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Abstract

This thesis researches the claims of the makers of the staircase distribution
for differential privacy that their staircase distribution performs better than
the Laplace distribution for sampling noise values to achieve differential
privacy.

After implementing the staircase sampling method in C++, their claims
were confirmed, meaning that the staircase mechanism is faster than the
Laplace mechanism for sampling differentially private noise values.
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Chapter 1

Introduction

When Irit Dinur and Kobbi Nissim published their paper ‘Revealing Infor-
mation while Preserving Privacy’ in 2003 [4], it became clear that a new
approach to providing privacy needed to be taken. In their paper, Dinur
and Nissim proved that it was impossible to maintain privacy when publish-
ing information gathered from a private statistical database. These findings
were directly contradictory to the semantic definitions of privacy that were
given by Delanius in 1977 [2]. This definition—translated to the field of
statistical databases—prescribes that access to a database shouldn’t reveal
information about an individual.

One new approach to privacy in statistical databases was introduced by
Nissim, together with Cynthia Dwork, Frank McSherry, and Adam Smith
in 2006 [10]. Their paper—‘Calibrating Noise to Sensitivity in Private Data
Analysis’—laid the foundation for the mathematical definition now known
as differential privacy. This term was coined by Dwork the same year [5],
and she defined its algorithmic foundations with Aaron Roth in 2014 [12].
She has sort of become the figurehead for the research field, writing many
papers on the topic over the past decade [6, 7, 11, 8].

The idea behind differential privacy is quite simple; the presence or ab-
sence of one individual entry won’t affect the result of a statistical query
significantly. Because of this effect, individual privacy can be guaranteed
when using cumulative queries on statistical databases through adding ap-
propriately chosen mathematical noise.

A small part of the framework of differential privacy is choosing this
mathematical noise that needs to be added. Typically, noise is generated by
sampling from a probability distribution, which is what this thesis will focus
on. The goal is to find the optimal mechanism for calculating noise by com-
paring two different probability distributions; the Laplace distribution [5],
and the staircase distribution [14]. Performance is based on execution time—
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that is, how long it takes for a sample to be drawn from the distribution.

This paper is divided into five further chapters. Chapter 2 discusses the
background information on differential privacy, and introduces the chosen
distributions in more detail. Chapter 3 will show the first endeavour into
implementing these mechanisms into a test environment, and Chapter 4 will
focus on the optimization of this implementation to be able to draw conclu-
sions. Chapter 5 will discuss related work, and Chapter 6 will summarize
the results from Chapters 3 and 4.
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Chapter 2

Preliminaries

As with most theories in computer science, differential privacy has its roots
in mathematics. Its algorithmic foundations were described by Dwork and
Roth in 2014 [12], but its mathematical foundations had already been de-
scribed before [5, 10]. This chapter will give the necessary background infor-
mation by summarizing those findings, defining some key terms, and giving
a toy example. At the end, the two noise generation mechanisms used in
this research will be described in more detail.

2.1 What is privacy?

One of the most important parts of a privacy preserving technique is defining
when an individual’s privacy is violated. Finding a balance between utility—
actually giving the user information they can work with—and privacy—
making sure that people’s sensitive information isn’t leaked—has always
been hard to get right. Swinging too much to either side negatively impacts
one party, while maybe helping the other; openly working with sensitive
data might be ethically questionable, but it could lead to better research
results. Working with data that has been perturbed too much might lead
to better privacy, but it probably won’t yield the best test results.

In 1977, Tore Dalenius wrote the paper ‘Towards a methodology for
statistical disclosure control’. In it, he defines and theorizes what statistical
disclosure is, and he considers the possibility of developing a methodology for
statistical disclosure control [2]. According to Dalenius, statistical disclosure
would be controlled if access to a statistical database discloses no additional
information about an individual. It turns out however, that this type of
privacy is unattainable. This is proved by Dwork and Noar [11], and the
proof relies on the existence of auxiliary information.

Suppose an attribute like height is considered a highly sensitive piece of
information. Revealing one’s exact height would then constitute a privacy
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breach. Now assume a database that contains the average heights of people
from different nations. An adversary that has access to that database, as
well as the auxiliary information that ‘Eve is two inches shorter than the
average Dutch woman’ can determine Eve’s height and as a result, breaches
privacy. Anyone without access to the database doesn’t learn Eve’s exact
height, meaning that no privacy is breached.

The most important part of this realization is that it doesn’t matter
whether Eve’s height was used to determine the average height present in
the database. The core principle of differential privacy is that someone’s
(lack of) participation in the database should not substantially impact risks
they may experience. These risks can range from privacy risks to risks of
reputation damage, but they should not be influenced negatively by partic-
ipating.

Another thing to take note of, is that Dalenius’s definition shows close
resemblance to the concept of semantic security, introduced by Goldwasser
and Micali a few years later [16]. In that environment however, the no-
tion that only a negligible amount of information can be learned about the
plaintext within a feasible amount of time, does hold up. This comes down
to the requirement that useful results be generated by querying the data
set. Working with a data set that is perturbed too much can negatively im-
pact produced results, thus lowering usability. A cryptographic ciphertext
doesn’t have this usability constraint; it has, in fact, the opposite require-
ment. Learning as little as possible from the ciphertext as an adversary is
one of its most important goals. Because of this usability requirement, a pri-
vacy theory like Dalenius defined won’t be of help, but differential privacy
will.

2.2 Definitions

The main idea behind differential privacy—an individual’s participation in
the database doesn’t heavily impact their privacy—is represented using
probabilities. The probability that a disclosure will arise is just as likely
whether or not the individual participates in the database, up-to a multi-
plicative factor. This does not free the database from bad disclosures how-
ever, as those can still happen. It only assures that the presence or absence
of a single data entry did not cause the bad disclosure. It also ensures an
individual that no action or inaction could prevent or have prevented the
disclosure.
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2.2.1 Datasets and queries

Let a dataset or database D = (d1, . . . , dn) be a collection of records, or
vector, from a universe Dn, where each entry di represents information con-
tributed by one individual [22]. To then represent the distance between
datasets, the Hamming distance is used.

Definition 1. The Hamming distance d(D1, D2) between two databases is
the number of entries on which they differ:

d(D1, D2) = |{i : D1i 6= D2i}|

Two datasets are neighboring if they differ in a single participant’s data,
that is, when d(D1, D2) = 1.

To obtain information from a dataset, queries are performed on it. One
of the most simple types of queries is the counting query. A counting query
answers the question ‘How many rows of the database satisfy some predicate
p?’

Definition 2. A counting query is a function q : D → N using the boolean
predicate p : di → {0, 1} that maps each row to 0 if they don’t satisfy the
property, and to 1 if they do. q is then evaluated by

q(D) =

|D|∑
i=1

p(di) (2.1)

2.2.2 Differential privacy

An essential part of differential privacy is randomization. The intuition
behind this is that an adversary can determine the value of a single entry in
a dataset if they use a deterministic algorithm. This is done by executing
the query on two neighboring datasets, and observing the outcome. Since
the datasets differ at only 1 entry, the adversary can easily determine that
entry’s value, breaching privacy in the process.

To combat this, instead of deterministic algorithms, randomized algo-
rithms are used [12].

Definition 3. A randomized algorithm K with domain A and discrete range
B is associated with a mapping M : A → ∆(B). On input a ∈ A, the
algorithm K outputs K(a) = b with probability (M(a))b for each b ∈ B.

Here, ∆(B) is the so called probability simplex over B, which ensures
that all of B’s individual values sum up to 1, that is

∆(B) =

{
x ∈ R|B| : ∀i, xi ≥ 0 ∧

|B|∑
i=1

xi = 1

}
To now define differential privacy, [5] gives
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Definition 4. A randomized algorithm K with domain D gives ε-differential
privacy if for all data sets D1 and D2 satisfying d(D1, D2) = 1, and all S ⊆
Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S] (2.2)

Note that this definition only refers to a general mechanism K, not an
actual implementation. Dwork does come with an idea however: adding
noise to the output. This means that the privacy of the analysis hinges on
output perturbation, where privacy is achieved by adding random noise that
‘masks’ the private information [22]. Releasing the result of a query function
f : D → Rd on the dataset D will then first require the addition of some
random variable N before publishing the answer A(D) = f(D) + N . To
properly calibrate the noise to lead to a usable result, the global sensitivity
∆ of the query function is used.

To define this, the `1 norm on Rd (denoted ‖ · ‖1) is used as a distance
metric. This norm measures the distance between two points by the sum
of the absolute differences of their coordinates. To illustrate this, take two
vectors p = (p1, . . . , pn) and q = (q1, . . . , qn). Their `1 norm is then defined
as ‖p − q‖1 =

∑n
i=1 |pi − qi|. So if p and q were to only differ at the entry

with index x, their `1 norm would be equal to |px − qx|.
As the query function f has domain Rd, and thus produces vectors of

dimension d, the global sensitivity can be defined as follows [22].

Definition 5. For f : D → Rd, the global sensitivity of f is

∆(f) = max
D1,D2

‖f(D1)− f(D2)‖1 (2.3)

for all D1, D2 ∈ Dn, d(D1, D2) = 1.

That is, the global sensitivity of a query function is the difference between
the output when executed on two databases, measured by the `1 norm.
Applying this definition to a counting query q, the global sensitivity ∆(q) =
1. This results from the fact that a counting query, when performed on two
neighboring datasets, will show a difference of at most 1, namely when the
differing row also differs in the property specified by q.

Using the global sensitivity of a counting query, if noise is calibrated to
mask a difference of 1 between neighboring datasets’ query outputs, it will
be hard to determine an individual’s participation, increasing privacy.

2.3 A Toy Example

To get a better impression of differential privacy in practice, it’s perhaps
best to examine a toy example. The structure of this toy example was taken
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from an article written by Christine Task in XRDS magazine [26]. When
she wrote the article, she was a Ph.D. candidate at Purdue University, doing
research on differentially private social network analysis.

2.3.1 Introduction

Suppose Alice was conducting a survey about people’s history with using
drugs and their current salary. It would be nice to ensure the presence of
some privacy on this data set, since (a past of) drug use can be a very
privacy sensitive issue. Alice has already collected some data, and asks Bob
to fill out the survey as well. The data Alice has already collected is in the
form of individual survey results that are stored in a dataset. The dataset
is comprised of the following columns:

– Income. One of the set I = {i1, i2, i3}, where i1 represents incomes
lower than $25K, i2 those between $25K and $50K, and i3 those over
$50K.

– Drug use. One or more of the set D = {M,X,C,H,N}, where each
represents the (past) use of a drug. M stands for marijuana, X for
XTC, C for cocaine, H for heroine, and N for none of the above. Of
course, if a respondent has answered ‘N ’, they can’t have any other
options filled out.

If Alice now calls the counting query 2.3.1 on the dataset, a response
like Result 2.3.1 is returned.

Query 2.3.1 Alice’s counting query

SELECT drug,
COUNT(drug) for each i ∈ I

GROUP BY drug

From hereon there are two possible scenarios:

– Bob does not fill out the survey, leaving the current counts untouched.

– Bob fills out the survey, and increases the count for ‘M ’ and ‘X ’ in
the column for the salary category i3.

The goal of differential privacy in this research is to make it impossible for
Alice to determine whether Bob has participated in her survey or not. This
means that she cannot have access to the raw data, as that would allow her
to compare the counts before and after she asked Bob.
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Result 2.3.1 The data Alice has collected before asking Bob. The counts in
bold italics are those that Bob can increase by participating in the survey

i1 i2 i3

M 56 67 31

X 23 11 15

C 31 9 22

H 4 2 7

N 63 110 141

2.3.2 The Laplace distribution

The second part is what this research focuses on: adding the noise. To
do this, a noise generation mechanism—or NGM for short—is used. Be-
cause differential privacy relies on probabilities, this added noise has to be
randomized, and the simplest way to achieve this is by using a probability
distribution. A Laplace distribution is a traditional example that is often
used to sample noise values [5, 9, 15]. It is a continuous, symmetrical prob-
ability distribution described by the probability density function

L(x|µ, b) =
1

2b
exp

(
−|x− µ|

b

)
(2.4)

The formula for the Laplace distribution contains two parameters that
have an influence on the dispersion:

– µ, also known as the location parameter. This value corresponds to
the x-coordinate of the center of the graph’s peak.

– b, also known as the scale parameter. Its value must be greater than
zero, and it affects the steepness of the curve. The lower its value,
the more the area under the curve is centered around the peak. See
Figure 2.1 for the impact the scale parameter has on the graph. The
red line shows the Laplacian distribution when b = 1, the blue line for
b = 2, and the green line for b = 4.

The Laplace distribution is a so called continuous probability distribution,
meaning that the probability of the random variable X falling into a given
interval [a, b] is given by the integral

P[a ≤ X ≤ b] =

∫ b

a
f(x) dx

where f(x) is the probability density function that describes the distribution
(in the case of the Laplace distribution that would be Equation 2.4). Note
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Figure 2.1: The Laplace distribution for b = 1, b = 2, b = 4

that this means that the probability of X assuming any definite point is 0,
as the integral

∫ a
a f(x) dx evaluates to 0 by default.

In the case of differential privacy, this random variable X is the noise
that will be added to the true answer. To get an idea of the distribution
of noise values, suppose a Laplace distribution with µ = 0 and b = 2. The
chance that a noise value is then in the interval [−1

2 ,
1
2 ] is equal to∫ 1

2

− 1
2

L(x|µ = 0, b = 2) dx =

∫ 1
2

− 1
2

1

4
exp

(
−x

2

)
dx =

1

4

[
−2 · exp

(
−x

2

)] 1
2

− 1
2

=

1

4

(
−2 · e−

1
4 + 2 · e

1
4

)
=

4
√
e

2
− 1

2 4
√
e
≈ 0.253

This means that there is a chance of roughly 25% that the sampled noise
value is in the interval [−1

2 ,
1
2 ]. That leaves a 75% chance the perturbation

of the true answer will be greater.
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2.3.3 Sampling

To use the Laplace distribution for actually sampling random values, in-
verse transform sampling is used. Inverse transform sampling is a method
for generating numbers from a probability distribution using its cumulative
distribution function [3].

The cumulative distribution function, or CDF, of a random variable X
is given by

F (x) = P(X ≤ x)

where the evaluation of F at x will give the probability that X takes on a
value less than or equal to x. To determine the CDF of X, the integral of its
probability density function from the lowest end of its domain up to x must
be calculated. To do this for the Laplace distribution L(x), whose domain
is R, let’s distinguish two cases:

L(x) =

 1
2b exp(−µ−x

b ), if x < µ

1
2b exp(−x−µ

b ), if x ≥ µ
(2.5)

Integrating the first case gives

1

2b

∫ x

−∞
exp

(
−µ− t

b

)
dt =

1

2b

[
b · exp

(
t− µ
b

)]x
−∞

=

1

2b

(
b · exp

(
x− µ
b

)
− b · exp

(
−∞− µ

b

))
=

1

2b

(
b · exp

(
x− µ
b

))
=

1

2
· exp

(
x− µ
b

)
To integrate the second case, we know that µ ≤ x, meaning that the integral
can be split into two parts: from −∞ to µ, and from µ to x. This reduces
work, because we know the integral from −∞ to µ is equal to 1

2 , as µ splits
the distribution in half. This gives

1

2b

∫ x

−∞
exp

(
− t− µ

b

)
dt =

1

2
+

1

2b

∫ x

µ
exp

(
− t− µ

b

)
dt =

1

2
− b

2b

[
exp

(
− t− µ

b

)]x
µ

=

1

2
− 1

2

(
exp

(
−x− µ

b

)
− exp

(
−µ− µ

b

))
=

1

2
− 1

2

(
exp

(
−x− µ

b

)
− 1

)
= 1− 1

2
exp

(
−x− µ

b

)
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To sum up, the cumulative distribution FL(x) is

FL(x) =

1
2 · exp

(x−µ
b

)
, if x < µ

1− 1
2 exp

(
−x−µ

b

)
, if x ≥ µ

(2.6)

Turning back to inverse transform sampling, the following steps have to
be taken to sample a random value from the probability distribution [3]:

1. Determine F−1
L (x), so that FL(F−1

L (x)) = x.

2. Generate a random variable u, uniformly distributed on the interval
[0, 1].

3. The noise N is then equal to F−1
L (u).

The first step of this method requires F−1
L , the inverse of the cumulative

distribution function FL. To determine this, it must hold that F (F−1
L (a)) =

a. This gives the first case

1

2
exp

(
F−1
L (a)− µ

b

)
= a

F−1
L (a)− µ

b
= ln(2a)

F−1
L (a) = b · ln(2a) + µ

and the second case

1− 1

2
exp

(
−
F−1
L (a)− µ

b

)
= a

−
F−1
L (a)− µ

b
= ln(−2(a− 1))

F−1
L (a) = −b · ln(2− 2a) + µ

That means F−1
L (x) can be defined as

F−1
L (x) =

b · ln(2x) + µ, if x < 0.5

−b · ln(2− 2x) + µ, if x ≥ 0.5
(2.7)

Note that the domain of F−1
L (x) is (0, 1), coinciding with the random variable

u that determines the noise.
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2.3.4 Adding the Noise

Bob has told Alice that he has made his decision, leaving Alice with research
to do. Of course she doesn’t know if Bob has filled out her survey, she can
only query the dataset using the counting query qM3 that counts the number
of respondents whose income level is i3 and who have used marijuana before.
In stead of directly receiving A = qM3(D), she receives A = qM3(D) + N ,
where N is sampled from the Laplace distribution, parameterized by ε and
∆(qM3).

Previous research [10] has shown that a Laplace distribution with µ = 0

and b = ∆(qM3)
ε will result in ε-differential privacy. ∆(qM3) is equal to 1, as

it’s a simple counting query. The optimal value of ε obviously depends on
the line Alice wants to walk between privacy and output usability. There
are some heuristic choices [20, 17], but for this example ε = 0.5 will provide
a good balance. This gives b = 1

0.5 = 2.
Combining all of this together, sampling a random noise value from a

Laplace distribution with µ = 0 and b = 2 will be done by

1. Determining F−1
L (x), so that FL(F−1

L (x)) = x. See equation 2.7.

2. Generating a random number u ∈ (0, 1). For this example, say u =
0.22.

3. Calculate F−1
L (u) = 2 · ln(0.44) + 0 ≈ −1.642. This means that the

noise value N = −1.642.

If Alice now receives the response A = qM3(D)+N = 31+−1.642 = 29.358,
she won’t be able to reliably tell whether Bob has participated, because for
all she knows, the response was the result of adding −2.642 to 32.

2.4 The Two NGMs

This research will focus on two different noise generation mechanisms that
can achieve ε-differential privacy: the Laplace mechanism, as discussed be-
fore, that samples noise values from a Laplace distribution parameterized
by the sensitivity of the query function and ε. The second NGM is the so
called staircase mechanism, that also takes ε and ∆ as parameters.

2.4.1 The Laplace Mechanism

The Laplace mechanism is one of the most used techniques for adding noise
to a true answer [7, 10]. An example of its use, together with its definitions
was given in section 2.3. It is defined by the probability density function

L(x|µ, b) =
1

2b
exp

(
−|x− µ|

b

)
where µ is the location parameter, and b is the scale parameter.
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2.4.2 The Staircase Mechanism

In 2013, Quan Geng and Pramod Viswanath published their paper ‘The
optimal mechanism in differential privacy’ [15]. In it, they introduce a new
type of noise generation mechanism that they dub ‘the staircase mechanism’.
According to their research, the new staircase mechanism can replace the
Laplace mechanism in any instance, while outperforming it as well. They
have since done more research on the topic, solidifying their findings [14].

Geng and Viswanath define the probability density function of the stair-
case distribution with the case distinction

S(x|γ) =



a(γ), x ∈ [0, γ∆]

e−εa(γ), x ∈ [γ∆,∆)

e−kε · S(x− k∆|γ), x ∈ [k∆, (k + 1)∆) for k ∈ N

S(−x|γ), x < 0

(2.8)

where

a(γ) ,
1− e−ε

2∆(γ + e−ε(1− γ))
(2.9)

The function a(γ) exists to make sure that integrating S(x|γ) over all real
numbers results in a value of 1; that is, the area under the curve must be
equal to 1. Furthermore, γ controls the shape of the distribution, and its

optimal setting is
√
α

1+
√
α

, with α = e−ε [1]. ∆ is the sensitivity of the query

function (see Definition 5).

To get a better idea of this distribution, it is plotted against both the
Laplace and the Gaussian distribution in Figure 2.2. The privacy factor ε
was set to 0.5, and the sensitivity of the query function was equal to 1.
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Figure 2.2: The staircase distribution in red versus the Laplace distribution
in blue. (ε = 0.5,∆ = 1→ α ≈ 0.61, γ ≈ 0.44)
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Chapter 3

Initial Research

The research portion of this thesis will consist of an implementation of the
aforementioned differentially private mechanisms, after which an analysis of
their performance will be made.

3.1 Programming Environment & Hardware

To research the optimality of the three noise generation mechanisms, a re-
search environment must first be set up.

Python was used as the main programming language, because of its high
level of extendability and ease of use. To keep everything up-to-date, the
most recent stable release of Python was used, in this case Python 3.6.5.1

For the IDE, I chose PyCharm Community Edition2, an Apache 2 licensed
developing environment made by JetBrains.

Because the calculations that probability density functions require aren’t
that intensive, no external computing power was needed beyond my lap-
top. That means all calculations were done on a 2015 MacBook Pro with a
2.7GHz dual-core Intel Core i5 processor and 8GB of RAM.

3.2 The Data Set

Differential privacy wouldn’t exist if there wasn’t data that needed to be
privatized. A classic data set that is used for classification in machine learn-
ing is the ‘Adult Data Set’ from the UCI Machine Learning Repository.3

According to the website, its purpose is to predict whether an individual’s
income exceeds $50K per year based on a collection of their attributes. There
are 14 attributes, and they’re listed in Table 3.1, together with their possible
values. It has 48,842 individual entries, and the data was extracted from

1https://blog.python.org/2018/03/python-365-is-now-available.html
2https://www.jetbrains.com/pycharm/
3https://archive.ics.uci.edu/ml/datasets/adult
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the 1994 Census database by Barry Becker. A database like this is ideal for
counting queries, as you can simply query the data set for all rows whose
attributes meet a certain mask.

Attribute Type Description

age integer {17, ..., 90}
workclass categorical {?, State-gov, Self-emp-not-inc, Private, Federal-gov, Local-gov, Self-

emp-inc, Without-pay, Never-worked}
fnlwgt integer Final sampling weight

education categorical {1st-4th, 5th-6th, 7th-8th, 9th, 10th, 11th, 12th, Assoc-acdm, Assoc-
voc, Bachelors, Doctorate, HS-grad, Masters, Preschool, Prof-school,
Some-college}

education-num integer {1, ..., 16} (similar to education)

marital-status categorical {Divorced, Married-AF-spouse, Married-civ-spouse, Married-spouse-
absent, Never-married, Separated, Widowed}

occupation categorical {?, Adm-clerical, Armed-Forces, Craft-repair, Exec-managerial,
Farming-fishing, Handlers-cleaners, Machine-op-inspct, Other-service,
Priv-house-serv, Prof-specialty, Protective-serv, Sales, Tech-support,
Transport-moving}

relationship categorical {Husband, Not-in-family, Other-relative, Own-child, Unmarried, Wife}
race categorical {Amer-Indian-Eskimo, Asian-Pac-Islander, Black, Other, White}
sex categorical {Female, Male}
capital-gain integer {0, ..., 99999}
capital-loss integer {0, ..., 99999}
hours-per-week integer {0, ..., 99}
native-country categorical {?, Cambodia, Canada, China, Columbia, Cuba, Dominican-Republic,

Ecuador, El-Salvador, England, France, Germany, Greece, Guatemala,
Haiti, Holand-Netherlands, Honduras, Hong, Hungary, India, Iran,
Ireland, Italy, Jamaica, Japan, Laos, Mexico, Nicaragua, Outlying-
US(Guam-USVI-etc), Peru, Philippines, Poland, Portugal, Puerto-
Rico, Scotland, South, Taiwan, Thailand, Trinadad&Tobago, United-
States, Vietnam, Yugoslavia}

income categorical {‘<=50k’, ‘>50k’}

Table 3.1: The attributes in the data set with their type and possible value

3.3 Querying the Data Set

Before any sort of noise can be added to a true answer, the true answer must
be determined. The easiest way to query a database is by using SQL as a
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query language. The only problem is that SQL can only act on a database,
not a comma-separated values (.csv) file, which is how the Adult data set
is distributed. To circumvent this problem, the data from the Adult data
set must be turned into a database that can be queried in Python. This was
done in 3 steps:

1. Editing the .csv file to make for easier database production.

2. Making a database from the altered .csv file.

3. Making it possible to execute SQL queries on the newly constructed
database through the Python interface.

3.3.1 Editing the .csv file

A database needs to have a header row with column names, otherwise query-
ing it would be impossible. Because the Adult data set’s .csv file didn’t
come with the header names included, they were inserted before the first
data row by separating the attribute names with commas.

Because SQL doesn’t play nice with column names that contain a hy-
phen, all hyphens were removed when making the header. This means that
columns like education-num will have to be queried with educationnum.

3.3.2 Making a Database

To turn the .csv file into a database, its contents must be extracted in a
way that delivers an object Python’s syntax can deal with. This is done
using the Python module csv. The header with the column names is then
split from the data rows. For making the database in Python, SQLite4 (and
its corresponding Python module sqlite35) was used. SQLite is the most
widely deployed database in the world, and as very intricate queries aren’t
necessary for this research, its functionality scope should suffice.

To now make a database, there are two SQL commands of interest:

– CREATE TABLE name (column names);

This command creates a table named name, with a header full of
column names.

– INSERT INTO name VALUES (values);

To actually add data into an existing database, this command is used.
name specifies the table where values needs to be inserted into.

Instantiating the database with the first command, and performing the sec-
ond command for every row in the .csv file creates a database instance that
can be queried.

4https://www.sqlite.org/about.html
5https://docs.python.org/3/library/sqlite3.html
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3.3.3 Executing Queries

Because the sqlite3 module complies with Python’s DB-API 2.0, all pos-
sible database functions are built in. This means that once the database is
created, querying it is as simple as calling the execute function with the
desired query as a parameter.

SQL 3.3.1 An SQL query that links marital status to average capital gain

SELECT maritalstatus,
AVG(capitalgain) AS CapitalGain FROM adult

GROUP BY maritalstatus
ORDER BY CapitalGain ASC;

If for example SQL query 3.3.1 is executed on the Adult data set, Re-
sult 3.3.1 is returned.

Result 3.3.1 Result for SQL query 3.3.1

maritalstatus CapitalGain

Never-married 376.58831788823363

Married-AF-spouse 432.6521739130435

Separated 535.5687804878049

Widowed 571.0715005035247

Married-spouse-absent 653.9832535885167

Divorced 728.4148098131893

Married-civ-spouse 1764.8595085470085

3.4 NGM Implementation

To test the performance of the noise generation mechanisms, they need to
be implemented. This is again done in Python, using a combination of
literature and NumPy6, an importable Python package that contains tools
for scientific computing.

3.4.1 The Laplace Mechanism

Each noise generation mechanism is defined as a class instance that has at-
tributes relating to differential privacy parameters. For the Laplace mecha-

6http://www.numpy.org
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nism, there are four of those attributes:

– epsilon, the differential privacy parameter.

– delta, the global sensitivity of the query function.

– loc, the location parameter (µ) of the Laplace distribution.

– scale, the scale parameter (b) of the Laplace distribution, calculated
by dividing delta by epsilon.

Adding noise is done through a separate method, called add noise (see
Code 3.4.1). It works by simply adding a sampled noise value to the
true answer. To keep track of the performance of the noise addition, the
perf counter method of Python’s time library7 is used. After all noise cal-
culations have taken place, the time difference is multiplied by 1,000,000 to
return the execution time in microseconds. In the case of the Laplace mech-

Code 3.4.1 The noise addition method for the Laplace mechanism

def add_noise(self, value):

start = perf_counter()

noisy = value + self.calculate_noise()

end = perf_counter()

return noisy, (end - start) * 1000000

anism, the method that calculates the noise is simply a call to NumPy’s
built-in laplace method. This returns a floating point number that is sam-
pled from a Laplace distribution, parameterized by the loc and scale pa-
rameters.

3.4.2 The Staircase Mechanism

Adding noise with the staircase mechanism isn’t as trivial as calling a built-
in function from a library. Thankfully, Geng et al. give a simple algorithm to
generate a random variable according to the staircase distribution specified
by ε,∆, and γ [15] (see Algorithm 3.4.1). A noise value is calculated through
Equation 3.1, which consists of three major parts: a sign indication, a left
hand side, and a right hand side.

X = S((1−B)((G+ γU)∆) +B((G+ γ + (1− γ)U)∆)) (3.1)

– S determines whether the noise is negative or positive (the sign), with
equal probability.

7https://docs.python.org/3/library/time.html
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– The left hand side of the addition that is multiplied by S is a multi-
plication of (1 − B) by (G + γU)∆. That means the left hand side
will equate to zero when B = 1. (G + γU)∆ shows that G deter-
mines the interval of the noise; its lowest is γ = U = 0, its highest is
γ = 1, U → 1, or the interval [G∆, (G+ 1)∆).

– If B = 0 however, the right hand side will equate to zero. That means
B controls whether the noise is in the interval [G∆, (G + γ)∆) for
B = 0, or [(G+ γ)∆, (G+ 1)∆) for B = 1.

Say noise must be generated for a query function with ∆ = 1, and with

ε = 0.1. Setting γ to its optimal setting of
√
α

1+
√
α

([15]) gives γ ≈ 0.49. This

means that the noise will be on [G,G+ 1) in general, and on [G,G+ 0.49)
if B = 0, or [G+ 0.49, G+ 1) if B = 1 for a geometric random variable G.

Algorithm 3.4.1 Sampling a noise value from the staircase distribution

Input: ε,∆, γ ∈ [0, 1].
Output: X, a random variable from the staircase distribution.

Generate S, with Pr[S = 1] = Pr[S = −1] = 1
2 .

Generate G, with Pr[G = i] = (1− b)bi for i ∈ N, where b = e−ε.
Generate U , uniformly distributed in [0, 1].

Generate B, with Pr[B = 0] = γ
γ+(1−γ)b and Pr[B = 1] = (1−γ)b

γ+(1−γ)b .

X ← S((1−B)((G+ γU)∆) +B((G+ γ + (1− γ)U)∆)).

The only thing to take note of is the geometric variable G. NumPy’s
function for sampling a geometric variable uses the formula f(k) = (1 −
p)k−1p, which is supported on the positive integers, k ∈ Z+8. This type
of geometric distribution shows the number of trials X needed to get one
success, where each trial has a probability p of success. This differs from the
geometric distribution proposed in Algorithm 3.4.1, f(k) = (1−p)kp, which
shows the number of failures before the first success, supported on the set
of natural numbers, k ∈ N [24]. To rhyme NumPy’s implementation of the
geometric distribution with the type of geometric distribution required by
the algorithm, two things must happen:

– If the first distribution determines the number of trials X, the number
of failures Y can be expressed as Y = X − 1. This means a value of
1 must be subtracted from a random variable generated by NumPy’s
geometric sampling function.

8https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.

geometric.html
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– Secondly, where NumPy uses the formula f(k) = (1 − p)kp, the al-
gorithm requires a distribution of (1 − b)bk. Passing the probability
p = 1− b will give

f(1− b) = (1− (1− b))k(1− b)
= bk(1− b)

which is the desired distribution.

Similar to the Laplace mechanism, the class for the staircase mechanism
has some attributes relevant to differential privacy:

– epsilon, the differential privacy parameter.

– delta, the global sensitivity of the query function.

– gamma, the staircase parameter.

– b, equal to e−ε. Used for computing biszero and bisone.

– biszero, bisone, used for determining the value of B.

To implement this algorithm in Python, NumPy’s random library does
come in handy. Its method choice can be used for generating S and B,
geometric is needed for G, and uniform for U . All independent values
are determined beforehand to save computing time. See Code 3.4.2 for the
corresponding implementation. Just like the Laplace implementation, the

Code 3.4.2 The noise calculation method for the staircase mechanism

def calculate_noise(self):

S = np.random.choice([-1, 1])

G = np.random.geometric(p=1-self.b) - 1

U = np.random.uniform(0.0, 1.0)

B = np.random.choice([0, 1], p=[self.biszero, self.bisone])

X = S * (

(1 - B) * ((G + self.gamma * U) * self.delta)

+

B * ((G + self.gamma + (1 - self.gamma) * U) * self.delta)

)

return X

staircase mechanism has a method to add generated noise to a true value.
Its body is exactly the same as that of Code 3.4.1.
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3.5 Testing & Analysis

Comparing the performance of the two NGMs can only be done by executing
queries on the data set, adding noise to them, and examining their execution
times. There is still much discussion on choosing the appropriate value for
ε [20, 17], but most papers on this topic seem to conclude that the value for
ε needs to be determined on a case-by-case basis.

Because the examples here aren’t excessively large, experimenting was
the easiest way to determine a good value for ε. Using ε = 0.1 seemed to
deliver a good balance of privatized and usable results, as the noisy values
didn’t deviate so much from the true answers to make them unusable (i.e.
positive/negative values kept their sign, noise additions didn’t exceed a value
of roughly 20 points), but it was not reliably possible to determine the true
value from the noisy value.

The query used here is a counting query, meaning that the global sensi-
tivity of the analysis is ∆ = 1.

3.5.1 Query & Results

The query that is going to get tested is depicted in SQL 3.5.1. It is a simple
counting query that aggregates the total number of respondents per marital
status, grouped by race. Due to their relatively low information density,
‘Asian Pacific Islander’, ‘American Indian Eskimo’, and ‘Other’ entries were
grouped together.

SQL 3.5.1 Query 1: Counting marital status per race

SELECT maritalstatus,
COUNT(case when race = ’White’ then ’White’ end) AS ’White’,
COUNT(case when race = ’Black’ then ’Black’ end) AS ’Black’,
COUNT(case when race = ’Asian-Pac-Islander’

OR race = ’Amer-Indian-Eskimo’
OR race = ’Other’ then ’Other’ end) AS ’Other’

FROM adult
GROUP BY maritalstatus;

Executing SQL 3.5.1 yields the table in Result 3.5.1. Because of its
lack of zero values, and relatively high population, the values in the White

column will be subject to noise addition.
Now adding noise to the White column via the previously mentioned

add noise method gives Result 3.5.2 (all floating point numbers have been
truncated to three decimals). Each individual table contains the noisy an-
swer next to the true answer, and the execution time in microseconds in the
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Result 3.5.1 Result after executing SQL 3.5.1

maritalstatus White Black Other

Divorced 3797 485 161

Married-AF-spouse 22 1 0

Married-civ-spouse 13410 837 729

Married-spouse-absent 291 62 65

Never-married 8757 1346 580

Separated 717 265 43

Widowed 822 128 43

third column. The mechanism used is printed above.
It has already been proved that using these mechanisms with the correct

parameters will result in ε-differential privacy [10, 14], and the results in this
very small sample seem to reflect that. ε = 0.1 is a relatively low value for
ε—and thus represents a relatively high level of privacy—but general trends
in the data are still clear. Noisy answers differ from the true values by only
a few points, but remain in the vicinity.

Result 3.5.2 Result after adding noise to Result 3.5.1

Laplace Mechanism

Noisy value True value Execution (µs)

3802.529 3797 9.579

14.641 22 3.499

13408.543 13410 2.729

294.871 291 2.457

8771.380 8757 2.385

716.137 717 2.435

817.570 822 2.499

Staircase Mechanism

Noisy value True value Execution (µs)

3839.793 3797 287.164

26.058 22 64.918

13431.967 13410 49.474

290.698 291 46.033

8766.160 8757 43.981

710.290 717 44.160

822.900 822 44.360

As evident from Result 3.5.2, there can be quite large swings in execution
time when adding noise a single time: the slowest staircase noise addition
took 287 microseconds, and the fastest 43.9, which is almost seven times
slower. To more accurately compare performance, it’s best to add noise
multiple times and compare the average execution time.

Taking the average of the noisy values isn’t of interest in this scenario,
and can even corrode privacy [25], which is why those values will be left
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out and replaced by ranking numbers. Performing 100 noise additions and
taking the average execution time yields Result 3.5.3.

Result 3.5.3 Average execution times of 100 noise additions with the Stair-
case and Laplace mechanism

Value Laplace (µs) Staircase (µs)

1 2.213 45.654

2 2.092 42.777

3 2.092 42.535

4 2.132 44.384

5 2.087 43.031

6 2.070 42.935

7 2.093 42.831

3.5.2 Conclusions

Comparing their performance, it’s quite clear to see that the staircase mech-
anism performs markedly worse than the Laplace mechanism in terms of
execution time. Running the tests multiple times had no noticeable in-
fluence on the execution times of both mechanisms. In this scenario, the
staircase mechanism is slower than the Laplace mechanism by a factor of
approximately 25.

This is directly in contrast with the literature, which states that the
staircase mechanism should be optimal [14, 15], especially when ε → +∞.
Adjusting the value for ε to math this didn’t improve the execution times
listed above.

The most likely reason behind this is the fact that NumPy’s laplace

function is written in C, which is a much more efficient language than Python
in terms of memory use [13, 23]. To more accurately compare the two
mechanisms, the calculate noise method from the staircase mechanism
should therefore also be written in C.

26



Chapter 4

Optimizing Staircase
Sampling in C

To better compare the sampling performance of the two noise generation
mechanisms, it’s best to write them in the same language. Since C and
C++ are more efficient than Python [23, 13], they form a more apt choice.
The NumPy library’s laplace method is already written in C, so only
the method that samples a noise value from the staircase mechanism (see
Code 3.4.2) needs to be written in C.

4.1 C(++) in Python

Luckily, Python supports extending its functionality with C or C++ code1,
eliminating the need to rewrite the entire program. This is done through the
creation of extension modules that can be imported into a regular Python
program. These extension modules can, as opposed to regular Python code,
call C library functions. This will aid in optimizing memory use, and there-
fore also aid in speeding up the program.

The <Python.h> header enables the parsing of Python parameters in a C
environment, making them usable for function calls. When a C function has
returned a value, Python’s header also includes methods to parse that result
to a Python object, which can be returned to the Python environment.

4.2 C vs. C++

Sampling from a probability distribution relies on randomization. As dis-
cussed before, numbers that determine the noise value must be drawn from
an evenly distributed interval. C has a built-in random number generator

1https://docs.python.org/3/extending/extending.html
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that could be modified to draw samples from a uniform interval, but its ran-
domness and reliability are questionable at best, as illustrated by Stephan
Lavavej in 2013 [19].

Luckily, Lavavej has a solution for C’s lack of randomness: using C++’s
<random> header. This part of C++’s standard library contains many differ-
ent objects and functions associated with pseudo-random number generation
that can achieve the desired randomness.

To see what library elements are useful, let’s restate the algorithm used
for sampling from the staircase mechanism. The values for ε,∆ and γ are

Input: ε,∆, γ ∈ [0, 1].
Output: X, a random variable from the staircase distribution.

Generate S, with Pr[S = 1] = Pr[S = −1] = 1
2 .

Generate G, with Pr[G = i] = (1− b)bi for i ∈ N, where b = e−ε.
Generate U , uniformly distributed in [0, 1].

Generate B, with Pr[B = 0] = γ
γ+(1−γ)b and Pr[B = 1] = (1−γ)b

γ+(1−γ)b .

X ← S((1−B)((G+ γU)∆) +B((G+ γ + (1− γ)U)∆)).

fixed, so they aren’t involved in the randomized steps. For the generation
of S,G,U and B on the other hand, randomization is important. They can
be grouped into three different categories:

1. Sampling from a uniform distribution, which is the case for U .

2. Sampling from a geometric distribution, which is the case for G.

3. Choosing between two options with their relative probabilities, which
is the case for S and B.

Before any randomization can occur, C++ requires the presence of a source
of randomness, a so called engine. For most applications, including this
one, [19] recommends a Mersenne twister. This is a pseudorandom number
generator proposed in 1997 [21] whose algorithm is based on the Mersenne
prime 219937 − 1, giving it a very long period, and thus a very small chance
of repeating.

For sampling from a uniform distribution, C++11 and onwards offer the
uniform real distribution that returns random numbers from a specified
interval. It can be initialized with a Mersenne twister engine, after which it
will yield pseudorandom numbers.

For the geometric distribution, C++ has implemented the formula [18]

P (i|p) = p · (1− p)i
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This formula does correspond with Algorithm 3.4.1 in that it distributes the
number of failures before a success. Passing it the probability p = 1− b will
result in the desired distribution P (i|1− b) = (1− b) · bi.

For choosing between two possibilities, the uniform int distribution

can be used for choosing between two options with the same probability.
Determining S can be done by generating either a 0 or a 1 with equal
probability, and using that as an index for an array storing the possible
values of S. This can’t be done for B, as the two possibilities don’t have
an equal probability. To get around this, a random sample on the interval
[0, 1] can be drawn, and if that sample’s value is smaller than γ

γ+(1−γ)b , B
will be set to 0, and to 1 otherwise.

4.3 The Code

Code 4.3.1 The noise calculation method for the staircase mechanism in
C++

std::random_device rd;

std::mt19937 gen(rd());

std::uniform_real_distribution<double> real_distr(0.0,1.0);

std::uniform_int_distribution<int> int_distr(0,1);

double s_[2] = {-1.0, 1.0};

double calculate_noise(double delta, double gamma,

double b, double biszero) {

std::geometric_distribution<long> geo(1 - b);

double U = real_distr(gen);

double G = geo(gen);

double S = s_[int_distr(gen)];

double B;

double b_help = real_distr(gen);

if (b_help < biszero)

B = 0.0;

else

B = 1.0;

return S * (

(1 - B) * ((G + gamma * U) * delta)

+

B * ((G + gamma + (1 - gamma) * U) * delta)

);

}
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Combining all this information together, the resulting C++ code is shown
in Code 4.3.1. To make this function callable from the Python environment,
some wrapping C++and Python code had to be written, after which a com-
piling step builds a Python module. This new module, titled staircase,
provides the new function staircase that calculates a noise value based on
the staircase mechanism in C++, and can be used in a Python environment,
similar to NumPy’s laplace function.

4.4 Performance & Conclusions

To accurately compare performance between Python and C++ sampling, the
same query (and results) were used. Performance is still measured using
Python’s perf counter method to determine execution time in microsec-
onds. The results of adding noise to the true values 100 times is shown in
Result 4.4.1.

Result 4.4.1 Execution times of adding noise to Result 3.5.1 with Laplace,
Staircase Python, and Staircase C++ sampling

Value Laplace (µs) Staircase (Python) (µs) Staircase (C++) (µs)

1 2.213 45.654 0.892

2 2.092 42.777 0.888

3 2.092 42.535 0.884

4 2.132 44.384 0.839

5 2.087 43.031 0.861

6 2.070 42.935 0.878

7 2.093 42.831 0.859

The performance increase between the Python and C++ sampling is quite
dramatic. Where the former took about 42 microseconds in its fastest av-
erage execution time, the latter takes just under 0.9 microseconds; that’s
roughly 46 times faster.

Comparing the new type of sampling with the original Laplace distri-
bution, the performance increase is also evident here, because the staircase
mechanism has surpassed the Laplace mechanism in performance. This re-
sult reflects the conclusions from [14, 15] that the staircase mechanism is
the optimal mechanism between the two.
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Chapter 5

Conclusions

Differential privacy is a relatively new privacy framework that aims to pro-
tect individuals’ privacy while maintaining output usability for querying a
dataset. It aims to achieve this by adding proportional noise to the true
answer returned by the query function. The proportionality of this noise
depends on the desired privacy level, the sensitivity of the query function,
and the source where the noise is sampled from.

The most used source is the Laplace distribution, which is a probability
distribution whose scale parameter is expressed in terms of the differential
privacy parameters. From this parameterized distribution, noise values are
sampled, with which the query output is perturbed.

The goal of this thesis was to compare the sampling performance of
the Laplace distribution with that of the more recently introduced staircase
distribution. Its creators claim that the staircase distribution can be used
whenever the Laplace distribution can be used, and that it performs better.

To test this, a dataset was queried in a Python environment, and noise
was added with both the Laplace and the staircase distribution. After find-
ing the staircase distribution to be dramatically slower, the noise calculation
function was written in C++ to level the playing field, as the Laplace sam-
pling function was written in C.

This led to an improvement in performance. So much so, that the
staircase mechanism was faster than the Laplace mechanism by a factor
of roughly 2. This corresponded to the claims of the makers of the staircase
distribution, solidifying their findings.
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