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Abstract

In this thesis we propose a mobile ad hoc network protocol, based on
SCALAR, called MARS (Message-priorized Adaptive-dynamic Resource-
based Scalar), that is suitable for different realtime situations. SCALAR
is shown to be a good solution for mobile ad hoc networks, due to its back-
bone approach and its data replication scheme. However we improved upon
it by implementing an adaptive dynamic resource based backbone construc-
tion instead of a periodic backbone construction that is only based on the
ID of the nodes. We also implemented message prioritization to provide
for timely delivery of important messages, added timers to pending requests
to be able to resend messages after a fixed period of time to increase the
probability of succesful delivery and gave messages a TTL in the form of
a maximum hop count to decrease the number of redundant messages in
the network. We have tested our protocol by simulating its performance
and that of SCALAR in three different scenarios. The results of the tests
show that MARS is the better solution for those realtime situations than
SCALAR.
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Chapter 1

Introduction

A mobile ad hoc network (MANET) is a collection of autonomous nodes that
has no structure predefined by wires and where the topology of the network
can change unpredictably due to the mobility of the nodes. MANETS can
be found all around us and in an increasing number. Think of all the drones,
airplanes or self-driving cars that have to communicate with each other to
prevent accidents. Moreover, MANETS are also used in military and emer-
gency response situations. Military groups, tanks and emergency reponse
vehicles, all communicate over a network that has no predefined structure,
since every situation requires a different setup. Therefore it is essential
that we keep improving these networks to get the best solution for realtime
situations.

Protocols for mobile ad hoc networks are often rated based on the Qual-
ity of Service, sustainability and scalability of the resulting network. The
Quality of Service (QoS) of a network can be measured by the ratio with
which messages are successfully (and timely) delivered. The sustainability
of a network can be measured by the message overhead of the protocol. The
more messages the nodes need to send in a network to successfully deliver
messages (efficiency), the sooner nodes run out of battery (durability). For
a network to stay sustainably connected it is therefore crucial to keep the
message overhead as low as possible. The scalability of a network can be
measured by increasing the amount of nodes in the network and see if the
change has a great effect on the performance of the resulting network. The
smaller the effect is, the more scalable the network is.

In this thesis we propose a new MANET protocol called MARS (Message-
priorized Adaptive-dynamic Resource-based Scalar), that is based on an ex-
isting protocol called SCALAR [1]. We have chosen SCALAR, because it
is shown to be a better protocol than related protocols for mobile ad hoc
networks. However we have made some improvements upon it to better suit
the situations that we see in real life. The improvements we have made



upon SCALAR are to increase the scalability, sustainability and Quality of
Service of the network.

The second chapter of this thesis provides the necessary background
information on the technologies we use in our protocol. In the third chapter
we introduce our protocol and explain the changes we have made upon
SCALAR. In the fourth chapter we test our protocol on three scenarios
that can be found in real life and show that our protocol is suitable for
those realtime situations. In the fifth chapter we compare our protocol to
related work and in the sixth chapter we give our conclusions regarding our
protocol.



Chapter 2

Preliminaries

In this chapter we discuss some of the basic protocols and technologies that
we used to develop MARS. We start of with the MAC layer of IEEE 802.11
where both MARS and SCALAR are built upon. We then show the message
prioritizing mechanisms in the MAC layer that we use in MARS. After that,
we explain how SCALAR works, on which we based our protocol. Finally
we explain how adaptive dynamic backbones are constructed in a mobile ad
hoc network, which we implemented in MARS.

2.1 IEEE 802.11

IEEE 802.11 (also called WIFI) is a set of standards for implementing a
wireless local area network [2]. It comes with two operating modes: an
infrastructure mode and an ad hoc mode. In the infastructure mode, the
wireless network has a certain structure and consists of at least one wired
access point connected to the rest of the network. In the ad hoc mode,
there is no network structure and every node communicates directly to the
surrounding nodes without a wired access point or any kind of connection
to a wired network.

The MAC layer in IEEE 802.11 is built so that multiple nodes can com-
municate over a shared medium. In principle, when a node wants to transmit
data, it checks if other nodes are transmitting data before starting to trans-
mit after a random backoff time followed by a distributed interframe space
(DIFS). This is to minimize the chance of multiple nodes sending data si-
multaneously. When a collision occurs due to two nodes transmitting at
the same time, the nodes will re-enter a contention state. The chance of
a collision-free transmission is increased by increasing the size of the con-
tention window repeatedly when a collision occurs. The receiver will send



an acknowledgement (ACK) to the sender when the data is succesfully re-
ceived. With this acknowledgement, indirect collisions are detected, since
nodes will assume a collission has occured when a transmission is not ac-
knowledged. Every message sent starts with an indication of the duration of
the transmission of the message. A listening node then defers its contention
window, until the message plus the acknowlegdement are sent and a DIFS
has passed, before it tries to transmit a message of its own. The result of this
is that a channel can be reserved by a node that has succesfully competed
for transmission.

In ad hoc networks there is also the hidden node problem. This is a
collision of two transmissions from two nodes that are unable to reach each
other. This problem is solved in the MAC layer of the network by using the
Request to Send/Clear to Send (RTS/CTS) procotol. Where the receiving
node can reserve a channel for the sending node by broadcasting an Clear
to Send packet. Time-bounded data applications, like video and voice, are
also supported by the MAC layer of 802.11, through a point coordination
function (PCF). When PCF is enabled, nearby nodes are systematically
checked if they want to transmit data. The nearby nodes can only transmit
data at the moment they are asked for it. This opens the oppurtunity to
keep transmitting time-bounded data in time.

2.2 Message prioritizing mechanisms

The performance of a network is often given in terms of the Quality of
Service and timely delivery of packets is a part of that. Since different types
of packets are more or less tolerant of delays, the packets can be divided
into different classes. Because not all classes of traffic can be transmitted
simultaneously over the network due to the limited bandwidth, prioritization
of these classes is required to increase the Quality of Service. There are three
mechanisms to prioritize these classes in the MAC layer of IEEE 802.11 [7]:

Static priority scheduling assigns to each data traffic class its own first-
in first-out (FIFO) queue and each queue is served in order of delay
priority. The mechanism puts the data items from buffer into their
respective priority queue, where the items will wait until they are
transmitted by the node.

Prioritized waiting time is the mechanism that gives a node, with the
highest priority packet in queue, the permission to transmit on a spe-
cific channel. It achieves this by defining different DIF'S times for the
different priority packets. Packets with the highest priority have the



shortest waiting time, so the node, that wants to transmit the packet
with the highest priority in the area, will have the highest probabil-
ity for successfully reserving the channel. Respectively, packets with
the lowest priority give a node the lowest probability for successfully
reserving the channel.

Prioritized backoff time takes the priority of a packet into account when
calculating the random backoff time. It makes use of different distribu-
tions per priority class, which increases the probability for higher pri-
ority packets to win contention during the backoff time. The standard
distribution is randomly chosen to decrease the probability of nodes
transmitting simultaneously. The prioritized backoff time mechanism
also uses random distributions, but the maximum size of a contention
window is smaller for higher priority packets.

2.3 SCALAR protocol

SCALAR [1] is a scalable data lookup and replication protocol for mobile
ad hoc networks. The protocol consists of the following parts:

1. Virtual backbone algorithm
2. Scalable data lookup protocol

3. Reactive replication scheme

These parts increase the data accessibility and decrease the message
overhead with an increasing number of nodes. This is because the virtual
backbone minimizes the number of nodes involved when looking up data in
the network. The protocol is suitable for large-scale mobile ad hoc networks
where each node has a unique host identifier, denoted as id(u) for node w.
All n nodes are denoted in the set M = {M;, M, ..., M, }. All data items in
the network are denoted as D = {d, da, ..., d, }, where d; is the initial data
item of node M;. Every node can request and save a replica of any data
item at any time from any node in the network. It is assumed that every
node has an equal memory capacity.



2.3.1 Virtual backbone construction algorithm

The virtual backbone construction algorithm is based on the connected dom-
inating set construction problem from graph theory. A dominating set of
a graph G = (V, E) is a subset of the vertices (nodes), so that every node
in the network is either in the subset or adjacent to a node in the subset.
A connected dominating set is a dominating set whose induced subgraph
is connected. Since a mobile ad hoc network has no predefined structure,
every node only has local information about the network topology. That
is, every node only knows its reachable neighbours. The (open) neighbour
list of a node u is denoted as N(u) and the closed neigbor list, which also
includes the node itself, is denoted as Nu].

The algorithm starts with the neighbour exchange phase, where every
node sends its N (u) to all its neighbours. It then proceeds with the marking
process, where every node initially marks itself true as a backbone node
if it has at least two non-adjacent neighbours in its neighbour list. The
nodes that are marked true as a backbone node, send a backbone-announce
packet to all their neighbours. There will not be a backbone node in a fully
connected network after the marking process, which is good, since every
node is already directly reachable from every other node. Then the nodes
go into pruning phase to form the final connected dominating set of nodes
in the network. In the pruning phase every node v checks the following two
rules for itself:

Rule 1: If v has a neighbour u, u is still marked true as a backbone node,
N[v] € N[u] and id(v) < id(u), return false else return true.

Rule 2: If v has neighbours v and w, v and w are still marked true as back-
bone nodes, N(v) C N(u)UN (w) and id(v) = min{id(u),id(v), id(w)},
return false else return true.

When a rule returns false, the node is not a backbone node and sends
a backbone-cancel packet to all its neighbours. After the pruning phase the
nodes that are still marked true as backbone nodes will form the backbone.

2.3.2 Scalable lookup protocol

The scalable lookup protocol takes advantage of the backbone in a way that
every node sends its data requests to a backbone node and all data requests
are only forwarded among the backbone nodes. Because every node is either



a backbone node or connected to a backbone node (called an end node), the
number of nodes involved in the lookup process of a data item is at most the
total number of backbone nodes plus two end nodes. In turn, this decreases
the number of messages sent, which is crucial in large mobile networks. The
whole lookup process is divided into two parts: search and data receive.
There are four ways a backbone node can participate in the search part:

(1) Sending a self-generated request to adjacent backbone nodes.
(2) Forwarding a received request to adjacent backbone nodes.
(3) Receiving a request generated by an adjacent end node.

(4) Receiving a request forwarded by an adjacent backbone node.

A backbone node sends or forwards a request to a specific adjacent node
when the destination of the request is either a neighbour or a neighbour of
a neighbour. This is also called two-hop vicinity, since due to the neighbour
exchange phase a node knows the local topology of a network up to two
hops away. If the destination of the request is not in two-hop vicinity of
that backbone node, the backbone node sends or forwards the request to its
adjacent backbone nodes. End nodes can only send self-generated requests,
either to a randomly selected adjacent backbone node or to a specific neig-
bour when the destination of the request is in two-hop vicinity. In the data
receive part, backbone nodes only participate in the following 3 cases:

(1) It owns the requested data item.
(2) It receives a data item for which it forwarded the request.

(3) It requested the data item.

End nodes can only own the requested the data item or have requested
the data item in this part of the lookup process. When a request is received
by the destination node, the destination node will send the related data
item via the path the request took. For case 1, the destination node of the
request sends the requested data item to the node the request came from.
For case 2, the backbone nodes on the path the request took check from
which node the forwarded request came and forward the data item to that
specific node. The backbone nodes keep pending requests in cache to be able
to look up the previous node of the request, when the data item is received.
For case 3, the node that requested the data item receives that data item
and stores it in memory. When the data item of a request is received (and



forwarded), the pending request is deleted from cache in that node. When
that data item is then received again, without a request pending in cache,
the data item will not be stored or forwarded. This decreases the amount of
redundant messages sent in the network and the amount of duplicate data
items stored in memory.

2.3.3 Reactive replication scheme

The distributed data replication scheme handles the caching of data in a
mobile ad hoc network to increase data availability and decrease the message
overhead. It runs in a passive mode, so there are no specific control packets
needed for this. This way it eliminates the control overhead, that would
be present in an active protocol, and increases thereby the scalability of
the network. The goal is to make nodes eager to replicate data items that
are requested more frequently and that are further away from them. This
increases the probility that the requested data item is closer to the requesting
node and therefore decreasing the number of message sent and increasing
the scalability of the network. All nodes make a replication decision based
on a cost function when a data item is received. The cost function is as
follows:

cost(hij, a, o) = 725;ﬂ * hij

Where h;; is the amount of hops between M; (where the data item d; is
received from) and M; (the receiver) and where « is the set of local request
frequency histories of data items that passed through node M; and «; is the
specific local frequency history of the data item d;. The data replication
decisions are as follows:

e If a backbone node or an end node receives a data item that it re-
quested and there is enough empty space in cache to store the data
item, it will replicate the data item. If there isn’t enough empty space
to store the data item, it will check if the cost of the received data
item is at least as high as the lowest-cost data item in cache. If this is
true, it will replace this item with the newly received data item.

e If a backbone node receives a data item wherefore it forwarded the
request, it is most likely to be closer to the requesting node than des-
tination node of the request was. It will therefore make the replication
decision as descripted in the first case.



2.4 ADB protocol

The adaptive dynamic backbone (ADB) [3] protocol, that is derived from
VDBP [4], is based on the following requirements:

Adaptivity When a network is highly mobile, the backbone nodes in that
network should decrease their hop vicinity. Which means that nodes
should communicate only with their direct neighbours and the nearest
backbone nodes, to decrease the need to keep up with the changes in
the local topology of the network. In a highly mobile network it is not
possible to maintain the neighbour lists of the neighbours, since the
neighbour lists change constantly and exchanging the neighbour lists
more frequently would flood the network. Respectively when a network
is more static, the backbone nodes should increase their hop vicinity.
Which means that nodes should communicate with the neighbours of
their direct neighbours through those direct neighbours, to decrease
the message flow through the backbone.

Dynamicity Nodes should keep track of what happens to the topology of
the reachable surrounding network and decide for themselves when its
time to change their role in the backbone of the network. This way the
network is not periodically occupied as a whole when constructing the
backbone, which delays the transmission of possibly highly important
messages.

Because of this ADB is shown to be able to maintain connectivity in a
highly dynamic network. ADB allows nodes to be a backbone node even
though they are not in the dominating set of the network. It works with
varying-depth trees that are all rooted at a backbone node, so that the hop
vicinity of a backbone node can adaptively be changed depending on the
mobility of the network. Static networks will have a higher amount of hops
in the local groups (trees), where relatively highly mobile networks will have
a lower amount of hops in the local groups. The NLFF (Normalized Link
Failure Frequency) value in each node is the measurement of the mobility
of its local group. When a node becomes fully operational, it sets itself to
be a backbone node and starts its processes. All nodes in the network have
to maintain the following data:

ParentID is the ID of the node that is upwards in the tree to the backbone
node and which is set by the core selection process. A node stores its
own ID when it is a backbone node itself.
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NTab is the table with all the information of the neighbours of that node
(see figure A.1). This neighbour table is updated by the neighbour
discovery process.

NLFF shows the mobility of the local group. All nodes start with a NLFF
of 0 and have an « set somewhere between 0 and 1, which is a smooth-
ing factor. Every period of NLFF_TIME WINDOW, the neighbour
discovery process counts the number of link failures and then the NLFF
is calculated as follows:

NLFF — NUMBEROF_LINK_FAILURES
curr NLFF TIMEWINDOW«NUMBER- OF_NEIGHBOURS

NLFF = ax NLFFpyy + (1 — )« NLFF

Degree stands for the number of entries in the neighbour table and is
thereby also updated during the neigbor discovery process.

FWTab is atable that maintains a list of shortest path entries to the nearby
backbone nodes and is updated during the core forwarding process (see
figure A.2).

2.4.1 Neighbour discovery process

The neighbour discovery process in a node ensures that the surrounding
nodes know that that node is (still) there. Every node periodically broad-
casts an hello message to let the surrounding node know its status. This
way, all nodes know the information of the surrounding nodes that is needed
for the core selection process. The hello message consists of the following
fields:

NodelD is the unique identifier of the node broadcasting the hello message.

CorelD is the ID of the backbone node the broadcasting node is currently
associated with. This is its own ID when it is a backbone node itself
and NTab(ParentID).Corel D when it is not a backbone node.

Hops is the number of nodes between the broadcasting node and its asso-
ciated backbone node. This number is zero if the node is a backbone
node itself and is NTab(ParentID).HopsToCore + 1 if not.

Degree is the number of neighbours the node has at that time.
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NLFF isthe calculated NLFF of the path to the backbone. Backbone node
send their own NLFF and all other nodes send NT'ab(ParentID).NLFF+
NLFF.

When a node receives an hello message, it updates its NTab on the
entry with the corresponding NodelD. The process also periodically uses
the LastUpdated field in NTab of a node to remove entries that are not
updated for a certain period of time. After removing those entries that
node updates its own NLFF value.

2.4.2 Core selection process

The core selection process determines if a node is a backbone node or not.
It starts in each node after the node has become operational and a certain
waiting time. This waiting time allows the node to receive at least one hello
message from all surrounding neighbours. This process runs in every node,
so that the nodes can decide for themselves whether they should (still) be a
backbone node or not. Every node will begin this process by calculating its
own current status value. This status value is a metric with the following
values of the node: (NodeID, NLFF~!, number of neighbours).

The nodes then calculate the status value for every neighbour in their
NTab. When a node has a higher status value then all entries in their N'Tab,
the node is considered a local optimal node and will therefore be consider
itself a backbone node. When a node does not have a higher status value
then all entries in their NTab, it will set the NodelD of the entry with the
highest status value as its ParentID. Every hello message sent after this will
contain the updated values.

The core selection process keeps the number of backbone nodes as low
as possible, but has a constraint that limits this. The constraint is that the
number of hops and the NLFF from every node to its associated backbone
node may not exceed the HOP_THRESHOLD and NLFF_THRESHOLD,
respectively. Once the local optimality check has been done, the constraint
will be ensured in each node n by performing the following checks on all
incoming hello messages:

e If the message came from the parent p of node n, node n checks if
it violates the constraint by keeping node p as its parent. If it does
violate the constraint, node n will try to find another parent in its
NTab. If no parent exists in its NTab with which the constraint is
satisfied, the node will set itself as its parent and thus becoming a
backbone node.

12



e If node n is not a backbone node and the message came from node k
that is not the parent of node n, then node n will set node k as its
parent if node k£ has a smaller number of hops to the backbone than
its current parent.

e If node n is a backbone node, the message came from node [ and
NTab(l).Corel D is not its own ID, then node n will check if it violates
the constraint when it sets node [ as its parent. When it does violate
the constraint it will remain a backbone node, otherwise it will set
node [ as its parent.

e If node n does not receive a message from its parent in time, it will
try to find another parent in its NTab or be its own parent as with
the first check.

2.4.3 Core forwarding process

The core forwarding process begins with every node updating its FWTab
when it receives an hello message from a node associated with another back-
bone node. Then every non-backbone node constructs and sends a core for-
warding update message to its parent every CORE_FORWARD _UPDATE
period of time. This core forwarding update message is a list of all entries
in the FWTab of the sending node. When the parent node receives this
message, it updates its FWTab when it does not contain a certain back-
bone node in the message or when a matching backbone node has a smaller
number of hops in the message. In the end, every backbone node will know
the shortest path to all nearby backbone nodes. The process also takes care
of entries that are not updated for a certain period of time by removing
them from the FWTab. This way a backbone node becomes more proactive
and less reactive when the coverage will get larger in low mobility networks
and a backbone node becomes less proactive and more reactive when the
coverage will get smaller in high mobility networks. It all depends on how
much child nodes it has and how much direct contact there is with other
backbone nodes.

13



Chapter 3

Research

We propose a mobile ad hoc network protocol, called MARS, that is suitable
for different realtime situations, as shown in section 4. MARS is based on
SCALAR, because it performs better than related protocols for mobile ad
hoc networks and it is the most complete solution so far. Despite SCALAR
performing well in mobile ad hoc networks, we have made some important
improvements to perform better in the selected realtime situations. The
improvements are as follows:

Adaptive dynamic backbone construction to improve the scalability
of the network.

Resource based backbone construction toimprove sustainability of the
network.

Message prioritization, timers and TTL to improve the Quality of Ser-
vice of the network.

3.1 Adaptive dynamic backbone construction

Backbone construction, that is based on the dominating set problem, lets
the number of backbone nodes grow in the same order as the total number
of nodes in the network and is not able to maintain connectivity in a highly
dynamic network. SCALAR has a periodic backbone construction based on
the dominating set problem and we wanted to make this an adaptive dy-
namic backbone construction to be able to maintain connectivity in highly
dynamic networks and to prevent a backbone construction on crucial mo-
ments. The overhead of the backbone construction should be as small as
possible to ensure that the probability of receiving important messages in
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the network is as high as possible. We therefore implemented an adaptive
dynamic backbone construction based on the ADB protocol explained in
section 2.4.

Every node starts as if it is a network on its own. Then the knowl-
edge the node has of the surrounding network grows as more and more
nodes broadcast their periodic hello message and their neighbour list. We
added the neighbour list to the hello message with the broadcasting node
as NextHop, just like in the FWTab. This way, we changed our ABD imple-
mentation from a multicast protocol to an unicast protocol. The neighbours
will be added to the neighbour list as long as the NLFF_THRESHOLD and
HOP_THRESHOLD are not exceeded. The nodes can then with this in-
formation decide for themselves if they could be seen as a backbone node.
Changes in the network topology will be detected when certain hello mes-
sages are not being received anymore. Now it is possible for a node to send a
highly important message in favor of backbone construction messages with-
out being excluded from the network and its backbone. As long as the hello
message will be send in time, all surrounding nodes know that that node is
(still) there.

Besides the dynamic part of this construction, there is the adaptive part.
We changed the two-hop vicinity part of SCALAR to a vicinity of an adap-
tively changing number of hops, just like the ADB protocol. The number
of link failures and the NLFF_THRESHOLD and HOP-THRESHOLD are
used in each node to determine the maintainable hop vicinity of that node.
Neighbours, that are passed through to a node, that exceed the thresholds
are not added to the NTab of receiving node. The direct vicinity, as we call
it, increases when the mobility of the network decreases and respectively
decreases when the mobility of the network increases. Such an adaptively
changing vicinity makes the protocol suitable for both networks with for
example quickly changing traffic as well as networks with for example more
statically moving military lines.

3.2 Resource based backbone construction

In both SCALAR and the ADB protocol, the backbone selection proces is
strongly based on the ID number of the node. In realtime situations, the
ID number (or MAC/IP address for that matter) of a node can be seen
as random and therefore does not give any important information about
the node itself. We propose to base the backbone construction on useful
information about the node that indicate the state of that node.
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A backbone node will send more messages than an end node in most
networks, due to the forwarding of messages. Because of this, the node
will use up more battery life and memory space and therefore nodes with
the highest battery life and the largest amount of memory space should be
placed in the backbone. This will, in time, increase the durability of the
(backbone) nodes and thus the sustainability of the network. We therefore
take the state of the battery and the amount of memory space of the nodes
into account when constructing the backbone.

Since our protocol is adaptive to the mobility of the network, we also take
the reach and the speed (using GPS) of the nodes into account. A greater
reach means that a node is more likely to stay visible for the surrounding
nodes when they move around. Therefore a node with a greater reach is
more suitable for being a sustainable backbone node. This also applies to
the speed of the node. Nodes that move around relatively quickly change
the network topology more than nodes that move around relatively slow.
A backbone of nodes that move less relative to each other would thus be a
more sustainable backbone.

We thus extended the status metric of the ADB protocol to included
the battery life, memory space, speed and reach of the related node. When
the situation occurs where the status values of two adjacent nodes are pre-
cisely the same, we still use the NodelID to break ties. The overall result
of resource based backbone construction is that the probability increases of
the backbone nodes being the nodes in the network with a stronger battery,
stronger radio and that move relatively slow. In realtime situations, these
nodes will be for example trucks on the highway instead of the passenger cars
and tanks instead of the backpack radios of military groups. We calculate
the status value as follows:

status = ax NLFF ™'+ Bxdegree+~xbattery+ 0 xvelocity +exmemory

Where {«, 3,7, 9, €} are smoothing factors between 0 and 1 that can be
adjusted as desired.

3.3 Message prioritization, timers and TTL

SCALAR is implemented upon the MAC layer in IEEE 802.11 and both do
not take the priorities of the messages into account. Message prioritization
is a must in realtime situations, because, simply said, some messages are just
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more important and need to have a greater chance of delivery. To imple-
ment message prioritization, we use the Message Priorization Mechanisms
mentioned in section 2.2. The prioritized waiting time mechanism and the
prioritized backoff time mechanism are implemented as they are explained
in that section.

In the static priority scheduling mechanism, we make use of 3 priority
queues. The highest priority queue is for the most important messages,
such as a brake message, between self-driving cars, when an accident has
occured and an attack message, between military groups, when the front
line is under attack from a certain direction. Basically, the messages that
provide the safety of the nodes. The second priority queue is for control
messages, which have a higher priority then normal messages for the reason
that the backbone has to be updated for the protocol to keep working. The
last priority queue is for normal messages, which are the remaining messages
that nodes can individually send to each other. We will consider the case
of one normal priority queue for the sake of simplicity, but if desired the
normal priority queue can be divided in even more priority queues.

We also implemented timers in the nodes to keep track of how long
certain requests are pending, which is not the case in SCALAR. When a
timer exceeds a certain period of time, the sending node will send the request
again. In the backbone nodes a timer is also used to remove forwarded
requests that have been pending for too long to free memory. Due to this
timer and the resulting resend of the request, the probability of receiving the
data item increases, like with the TCP protocol [9]. We do not use timers
on time-bounded messages, like with the UDP protocol [9], for the reason
that delayed messages are not useful anymore.

After we implemented the timers, we concluded that a loop was possible
where backbone nodes to keep sending the same message over and over
again to each other as long as the loop took longer than the timer set for
that message and thus filling the queues with messages that could already
be received by the destination. We therefore included a T'TL value to every
message which works the same as TTL in the IP protocol [6]. The TTL value
is decreased by one every time it passes through a backbone node. When the
TTL value reaches zero, the message will not be forwarded anymore and the
message will be deleted. This way, when a loop of backbone nodes sending
each other the same message over and over again occurs, the loop will be
cut off at a certain moment. The initial TT'L value should be large enough,
so that nodes which are separated by a great distance can still reach each
other.

The last improvement we made upon SCALAR is on the last step of the
data lookup process. The requested data item follows the path backwards
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the request for that data item took, but when the path is broken due to
the mobility of the network the data item will not be received. We already
solved this by setting a timer on the pending request and resending the
request when the previous path may be broken somewhere. But with the
adaptively changing hop vicinity of the nodes in a network, we could almost
guarantee the delivery of a data item in the last hops of the path, by letting
the nodes first check their neighbour lists for the requesting node before
forwarding the data item to the node where the request came from. Now, in
stead of following a specific path end, the data item could take the shortest
path end to the requesting node, which improves the delivery time and
decreases the probability of a broken path.
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Chapter 4

Scenarios

Since our aim is to improve upon SCALAR we tested our protocol the way
SCALAR is tested. We therefore used the same variables as mentioned in
the paper discussing SCALAR. In the paper the two main types of sim-
ulations/tests, that they ran, are a density test and a business test. The
density test is a simulation where the amount of nodes increases and the
area size stays the same. In the density simulations the area size is 500m?,
the number of requests sent per node is 2 and the number of nodes in order
of iteration is 20, 50, 100,200 and 400 nodes. The business test is a simu-
lation where everything stays the same, but the total number of messages
per node increases. In the density simulations the area size is 500m?, the
number of nodes is 100 and the number of requests sent per node in order
of iteration is 1,2, 3,4 and 5 requests.

We built a simulation environment based on scenario files to ensure that
the nodes in both the MARS simulation and the SCALAR simulation will
behave exactly the same. A scenario file for each test, each test iteration and
each scenario is generated by the environment. We tested the five iterations
of the two tests on the following scenarios:

1. Drone scenario
2. Highway scenario

3. Military scenario

These scenarios are explained in futher detail later on. The result of
those tests are eight plots that show the following:

Messages sent which is the total amount of messages sent for the network
to connect and for all requests to be sent. This plot represents the
efficiency of the network the most.
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Success ratio is the percentage of messages that are delivered succesfully.
This plot represents the Quality of Service of the network the most.

Active nodes is the percentage of nodes that is still active at the end of a
scenario to see if some batteries ran out.

Backbone nodes is the average amount of backbone nodes in the network.
We also included parent nodes in MARS since they behave mostly like
backbone nodes.

Average remaining battery life shows on average how much energy was
left in the nodes at the end of the scenario. Sending messages costs
0.05% of battery life in our simulations (related to messages sent), so
we can see how the backbone behaves when battery life is limited.
This plot also represents the sustainability of the network the most.

Average memory space shows on average how much memory space is left
during the duration of the scenario. Each node starts with a random
memory size between 512 and 1024 kb and each pending and received
request and each neighbour saved decreases this by 1 kb.

Average time frames per received message isthe amount of time frames
a request took on average to result in a received data item. Each time
frame each node can transmit one message from its queue, these re-
sults thus show the average number of time frames a message was
waiting in queue plus the average number of time frames a message
was tranmitted (related to average hops).

Average hops per received message is the amount of nodes on average
a request plus the related data item passed through before it was
received. This number also includes the nodes (hops) that are not on
the shortest path between the requesting node and the data item, to
see the efficiency with with a request is send to the node with the data
item and back.

The scalability of the protocol is represented by the overall evenness
of the plots. This namely shows how much effect the size of the network
has on the performance of the network. Our simulation environment and

the implementation of SCALAR and MARS can be found at the Gitlab
repository: https://gitlab.science.ru.nl/avalem/BachelorThesis.

4.1 Drone scenario

SCALAR is tested in a scenario where every node was randomly moving.
This is very similar to a scenario where drones are flying randomly through
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a specific area and sending data to each other. This correlation is why
we tested our MARS in comparison with SCALAR in a drone scenario. We
allowed multiple drones on the same point in space, since drones can fly over
each other. The strength and behaviour of the nodes is randomly generated
to simulate different types of drones moving randomly in the area. The most
important goal of this scenario is to see how our protocol performs in the
scenario SCALAR is tested in. Below are some of the plots of the result, the
rest of the plots for this scenario can be found in figure A.3 and figure A.4.

Figure 4.1: Drone Scenario - Business test:
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Both the business as the density test show very similar results for this
scenario. The first plot clearly indicates that MARS sends less messages
than SCALAR. Which indicates that MARS sends the requests more ef-
ficient through the network. This can be explained by the rapid growth
of the average number of hops a message goes through with SCALAR. In
SCALAR, a request could be forwarded through the whole backbone despite
the destination node being only a few hops away. And since SCALAR has
also more backbone nodes on average, the number of hops a request goes
through is also higher. This does seem to effect the average memory space,
since MARS uses more memory space where SCALAR sends more messages.
The amount of messages sent explains the difference in average remaining
battery life between the two protocols. There are no nodes inactive (out of
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battery) at the end both tests for both protocols.

Figure 4.2: Drone Scenario - Density test:
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When we look at the success ratio, we see that SCALAR performs better
than MARS with a small number of nodes in the network. However the
success ratio of MARS increases as the number of nodes increases where the
success ratio of SCALAR decreases significantly. The scalability of MARS
is better than that of SCALAR, since SCALAR tends to diverge as the
number of nodes increases. This is also visible with the average time frames
per received message, which could explain the behaviour of the success ratio
results, since a higher number of time frames decreases the chance of (timely)
delivery. A high number of time frames namely indicates that the queues
in the nodes are filled, probably due to the high amount of messages sent,
which interferes with the delivery of the messages. The overall result of the
density and business test, looking mainly at scalability, sustainability and
Quality of Service, is that MARS is the better solution for this scenario.

4.2 Highway scenario

The highway scenario tests the realtime situation of a highway, like the
name suggests. We simulate three lanes going west and three lanes going
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east with the slowest and strongest vehicles in the outer lanes and the faster
and weaker vehicles in the inner lanes. This means that the trucks in the
outer lanes contain the stronger radios and the passenger cars in the inner
lanes contain the weaker radios. This is a far more structurized scenario
than the drone scenario, since on the greater scale the cars follow a certain
type of behaviour. The goal of this scenario is to see how our protocol
performs on the highway with selfdriving cars, for example. Below are some
of the plots of the result, the rest of the plots for this scenario can be found
in figure A.5 and figure A.6.

Figure 4.3: Highway Scenario - Business test:
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The plots show less divergent results than those of the drone scenario as
expected, because the scenario is more structurized. In the business test we
see that the results of MARS and SCALAR are somewhat parallel to each
other. Where MARS comes out on top in every plot, except with memory
space and average time frames per received message. Since the results,
like messages sent, are somewhat parallel, we expect that the difference
in memory space is mostly the data needed in each node to construct the
backbone. The average time frames per received message may be explained
by the fact that in MARS messages are resend after a fixed number of
time frames, where that message would not succesfully be delivered with
SCALAR. In this test we see that in both protocols the same amount of
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nodes did become inactive during the test.

Figure 4.4: Highway Scenario - Density test:
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test, although the protocols are less parallel to each other. The explanation
for the difference in memory space and average time frames per received
message from above can be given here again. In this test all nodes in both
protocols stayed active till the end of the test as expected, since more nodes
implies more choices for the backbone (dividing the load). Taking the scal-
ability, sustainability and Quality of Service into account again, we see that
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MARS is also the better solution for this scenario.

4.3

In the military scenario there are three lines moving forward in formation.
The front line consists of the backpack radios and thereby have less battery
power, memory space and range. The middle line consists of the tanks that
contain stronger radios than the front line. And the last line consists of the
communication vehicles that contain the strongest radios in this scenario.

Military scenario




Although this is the most structurized scenario the nodes still move ran-
domly in their respective line, but with an overall forward motion. Below
are some of the plots of the result, the rest of the plots for this scenario can
be found in figure A.7 and figure A.8.

Figure 4.5: Military Scenario - Business test:
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Since structure seems to effect the results, we expected the results to be
similar as that of the highway scenario. In the business test we indeed see
the parallel pattern from the business test of the highway scenario again, but
this time SCALAR diverges with the time frames per received message as
the number of messages increases. This is probably due to the high amount
of message sent (large queues) in the network. In this test all nodes stayed
active till the end of the test in both protocols.

With the previous results and explanations in mind, the result of the
density test is as expected. MARS shows more even results and is in this
scenario thus again more scalable than SCALAR. The Quality of Service and
the sustainability of MARS is yet again better than that of SCALAR, only
memory usage is again more than SCALAR. So we conclude that MARS is
also the better solution for this scenario.
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Chapter 5

Related Work

Besides SCALAR, there are other protocols that also try to ensure a scalable
and sustainable mobile ad hoc network with a high Quality of Service. But
none of them, discusses the backbone construction as well as the data lookup
and replication scheme. When we break SCALAR up into those parts, we
can compare them to related work.

When it comes to protocols that are based on a backbone construction,
the most related protocols to ours are MAODV [5] and ODMROP [5]. Both
protocols and SCALAR show that a backbone construction descreases the
total amount of messages sent in a network and thereby increases the scal-
ability of the network. MAODYV is a multicast protocol like ADB that also
follows the tree-based approach based on hard state information. ODMROP
on the other hand follows a mesh approach based on softstate information.
ODMRAOP is the better protocol of the two when it comes to success ratio,
but the overhead of ODMROP is much higher. ADB was in both success
ratio and overhead the better choice.

Another lookup and replication scheme that is scalable like SCALAR
is DHTR (Distributed Hash Table Replication) [8]. A lookup and replica-
tion scheme caches data items that are frequently requested in intermediate
nodes, which is shown by both protocols to increase the data availability of
the network and thereby the Quality of Service of the network. DHTR clus-
ters the nodes in hierarchical groups and uses hashtables for efficient data
lookups in the groups. Due to this clustering, DHTR claims to decrease
the communication overhead, which is an important constraint in a scalable
mobile ad hoc network. Since SCALAR relates to DHTR and was the more
complete choice, we chose to build upon SCALAR.
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Chapter 6

Conclusions

We proposed a new MANET protocol called MARS, that is based on SCALAR.
The protocol now includes an adaptive dynamic backbone construction and
as the results show this increases the scalability of the network. It also now
includes a resource based backbone construction which results in a stronger
and more sustainable backbone, which in turn results in a more sustainable
network. Last but not least, the protocol now includes message prioritiza-
tion, timers on pending requests and message TTL, which further increase
the Quality of Service of the network. Highly important messages have a
higher chance of delivery in less time and the backbone construction does not
interupt the transmission of such messages, because backbone construction
has now the second most important priority.

As the results of our tests show, MARS is the better solution in the
three selected scenarios in comparison with SCALAR. However, we also
see that MARS takes up more memory space due to the adaptivity of the
nodes and probably more computing power due to the complexity of the
backbone construction and message prioritization. The effects of this on the
nodes themselves should be tested in real life as future work. Also MARS
should be tested with more scenarios to see if it is suitable for more realtime
situations.
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Appendix A

Appendix

Figure A.1: Fields of NTab

Field Description
NodelD ID of the neighbour node
CorelD ID of the backbone node with which that neighbour is associated
HopsToCore Numbers of hops from that neighbour to the backbone
Degree Number of neighbour nodes of that neighbour node
NLFF Calculated NLFF by that neighbour to its nearest backbone node
LastUpdated Timestamp of when this entry was last updated
Figure A.2: Fields of FWTab
Field Description
CorelD ID of the backbone node with which the destination is associated
NextHop Next hop towards that backbone node
Hops Total number of hops to that backbone node
NLFF Calculated NLFF of the path to that backbone node
LastUpdated Timestamp of when this entry was last updated
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Figure A.5: Highway Scenario - Density test:
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Figure A.6: Highway Scenario - Business test:
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Figure A.7: Military Scenario - Density test:
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