or more of the countermeasures (point blinding, scalar
blinding, etc.) is enabled. The original paper mentions that is indeed possi-
ble to bypass scalar blinding because the retrieved (blinded) scalar is in fact
equivalent to the original scalar.

30

Chapter 7

Conclusions

It was already known that online template attacks could be performed on
a wide range of elliptic curve schemes, but it is now confirmed that it can
also be used on a windowed scalar multiplication scheme. Most of the time
the difference in correlation between the correct and incorrect template was
significant. That being said, the fact that it seemed not possible to make the
attack work consistently was rather disappointing. It was very unfortunate
that the ARM optimized version of the algorithm in combination with the
wrapper code did not work in the first place. This in combination with the
anomalies as described in the Results section also made the attack much
slower than anticipated.

As for the efficient FourQ implementation, the decomposition phase turned
out to be a real obstacle. It is not proven that it is impossible to perform
OTA, but the fact that scalar decomposition makes the attack much more
difficult is a good aspect of FourQ either way. Being able to reliably generate
template scalars is a fundamental part of OTA and decomposition seems to
be a good first defense. The boilerplate presents an first attempt to do an
attack, but does not offer a solution to the problem on hand. This solution
of reliably generating correct template scalars might require a very different
approach.

31

Bibliography

[1] L. Batina, L. Chmielewski, L. Papachristodoulou, P. Schwabe, and
M. Tunstall. Online template attacks. Journal of Cryptographic Engi-
neering, Aug 2017.

[2] J.S. Coron. Resistance against differential power analysis for elliptic
curve cryptosystems. 1999.

[3] C. Costello and P. Longa. Fourq: four-dimensional decompositions on
a q-curve over the mersenne prime. 2015.

[4] H. Edwards. A normal form for elliptic curves. 2007.

[5] Armando Faz-Hernández, Patrick Longa, and Ana H Sánchez. Efficient
and secure algorithms for glv-based scalar multiplication and their im-
plementation on glv-gls curves (or keep calm and stay with one (and
p¿ 3)).

[6] Robert P Gallant, Robert J Lambert, and Scott A Vanstone. Faster
point multiplication on elliptic curves with efficient endomorphisms. In
Annual International Cryptology Conference, pages 190–200. Springer,
2001.

[7] H. Hisil, K. Koon-Ho Wong, G. Carter, and E. Dawson. Faster group
operations on elliptic curves. 2009.

[8] Paul C Kocher. Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems. In Annual International Cryptology Con-
ference, pages 104–113. Springer, 1996.

[9] P.C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. 1998.

[10] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Fac-
toring polynomials with rational coefficients. Mathematische Annalen,
261(4):515–534, 1982.

[11] Z. Liu, P. Longa, G.C.C.F. Pereira, O. Reparaz, and H. Seo. Fourq
on embedded devices with strong countermeasures against side-channel
attacks. 2017.

32

[12] P. Longa. Fourqlib. https://github.com/Microsoft/FourQlib, 2017.

[13] Patrick Longa and Francesco Sica. Four-dimensional gallant–lambert–
vanstone scalar multiplication. Journal of Cryptology, 27(2):248–283,
2014.

[14] P.L. Montgomery. Modular multiplication without trial division. 1985.

33

