
Bachelor thesis
Computer Science

Radboud University

Automata extended to nominal
sets

Author:
Joep Veldhoven

s4456556

First supervisor/assessor:
Jurriaan Rot

jrot@cs.ru.nl

Second and third supervisor:
Herman Geuvers

Joshua Moerman

herman@cs.ru.nl
joshua.moerman@cs.ru.nl

Second assessor:
Wieb Bosma

bosma@math.ru.nl

August 22, 2018

Abstract

In this thesis we will talk about the notion of languages and automata over
nominal G-sets. First, we will give the definition of nominal G-sets and
automata and languages over them. Then we will prove the Myhill-Nerode
theorem for these automata and use it to show that determinization fails. We
will introduce the definition of finite and infinite non-determinism which are
possible di↵erent forms of non-determinism and pose interesting questions
for further research. Lastly, we introduce a version of the pumping lemma
for nominal automata which can be used to find some languages which are
not accepted by automata in this theory.

Contents

1 Introduction 2

2 Preliminaries 3

3 G-sets and automata 5
3.1 G-automata . 9

4 Nominal G-sets and automata 11
4.1 Nominal G-automata . 12
4.2 Myhill-Nerode Theorem . 13

5 Determinism 17

6 Pumping Lemma 20

7 Related Work 23

8 Conclusions 24

1

Chapter 1

Introduction

Automata theory is the theory of languages and automata. A language is a
collection of words over a certain alphabet and an automaton is a machine
that takes a word as the input and then either accepts it or it rejects it.
The collection of words that it accepts is a language. These automata and
languages have several properties and applications based on these properties.

In classical automata theory a restriction is that the alphabet must be
finite. It is interesting to look at languages and automata over infinite
alphabets and see if they have stronger or new applications that can be used.
In this thesis we will look at automata over nominal G-sets. This theory
has been introduced in more papers, for example in Automata theory in
nominal sets by Miko laj Bojańczyk, Bartek Klin and S lawomir Lasota [2].
The idea of nominal sets is that they can be infinite, but they are finite up
to some equivalence. This way we can have an infinite automaton over an
infinite alphabet, but they are both finite up to some equivalence.

The aim of this thesis is to compare this theory of automata and lan-
guages over nominal G-sets to the classic theory and see what the di↵erences
and similarities are. We will try to go deeper into some more specific topics,
like the pumping lemma and non-determinism. By doing so, we might find
ways to extend known applications that work in the classical case to the
nominal case and discover new applications which work specifically in the
nominal case.

2

Chapter 2

Preliminaries

First we will give the definition of groups and group actions which are nec-
essary for the following theory.

Definition 1. A group (G, ⇤) consists of a non-empty set G and a binary
function ⇤ : G⇥G ! G which satisfies the following group axioms.

• Closure: for all a, b in G, a ⇤ b is also in G.

• Associativity: for all a, b, c in G (a ⇤ b) ⇤ c = a ⇤ (b ⇤ c).

• Identity element: there is an element e in G, such that e⇤a = a = a⇤e
for all a in G.

• Inverse element: for all a in G there exists an a
�1 in G, such that

a ⇤ a�1 = e = a
�1 ⇤ a.

Sometimes we write ab instead of a ⇤ b.

Example 2. The integers Z with the operation + is a group with the identity
element 0. The natural numbers N with the operation + is not a group,
because there are no inverse elements.

Definition 3. A (right) action of a group G on a set X is a function
· : X ⇥G ! X, which obeys the following rules:

x · e = x x ·(⇡�) = (x · ⇡) · �

for x 2 X and ⇡,� 2 G, where e is the neutral element of G. Such a set X
is called a G-set.

Example 4. Any set X is a G-set with the action x ·⇡ = x. For any G-sets
X,Y the Cartesian product X ⇥ Y is a G-set with the actions (x, y) · ⇡ =
(x · ⇡, y · ⇡). We can see that this is indeed a G-set, because

(x, y) · e = (x · e, y · e) = (x, y)

3

and

(x, y) · (⇡�) = (x · (⇡�), y · (⇡�))
= ((x · ⇡) · �, (y · ⇡) · �)
= (x · ⇡, y · ⇡) · �
= ((x, y) · ⇡) · �.

4

Chapter 3

G-sets and automata

The theory and examples in this chapter are taken from the paper Automata
theory in nominal sets by Miko laj Bojańczyk, Bartek Klin and S lawomir
Lasota [2].

The following notion is used to create some simple G-sets, which can be
used for interesting examples in the future.

Definition 5. A data symmetry (D, G) is a collection of data values D with
a subgroup G ✓ Sym(D), the group of bijections from D to D.

Example 6. The following are examples of data symmetries:

• Trivial symmetry: D = ; and G is the trivial group with one element.

• Equality symmetry: D is a countably infinite set and G = Sym(D).

• Total order symmetry: D = Q and G is the group of all monotone
bijections.

• Integer symmetry: D = Z and G is the group of all translations of the
form i 7! i+ c.

Example 7. For any data symmetry (D, G), D is a G-set with the action
x ·⇡ = ⇡(c). This action can also be extended to define the following G-sets:

• Dn: (d1, d2 . . . dn) · ⇡ = (⇡(d1),⇡(d2), . . . ,⇡(dn)).

• D⇤: (d1, d2 . . .) · ⇡ = (⇡(d1),⇡(d2), . . .).

• D!: (d1, d2 . . .) · ⇡ = (⇡(d1),⇡(d2), . . .).

• P(D): X · ⇡ = {⇡(x) | x 2 X}.

Definition 8. The orbit of an element x of a G-set Xis the set

x ·G = {x · ⇡ | ⇡ 2 G}.

5

It is possible that two elements have the same orbit. Because of this we can
define the number of orbits of a G-set by the number of di↵erent orbits of
all the elements of the G-set. A G-set is called orbit finite if it has a finite
number of orbits.

The notion of orbit finiteness in G-sets can be compared to the notion
of finiteness in classical sets.

Example 9. In the equality symmetry the orbit of any element x of the G-
set D is the whole set X, because all the bijections can map x to any other
element in D.
In the total order symmetry the same holds, since all monotone bijections
can still map any element to any other element. Since both of them have
only one orbit, they are orbit finite.

It is useful to determine whether elements are in the same orbit. To get
more insight into this we prove the following lemma.

Lemma 10. Two elements x and y in a G-set X have the same orbit ()
9� 2 G such that y = x · �.

Proof. ())
Assume x and y have the same orbit. Now we have y = y · e 2 y ·G = x ·G,
so there is a � such that x · � = y.

(()
Assume we have a �, such that y = x · �. By definition for all the elements
a 2 x ·G there exists a⇡ such that a = x · ⇡. Now we have

a = x · ⇡ =

(y · �) · ⇡ =

y · (�⇡).

So a 2 y ·G and x ·G ✓ y ·G. The same way we can see that y ·G ✓ x ·G.
Putting these two together we have the conclusion x ·G = y ·G.

Corollary 11. In the equality symmetry, elements of the powerset P(D)
are in the same orbit if and only if they have the same cardinality.

Proof. Because of Lemma 10 two elements X,Y of the powerset have the
same orbit i↵ there is a ⇡ such that Y = X · ⇡ i↵ ⇡(X) = Y i↵ there is a
bijection ⇡ between X and Y i↵ X and Y have the same cardinality.

From Corollary 11 we can see that in the equality symmetry the powerset
of an infinite set is not orbit finite, because it has an infinite number of
elements with di↵erent cardinalities. So in general the powerset of an orbit
finite set is not orbit finite.

6

Definition 12. A subset Y ✓ X is called equivariant if for any ⇡ 2 G the
following holds:

Y · ⇡ = Y.

This definition can be extended to a relation R ✓ X ⇥ Y or a relation of
greater arity. A relation is called equivariant if

R · ⇡ = R.

Extending this to functions we define that f is an equivariant function if for
all x 2 X and ⇡ 2 G

f(x) · ⇡ = f(x · ⇡).

If Y is equivariant then Y is a union of orbits in X. The identity function
on any set is an equivariant function:

id(x · ⇡) = x · ⇡ = id(x) · ⇡.

If f and g are equivariant then g(f(x · ⇡)) = g(f(x) · ⇡) = g(f(x)) · ⇡, so
g � f is also equivariant.

Example 13. In the equality symmetry any subset of a G-set D can be
mapped to any other subset of the same cardinality, so the only equivariant
subsets of D are D and ;. In D2 the four equivariant subsets are X, ; and
{(x, x) | x 2 D} and {(x, y) | x 6= y 2 D}.

Example 14. The following are examples of equivariant functions:

• In the equality symmetry the only equivariant function from D to D is
the identity. If we have another function f , with f(d) = e, then look
at the ⇡, which keeps d in place and swaps e with f . Then f(d) · ⇡ =
e · ⇡ = f 6= e = f(d) = f(d · ⇡).

• There are exactly two equivariant functions from D2 to D, the projec-
tions. Any other function is not equivariant, for example the function
f that maps (d, e) to a fixed letter a is not equivariant, because the ⇡

that only swaps b with a gives f((d, e) · ⇡) = f(d, e) = a 6= b = a · ⇡ =
f((d, e)) · ⇡.

• There is one equivariant function from D to D3, the function that maps
d to (d, d, d). Any other function is not equivariant. For example the
function f that maps a to (a, b, c) is not equivariant. Take the ⇡ that
swaps a and b, f(a · ⇡) = f(b) = (b, b, c) 6= (b, a, c) = (a, b, c) · ⇡ =
f(a) · ⇡.

7

• There are more than three equivariant functions from D3 to D. The
projections are equivariant, but the function f , where f((a, b, c)) =

8
<

:
a if a = b

c if a 6= b

is also equivariant. Because ⇡ is a bijection the image of a and b

under ⇡ will be the same when a and b are the same and di↵erent
when a and b are. In total there are 12 equivariant functions from D3

to D. These are the three projections and nine functions similar to the
one mentioned above. For every two elements we have three of those
functions, and we can compare two di↵erent elements three times.

Now we can finally define alphabets and languages over G-sets.

Definition 15. An alphabet is any orbit finite G-set A. The G-set A⇤ is
the set of all words over the alphabet A. A G-language is any equivariant
subset L ✓ A

⇤.

Lemma 16. Concatenation over A
⇤ is equivariant.

Proof. This means that for any two words w and v

(wv) · ⇡ = (w · ⇡)(v · ⇡).

We have

(wv) · ⇡ = w1 · ⇡ . . . wn · ⇡v1 · ⇡ . . . vn · ⇡
= (w · ⇡)(v · ⇡)

Example 17. The data symmetries D we have mentioned so far are alpha-
bets, as well as any finite set ⌃ or the product ⌃ ⇥D.

Example 18. Take a data symmetry D as the alphabet.
In the equality symmetry the following are languages.

L1 = {ded | d, e 2 D} L2 = {ddwdd | d 2 D, w 2 D⇤}
L3 = {d1 . . . dn | n � 0, di 6= di+1}

Palindromes over D are a G-language as well. In the total order symmetry

{d1 . . . dn | n � 0, d1 > . . . > dn}

is a G-language. This is not a G-language in the equality symmetry, because
a function ⇡ might not preserve the order of the elements, so the set is not
equivariant under the equality symmetry. The language of all words that
start with the specific letter a is not a G-language, because a function ⇡

might change the first letter, so the set of these words is not equivariant.

8

3.1 G-automata

We can now extend the standard notion of automata to the theory of G-sets.
The notion of finiteness will be replaced by the notion of orbit finiteness and
the components of the automata, like the initial and accepting states and
the transition function, are required to be equivariant.

Definition 19. A G-automata consists of the following elements.

• An input alphabet A.

• A G-set of states Q.

• Equivariant subsets I and F of Q, the initial and accepting states.

• An equivariant transition relation �.

It is called orbit finite if Q is orbit finite.

The single-step transition relation � can be extended to a multi-step
transition relation �

⇤ ✓ Q⇥A
⇤ ⇥Q in the following way:

• (q,�, q) 2 �
⇤ for every q 2 Q.

• (q1, wa, q2) 2 �
⇤ if there exists a state q3 2 Q with (q1, w, q3) 2 �

⇤ and
(q3, a, q2) 2 �.

A word w is accepted by such an automaton if (qI , w, qF) 2 �
⇤ for some

starting state qI 2 I and accepting state qF 2 F . Because I, F and � are
equivariant so is the set of words accepted by the G-automaton. Because of
this, the set of words accepted by a G-automaton is a G-language.
Just as in the classical case there are deterministic automata and non-
deterministic automata.

Definition 20. A G-automaton is called deterministic if there is only one
initial state qI and the transition relation is functional. That means

� : Q⇥A ! Q

is a well-defined function. The automaton is called reachable if for every
state q 2 Q there is a word w 2 A

⇤, such that � ⇤ (qI , w) = q.

Example 21. The language L = {d1, . . . , dn | n � 0di = dj8i, j} is accepted
by the following deterministic G-automaton.

• A is a data symmetry D in the equality symmetry.

• Q = {�,?}
S
D.

• I = {�}, F = D [{�}.

9

• � is defined by the following function:

�(�, a) = a

�(a, a) = a

�(a, b) = ? if a 6= b

�(?, l) = ?.

This automaton has three orbits, �,? and D. The orbits � and ? are sin-
gleton orbits with � · ⇡ = � and ? · ⇡ = ? for all ⇡. D is an orbit of infinite
size. This � is equivariant, so this is a reachable deterministic orbit finite
G-automaton.

The following picture represents this automaton.

�start a ?
a

a

b

l

The a-state in the picture is not just one state, but represents the whole
orbit Q. The letter b in the transition implies it is di↵erent from the a in
the state. The idea is that which state in the orbit the automata goes to is
based on the letter it reads. Here we see how this is a good structure for
automata over infinite alphabets, because they can still be represented in a
finite picture.

In the future we will call deterministic orbit finite G-automaton G-DFA’s
and non-deterministic orbit finite G-automaton will be called G-NFA’s.

10

Chapter 4

Nominal G-sets and
automata

The theory and examples in this chapter are taken from the paper Automata
theory in nominal sets by Miko laj Bojańczyk, Bartek Klin and S lawomir
Lasota [2].

A problem with orbit finiteness is that in general the Cartesian product
does not preserve it.

Example 22. In the equality symmetry we have the set X ✓ P(N), the set
of all sets that are neither finite or cofinite. This set has only one orbit,
and thus is orbit finite. To see this we note that all elements have the same
cardinality, so there is a bijection between them. The product X

2 is not
orbit finite however. For any n 2 N we can take an element (Cn, Dn) 2 X

2,
where there are exactly n elements in Cn and Dn, which are equal. All these
elements (Cn, Dn) are in a di↵erent orbit, so X

2 is not orbit finite. If we
apply a function ⇡ to such a set, the number of corresponding elements will
still be the same.

Since the Cartesian product is one of the most simple constructions on
sets and the equality symmetry is one of the most important examples, this
might be problematic and it is good to look at another, better structure on
G-sets. We will introduce the notion of nominal G-sets. This notion focuses
on data symmetries (D, G) and uses the action of G on D as well as the
action of G on the G-set X. Note that these can actually be the same, if
you take a data symmetry as a G-set itself, but in general they are di↵erent.

From now on we will only use G-sets derived from data symmetries
(D, G).

Definition 23. A set C ✓ D supports an element x of a G-set X if for
every ⇡ 2 G that works as the identity on C, x · ⇡ = x holds. A G-set X is
called nominal if every x 2 X has a finite support.

11

When using nominal sets, we usually leave the set of data values D
implicit and just talk about nominal G-sets. Assume X and Y are nominal.
If C supports an element x 2 X and D supports an element, then C [D

support (x, y) 2 X ⇥ Y , C supports (x, 0) 2 X + Y and D supports (y, 1).
So, then both X ⇥ Y and X + Y are nominal sets as well.

Example 24. If we take a data symmetry D as a G-set itself then every
element x 2 D is support by {x}. So D is nominal. The same way any
element (d1, d2, . . . , dn) 2 Dn is supported by {d1, d2, . . . , dn}, so Dn is a
nominal G-set as well. This is also the case for D⇤, but not for P(D).

Example 25. Take P(N) derived from (N,Sym(N)) in the equality symme-
try. The sets {1, 2} and N \ {1, 2} are supported by {1, 2}. If a set is finite,
it is supported by that same set and if a set is cofinite it is supported by
its complement. If it is neither finite nor cofinite, it does not have a finite
support, so we see that in the powerset of N the elements with finite support
are the finite and cofinite sets.

Example 26. Now look at P(Q) derived from the total order symmetry.
If a function ⇡ acts as the identity on a and b, with a < b then for any c

between a and b ⇡(a) < ⇡(c) < ⇡(b), so a < ⇡(c) < b. This means that
[a, b] · ⇡ = [a, b], so {a, b} supports [a, b]. This also holds for open or half-
open intervals. A finite boolean combination of these intervals also has a
finite support, but any other set does not, so the sets with finite support are
exactly the sets which are a finite boolean combination of intervals.

Example 27. Take an arbitrary G-set derived from the integer symmetry.
If a function ⇡ works as the identity on an element x 2 Z, then ⇡(x) =
x+ z = x for some z, so z = 0 and ⇡ is the identity. This means that every
singleton set supports every element of the G-set, so it is nominal.

Now that we have introduced nominal sets, we show another useful prop-
erty of equivariant functions, namely that they preserve supports.

Lemma 28. If f is an equivariant function and C ✓ D supports x 2 X,
then C supports f(x) as well.

Proof. Assume ⇡ acts as the identity on C. Then we have that x · ⇡ = x,
because C support X. Using this fact and the equivariance of f we get
f(x) · ⇡ = f(x · ⇡) = f(x), so C supports f(X).

This means that the image of a nominal set under an equivariant function
is also nominal.

4.1 Nominal G-automata

We can now use the nominal sets to extend the notion of G-automata to the
nominal case.

12

Definition 29. We call a G-automaton nominal if both the alphabet A and
the set of states Q are nominal.

We know already that if A is nominal, then the set of words A
⇤ is so

as well, because the word is supported by the union of all letters. Since a
G-language is a subset of all the words, it is nominal as well.

4.2 Myhill-Nerode Theorem

The Myhill-Nerode theorem is a theorem in the classical theory that we
can extend to the nominal case to prove whether there are deterministic
automata which accept certain languages. We will first introduce some
definitions and lemma’s, which are used to prove the theorem and then we
will introduce it.

Definition 30. The Myhill-Nerode equivalence class can be defined for any
alphabet A, so nominal ones as well. Consider two words w,w

0 2 A
⇤, they

are equivalent over a G-language L if

wv 2 L () w
0
v 2 L for all v 2 A

⇤.

This equivalence is denoted by w ⌘L w
0. The equivalence class of a word is

denoted by [w]⌘L.

Lemma 31. If L is equivariant, then ⌘L is equivariant as well.

Proof. We have to prove that

w ⌘L w
0 implies w · ⇡ ⌘L w

0 · ⇡ for any ⇡.

This means we have to prove that for any v 2 A
⇤

(w · ⇡)v 2 L () (w0 · ⇡)v 2 L.

Applying ⇡
�1 to both sides gives

((w · ⇡)v) 2 L · ⇡�1 () ((w0 · ⇡)v) · ⇡�1 2 L · ⇡�1.

Using the equivalence of L we get

((w · ⇡)v) 2 L () ((w0 · ⇡)v) · ⇡�1 2 L.

Using Lemma 16 we get that

w(v · ⇡�1) 2 L () w
0(v · ⇡�1).

By using the equivalence of w and w
0 the lemma is now proven.

Lemma 32. Let X be a nominal G-set and R ✓ X ⇥X is an equivariant
equivalence relation. Then X/R is a nominal G-set as well under the action

13

[x]R · ⇡ = [x · ⇡]R.

We also have that the abstraction mapping

f : X ! X/R f(x) = [x]R

is equivariant.

Proof. To show X/R is a G-set we show

[x]R · e = [x · e]R = [x]R

and

[x]R · (⇡�) = [x · (⇡�)]R
= [(x · ⇡) · �]R
= [x · ⇡] · �
= ([x] · ⇡) · �.

SoX/R is indeed aG-set. By definition the mapping x 7! [x]R is equivariant,
and because X is nominal as well we can derive, using Lemma 28, that X/R

is nominal as well.
To show f is equivariant, we show

f(x) · ⇡ = [x]R · ⇡ = [x · ⇡]R = f(x · ⇡)

We have that w ⌘L w
0 =) wa ⌘L w

0
a for any a 2 A. Using this we

can define the following function on equivalence classes

�L : A⇤
/ ⌘L ⇥A ! A

⇤
/ ⌘L

�L([w]⌘L , a) = [wa]⌘L .

Assume A is a G-set and L is a G-language, then ⌘L is an equivariant
relation on A

⇤ and it is called the syntactic congruence of L.

Definition 33. Assume A is an orbit finite G-set and L ✓ A
⇤ is a G-

language. The syntactic automaton of L is defined as follows:

• The input alphabet is A.

• The set of states are the Myhill-Nerode equivalence classes of A⇤ under
the L, ⌘L.

• The initial state is the equivalence of the empty word [�]⌘L and the
accepting states are the equivalence classes of the words in L.

• The transition function is �L as defined above.

14

Lemma 34. The syntactic automaton of a G-language L is a reachable
deterministic G-automaton.

Proof. Since L is equivariant, ⌘L is so as well by Lemma 31. We can now
apply Lemma 32 to get the following action of G on the equivalence classes
⌘L.

[w]⌘L · ⇡ = [w · ⇡]⌘L .

So we see that the set of states is a G-set. We see that

[�]⌘L · ⇡ = [� · ⇡]⌘L = [�]⌘L ,

so there is only one initial state. We also see that

[w]⌘L 2 F () w 2 L () w · ⇡ 2 L () [w · ⇡]⌘L () [w]⌘L · ⇡ 2 F .

So the set of accepting states is equivariant. Lastly we see that

�L([w]⌘L , a) · ⇡ = [wa]⌘L · ⇡ = [(w · ⇡)(a · ⇡)]⌘L = �L([w]⌘L · ⇡, a · ⇡),

which means that �L is equivariant, giving us all needed properties of a
reachable deterministic G-automaton.

Lemma 35. Consider a reachable deterministic G-automaton in a data
symmetry (D, G) over a nominal alphabet A. The set of states G of that
automaton is nominal.

Proof. Because the automaton is reachable, the function that maps w 7!
� ⇤ (qI , w) is equivariant from A

⇤ to Q. Since A
⇤ is nominal we can see,

following from Lemma 28, that Q is so as well.

We will now define homomorphisms of automata. We use this to define
equivalence between nominal G-automata.

Definition 36. Consider two deterministic G-automata

H = (Q,A, qI , F, �) H
0 = (Q0

, A, q
0
I , F

0
, �

0).

An equivariant function f : Q ! Q
0 is called an automaton homomorphism

if f(qI) = q
0
I , it maps F to F

0:

q 2 F i↵ f(q) 2 F
0 for all q 2 Q

and the following holds

f(�(q, a)) = �
0(f(q), a) for every q 2 Q and a 2 A.

Assume f is an automata homomorphism between H and H
0. If a

word w is accepted by H, that means � ⇤ (qI , w) = qF for some qF 2 F ,
�
0⇤(f(qI), w) = f(�0⇤(qI , w)) = f(qF) 2 F

0. This means that H and H
0

accept the same language. If there is a surjective homomorphism from H

to H
0, H 0 is called the homomorphic image of H.

15

Lemma 37. Consider a G-language L, the syntactic automaton of L is
homomorphic image of any reachable deterministic G-automaton that rec-
ognizes L.

Proof. ConsiderH = (Q,A, qI , F, �), a reachable deterministicG-automaton
that recognizes L. Consider the mapping

�
⇤(qI , w) 7! [w]⌘L , w 2 A

⇤.

We will show that this mapping f is an automaton homomorphism. It
is total , because the automaton is reachable. It is well-defined, because
�
⇤(qI , w) = �

⇤(qI , v)) w ⌘L v. Because L is equivariant we can use
Lemma 31 to see that ⌘L is equivariant and by using Lemma 32 we see
that f itself is equivariant. We see that qI = � ⇤ (qI ,�) = [�]⌘L , so the
initial state qI is mapped to the initial state [�]⌘L . We see that w 2 L

i↵ �
⇤(qI , w) is accepting and [w]⌘L is accepting, so the accepting states are

mapped to accepting states. Lastly we have to show f commutes with �L of
the syntactic automaton. To show this we have:

f(�L(q, a)) = [wa]⌘L , where �
⇤
L([�]⌘L , w) = q

and

�L(f(q), a) = �L(w, a) = [wa]⌘L , where �
⇤
L([�]⌘L , w) = q.

We see that these are equal, and thus f commutes with �L, so f is a homo-
morphism and the syntactic automaton is a homomorphic image of H.

We can now finally state and prove the Myhill-Nerode theorem.

Theorem 38. (Myhill-Nerode theorem for G-sets). Let A be an orbit finite
nominal G-set, and let L ✓ A

⇤ be a G-language. Then the following two
conditions are equivalent:

1. the set of equivalence classes of Myhill-Nerode equivalence ⌘L is orbit
finite;

2. L is recognized by a nominal G-DFA.

Proof. The implication 1) 2 follows by combining Lemma 34 and Lemma
35. We see this, because L is recognized by its syntactic automaton and
according to Lemma 34 it is deterministic and according to 35 it is nominal.
For the implication 2) 1 we have to see that if L is recognized by a G-
automaton we can make it reachable by removing all unreachable states.
Using this we can apply Lemma 37 to prove the implication.

16

Chapter 5

Determinism

In the theory of automata over finite alphabets we have the powerset con-
struction which transforms a non-determinstic automaton to a deterministic
one. This also proves that in that case deterministic and non-determinstic
automata accept the same languages. But we already saw that the powerset
of an orbit finite set is not necessarily orbit finite. This means that applying
the powerset construction to nominal G-NFA’s gives a nominal deterministic
automaton, but the state space is not necessarily orbit finite. This is only
an intuitive idea to show that the powerset construction does not work, but
there might be another method which does work.

In fact, it turns out that determinization fails and nominal G-NFA’s
are more powerful than nominal G-DFA’s. To prove that nominal G-DFA’s
and nominal G-NFA’s do not accept the same languages we will look at the
language L = {wd | w 2 A

⇤
, d 2 A, d /2 w}. First we will give a nominal

G-NFA which accepts this language. Define Q = A [{>,?,�}, I = {�},
and F = {>} with the transition function � given by

�(�, a) = >

�(�, b) = a, a 6= b

�(a, a) = >

�(a, b) = a

�(>, a) = ?

�(?, a) = ?

17

�start a ?

>

a

b

b

a

a

a

This machine first guesses the letter d and then checks if it is only seen
as the last letter. It is clearly non-deterministic, the transition function is
equivariant and Q has 4 orbits {>}, {?}, {�}, {a | a 2 A}. So this automa-
ton is orbit finite as well, and the language is accepted by a nominal G-NFA.
To show it is not accepted by a nominal G-DFA we will use Theorem 38,
the Myhill-Nerode Theorem for nominal G-sets. By proving the following
lemma we can show L, as stated before, is not recognized by a nominal G-
DFA.

Lemma 39. For every X ✓ P(A) there is a distinct equivalence class of
⌘L, with L as above.

Proof. For every X take a word wX with all the elements of X contained
exactly one time in the word and no other letters. The claim is that all these
words are in di↵erent equivalence classes. Take two sets X,Y ✓ P(A), if
X 6= Y , then w.l.o.g there is an element a 2 X, a /2 Y . Then wXa /2 L, but
wY a 2 L. So wX 6⌘ wY .

Using this lemma we see that the language L has at least |P(A)| equiv-
alence classes. So we see that if P(A) is not orbit finite, then the set of
equivalence classes is not orbit finite either. By using the Myhill-Nerode
theorem we can now see that L is not recognized by a nominal G-DFA.
Normally if we have a non-deterministic automaton for a language over a
finite alphabet, and we want to check whether a word is in this language we
can just calculate all the paths and check whether at least one of them ends
in a final state. In a standard non-deterministic finite automaton the word
is finite and since the amount of states is also finite so are the amount of
transitions, there are also only a finite amount of paths. But when looking
at nominal G-NFA’s the amount of states can be infinite, so the number of
transitions can be as well.

Definition 40. We will call a nominal G-NFA infinite non-deterministic
if there are a state q and a letter a such that �(q, a), the set of all possible
states we can get to, from q, by reading an a, is infinite. Else we will call
the nominal G-NFA finite non-deterministic.

18

Example 41. The nominal G-NFA for the language L = {wd | w 2 A
⇤
, d /2

w} as seen before is infinite non-deterministic, because �(�, a) = {b 2 A, a 6=
b} [>, so if A is infinite, so is �(�, a) for every letter a.

Fact 42. For any nominal G-NFA �(q, a) has a finite support.

Proof. The function � : Q ⇥ A ! P(Q) is equivariant and Q and A are
nominal so Q⇥A is nominal as well. Now we apply Lemma 28, and we see
that since (q, a) has a finite support, �(q, a) does so as well.

Example 43. Take the language L = {w | 9a, which is in w at least 2 times}
with the following nominal G-NFA: Q = A [{�,>}, I = {�}, F = {>} and
the transition function given by:

�(�, l) = �

�(�, a) = a

�(a, l) = a

�(a, a) = >

�(>, l) = >

We can see that this nominal G-NFA is finite non-deterministic.

�start a >

l

a

l

a

l

Remark 44. The language in Example 43 is not accepted by a nominal
G-DFA. This can be seen by using Theorem 38

It is unclear whether these two sorts of non-determinism are actually
di↵erent. If they actually are equivalent it would be interesting to find a
method to transform one into the other.

19

Chapter 6

Pumping Lemma

In the classical theory of automata we have the pumping lemma to show
that some languages are not regular. This lemma is based on the finiteness
of the automata. In the nominal case the automata itself is not finite, but
the amount of orbits is finite. With this we can introduce a pumping lemma
for the nominal case.

Lemma 45. (Pumping Lemma) If a language L is accepted by a nominal
G-NFA, then there exists a k, such that for every w 2 L, with |w| � k, w can
be written as w = xyz, with |xy| k, |y| � 1 such that 9⇡ 2 G, 8n � 0 the
word xy

n
⇡(z · ⇡n�1) 2 L, where y

0
⇡ = � and y

i
⇡ = y(y · ⇡)(y · ⇡2) · · · (y · ⇡i�1),

for i > 0

Proof. If there is a nominal G-NFA for L it is orbit finite, because of this we
can take k as the number of orbits of the nominal G-NFA. If a word w of at
least length k is in L, there is a path in the nominal G-NFA from an initial
state to an accepting state. In this path there are at least k transitions,
because the length of the word is at least k. Because of this, the path
consists of at least k + 1 states. Because the nominal G-NFA has k orbits
there are two states in the first k + 1 states of this path, which are in the
same orbit. We call these states s and s·⇡. Now we divide w into three parts
w = xyz, and we choose x and y such that s 2 �

⇤(�, x) and s ·⇡ 2 �
⇤(�, xy),

where � is the initial state of the path. This means s · ⇡ 2 �
⇤(s, y). Because

�
⇤ is equivariant we have that

�
⇤(s · ⇡n

, y · ⇡n) = �
⇤((s, y) · ⇡n)

= �
⇤(s, y) · ⇡n

Now combining this with the fact that s · ⇡ 2 �
⇤(s, y) we get s · ⇡ · ⇡n =

s · ⇡n+1 2 �
⇤(s · ⇡n

, y · ⇡n)8n � 0. We also have

�
⇤(s · ⇡n+1

, z · ⇡n) = �
⇤((s · ⇡, z) · ⇡n)

= �
⇤(s · ⇡, z) · ⇡n

20

and

�
⇤(s, z · ⇡�1 = �

⇤(s · ⇡ · ⇡�1
, z · ⇡�1)

= �
⇤((s · ⇡, z) · ⇡�1)

= �
⇤(s · ⇡, z) · ⇡�1

.

Since there is a final state f 2 �
⇤(s · ⇡, z) and the set of final states is

equivariant, there is also a final state f
0 2 �

⇤(s · ⇡n
, z · ⇡n�1)8n � 0. So we

now see that for all n �
⇤(�, xyn⇡(z · ⇡n+1)) = f

0 for a final state f
0. We now

have that for all n � 0 xy
n
⇡ 2 L

We can use this lemma to prove that some languages are not accepted
by a nominal G-NFA.

Example 46. L = {anbn | a 6= b, n � 0} is not accepted by a nominal
G-NFA.

Proof. If there would be such a G-NFA, then there would be a k for which
the pumping lemma holds. Now look at the word w = a

k+1
b
k+1 for an

arbitrary a and b. If we write this w as xyz, regarding the rules in the
pumping lemma, we have that xy = a

n for some n < k + 1 and y = a
m for

some m � 1 and z = a
l
b
k+1. Now look at xy0⇡(z ·⇡�1) = a

n�m(albk+1) ·⇡�1.
The last k + 1 letters of this word will be b · ⇡�1, but the word is shorter
than 2k+2letters, so it is not possible that the word is of the form a

n
b
n, so

it is not in L, so there is no G-NFA for this language.

Example 47. In the total order symmetry the language L = {a1, a2, . . . , an |
ai < ai+18i}, the collection of increasing sequences, is accepted by the fol-
lowing nominal G-DFA:

• Q = Q [{�,?}.

• I = �.

• F = Q [�.

• � is defined as follows:

�(�, a) = a

�(a, b) = b if a < b

�(a, b) = ? if a � b

�(?, a) = ?

21

�start a

b ?

a

b d a
b > a

c b

a

The a- and b-state in the picture are just two representatives of all the states
in the orbit Q. We see that � is equivariant and the automata has 3 orbits, so
it is orbit finite, we can see it is deterministic, so this is a nominal G-DFA.
Now we can apply Lemma 45, the pumping lemma, to pump any word with
su�cient length. As seen in the proof of the lemma a good choice of this
length is the amount of orbits, so in this case 3. Take a word w of at least
length 3. For example w = 1, 2, 5, 9, 14 2 L. Now we can divide w = xyz,
with x = 1, y = 2, 5 and z = 9, 14. �(�, 1) = 2, �(�, xy) = 5. Now take ⇡

with x 7! x + 4 and n = 3. This is a good choice for ⇡ because 1 · ⇡ = 5.
Now xy

3
⇡(z ·⇡2) = 1, 2, 5, 2+4, 5+4, 2+4+4, 5+4+4, 9+4+4, 14+4+4 =

1, 2, 5, 6, 9, 10, 13, 17, 22, and we see this word is also in L.

Lemma 48. The language L = {a1, a2 · · · , an | ai 6= aj for i 6= j} in the
equality symmetry can be pumped as in the pumping Lemma.

Proof. Assume we have a word w = a1, a2 · · · , an with at least length k

where ai 6= aj for i 6= j. Decompose w = xyz, we can now find a ⇡ with
the property that for any letter ai in y or z ai · ⇡n not in w for any n and
since ⇡ is a bijection and all ai are di↵erent so will all the ai · ⇡n be. Now
xy

n
⇡z ·⇡n�1 is a word with all di↵erent letters, so it is in L and the language

can indeed be pummped.

This is an example of a language that can be pumped, but is not accepted
by a nominal G-NFA. From this we can deduce some interesting questions:
Is there a pumping lemma which would exclude L in the above example? Is
there a pumping lemma that would hold for nominal G-DFA’s, but excludes
standard examples of nominal G-NFA’s that can not be determinized?

22

Chapter 7

Related Work

The notion of nominal G-automata has been the subject of some papers
before, for example [2] on which a big part of the theory in this thesis is
based. This paper has also proven the Myhill-Nerode theorem and shown
that determinization fails. The notion of finite and infinite non-determinism
is a new one and this might be an interesting topic for further research. The
pumping lemma has been investigated before. Some of the authors of [2] have
given a lecture on the subject and asked the following question “Show the
following pumping lemma. Let A be non-deterministic register automaton.
One can compute a constant M such that if the automaton accepts a word of
length at least M , then it also accepts words of arbitrarily large lengths”[1].
This is a weaker version of the pumping lemma and follows immediately
from Lemma 45. In the paper Regular and context-free nominal traces by
Pierpaolo Degano, Gian-Luigi Ferrari and Gianluca Mezzetti [3] the authors
talk about a de-pumping lemma instead of a pumping lemma. The idea of
this lemma is similar to the one in this thesis, but it is not used a stand-alone
lemma for finding properties of nominal G-NFA’s, but rather as a supportive
lemma for another theorem. The following blog post [4] by Bartek Klin, one
of the writers of [2], considers a pumping lemma exactly as the one given in
this thesis. It also asks some of the same questions about this subject as the
thesis. This post was only discovered after this thesis was almost finished.

23

Chapter 8

Conclusions

In this thesis we have shown that determinization fails for nominal G-NFA’s
and introduced possibly di↵erent forms of non-determinism, infinite and
finite non-determinism. For further research the di↵erence in the finite and
infinite non-determinism can be an interesting subject. The question is
whether they are actually di↵erent. It is interesting whether a proof can
be found for them being di↵erent or equal. In the case they are equal it
is also interesting to find a construction which transforms an infinite non-
deterministic automaton into a finite non-deterministic one.

We also introduced a pumping lemma for nominal G-NFA’s. It might
be interesting to look at improving the lemma. The lemma mentions an
arbitrary ⇡ and it might be possible to put more restrictions on this arbitrary
⇡. Maybe this way a lemma can be found that only accepts languages for
which there are a nominal G-NFA or a version that works for deterministic
automata but not for non-deterministic ones.

24

Bibliography

[1] Miko laj Bojańczyk. Exercises on nominal sets: https://www.mimuw.

edu.pl/~bojan/zajecia/phdopen/phdopen.pdf.

[2] Miko laj Bojańczyk, Bartek Klin, and Slawomir Lasota. Automata theory
in nominal sets. Logical Methods in Computer Science, 10(3), 2014.

[3] Pierpaolo Degano, Gian Luigi Ferrari, and Gianluca Mezzetti. Regular
and context-free nominal traces. Acta Inf., 54(4):399–433, 2017.

[4] Bartek Klin. A pumping lemma for automata with atoms: http://

atoms.mimuw.edu.pl/?p=43.

25

