
Bachelor thesis
Computer Science

Radboud University

Augmented reality as a general
indoor and outdoor navigation

solution

Author:
Jeroen van Voorst
s4620593

First supervisor/assessor:
dr. P.M. Achten

P.Achten@cs.ru.nl

Second supervisor:
dr. P.W.M. Koopman

pieter@cs.ru.nl

Second assessor:
MSc T.J. Steenvoorden

T.Steenvoorden@cs.ru.nl

June 25, 2018

Abstract

This thesis proposes a system that combines indoor and outdoor navigation
underneath one system using augmented reality. The system uses highly
customizable points of interest to determine the route. Then it computes
the direction of the target poi on the route and representing this direction
in AR. This direction is updated according to the user’s current location.
The idea is that a visualisation in the real world through AR directions may
provide a solution for accurate navigation indoor and outdoor. By using
real time footage of the live world, navigation may become less dubious and
more straight-forward than the use of maps or signs.

Contents

1 Introduction 2

2 Related Work 4

3 The augmented reality navigation system 6
3.1 Proposed system . 6

3.1.1 System’s architecture 6
3.1.2 Inner workings . 7
3.1.3 Scenario sketch . 9

3.2 Proposed Prototype . 11
3.2.1 Platform choice . 11
3.2.2 Design and algorithm approaches 11

3.3 Realized prototype . 14
3.3.1 The prototype . 14

3.4 Test results . 16

4 Conclusion and Future work 18

1

Chapter 1

Introduction

Navigation is a subject that has been researched for decades now. Still,
combining indoor and outdoor navigation while also visualizing the naviga-
tion path effectively remain to be noticeable problems. Whereas GPS works
outdoors, this signal is too weak to function accurately indoors. Hence,
another method is needed for indoor navigation. In order combine indoor
and outdoor navigation a solution is needed that links the two underneath a
general system while also presenting an effective visual path. Physical maps
leave many things to be desired. One has to memorise the way by glanc-
ing over the map again and again and is very prone to making a wrong turn.

Combining indoor and outdoor navigation through a potential hybrid
navigation system -combining more than one navigation system with each
other- and providing correct real world embedded visual aids through aug-
mented reality is the proposed solution that this thesis brings forward. Aug-
mented reality essentially means adding perceptual digital alterations, like
sounds, smells or visuals to reality. In this thesis, AR only extends to the vi-
sual senses and does not concern other sensory augmentations. This means
that AR in this context means rendering a digital graphic across observed
reality to form a composite view. Reality is augmented with additional ren-
dered ‘fake’ images or 3D-objects. Using this solution, users don’t have the
problem of having to map the navigation to the real world. Augmented
reality can make it as clear as day where the user has to go next using lines,
arrows or even labels. Therefore, the main research question of this thesis
is: How can an augmented reality system be used as a general solution for
indoor and outdoor navigation?

First this thesis proposes a general system that combines indoor and
outdoor navigation without the problems of mapping an artificial map to
the real world. Then a prototype of the system is represented which makes
use of AR and defined points of interest -POIs- to guide a person from one

2

POI to another along a shortest route. Using the POIs locations, one’s cur-
rent location, the heading of the device and bearing of the target POI, a
direction towards a target POI can be created in AR. By ensuring that the
POIs are connected only when there is no obstacle between, the direction
can be used as a accurate means of navigation. Furthermore, the adminis-
trator can set specific objects or labels to be shown at those POIs. The label
or object will then be shown to the user through augmented reality at the
location of the POI. The system is highly customisable due to POIs and cur-
rent location approaches being changeable. This system is then useful for,
for example: supermarkets, festivals, open house activities or walking routes.

To tackle this problem there are several subproblems that need solving:

• scenario limitations

• the computation of the shortest route

• navigation inside a structure

• navigation outside a structure

• visualisation of this route

The system is realized in a prototype using json formatted POIs, GPS for
the current location outside and accelerometer and magnetometer sensors of
the device the prototype was build on. The realized prototype works with
the exception of indoor tracking of the current location .

3

Chapter 2

Related Work

This thesis combines three concepts: indoor navigation, outdoor navigation
and augmented reality. The most interesting researches for this paper were
in the subjects of indoor navigation methods and augmented reality. There
has been done a lot of research into indoor navigation (bluetooth, wifi, Rfid,
NFC) but in order for them to work with closely positioned POIs high ac-
curacy is needed.
Locata[12] is a navigation system which claims to have Real Time Kinematic
(RTK) GPS accuracy levels. RTK GPS uses signals and a fixed location to
determine one’s position. This has an accuracy of 4 cm or less [17]. The
system uses a network of ground base transmitters (LocataNet) and single
frequence L1 tranceivers (LocataLites) to achieve this. Pirzadaa et al [22]
conducted a thorough research on the accuracy and capabilities of various
other indoor navigation techniques. From this list an alternative appropri-
ate indoor navigation method might be chosen for the system. For example,
Ubisense(2005) has 14 cm accuracy and is accurate enough to implement
with the POIs.

Augmented reality combined with navigation is also explored in a thesis
about directional indoor navigation (Sung et al) [23]. Sung made a pro-
totype for indoor navigation based upon QR code POIs. The user has to
scan the QR to get a direction arrow shown on the screen to the destination
QR or POI. No path is created and obstacles might be encountered. An-
other difference with this thesis is the broadness. The system proposed in
this thesis can be used everywhere and is not solely dependant on QR code
scanning for navigation. Furthermore, the system discussed in this thesis
combines outdoor navigation with indoor navigation in a general framework.

Kasprzak et al [16] also implemented a feature based indoor navigation
solution with AR. When looking at specific objects in the building the user
will be given navigation instructions based on their route. These routes are

4

text based instructions and are fetched/matched. However, feedback sug-
gested that “instructions to change in continuously, like in GPS systems.”
Instead, the above system provides an augmented arrow on top of the fea-
ture recognized object. If the user looks away the direction is no longer real
time shown. In the system of this thesis the directional arrow is consistently
updated.

Another interesting system is the one described by Brush et al [15]. They
introduce a navigation system that relies on activities. It uses ‘trails’ to nav-
igate a user back to where they came from. These trails are the activities
like “take 50 steps north” or “go up 2 elevator levels”. These activities are
automatically generated. This is different than giving directional info but
could be implemented as a navigation system as well as a follow up to this
thesis. Interesting to note here is that at the University where this thesis
has been conducted, a start-up company has been experimenting with this
as well. They had placed QR-codes all over the campus. You can scan them
or manually select one from a list on your phone on their app and it will
give in text form activity based instructions, like go down the stairs on the
right.

Hile et al[14] have implemented outdoor navigation with augmented re-
ality on phones. Here they used landmark points (location with a latitude
and longitude at a certain landmark). When arrived at those points the sys-
tem shows users images of the landmark with augmented direction arrows.
These stationary images are pulled from a database containing photo’s that
are made of the landmark at specific GPS points.

5

Chapter 3

The augmented reality
navigation system

In this chapter, the proposed system will first be explained in theory. Af-
ter this, it will be explained how it can be applied using various existing
techniques. Then lastly the thesis will focus on how the realized prototype
functions.

3.1 Proposed system

3.1.1 System’s architecture

The system is dependant on the points of interest(POIs) that the adminis-
trator of the system sets up. These POIs have a latitude(lat), longitude(lng),
neighbours and a floor all defined by the administrator. All POIs must be
reachable from each other; there are no isolated POIs. POIs can be both
inside and outside, as long as they have the required fields.

Each of those fields play a crucial part in the system for outdoor and
indoor POIs:

• The neighbours field is required so that the system knows what POI’s
are connected without an obstacle in between.

• The latitude longitude fields are there for determining a user’s position
and arrival at a POI.

• The floor field is required for indoor POIs to distinguish floors from
each other and determine stairs or elevators. Outdoors this can be a
default base floor value.

Using the POI information, the system can then compute the shortest
route and navigate the user from one POI to another.

6

A result of this particular scenario is that it’s limited to the adminis-
trator’s demands. It is only possible to navigate between POIs that the
administrator of the system has set up. Navigation across two arbitrary
latitude longitude pairs is therefore not possible.

3.1.2 Inner workings

Route computation

The user travels between POIs from source POI to destination POI. The
path between can only consist of a connection between POIs: the shortest
path is simply a list of POIs the user has to visit in order to get to his
destination. The system must therefore calculate the optimal shortest path.
To get the relation of the POIs the system takes the neighbours and the
appropriate latitude and longitudes and computes the distance between the
POI and its neighbours.
From the above a graph is made with each vertex a POI and each edge a con-
nection between the POI and one of its neighbours. The edges have a weight
which is the shortest distance between the two POIs. From the system’s ar-
chitecture there can be no obstacles between a POI and its neighbours and
therefore, the edge can be created and represent a clean path. Using a search
algorithm (A* in this thesis), the graph can be traversed from one vertex
to another using minimal weight and thus minimal distance. Every vertex
visited is added to the route to create the route list.

Navigation

The route is computed which gives the POIs from the source to the desti-
nation. The latitude and longitude of the POIs can be determined from the
administrator. Important here is that every POI is reachable by travelling
a path of POIs without obstacles in between them. Not every POI needs to
have a description, but can simply be made as a navigation point.

As a prerequisite the current location can be accessed as well through for
example GPS for outdoors and Locata or QR based navigation for indoors.
An optional field can be made for POIs that tell whether a POI is indoor
or outdoor. This way the system can switch between accessing current lo-
cation methods. Then, through converting the latitude and longitude to a
location object, the bearing can be calculated. This bearing [7] must be the
bearing between two locations along the shortest path. There are two kinds
of north, the magnetic north and the true north. The magnetic north [18]
is the point where a magnetic arrow points to under the influence of the
earth’s magnetic field. The true north [19] is the direction to the north pole

7

of the earth from any location along the meridian.

A device that uses a magneto and accelerator meter will determine one’s
heading with the hardware compass in degrees east or west of the magnetic
north. If the device computes the true north, the bearing is according to
convention in east or west degree of the true north. This thesis will use east.
In most if not all real case scenario’s the hardware compass will return the
heading of the magnetic north and the bearing will return a degrees of the
true north. In order to let both be compatible with one other the system
has to turn the magnetic north heading into a true north heading. This can
be done calculating a ’magnetic declination’, which is the angle difference in
degree between the magnetic north and the true north on a horizontal plane.

Using this one can compute the direction of the target POI by first con-
verting the heading of the device to the appropriate north and then update
the offset to represent one’s bearing to the destination. This way, the direc-
tion arrow will point towards the destination POI instead of north.

Having this direction the system then navigates the user from POI to
POI until the destination POI is reached. There aren’t any obstacles be-
tween the user and the target POI, therefore the user can simply follow the
arrow’s direction on the screen to get to the next POI. The system leads the
user from POI to POI, which means that at each POI the bearing to the
next POI on the route needs to be computed. The direction of the arrow also
needs to be updated. This is done by checking the user’s current latitude
and longitude in 5 equal intervals between every source and target poi. If
the user is within a meter of the target POI then the POI target is updated
to the next POI on the route. This goes on until the user has arrived at the
destination.

Figure 1. The System’s architecure

8

Figure 1 shows a general flow chart of the system’s architecture.

The system also has to detect whether the user has deviated from the
path and let this be known to the user. Using the fact that the POIs
are neighbours and neighbours are defined as straight line distances due to
those being the shortest distances, then the system can calculate a cross-
track error [8]. A cross-track error is the distance of the current location
to the line between the target and source POIs. Then the administrator of
the system can determine if this distance is bigger than 10 meters, show a
notification that the user is going the wrong way.

Labels, 3d objects and the compass can be displayed as a helping service
for the user. POI descriptions, navigation indicators like arrows or appro-
priate icons are examples of interesting AR objects at POI coordinates.

3.1.3 Scenario sketch

Three kind of scenario’s are possible: only inside POIs, only outside POIs
or both. Say there’s a person named John, who wants to navigate from one
POI to another. Then there are the following three sample scenario’s. They
may change depending on the navigation system used (for example John
might have to scan a QR-code inside to enable the system to get his current
location and update the arrow).

Supermarket with multiple floors

John is standing at the entrance of a supermarket. Using the system that
the supermarket made available to him, he opens the system on a device
(say phone), opens the correct application, selects the “entrance” POI from
a scroll-down list of available POIs and selects “The meat department” as
the destination POI. The device computes the route of POIs from the POI
with the description “entrance” to the POI with the description “The meat
department”. The device opens its AR view showing a directional arrow
towards the first POI on the route. John follows the arrow’s direction until
the end of the lane, the arrow ’updates’ and changes direction. John turns
around to follow this new direction following the arrow once again until he
reaches a stairway. The the arrow’s updated with a message: “The next
POI is on the next floor please go up the stairs.” John follows the device’s
instructions and once upstairs follows the arrow’s direction once again until
he arrives at his destination. He does this until he sees the label with “The
meat department” on his device. The device notifies John he has arrived.

An outdoor festival

John is standing at the entrance an outdoor festival. He opens the system
provided by the festival on a device. He then selects the “entrance” POI

9

from a list of available POIs and selects “The main stage” as the destination
POI. The device computes the route of POIs with source the POI with the
description “entrance” to the destination POI with the description “The
main stage”. The device opens its AR view showing an directional arrow
towards the first POI on the route. John follows the arrow’s direction until
he faces stage 2 which is in the way. The arrow ‘updates’ and changes
direction, leading to a next POI that will lead him around the stage. Once
John is around the stage by following several updates of the arrow, he follows
the arrow one more time and finds his destination. He sees an Main Stage
3d font on his device and the device notifies John he has arrived.

Open house of a University

John has arrived with a bus at “Erasmus Building”. However, he wants
to go to the “Huygens Building” . He opens the system provided bym the
Radboud University on his device and selects the “Erasmus Building” POI
from a scroll-down list of available POIs and selects “Huygens Building” as
the destination POI. The system does the same as in scenario 2 but John
accidentally goes the wrong way and ends up two buildings away from his
destination. The system detects this deviation from the path. It will check
whether a new POI lies between the destination and John. Depending on
whether there exists such a POI the system will either update the arrow
to this POI or otherwise keep pointing towards the current target POI. A
warning message will be shown that John is not following the arrow. John
notices this and finds his way to the Huygens building and wants to go
inside. John sets his current location “Huygens Building” and destination
“HG.00.300”. The system will continue to update the John’s position. It
will also keep track of the target POI Navigation implementationusing John’s
actual position. John finds his way as in scenario 1.

Comparison

There is common ground to be found in these three scenarios as well as
several differences. In all three cases John fundamentally does the same: set
an source and destination POI and walk according to the augmented arrow.
However, in the background the app does have to switch from current loca-
tion fetchers. Another difference is that in scenario 2 additional ’navigation’
POIs will have to be defined to get John around the stage. Furthermore, in
the third scenario a deviation from the path has to be found and corrected.

10

3.2 Proposed Prototype

3.2.1 Platform choice

The proposed system is compatible with every AR device that has an ac-
celerometer and magnetometer sensors. These sensors are necessary for di-
rectional calculations and should therefore be present in the chosen device.
Furthermore, the device needs to be able to locate the device at any point in
time during the navigation process. The manner of locating the device is of
no importance, as long as the latitude and longitude are provided with one
meter accuracy. This is due to the arrival check and path deviation detect.

The arrival check is done by consistently checking the updated location
of the user and whether the user is within one meter of the target POI. This
checking is done by calculating the distance of the user’s location to the
target POI. If so, the POI is set to arrived and the arrow updated to the
next target POI.

The compatibility of the device with AR means that the device must be
capable of running a service or development kit that renders a digital graphic
across observed reality to form a composite view. In this thesis, AR only
extends to the visuals and not other sensory augments. Reality is essentially
augmented with additional rendered ‘fake’ images. A direct consequence of
this definition is the need for the device to display the observed environment.
Therefore, the device will need a camera.

3.2.2 Design and algorithm approaches

Shortest route computation

The POIs’ information can be given to the system using for example json:

Figure 2. The POI list in json format

For computing a shortest route the system uses the A* algorithm. In
the context of a weighted graph, A* is with the correct heuristic complete,

11

optimal and admissible. This makes it suitable for the weighted graph of
the system. A* has access to the POIs coordinates so that it can be used
for A*’s heuristic.

A* needs an admissible heuristic in order to always compute the opti-
mal path. Admissible means that the cost that the heuristic estimates is
not higher than the actual lowest possible cost. The heuristic in this thesis’
context is the shortest distance between the current location and the des-
tination. If the POIs are near to each other, which is usually the case in
all scenario’s, then the taking this distance using the latitude and longitude
straight line connection is acceptable; the error margin is small.

There are two ways to get this distance: the Manhattan distance and
the Euclidean distance. The Manhattan distance [21] determines the short-
est distance in a constant one dimensional plane where one can only move
vertical and horizontal, whereas the Euclidean distance [20] has no such lim-
itations and can determine the shortest distance in every dimensional plane.
Therefore, the Manhattan distance in this thesis context is not as effective
as the Euclidean distance. Because the neighbours are defined to have no
obstacles between them, a ‘straight line distance’ will work as the shortest
possible route. However, the longitude depends on the latitude, because the
longitude is smaller at the top of the earth say north pole, than the equa-
tor. This can be corrected by multiplying the longitude by the cosine of the
latitude.

Computing the shortest route between floors is done by linking the two
graph’s -that result from two floor POIs- together by a ’stair’ POI. A stair
POI is a POI that has a neighbour that has a different floor value. An
additional edge is created between those two POIs with a constant weight
for stairs that can be edited in accordance to the size of the stairs. This so
that the Euclidean distance that is calculated based on latitude longitude
coordinates is still in scale with the stair weight.

If the area is too large (say larger than a city) and the error margins
become noticable, the Haversine Formula [8] can be used instead to calculate
the great circle distance, which is the shortest distance between two points
on a sphere. However, since the earth is not entirely a sphere the Haversine
is at least as accurate as 3m in 1km. In such large areas there is no need
to compute the shortest route between floors, because buildings as large do
not exist, let alone a POI with a stair neighbour that has a distance of more
than a city.

Navigation implementation

Now that the shortest route list of POIs together with the corresponding
latitudes and longitudes is available, two things are needed to set the arrow.

12

Firstly, the heading is needed of the device. The heading can be ex-
tracted from the hardware compass (accelerometer and magnetometer). The
convertion of the magnetic north to true north can be done by looking up
the magnetic declination on the World Magnetic Model 2015 Declination
models [11] and converting it to a 360 degree model instead of the -180/180
model. This goes for all degree operations if the formula returns a value
in a -180/180 model. The convertion could happen by for example mod
operation f(x) +180 mod 360.

Secondly the bearing of the two POIs is needed for the system. The
bearing can be calculated using the formula bearing = atan2(sin(∆q) ∗
cos(q1)∗cos(p1)∗sin(q1)−sin(p1)∗cos(q1)∗cos(∆q)[8]. where p = (p1, p2)
and target location q = (q1, q2) in latitude longitude respectively and ∆q is
the difference between the longitudes.

Now the offset of the arrow can be calculated from the user’s current
position, be it POI or current location. This offset is updated with respect
to the repeated computed heading of the device and current location. This
way the arrow will always point to the target POI no matter where the de-
vice is faced or placed. For the outdoor current location updates GPS can
be used. For indoors, one of the navigation methods described in [22] can
be utilized or a simple qr code based system can be implemented.

The system also has to detect path deviations using the cross track
error distance. This distance can be calculated using the formula: cte =
asin(sin(d13) ∗ sin(b13 − b12)) ∗ R where d13 is the distance between the
source POI and the third point of the line, b13 is the bearing between those
POIs, b12 is the bearing between target POI and source POI and R is the
earth’s radius (6.371 km [6]). So for this calculation another bearing between
the current third point location and the source POI is computed using the
method above.

Visualization

The visualization of the arrow and other objects in augmented reality have
to be rendered. For this an 3d object is needed, which can be created with
a program like Blender [5]. The object must then be rendered (for example
using a rendering program like openGL [9]).

Once the 3d objects can be rendered the position of the objects need to
be determined. Labels could for example show the POI’s description and
be rendered at the specific latitude and longitude of the corresponding POI.
The arrow itself however is required to be at a fixed position in the view so

13

that if the user moves or moves the devices the arrow’s position isn’t affected.
Otherwise, if a users walks away, the arrow will become smaller and further
away from the user. Also, a fixed arrow helps the user to immediately know
where to look at the screen. However, despite of being in a fixed position
on the screen, the arrow must still rotate with the device’s orientation so
that it will always point to the correct direction. Details about visualization
implementation are very much device and SDK dependent.

Customization

The customization of the system lies in the POI customizations and deliv-
ery as well as the 3d objects and the navigation method. The 3d objects
and POI’s locations, descriptions, and neighbours are all decided by the ad-
ministrator of the system. Custom labels can be loaded when looking at a
specified coordinate or by looking at a QR code. For example for a super-
market the meat department may have a meat pictograph hovering above
its location. Another example would be to display the target POIs position
as a (distant) dot. Lastly, the system only needs to have an accurate current
location of the user. The approach to this is open to all kinds of algorithms
as long as it provides the current location. For outdoor this can be GPS or
RTK-GPS for example. Indoors, one of the methods discussed by Pirzadaa
et al [22] might be chosen.

3.3 Realized prototype

3.3.1 The prototype

The prototype is made for a Samsung galaxy s7 using android’s ARCore
SDK [2]. ARcore is an SDK made by google to enable developers on an-
droid to build augmented reality applications. ARCore requires android 7.0
and is only able to run on specific devices[3]. I’ve chosen the samsung galaxy
s7 because I’ve had some experience in working with android studio and the
samsung galaxy s7 was the only device available which could run ARCore.
Another reason was ARCore is just a few months old and I wanted to test
the extend and limits of ARCore.

The shortest route computation using A*, floor differentiation, arrow
positioning and outdoor navigation POI updating all work as intended.The
shortest route contains a list of all POI’s in such an order that the action of
travelling to each POI will lead the user to their destination in the shortest
possible time.

The objects are made using Blender and rendered using openGL and I
used the premade objects of ARCore’s compass objects [4]. Then in the AR

14

view and environment ARCore generates its view of the world by detecting
visually distinct features. It uses the position and orientation of the device
camera relative to the world and the features to create anchors to place
objects at. The fixed position of the arrow is realized by first placing a
compass base at a fixed anchor compared to the camera and then placing
the arrow’s base on the middle anchor of the compass’s base. Now ARCore
tracks the entire compass as a fixed position in the real world view. The
arrow however, needs to be able to rotate according to the bearing. This is
done via a rotation pose consisting of the principals of quaternions according
to the Hamilton convention [13]. A quaternion is a forumla in the form
w + ax + by + cz where x, y, z and w are real numbers and a,b,c are unit
values. For example in a rotation quaternion the x, z, y are vectors that
represent the three Cartesian axes x y and z. The pose rotation used by
ARCore uses as quaternion [10]:

x = k.x ∗ sin(theta/2)

y = k.y ∗ sin(theta/2)

z = k.z ∗ sin(theta/2)

w = cos(theta/2)

where theta is the angle rotated counter-clockwise about a unit-length axis k.
This means that a rotation over axis y will result in the following quaternion
parameters:

x = sin(theta/2), w = cos(theta/2), y = z = 0

The arrow is rotated in the compass base in the horizontal(x) plane of
the x,y,z space by the calculated direction angle.

15

Figure 3.1 The interface Figure 3.2 The direction

Figure 3.1 shows the start up interface. Here there are two spinners: the
one on top being the source POI and the one underneath being the destina-
tion POI. Once both have been set one of the buttons above can be pressed.
The “get log“ button is there for me to extract the path into a log on my
device. ‘Scan QR‘ reads optional QR POIs and ‘compute‘ computes the
route between the set source POI and the target POI. ‘Go to AR’ should
only be pressed after computation, otherwise the arrow will point north.
If pressed after compute then the compass base and arrow are constructed
(figure 3.2) where the arrow points to the first POI on the path. The blue
stips on figure 3.2. are the features recognized by ARCore.

Outdoor latitude and longitude updates are fetched from Google’s loca-
tionmanager [1] and using this location the distance to the target location
is calculated. When this distance is below a meter, the POI will marked as
visited and removed from the current route. The next POI on the route will
then be set active and the bearing will be recalculated. This results in an
updated directional angle and hence an update to the rotation of the arrow.

3.4 Test results

There were three situations: indoor, outdoor navigation and the navigation
with the two combined.

First I tried to test the app inside, but since I had no time to implement
an accurate indoor navigation method to my prototype. Instead I opted for
loading a map into the prototype with POIs scattered all over it. These POI
have x,y pixel coordinates instead of real latitude and longitude coordinates.
This required the json to have two addition fields namely the x and y pixel
coordinates of the POI. The distance could then be calculated the same
way as over latitude longitudes. In order to have an appropriate distance
estimation, the map needs to be on scale. The prototype was then able to
compute the graph and the shortest route. The arrow worked but could not
be updated once the next POI was reached due to no active tracking of the
user position. Therefore, the prototype only worked correctly on outside
POIs. However, the systems fundamentals should work inside as well as
long as the app has access to the users current location.

Then, I tested the outdoor navigation on simple routes of a max 5
POI long (all POIs where latitude/longitude pairs of corners of streets) and
the arrow straightly pointed me from POI to POI with sometimes flipping
around for a second before reconstructing itself. This was due to ARCore

16

being unable to find fixed positions of objects when it cannot recognize any
points or poses to latch onto. So when staring at a blank white ground or
wall, ARCore has no idea where to place objects because it has no refer-
ences to the real world. So in case of very blank environments or limited
view through the camera (at night for example) the compass and arrow dis-
appear. As soon as ARCore can relate itself to the real world again the
compass is reconstructed and reset to point to the correct POI.

Lastly, there was the combined navigation. While using at least two POIs
indoors in the route and at least one outdoors, it worked until the arrow had
to be updated indoor. GPS wasn’t accurate enough indoors and therefore
the needle updated either too soon or too late causing wrong navigation.
Therefore it did not work as intended.

Unfortunately, there was another noticeable limitation to ARCore: there
was no way to render an object at specific latitude longitude in the real
world. Objects could only be rendered through user interaction. The user
has to press a white node on a created plane and only then will the specified
3d object be shown at that point. Due to this limitation I could not make
use of labels and objects for POIs.

Another problem is the accuracy of the hardware compass. The heading
has an inaccuracy of about 15 degrees in either direction and strong magnetic
fields may influence the readings.

17

Chapter 4

Conclusion and Future work

The proposed system is a general system for a navigation solution on AR
devices. However, the preconditions are that the current location and com-
pass data can be determined. The realized prototype confirms that the
system works outdoors. The system fundamentally works the same indoors
as outdoors, but for the way to determine one’s current location. Hence, the
realized prototype hints that it should be possible to navigate indoors the
same way as outdoors. The amount of customization in this system is high
as well, but the system can only be used in for travel between user/admin-
istrator established POIs.

The realized prototype proves that it is possible to combine the system
with a stock device for outdoor navigation and indicates that it will be pos-
sible for indoor navigation as well. However, it is far from done. Distance
indicators, labels or 3d object rendering at specific locations and most im-
portantly an indoor system implementation are still unrealized either due to
SDK limitations or time. Future work and research could be done into the
system’s combination with indoor navigation systems as Locata or activity
based systems.

The arrow system may also be upgraded by hard-coding the edges of the
POIs as line objects in AR and then map these to real coordinates. Then
when a POI is reached the new line to the next POI will be created on for
example the ground. This requires, however, accurate latitude longitude ob-
ject rendering which ARCore does not have. Therefore, comparing different
SDKs -for example an system implementation using the IOS side variant
ARkit- might provide more insight on what features are needed and what
platform provides the best AR navigation experience and why.

18

Bibliography

[1] Android’s locationmanager. https://developer.android.com/

reference/android/location/LocationManager, last accessed on 01-
06-2018.

[2] Arcore. https://github.com/google-ar/arcore-android-sdk, last
accessed on 4-06-2018.

[3] Arcore supported devices. https://developers.google.com/ar/

discover/supported-devices, last accessed on 04-06-2018.

[4] Arcore unsupported compass. https://github.com/inio/

arcore-android-sdk/tree/unsupported-geo-oriented, last ac-
cessed on 03-06-2018.

[5] Blender. https://www.blender.org, last accessed on 4-06-2018.

[6] Earth’s factsheet. https://nssdc.gsfc.nasa.gov/planetary/

factsheet/earthfact.html, last accessed on 03-06-2018.

[7] Location android. https://developer.android.com/reference/

android/location/Location.htmlbearingTo(android.location.

Location), last accessed on 01-06-2018.

[8] Location formula’s. https://www.movable-type.co.uk/scripts/

latlong.html, last accessed on 04-06-2018.

[9] Opengl. https://www.opengl.org, last accessed on 4-06-2018.

[10] Pose rotation. https://developers.google.com/ar/reference/

java/com/google/ar/core/Pose#Pose(float[],%20float[]), last
accessed on 04-06-2018.

[11] The world magnetic model. https://www.ngdc.noaa.gov/geomag/

WMM/DoDWMM.shtml, last accessed on 04-06-2018.

[12] Jas Barnes, Chris Rizos, M Kanli, and A Pahwa. High accuracy posi-
tioning using locata’s next generation technology. 06 2018.

19

[13] W. (n.d.). Hamilton. Elements of Quaternions (Cambridge Library Col-
lection - Mathematics), volume 103. Cambridge: Cambridge University
Press. doi: 10.1017/CBO9780511707162.

[14] Harlan Hile, Ramakrishna Vedantham, Gregory Cuellar, Alan Liu,
N Gelfand, Radek Grzeszczuk, and Gaetano Borriello. Landmark-based
pedestrian navigation from collections of geotagged photos, 01 2008.

[15] A J. Bernheim Brush, Amy K. Karlson, James Scott, Raman Sarin,
Andy Jacobs, Barry Bond, Oscar Murillo, Galen Hunt, Michael Sinclair,
Kerry Hammil, and Steven Levi. User experiences with activity-based
navigation on mobile devices, 12 2010.

[16] Sebastian Kasprzak, Andreas Komninos, and Peter Barrie. Feature-
based indoor navigation using augmented reality, 07 2013.

[17] Dinesh Manandhar, K Honda, and S Murai. Accuracy assessment and
improvement for level survey using real time kinematic (rtk) gps. 2:882
– 884, 1999.

[18] US Department of Defense. ”magnetic north.” dictionary of military
and associated terms. 2, 2005. https://www.thefreedictionary.

com/magnetic+northl, last accessed on 4-06-2018.

[19] US Department of Defense. ”true north.” dictionary of military and
associated terms. 2, 2005. https://www.thefreedictionary.com/

true+northl, last accessed on 4-06-2018.

[20] Vreda Pieterse and Paul E. Black. ”euclidean distance”, in dictionary
of algorithms and data structures [online]. 2006. https://www.nist.

gov/dads/HTML/euclidndstnc.html, last accessed on 04-06-2018.

[21] Vreda Pieterse and Paul E. Black. ”manhattan distance”, in dic-
tionary of algorithms and data structures [online]. 2006. https:

//www.nist.gov/dads/HTML/manhattanDistance.html, last accessed
on 04-06-2018.

[22] Nasrullah Pirzada, M Yunus Nayan, Fazli Subhan, Mohd Fadzil Hassan,
and Muhammad Khan. Comparative analysis of active and passive
indoor localization systems. 5:92–97, 12 2013.

[23] Hyun Sung and Sung Hyun Jang. A qr code-based indoor navigation
system using augmented reality. 06 2018.

20

