
Bachelor thesis
Computer Science

Radboud University

Evaluating the performance of open
source static analysis tools

Author:
Jonathan Moerman
s4436555

First supervisor/assessor:
dr. Sjaak Smetsers

s.smetsers@science.ru.nl

Second assessor:
Marc Schoolderman

m.schoolderman@science.ru.nl

June 24, 2018

Abstract

In this article, we will look at the recall, precision, and usability of five open source static
analysis tools (Clang, Infer, Cppcheck, Splint and, Frama-C). Prior articles comparing
the performance of static analysis tools exist, but do not include Clang and Infer and few
articles have been recently published on this topic. Meanwhile, Cppcheck and Frama-C
have remained in development since they were last tested. These static analysis tools
are benchmarked using the test suite from Chatzieleftheriou and Katsaros [2011] as
well as a new test suite introduced in this article. This new test suite addresses one
of the issues found in the other test suite while also complementing it with additional
scenarios. These test suites complement each other and systematically cover several
kinds of defects and the situations in which they occur. Clang and Infer were found to
perform favorably when compared to other well-known open source static analysis tools
(Frama-C, Cppcheck, Splint).

Contents

1 Introduction 4

1.1 Limitations of static analysis . 4

1.2 The scope of this article . 4

1.2.1 Benchmarking performance . 5

1.2.2 User experience . 5

2 Definitions 6

2.1 Test suites . 6

2.2 Abstract domains . 6

2.3 Path-sensitivity and alias analysis . 6

2.4 Entry points . 7

2.5 Performance metrics . 7

3 The static analysis tools 9

4 Method 11

4.1 The different kind of detections . 11

4.2 Description of the test suites . 13

4.2.1 Test suite from Test-driving static analysis tools in search of C
code vulnerabilities . 13

4.2.2 New test suite . 16

4.3 How the test programs were analyzed . 18

4.3.1 Suite from C&K-2011 . 18

4.3.2 JM-2018TS . 19

1

5 Results 21

5.1 Defects detectable by the tools . 21

5.2 General trends and differences between test suite results 21

5.3 Performance per tool . 25

5.4 Timed real world example . 31

5.5 Usability . 32

5.5.1 Splint . 32

5.5.2 Cppcheck . 33

5.5.3 Infer . 34

5.5.4 Clang . 34

5.5.5 Frama-C . 36

6 Discussion 38

6.1 Results . 38

6.2 Usability . 39

6.3 Related work . 39

7 Conclusion 41

8 Bibliography 42

A Results in detail 44

A.1 Splint . 44

A.2 Cppcheck . 44

A.3 Frama-C . 45

A.4 Clang . 48

A.5 Infer . 49

B Test suite information 51

B.1 Types of tests in JM2018TS . 51

B.1.1 Simple sequential tests . 51

B.1.2 Loops . 53

B.1.2.1 Simple Loops . 53

2

B.1.2.2 Loops with arrays . 54

B.1.3 Recursive loops . 54

B.1.4 Miscellaneous . 55

C Performance numbers per defect for JM2018TS 57

C.1 Tool performance per defect for JM2018TS (with entry point) 57

C.2 Tool performance per defect for JM2018TS, no known entry point 61

3

Chapter 1

Introduction

In writing non-trivial software it is unavoidable that mistakes are made. Programmers
catch some of these mistakes while working on the code and some of the remaining mis-
takes are caught when the software is compiled or tested. Unfortunately, some defects
will slip through, this is especially likely if a fault will only happen under specific circum-
stances or if its effects are subtle. To help find these defects static analysis tools capable
of finding software defects have been made. A static analysis tool analyzes source code
without executing the code.

1.1 Limitations of static analysis

It is not feasible to build a static analysis tool capable of finding all possible defects as
not all properties of a program are decidable, and those that are are often NP-complete.
For example, whether a piece of software will halt is in the general case undecidable.
Alias analysis, which is often required to analyze code written in imperative languages, is
another example of a problem that belongs to the class of undecidable problems [Landi,
1992]. As sub-problems of static analysis belong to the class of undecidable problems
general static analysis is undecidable as well. As a result of this, a static analysis cannot
be used to prove that an arbitrary piece of software does not contain defects. The
duration of the analysis is an important factor for a static analysis tool as a long run
time makes it infeasible to run the tool locally and slow feedback itself may be undesired.
This means that a tradeoff between execution time and performance in terms of recall
and precision has to be made.

1.2 The scope of this article

In this article, we will look at the current state of open source static analysis tools in
terms of analysis performance and user experience. For a static analysis tool to perform

4

well its analysis should be precise, the percentage of false positives in the results should
be as low as possible while the recall (the percentage of issues found) should be as high
as possible. What values for the precision and recall of a tool are acceptable as well as
which of the two is more important depends on the context in which a tool is used. For
example, in many cases, a tool with a precision of 10% and a recall of 90% would not be
acceptable. Such values may, however, be acceptable if this tool is used to help review
(mission-critical) code before deployment. In this article, we will look at static analysis
tools in the context of frequent/continuous use during development of software. In this
case low precision is generally not acceptable as having to filter out false positives on a
frequent basis would lower productivity.

1.2.1 Benchmarking performance

We will look at what kind of defects each tool can detect as well as look at what kind
of code causes a decrease in recall and precision. We will also take a quick look at the
time each of the tools takes to analyze a complex piece of software.

1.2.2 User experience

We will look at the following aspects of the user experience of the tested static analysis
tools: description of the detected issues, ease of use and integration in the workflow of
a programmer and, output filtering. For the description of the detected issues, we will
look at how well the tools describe the defect and the circumstances under which this
fault occurs. For ease of use, we will look at what information the user must supply to
the analysis tool in order to be able to analyze a code base. For output filtering, we
will take a look at whether the output can be sorted by severity and defects and what
options are available for filtering out certain kinds of defects.

5

Chapter 2

Definitions

2.1 Test suites

A test suite is a collection of test cases made with the goal to test whether a piece of
software has a certain property. In the case of this article, the test cases test whether
a static analysis tool can detect real defects in a piece of code while not warning about
defects in similar, but correct code.

2.2 Abstract domains

Static analysis tools generally use abstract states to represent the possible values of a
piece of memory. For example, the possible values for an integer variable x may be
represented as x > 10. The expressivity of the abstract domain to which these abstract
states belong influences the quality of the analysis. Take for example the following
scenario: a static analysis tool encounters the statement x = 2*y; while the only prior
knowledge the tool had about y was that is an unsigned integer. If the tool is only
able to represent memory states as absolute integer ranges it will be unable to learn any
information from this statement. If at a later part the statement if(x >= y){...} else

↪→ {...} is encountered the tool will be unable to decide which branch would be taken,
which can lead to lower precision or lower recall. On the other hand, if the tool was able
to represent the state of a variable relative to another variable it would learn enough as
to know which branch would be taken.

2.3 Path-sensitivity and alias analysis

For a static analysis tool to perform well its path-sensitive analysis as well as its alias
analysis should be sufficiently powerful. In deciding whether executing a statement can

6

cause a fault it is important to take the possible memory states1 of the program at that
point into account. What the state of the memory is at a given point in the program’s
execution may depend on how this point has been reached, which means that a static
analysis will need to take into account the paths in which a statement can be reached.
It is also possible that no paths leading to a statement exist, which means that this
statement cannot cause a fault.

Furthermore, in imperative languages like C, it is not uncommon that two or more
pointers to point to the same memory, meaning that good alias analysis (also called
pointer analysis) is often vital for achieving good recall and precision.

2.4 Entry points

An entry point is the part of the code in which execution of a program starts, in C this
is generally int main(...). The availability of an entry point visible to the analysis tool
provides information on the context in which a function can be called. A static analysis
tool can, in that case, check from where this function can be called and limit the possible
states of parameters and global variables to those feasible for these function calls. If no
entry point is available the range of possible states that the memory accessible to a
function can have is limited solely by the assumptions a tool makes.

2.5 Performance metrics

Using the number of true positives and false positives the performance of the tested tools
can be compared using 3 metrics: recall, precision, and F0.5 score.

• Recall, also known as sensitivity, is the number of detected true positives over the

total number of positives: Recall =
TP

P
. A Recall of 100% means the tool has

detected all true positives.

• Precision is the number of detected true positives over the total number of detected

errors: Precision =
TP

TP + FP
.

• F0.5 score: this measure is the F-measure (Fβ =
(β2 + 1) · Precision ·Recall
β2 · Precision+Recall

)

[Chinchor, 1992] for β = 0.5: F0.5 =
5 · Precision ·Recall
Precision+ 4 ·Recall

. The F-measure

provides a good way to take both recall and precision into account as it is strongly
affected by low values for either of these measures. As false positives have a large

1The state of variables and other dynamic memory.

7

effect on the choice of the user2 on whether or not to use a static analysis tool
[Bessey et al., 2010, Johnson et al., 2013], good precision has been assigned more
weight than recall. In this case, I chose a value of 0.5 for β, meaning that precision
has two times the weight compared to recall when evaluating the F0.5 score.

These measures were calculated over the tests containing the defects the tool can detect,
additionally a test suite-wide precision was calculated to give insight in the amount of
reported unexpected false positives.

2Within the context of use during development of general software.

8

Chapter 3

The static analysis tools

5 open source static analysis tools were chosen on the following grounds: The tool needs
to have no dependence source code annotations. The tool must be able to detect defects
that consist of incorrect or dangerous usage of functions, detecting the usage of dangerous
functions does not suffice.

Splint: Splint (Secure Programming Lint), formerly called LCLint, is a lightweight C code
analysis tool developed by the Inexpensive Program Analysis group at the Univer-
sity of Virginia. No new stable versions have been released since July of 2007. This
tool was included as it has been used in a variety of articles1 of similar content
to this article, which could ease comparing the results from this article to other
articles. The version tested is 3.1.2, the most recent stable release. Project page
(mirror): http://lclint.cs.virginia.edu/

Cppcheck: Cppcheck is a static analysis tool capable of analyzing C and C++ code with
simple control flow analysis. The version tested here is 1.81. Project page: http:
//cppcheck.sourceforge.net/

Frama-C: Frama-C is a software analysis tool co-developed at two French public institutions:
CEA LIST software security laboratory and INRIA Saclay - Ile-de-France research
center. It is designed to help understand what the effects and function of a given
piece of code are as well as verify that source code complies with a provided formal
specification. Frama-C analyzes code using plugins, most notably the Evolved
Value Analysis plugin and the Jessie and Wp deductive verification plug-ins can
be used. For this article the value analysis plugin was used as this does not require
annotations (though using it can help find additional issues). Frama-C is claimed
to be correct [Canet et al., 2009], meaning that this tool will never remain silent
for operations in the source code which can cause a runtime error. Version 15.0 of
Frama-C was used. Project site: https://frama-c.com

1Including Torri et al. [2010], Chatzieleftheriou and Katsaros [2011], Mantere et al. [2009], Zitser et al.
[2004]

9

http://lclint.cs.virginia.edu/
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
https://frama-c.com

Infer: Infer is a static analysis tool developed and deployed within Facebook using sep-
aration logic and bi-abduction to reason about memory mutations. It is capable
of analyzing C, C++, Objective-C and Java source code. Recent versions of Infer
are able to find flaws in source code using methods other than separation logic
analysis. Version 0.12.1 was used. Project site: http://fbinfer.com

Clang: The Clang static analyzer is a static analysis tool built on top of the Clang
compiler front-end and LLVM capable of analyzing C, C++, and Objective-C
code. Clang was not used directly, instead, Scan-Build was used, which is a small
front-end utility made by the Clang developers. Version 5.0 of Clang was used.
Project site: https://clang-analyzer.llvm.org/, scan-build utility: https:

//clang-analyzer.llvm.org/scan-build.html

To my knowledge, neither Infer or Clang has ever been compared to other static analysis
tools in an article similar to this.

10

http://fbinfer.com
https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/scan-build.html
https://clang-analyzer.llvm.org/scan-build.html

Chapter 4

Method

4.1 The different kind of detections

When analyzing the output of the static analysis tools detections of supposed defects
are categorized into two categories and recorded. The tests from test suites used to
benchmark the static analysis tools contain two very similar versions of the same code.
One of these versions contains a single defect while the other does not contain any
defects. We will call these versions Tdefect and Tcorrect respectively. Tdefect consists of
three parts Cpre, S and Cpost where Cpre is the code preceding statement S and Cpost
is the code following this statement. The code in Cpre and Cpost does not contain any
statements that can cause a fault, but Cpre and S combined does contain a defect. In
that case, S can or will cause a fault. Tcorrect is semantically identical to Tdefect with
Cpre replaced with a slightly modified Ccorrectpre such that Tcorrect does not contain any
defects. If a tool detects the defect in Tdefect then this detection is categorized as a true
positive (TP). The true positives are the subset of positives the tool was able to detect.
All other detections are categorized as false positives (FP) unless this detection can be
explained by prior detections in the same code1 in which case it is ignored.

In this article we distinguish two types of false positives: An expected false positive (eFP)
is a detection in statement S of Tcorrect of the same issue present in Tdefect, despite this
defect not existing in Tcorrect. All other false positives are categorized as unexpected
false positives (uFP) as the test case was not designed to test for these detected issues.

An example of true positive and false positive detections can be seen in listings 4.1 and
4.2. The code in listing 4.1 contains a single defect: dangerous func is called with
false as value for both a and b, which causes a use after free error at line 15 (this is
statement S). If a use after free error is detected for the same statement in listing 4.2
then this detection is considered to be an expected false positive as here this statement

1Example: Tool A detects that var is used at line x while it can be null, then subsequently detected
null pointer issues related to the use of var are ignored.

11

Listing 4.1: A possible Tdefect test case containing a use after free defect

1 void dangerous_func(int* ptr , bool a, bool b) {

2 int val = 0;

3 if(!ptr) return;

4
5 if(a) {

6 *ptr += 2;

7 } else {

8 val = *ptr; /* uFP: Use of null pointer detected: ptr*/

9 free(ptr);

10 }

11
12 if(b) {

13 val += 5;

14 } else {

15 val += *ptr; /* TP: use after free detected: ptr */

16 }

17
18 if(a) free(ptr);

19
20 printf("val = %i\n", val);

21 }

22
23 int main() {

24 /* Unsafe function call */

25 dangerous_func(calloc(1, sizeof(int)), false , false);

26
27 return 0;

28 }

Listing 4.2: A possible Tcorrect counterpart for listing 4.1

1 void dangerous_func(int* ptr , bool a, bool b) {

...

15 val += *ptr; /* eFP: use after free detected: ptr */

...

21 }

22
23 int main() {

24 /* Safe function call */

25 dangerous_func(calloc(1, sizeof(int)), true , false);

26
27 return 0;

28 }

12

can cause no issues as a is true. A detection of the use of a null pointer at line 8 is
considered to be an unexpected false positive as Tdefect (listing 4.1) does not contain
this issue.

Unexpected false positives can help highlight what kind of code is problematic for a
given static analysis tool. In case of this article, some kinds of code resulted in the same
false positive detections, regardless of the kind of defects present. One may not want
to assign the same weight to both expected as unexpected false positives as one kind of
defect could have a disproportionately large impact on the results.

4.2 Description of the test suites

4.2.1 Test suite from Test-driving static analysis tools in search of C
code vulnerabilities

To benchmark the static analysis tools two test suites were used. The first test suite
was introduced in Test-driving static analysis tools in search of C code vulnerabilities
by Chatzieleftheriou and Katsaros [2011]. This article will from this point onwards be
referred to as C&K-2011 and the test suite will be referred to as C&K-2011TS. This test
suite was used as it contains (synthetic) tests for a wide variety of defects in a variety
of situations. This test suite contains just under 800 tests with which a tool’s ability to
detected the defects described in table 4.1 can be measured. For each kind of defect,
the test suite contains a base case as well as 15 tests requiring path-sensitive analysis,
7 tests requiring context-sensitive2 (taking calling context into account) analysis and 2
tests requiring alias analysis. The test suite also contains several tests for variations on
defects. For these tests, the test suite only contains the most simple cases suitable only
for measuring if a tool is able to detect that defect.

The path-sensitive tests, of which an example can be seen in listing 4.3, require the static
analysis tools to exclude impossible paths from results while reporting about errors in
the possible paths. The context-sensitive tests, of which an example can be seen in
listing 4.4, require the tools to take the calling context into account when analyzing
function calls. The tests requiring alias analysis require the tools to keep track of what
the variables point to. The path-sensitive tests do not require the tool to take a calling
context into account and for context-sensitive tests, no paths need to be excluded from
analysis. Both the path-sensitive as context-sensitive tests may require alias analysis in
some capacity.

The way in which this test suite is used is slightly different from C&K-2011. In C&K-
2011 a single version of each program was used to test both if a tool will detect a true
defect (listing 4.3 line 11) as well as test if it will not yield a detection in a similar, bot
correct, situation (listing 4.3 line 9). Here two different versions of the program are used,

2Context sensitivity can be seen as a subset of path sensitivity as previously defined.

13

Table 4.1: Frequent code defects as described in table I of C&K-2011 with File Opera-
tions: Access without open folded into General: Uninitialized variables and arrays and
strings combined.

Categories Defects Description

General

Division by zero Divide a value by zero (CWE-369)

Null pointer
dereference

Dereference a pointer that is NULL (CWE-476)

Uninitialized variables Use a variable which has not been initialized (CWE-457)

Integers
Overflow An integer is incremented to a value that is too large to

store in its internal representation (CWE-190)

Sign errors A signed primitive is used as unsigned value (CWE-195)

Truncation errors A primitive is cast to a primitive of smaller size (CWE-

197)

Arrays
and
strings

Direct overflow Out-of-bounds access of an array (CWE-119)

Null termination
errors

A string is incorrectly terminated (CWE-170)

Off-by-one errors Use a min or max array index which is 1 more or less than

the correct value (CWE-193)

Truncation errors A string has been truncated and possible important infor-

mation is lost (CWE-222)

Unbounded copy Copy array without checking the size (CWE-120)

Format string vulnerabilities Invalid format-string in printf-like functions (CWE-134)

Memory

Double free Call free() twice in the same memory address (CWE-415)

Improper allocation Misuse of functions that allocate memory dynamically

Initialization errors Not initialize or incorrectly initialize a resource (CWE-

665)

Memory leak Not release allocated memory (CWE-401)

Failure check Not check for failure of functions which are used for dy-

namic allocation of memory

Access freed memory Access memory after it has been freed (CWE-416)

File

Operations

Access closed file Access a file which has previously been closed

Access in different

mode

Access a file in a different mode than the one it has been

specified when opening the file

Double close Close a file descriptor two times

Resource leak Not close a file descriptor (CWE-403)

Failure check Not checking for failure of functions which are used for

opening a file

Concurrency

errors

Deadlock
(no multithreading)

Incorrectly manage control flow during execution (CWE-

691)

Deadlock
(multithreading)

Insufficient locking and unlocking of a thread (CWE-667)

Time Of Check, Time

Of Use (TOCTOU)

errors

Check the state of a resource and try to use it at a later

moment based on this invalid info (CWE-367)

14

Listing 4.3: A simple path sensitive example from the test suite from C&K-2011

1 int main()

2 {

3 int *z = 0;

4 int k;

5 int x;

6
7 x = 10;

8 if(x > 20) {

9 k = z[2]; /* OK */

10 } else {

11 k = z[2]; /* DANGER */

12 }

13
14 return 1;

15 }

one identical to the program used in C&K-2011 and one version in which the defect is
corrected. This has two advantages: It makes it easier to see which detections are related
to the true positive. It could in some cases lead to more detections as some tools may
abort further analysis after detecting an issue that it considers critical. Analyzing this
additional version of the code can thus make analysis easier while potentially leading
to a more accurate insight into the precision of a tool. The path sensitivity tests that
make up the majority of the tests in the test suite from C&K-2011 measure if the tools
are able to detect which statements are executed and which never are. However, one can
argue that this isn’t an accurate way of measuring the precision of a tool. Some static
analysis tools will detect issues in statements that are unreachable, but could under
no circumstance be correct. An example can be seen in listing 4.3: the statement at
line 9 can never be correct as z never has a different value assigned to it than 0. This
statement will never be executed, yet it may still deserve some attention as it cannot
be correct code. A discussion can be held on the topic of whether detecting issues in
unreachable code is desirable, however, this is outside the scope of this article. Testing
the path-sensitive analysis in a way that is limited to excluding dead code does not give
a sufficiently accurate picture of how a tool will perform in real life scenarios.

A more realistic way to measure path-sensitivity would be to test the tools ability to
detect defects in code in which for every statement a path exists in which it can be
reached and executed without causing a fault in the function in which it is contained.
In this case, excluding dead code from further analysis is no longer enough as now a tool
needs to take the different paths in which a statement can be reached into account and
not just if such a path could exist.

15

Listing 4.4: A context sensitive example from the test suite from C&K-2011

1 int ar[5] = {0,0,0,0,0};

2 int *z = 0;

3 int k;

4
5 void assign(int *x, int *y)

6 {

7 *x = *y;

8 }

9
10 int main()

11 {

12 assign (&k,z); /* DANGER */

13
14 assign (&k,ar); /* OK */

15
16 return 1;

17 }

4.2.2 New test suite

To test tools in a more realistic way I created a new test suite containing 300 tests,
in which all statements can be reached without causing a fault3. Whether a piece of
code can trigger a fault is determined by the path that is taken to reach the end of the
code. An example of a function that can be found in this new test suite is the function
dangerous_func in listing 4.5, this function is analogous to the code in listing 4.3 with
the biggest difference being that every statement can be reached. One situation exists
in which a null pointer is dereferenced: the situation in which line 7 is not executed
and line 13 is executed (x ≥ y, x ≤ 10). If line 7 was executed and line 13 is executed
no defect is encountered. In the example in listing 4.5, it is not possible for all lines of
code to be executed during a single function call, in other tests containing loops this is
possible with a part of the paths where this is the case leading to a defect. Like the
suite from C&K-2011 this test suite can be used to test how capable an analysis tool is
in detecting defects in programs where an entry point is provided and the value of all
function arguments can be fully determined by analyzing the code available to the tool.
This new suite can also be used to test static analysis in situations where no entry point
is provided as would be the case when analyzing a library instead of an application. In
this case, the possible values of the arguments with which a function can be called with
are not known, the tools have to detect if an input exists for which an incorrect state is
reached in the function. In this case, each test case consists of a dangerous version of a
function and a version of this function that aborts if a dangerous input is supplied. For
these tests a number of assumptions are made:

• Parameters of value types like integers or chars can have all possible values.

3Not necessarily in a single function call

16

Listing 4.5: simple example from the new test suite

1 void dangerous_func(int x, int y) {

2 int arr [3] = {1, 2, 3};

3 int* ptr = 0;

4 int val;

5
6 if(x < y) {

7 ptr = arr;

8 }

9
10 if(x > 10) {

11 val = arr [2];

12 } else {

13 val = ptr [2]; /* DANGER , if x >= y & x <= 10 */

14 }

15
16 printf("x=%i: %i", x, val);

17 }

18
19 int main() {

20 #ifdef UNSAFE_INPUT

21 dangerous_func (10, 10);

22 #else

23 dangerous_func (9, 10);

24 dangerous_func (11, 10);

25 #endif

26 }

17

• Parameters that are pointers are not null unless the parameter is compared to
null.

• Parameters that are pointers pointing to a resource do not point to a freed or
closed resource.

This test suite will from this point onwards be referred to as JM-2018TS. Details on the
general structure of the tests contained in this suite can be found in appendix B.

4.3 How the test programs were analyzed

The basic method of benchmarking the tools was the same for both test suites. For
both suites, two versions of the same code are used per test case, as described earlier in
section 4.1. Tdefect is used to detect if the tools are able to detect the defect, in which
case a true positive is recorded. Tcorrect is used to determine if the tools report issues
which are in fact false positives.

Both suites contain two kinds of test cases for each kind of defect: a base case which
is used to determine if a tool is able to detect a certain kind of defect and a set of
test cases to benchmark the performance of finding this kind of defect under different
circumstances. If analysis of the base case yields a true positive and no expected false
positives4 in the base case then the defect is considered detectable by that tool.

JM-2018TS contains tests for most5 defects printed in bold in table 5.1. Every kind of
defect for which this test suite contains tests receives the same amount of testing, unlike
C&K-2011TS that included additional tests to check whether a tool is able to detect
certain variations on tests.

4.3.1 Suite from C&K-2011

We will now look in more detail at how the tests from both test suites were analyzed,
starting with C&K-2011TS. As each of the programs contained an entry point (int
main) programs were analyzed one at a time. Except for Splint6, all tools were bench-

4One of the tools issues warnings that could, at first sight, be classified as a true positive and a false
positive for the base case of the same defect. In this case the tool’s warnings were related to usage of
a programming construct instead of incorrect usage of said construct, for example: issuing a warning
when the value of a signed integer variable is assigned to an unsigned integer variable is not the same as
issuing a warning when a negative value is assigned to an unsigned integer variable.

5Missing are tests in the concurrency errors category and tests that contain issues related to missing
checks for operations that could fail.

6Splints output contained a large amount of noise, information that was of no use detect-
ing the defects present in the suite. To ease analysis Splint was called from the command
line in conjunction with the following arguments to filter out most of the warnings unre-
lated to the subject of the tests: -unreachable -exportlocal -predboolint -compdef -noret

-mayaliasunique -nestcomment -retvalint -globstate -nullret -dependenttrans -retvalother

-varuse -compdestroy +voidabstract.

18

marked from the command line using their default configuration. Analyzing part of the
tests in this suite did result in detections of unintended defects7. In most cases the tests
could be altered to fix this, however, this wasn’t the case in tests where a function would
return a pointer to memory that was freed within this function. Removing this property
of the test could not be done without changing the way in which the test works. As this
issue did interfere with the ability to detect the true defect for tools which detected this
issue the results were omitted for these tools8.

4.3.2 JM-2018TS

For the new suite, the configuration of the tools as well as the set of tools that was
benchmarked was changed. Frama-C and Clang performed far worse on tests contain-
ing loops than they did on tests containing loops in C&K-2011TS. Meanwhile the ratio
between true positives and expected false positives was reduced to just above 50% for
Infer. Splint was not tested using this benchmark as Splint’s analysis proved very weak
when analyzing the results from C&K-2011TS and initial testing showed similar perfor-
mance on JM-2018TS. Further contributing was that Splint’s analysis resulted in output
that is time-consuming to analyze and it failed to parse several system library headers
rendering it useless in many real-world scenarios, thus the choice was made to explore
configuration options for improving the performance for the other tools instead of fur-
ther benchmarking Splint. Clang and Frama-C offered options to improve the analysis
of loops. Infer’s bad performance seemed to be caused by this tool analyzing functions
for all possible parameter values, not just the parameter values possible during the exe-
cution of the program. To test this theory Infer was also benchmarked using a modified
version of the test suite. In this suite, functions of the versions of the programs that
do not contain any defects abort if dangerous parameters are supplied. All tools were
benchmarked using their default configurations9. Additionally, Clang and Frama-C were
benchmarked with an option to unroll loops to the number of iterations used in the test
suite or allow a statement of code to be analyzed this number of times.

For the case where no entry point is provided the method used was nearly the same
for most tools. For most tools, the setup was identical except that all tests within a
category were analyzed at once. Here all pieces of code could be analyzed within one
call to the tool as the code did not contain conflicting entry points. Frama-C did however
not support analyzing code without an entry point. To overcome this issue each test
case had to be processed separately with the name of the test function supplied as the

7A simple example would be attempting to access memory that has been allocated using malloc, but
for which it hasn’t been checked if the allocation was successful. In this case, adding a check to safely
abort the test in case allocation was unsuccessful fixes the issue. Note that in this case, the only effect
of a missing check is an additional detection while it does not influence the tool’s ability to detect the
true defect.

8The vast majority of these test cases consist of context-sensitive tests from the memory category.
These tests make up a small portion of the test suite, in the worst case (Clang) the 1

3
of results of some of

the types of context-sensitive tests was omitted, for other tools, this was 1
4

(Cppcheck) and 1
6

(Frama-C)
9Program parameters were limited to input files and -I inclusion flags.

19

entry point. As Frama-C analyzes a program for all feasible parameters for the entry
point the results should be comparable. This method proved to be very time-consuming
as Frama-C had to be called twice for each test for which each call to Frama-C has to
be supplied with different arguments. Instead, this method was used to get results for
two categories and the issues identified were used to extrapolate results from the case
where an entry point is provided10.

When benchmarking the tools with tests which lack an entry point, Infer was no longer
tested in two ways. This was no longer needed as the alternative version of the test suite
is identical to this version of the test suite, with the only difference being that no entry
point is provided.

10This may cause some false positives to be missed and recall to be not entirely accurate, yet the
results should not differ much as the tool was quite consistent in its results.

20

Chapter 5

Results

5.1 Defects detectable by the tools

Table 5.1 shows which kind of defects were detected by which tools. Most kinds of
defects could only be detected by one or two of the tools. When looking at the main
categories of defects 20% of the types of defects were only detected by one of the tools,
40% by two tools. 20% of the types of defects were detected by 3 of the tools and 20%
of the types of defects were detected by 4 or all of the tools. Due to differences between
the test suites improper memory allocation defects were only detected in JM-2018TS.
In both cases, the test programs are built around calling a function of the malloc family
with a size parameter of 0, but only in JM-2018TS is the newly ‘allocated memory’ ever
read from or written to. Two of the tools (Clang and Frama-C) detected usage of such
memory, but the allocation itself did not yield any warnings.

Defects contained in table 5.1 printed in bold are used to measure the performance of
the tools in terms of recall and precision. The other defects can be considered to be
variations on these defects and are solely used to construct table 5.1.

5.2 General trends and differences between test suite re-
sults

Table 5.2, 5.3 and 5.5 show how the tools performed on each kind of test from the two
test suites1. Table 5.2 shows the results for the test suite from C&K-2011 while table
5.3 shows the results for JM-2018TS for the case in which an entry point into the code is
provided, finally table 5.5 shows the results for JM-2018TS for the case in which no entry
point is provided. For each tool, these tables show the recall, the percentage of cases in
which a true positive is accompanied by an expected false positive (eFP/TP) for each

1Black cells denote that the value is undefined (division by zero).

21

Table 5.1: Tools capability to detect certain types of defects

Categories Problems Splint Cppcheck Infer Clang Frama-C
General Division by zero N Y N Y Y

Null pointer dereference Y Y Y Y Y
Integers Y N N Y Y
Strings Y N N N Y
Arrays Y N N Y Y

Pointers Y Y N Y Y
Integers Overflow N N N N Y

Sign errors N N N N N
Truncation errors N N N N N
Direct overflow N Y N N Y

Null termination errors N N N N N
Off-by-one errors N Y N N Y
Truncation errors N N N N N

memcpy N N N N N
strcpy N Y N Y N
strcat N Y N Y N

Y N N N N
sprintf N Y N N N
strncpy N Y N Y N
strncat N Y N Y N
fgets N Y N N N

snprintf N Y N N N
Format string vulnerabilities N N N N N

Memory Double free Y Y Y Y Y
Improper allocation N N N Y* Y*

malloc Y N N Y Y
realloc N N N N Y

Memory leak malloc Y Y Y Y N
calloc Y Y Y Y N
realloc N Y Y Y N

Failure check Y N Y N Y
Access freed memory Y Y Y Y Y

Access closed file N N Y N N
Access in different mode N Y N N N

Double close N Y Y N N
Resource leak N Y Y N N
Failure check Y N Y N N

N N N N Y

Deadlock (multithreading) N N N N N

N N N N N

Uninitialized
variables

Arrays and
Strings

Unbounded
Copy

gets (usage)

Initialization
errors

File
operations

Concurrency
errors

Deadlock
(no multithreading)

Time Of Check, Time Of
Use

(TOCTOU) errors

22

Splint Cppcheck Infer Clang Frama-C
Recall eFP/TP uFP Recall eFP/TP uFP Recall eFP/TP uFP Recall eFP/TP uFP Recall eFP/TP uFP

89% 89% 0% 83% 30% 0% 100% 0% 0% 100% 0% 0% 100% 0% 0%

89% 100% 0% 83% 30% 0% 100% 0% 0% 100% 0% 0% 100% 0% 0%

89% 100% 0% 58% 100% 0% 100% 0% 0% 89% 0% 0% 100% 0% 0%

100% 89% 0% 58% 100% 0% 89% 88% 11% 89% 0% 0% 100% 0% 0%

100% 89% 0% 58% 100% 0% 100% 0% 0% 89% 0% 0% 100% 0% 0%

89% 100% 0% 58% 100% 0% 100% 78% 0% 89% 0% 0% 100% 0% 0%

89% 100% 0% 75% 78% 0% 100% 0% 0% 100% 0% 0% 100% 0% 0%

89% 100% 0% 58% 29% 0% 100% 0% 0% 100% 0% 0% 100% 0% 0%

89% 100% 0% 58% 100% 0% 78% 100% 22% 0% 0% 100% 0% 100%

100% 89% 0% 58% 100% 0% 67% 100% 22% 0% 0% 100% 0% 100%

78% 100% 0% 83% 90% 0% 100% 0% 0% 100% 0% 0% 100% 0% 0%

100% 78% 22% 100% 25% 0% 100% 0% 0% 100% 0% 0% 100% 0% 0%

Exit function 89% 88% 22% 83% 20% 0% 89% 0% 0% 89% 0% 0% 100% 0% 0%
89% 100% 0% 92% 18% 0% 100% 0% 0% 100% 0% 0% 100% 0% 0%

Enumeration 89% 100% 0% 83% 90% 0% 100% 0% 0% 100% 0% 0% 100% 0% 0%
33% 67% 56% 67% 0% 0% 100% 0% 0% 100% 0% 0% 100% 0% 0%

33% 67% 22% 27% 0% 0% 67% 0% 0% 38% 0% 0% 100% 0% 0%

22% 50% 0% 27% 0% 0% 67% 0% 0% 38% 0% 0% 100% 0% 0%

44% 75% 33% 0% 0% 100% 0% 0% 100% 0% 0% 100% 0% 0%

Structs 44% 75% 33% 22% 0% 0% 100% 0% 0% 100% 0% 0% 100% 0% 0%
Unions 33% 67% 11% 11% 0% 0% 100% 0% 0% 67% 0% 0% 100% 0% 0%
Typedef 44% 75% 33% 22% 0% 0% 100% 0% 0% 100% 0% 0% 100% 0% 0%

100% 0% 0% 67% 0% 0% 78% 0% 0% 100% 0% 0% 100% 0% 8%

100% 0% 0% 67% 0% 0% 78% 0% 0% 100% 0% 0% 100% 0% 8%

Path
Sensitivity

Simple if-else
statement

Complex if-
else statement

Typical for
loop

Complex for
loop with

break
command

While loop
with continue

command

Do-while loop
with continue

command
Switch

statement
Goto

statement
For loop with

arrays
For loop with

pointer
arithmetic
Conditional

operator
Return

statement

Define
constant

Context
sensitivity

Simple
function calls

Static
variables
Global

variables
Function
pointers

Alias
analysis

Direct
assignments

Casting
assignments

Table 5.2: Performance per type of test of the static analysis tools for C&K-2011TS

23

Splint Cppcheck Infer Clang Frama-C Average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision
Recall
F0.5 score

(a) Performance of the tools on the tests of C&K-2011TS containing a
type of defect the tool can detect

Splint Cppcheck Infer Clang Frama-C Average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision
Precision (full suite)

(b) Loss of precision when taking all tests from C&K-2011TS into ac-
count

Figure 5.1: Recall, precision and F0.5 score of the tested tools for C&K-2011TS

24

kind of test as well as the percentage of tests that yielded one or more unexpected false
positives (uFP). The tables show areas that are problematic for all of the tested tools.
One of these areas is code containing loops, while the majority of tools (Infer, Clang,

and Frama-C) could cope with the simplest of loops consisting of a typical for or while
loop, all of the tools struggled with programs in which memory (aside from the iteration
counter) is modified and read from within loops. With JM-2018TS memory is modified
in all loops leading to a far lower performance in equivalent tests shown in table 5.2
and 5.3. Aside from memory modifications from within loops being problematic, all of
the tools struggled with code containing recursive functions. Table 5.2 shows that use
of static or global variables led to significantly fewer detections compared to code only
containing simple function calls. When no entry point into the test code was provided,
as is the case with the results shown in table 5.5, two (Clang and Frama-C) of the tested
tools (Infer, Clang, Frama-C, and CppCheck) suffered from a significant loss of precision.

The results show some variation in precision and recall for each kind of test. This
variation can in part be explained by the small variations in the structure of the tests,
for example, tests for some of the defects may require additional checks to avoid creating
additional defects, these checks add a bit of complexity to these tests. The variation
in test structure can’t explain all of the variation, the remaining variation in results is
likely caused by the tools not being equally precise and sensitive for all kinds of defects.

Figures 5.1, 5.2 and 5.3 show what the performance of the tools is for the entire suites
in terms of precision, recall, and f-measure. Figure 5.1a shows what the performance of
the tools was on the subset of the test suite from C&K-2011 that contained defects that
the tested tool is able to detect. Figure 5.1b shows how precision is affected when false
positives from the remaining part of the suite are taken into account. Similarly, figure
5.2a and 5.3a show what the performance of the tools was on the subset of JM-2018TS
that contained defects that the tested tool is able to detect and figures 5.2b and 5.3b
show how precision is affected when the remaining part of the test suite is taken into
account. Here 5.2 shows results for JM-2018TS when an entry point was provided while
5.3 shows results for the situation in which this was not the case.

5.3 Performance per tool

So far we have only looked at general trends, we will now look in more detail on how
each of the tools performed in both of the test suites.

Splint’s F0.5 score was the lowest of all of the tested tools. In C&K-2011TS it had
a precision of 54%, which dropped to 51% when taking false positives from the entire
test suite into account. In nearly every path-sensitive test a false positive was detected,
meaning that the tool has extremely poor path sensitivity. Splint fared a little better
precision-wise when looking at context-sensitive tests, yet its performance remained very
poor. The recall for the context-sensitive tests was the lowest of all of the tested tools.

25

Clang Frama-C Infer
Recall eFP/TP uFP Recall eFP/TP uFP Recall eFP/TP uFP

If (boolean) 100% 0% 0% 100% 0% 0% 100% 100% 14%
If (integer) 100% 0% 0% 100% 0% 0% 100% 100% 0%
If (boolean, multiple functions) 90% 0% 0% 100% 0% 0% 57% 100% 0%
Switch 100% 0% 0% 100% 0% 0% 100% 100% 0%
Goto 100% 0% 0% 100% 100% 20% 100% 100% 14%
Pass by reference 100% 0% 0% 100% 10% 0% 100% 100% 14%
Cross file analysis 0% 0% 100% 10% 0% 100% 100% 14%
Loop: for 0% 0% 100% 100% 20% 71% 100% 57%
Loop: for, complex 0% 0% 100% 100% 20% 100% 100% 57%
Loop: while+continue 0% 0% 100% 100% 20% 71% 100% 43%
Loop: do-while+continue 0% 0% 100% 100% 10% 71% 100% 43%
Loop: for, branching based on values in array 0% 0% 100% 100% 90% 71% 100% 43%
Loop: for, pointer arithmetic 0% 0% 100% 100% 100% 0% 0%
Loop: recursion 0% 0% 0% 0% 14% 100% 14%
Loop: recursion, multiple functions 0% 0% 0% 0% 29% 100% 43%
Pseudo recursion 100% 0% 0% 100% 0% 0% 29% 100% 0%
Function pointers 100% 0% 0% 100% 0% 0% 0% 0%
Accessing structs 90% 0% 0% 100% 10% 0% 86% 100% 0%
Struct with counter 90% 0% 0% 100% 30% 90% 86% 17% 0%

Clang (improved loops) Frama-C (improved loops) Cppcheck
Recall eFP/TP uFP Recall eFP/TP uFP Recall eFP/TP uFP

If (boolean) 100% 0% 0% 100% 0% 0% 18% 100% 18%
If (integer) 100% 0% 0% 100% 0% 0% 18% 100% 18%
If (boolean, multiple functions) 90% 0% 0% 100% 0% 0% 18% 100% 27%
Switch 100% 0% 0% 100% 0% 0% 0% 0%
Goto 100% 0% 0% 100% 100% 20% 0% 18%
Pass by reference 100% 0% 0% 100% 0% 0% 9% 100% 0%
Cross file analysis 0% 0% 100% 0% 0% 0% 0%
Loop: for 100% 0% 0% 100% 0% 0% 0% 18%
Loop: for, complex 100% 0% 0% 100% 0% 0% 0% 18%
Loop: while+continue 100% 0% 0% 100% 0% 0% 0% 0%
Loop: do-while+continue 100% 0% 0% 100% 0% 0% 0% 0%
Loop: for, branching based on values in array 100% 0% 0% 100% 0% 0% 0% 0%
Loop: for, pointer arithmetic 100% 0% 0% 100% 10% 0% 0% 0%
Loop: recursion 0% 0% 0% 0% 9% 0% 18%
Loop: recursion, multiple functions 0% 0% 0% 0% 9% 0% 27%
Pseudo recursion 100% 0% 0% 100% 0% 0% 9% 100% 36%
Function pointers 100% 0% 0% 100% 0% 0% 9% 100% 0%
Accessing structs 90% 0% 0% 100% 10% 0% 0% 9%
Struct with counter 90.00% 0.00% 0.00% 100.00% 30.00% 90.00% 9% 100% 18%

Table 5.3: Analysis sensitivity of the tested tools for tests from JM-2018TS

26

Infer (safe functions)
Recall eFP/TP uFP

If (boolean) 100% 29% 14%
If (integer) 100% 14% 0%
If (boolean, multiple functions) 57% 0% 0%
Switch 100% 100% 0%
Goto 100% 14% 14%
Pass by reference 100% 0% 14%
Cross file analysis 100% 29% 14%
Loop: for 71% 100% 57%
Loop: for, complex 100% 100% 57%
Loop: while+continue 71% 100% 43%
Loop: do-while+continue 71% 100% 29%
Loop: for, branching based on values in array 71% 100% 43%
Loop: for, pointer arithmetic 0% 0%
Loop: recursion 14% 0% 0%
Loop: recursion, multiple functions 29% 0% 29%
Pseudo recursion 29% 50% 0%
Function pointers 0% 0%
Accessing structs 86% 0% 0%
Struct with counter 85.71% 16.67% 0.00%

Table 5.4: Addition to table 5.3: Infer’s performance when the functions in Tcorrect abort
when called with dangerous input.

27

Clan
g

Clan
g (

im
pr

ov
ed

 lo
op

s)

Fr
am

a-C

Fr
am

a-C
 (i

mpr
ov

ed
 lo

op
s)

In
fer

In
fer

 (s
afe

 fu
nc

tio
ns

)

Cpp
ch

eck
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Precission
Recall
F0.5 score

(a) Performance of the tools on the tests of JM-2018TS containing a
type of defect which the tool can detect

Clan
g

Clan
g (

im
pr

ov
ed

 lo
op

s)

Fr
am

a-C

Fr
am

a-C
 (i

mpr
ov

ed
 lo

op
s)

In
fer

In
fer

 (s
afe

 fu
nc

tio
ns

)

Cpp
ch

eck
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Precission
Precision (full suite)

(b) Loss of precision when taking all of the tests from JM-2018TS into
account

Figure 5.2: Recall, precision and F0.5 score of the static analysis tools when testing the
new suite. Entry points to the code present in the test cases were provided.

28

Clang Frama-C Infer
Recall eFP/TP uFP Recall eFP/TP uFP Recall eFP/TP uFP

If (boolean) 100% 0% 0% 100% 100% 0% 100% 29% 14%
If (integer) 100% 100% 10% 100% 100% 0% 100% 14% 0%
If (boolean, multiple functions) 90% 0% 0% 100% 100% 0% 57% 0% 0%
Switch 100% 10% 10% 100% 100% 0% 100% 86% 0%
Goto 100% 0% 0% 100% 100% 20% 100% 0% 0%
Pass by reference 100% 0% 0% 100% 100% 0% 100% 0% 14%
Cross file analysis 0% 0% 100% 100% 0% 100% 14% 14%
Loop: for 90% 0% 0% 100% 100% 20% 71% 100% 43%
Loop: for, complex 90% 0% 0% 100% 100% 20% 100% 100% 43%
Loop: while+continue 90% 0% 0% 100% 100% 20% 71% 100% 14%
Loop: do-while+continue 90% 0% 0% 100% 100% 10% 71% 100% 14%
Loop: for, branching based on values in array 0% 0% 100% 100% 90% 71% 100% 29%
Loop: for, pointer arithmetic 20% 0% 0% 100% 100% 100% 0% 0%
Loop: recursion 70% 43% 0% 0% 0% 14% 0% 0%
Loop: recursion, multiple functions 80% 50% 0% 0% 0% 43% 0% 0%
Pseudo recursion 70% 86% 0% 100% 100% 0% 14% 100% 0%
Accessing structs 90% 100% 30% 100% 100% 0% 86% 0% 0%

Clang (improved loops) Frama-C (improved loops) Cppcheck
Recall eFP/TP uFP Recall eFP/TP uFP Recall eFP/TP uFP

If (boolean) 100% 0% 0% 100% 100% 0% 18% 100% 18%
If (integer) 100% 100% 10% 100% 100% 0% 18% 100% 18%
If (boolean, multiple functions) 90% 0% 0% 100% 100% 0% 18% 100% 27%
Switch 100% 10% 10% 100% 100% 0% 0% 0%
Goto 100% 0% 0% 100% 100% 20% 0% 18%
Pass by reference 100% 0% 0% 100% 100% 0% 9% 100% 0%
Cross file analysis 0% 0% 100% 100% 0% 0% 0%
Loop: for 100% 0% 0% 100% 0% 0% 0% 18%
Loop: for, complex 100% 0% 0% 100% 0% 0% 0% 18%
Loop: while+continue 100% 0% 0% 100% 0% 0% 0% 0%
Loop: do-while+continue 100% 0% 0% 100% 0% 0% 0% 0%
Loop: for, branching based on values in array 100% 0% 0% 100% 0% 0% 0% 0%
Loop: for, pointer arithmetic 100% 0% 0% 100% 20% 0% 0% 0%
Loop: recursion 70% 43% 0% 0% 0% 0% 0%
Loop: recursion, multiple functions 80% 50% 0% 0% 0% 0% 0%
Pseudo recursion 70% 86% 0% 100% 100% 0% 0% 0%
Accessing structs 90% 100% 30% 100% 100% 0% 0% 0%

Table 5.5: Analysis sensitivity of the tested tools for tests from JM-2018TS when no
entry point is provided

29

Clan
g

Clan
g (

im
pr

ov
ed

 lo
op

s)

Fr
am

a-C

Fr
am

a-C
 (i

mpr
ov

ed
 lo

op
s)

In
fer

Cpp
ch

eck
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Precission
Recall
F0.5 score

(a) Performance of the tools on the tests of JM-2018TS containing a
type of defect which the tool can detect when no entry point into the
code is provided

Clan
g

Clan
g (

im
pr

ov
ed

 lo
op

s)

Fr
am

a-C

Fr
am

a-C
 (i

mpr
ov

ed
 lo

op
s)

In
fer

Cpp
ch

eck
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Precission
Precision (full suite)

(b) Loss of precision when taking into account all tests from JM-2018TS
(no entry point provided)

Figure 5.3: Recall, precision and F0.5 score of the static analysis tools when testing the
JM-2018TS for which no entry point was provided for the code present in the test cases

30

One part of the test suite where this tool did perform well was on the alias analysis tests,
here it did not miss any defects, while not yielding any false positives.

Cppcheck had the second lowest F0.5 score for C&K-2011TS and the lowest F0.5 scores
for JM-2018TS. For both test suites, it had the lowest recall of all tools. Both the recall
and precision of Cppcheck were far lower for JM-2018TS than what was measured for
C&K-2011TS.

For every type of test Infer’s recall and precision were as good or better than those of
Cppcheck, yet overall it was outperformed by both Clang and Frama-C. Infer had the
third highest F0.5 scores for C&K-2011TS and JM-2018TS, with an exception being
JM-2018TS in the case where no entry point into the source code is provided. In this
case, it achieved the second highest F0.5 score if the default configuration was used for
all tools.

Frama-C performed very well for both C&K-2011TS and JM-2018TS in the case where
an entry point into the code was provided, achieving the second highest F0.5 score for
both test suites. Frama-C performed significantly worse for JM-2018TS in the case
where no entry point into the test functions is provided. Here Frama-C was overtaken
by Infer when looking at the F0.5 score when the default configuration was used. As the
only correct tool in the selection of tools tested Frama-C was the only tool that was able
to detect all defects of the type it is capable of finding. (Recursion was explicitly not
supported by this tool.)

In all situations, Clang had the highest F0.5 score. Clang had the highest precision of
all tools while its recall was generally trailing behind Frama-C and Infer.

5.4 Timed real world example

Analysis tool Analysis time

Cppcheck (1 thread) 106 minutes

Cppcheck (4 threads) 145 minutes

Infer 51 minutes

Clang 22 minutes

Table 5.6: Time spent analyzing Gimp 2.8 code

To give some insight into how the tools perform execution time-wise in a complex real-
life example Gimp version 2.8.22 was analyzed by all tools2. This application was chosen
as it is a well known open source application, the source of which contains 774554 lines
of code in 2975 C files3 (.c, .h). The time it took each tool to complete analysis is
shown in table 5.6. Both Splint and Frama-C failed to analyze this application. Splint

2The analysis was run on a dual-core Intel Core i7 4500u processor with 9.2 GiB of accessible ram.
3Numbers acquired with the cloc utility

31

was terminated after 36 minutes had elapsed while its memory usage had reached 4.5
GiB and was still increasing while it showed no sign of progress. Frama-C aborted
with a syntax error in one of the source files stated as the reason. Cppcheck performed
significantly better when 1 thread was used, which is the default, instead of 4 threads.
The most prevalent kinds of defects detected by the static analysis tools can be seen in
table 5.7, problems that do not impact security or reliability have been excluded from
the results. These detections have not been verified, what percentage of detections are
valid is thus unknown.

Cppcheck Infer Clang

Null pointer 15 198 220

Memory leak 0 22 62

Resource leak 16 16 0

Use after free 0 13 3

Uninitialized variable 83 0 22

Defects found: Total 130 254 449

Table 5.7: Most prevalent kinds of defects (possibly FP) found in Gimp 2.8 code

5.5 Usability

5.5.1 Splint

Splint provided some basic information about the detected defects: line number of the
offending statement, the name of the variable used (if applicable) and a short description
of the kind of defect detected. If the statement is incorrect only because of the current
state of the memory used in that statement the line number in which this memory is
last changed is also provided.

When using the default configuration, Splint’s output contained a large amount of noise.
As this program is a linter it is to be expected that not all output is related to a defect.
Unfortunately, part of the security-related warnings is merely about the usage of certain
constructs and not about whether this usage was not correct.

Splint offers no options to sort the output by defect type or severity. It is possible to
filter out certain warnings, by supplying command line flags to suppress these warnings.
Splint does not support generating its output in a common file format like XML or
JSON, which could have facilitated filtering and sorting the output externally.

The only way to supply Splint with information on which files should be analyzed and
which libraries to include is to supply these libraries and files as command line parame-
ters. This results in a poor user experience when working on complex projects.

32

Listing 5.1: Example output from Splint

1 memory_doublefree1_alias1.c: (in function main)

2 memory_doublefree1_alias1.c:16:10: Variable c used after being released

3 Memory is used after it has been released (either by passing as an only

↪→ param or assigning to an only global). (Use -usereleased to inhibit

↪→ warning)

4 memory_doublefree1_alias1.c:14:10: Storage c released

5
6 Finished checking --- 1 code warning

5.5.2 Cppcheck

Cppcheck provides roughly the same information as Splint, except for that it doesn’t
provide information on prior modifications of memory and the description of the defect
is more basic. Even though it does offer a little less information than Splint, it makes up
for this by warning about a far more useful selection of issues: all warnings were related
to defects and of these warnings, all were referring to incorrect usage of a construct
instead of merely the usage itself.

Cppcheck does not offer any options to sort its output by severity and defect type.
Cppcheck’s ability to filter out certain types of defects is limited to suppressing warnings
supplied as command line flags. Cppcheck can output its result in both XML and PLIST
format, which may simplify using its output in a program capable of sorting and filtering
this output.

Cppcheck does support analyzing an entire code base by supplying it with a compilation
database. This can make using the tool on existing code significantly easier as it removes
the need to manually supply the paths to all source files. Using a compilation database
removes the need to manually supply information on which libraries need to be included.
Finally, a compilation database contains information on which preprocessor directives
should be used for building the application or library ensuring that the combination of
directives tested is a valid one. Cppcheck is the only tool of the ones tested in this article
capable of analyzing code with missing dependencies (analyzing part of the source code,
missing header inclusions).

Listing 5.2: Example output from Cppcheck

1 [memory_doublefree1_alias1.c:19]: (error) Memory pointed to by ’c’ is

↪→ freed twice.

2 [memory_doublefree1_alias1.c:19]: (error) Deallocating a deallocated

↪→ pointer: c

33

5.5.3 Infer

Infer provides a short description of the defect including the variable used, the function
called and the line at which the variable used is last modified if this is relevant. Infer’s
output includes a snippet of code containing the problematic statement, which provides
some context and could make it easier for the user to find the offending statement in
the code. Infer outputs some files that include, among other things, some information
about the path taken for each defect. The assumptions made when this path was taken
are however not available.

Like Cppcheck Infer is able to use a compilation database to analyze an application or
library. Additionally, it can learn this information by supplying Infer with the build
commands as it is able to analyze the compilation of the code for a wide selection of
build systems.

Listing 5.3: Example output from Infer

1 memory_doublefree1_alias1.c:19: error: USE_AFTER_FREE

2 pointer ‘c2 ‘ last assigned on line 17 was freed by call to ‘free()‘ at

↪→ line 14, column 5 and is dereferenced or freed at line 19, column 5

3 17. c2 = c1;

4 18.

5 19. > free(c2); /* DANGER */

6 20.

7 21. return 1;

8
9 Summary of the reports

10
11 USE_AFTER_FREE: 1

5.5.4 Clang

Clang’s command line output is limited to a basic description of the kind of defect, line
number of the offending statement and the offending statement itself. By default, the
scan-build utility also generates HTML output for each defect. In this file, the offending
code is annotated with both the path that was taken as well as the assumptions that were
made in reaching the offending statement. As a statement may not lead to a defect for
all paths in which it can be reached nor for all possible variable values, this information
could help the user understand in what conditions the defect arises. An example of
source code annotated by Clang can be seen in figure 5.4.

In the overview present in the HTML output the user can sort the defects by type or
filename and filter out types of defects.

The scan-build utility used does not support using a compilation database, but, like
Infer, it can get this information by building the code when the build commands are
supplied to the tool.

34

1 Memory is allocated →

6 ← Loop condition is true. Execution continues on line 17 →

2 ← Taking false branch →

7 ← Taking false branch →

3 ← Memory is released →

8 ← Attempt to free released memory

4 ← Taking true branch →

5 ← Execution continues on line 26 →

Bug Summary

File: /home/jonathan/Documenten/Universiteit/scriptie/ts/Static_Analysis_Test_Suite/qualitative_analysis_source_code/memory/double_free/memory_doublef
Warning: line 20, column 13

Attempt to free released memory

Annotated Source Code

1 /* Dynamic memory management problems */
2 /* Double free error */
3 /* Flow sensitive example */
4 /* Do-while loop with if-else and continue commands */
5
6 #include "stdlib.h"
7
8 int main()
9 {
10 int i;
11 int *c;
12
13 c = malloc(5*sizeof(int));

14
15 i = 0;
16 do {

17 if(i > 30) {

18 free(c); /* OK */
19 } else {
20 free(c); /* DANGER */

21 }
22 i++;
23 if(i < 20) {

24 continue;

25 }
26 } while(i < 30);
27
28 return 1;
29 }

Figure 5.4: Example output from Clang

35

Listing 5.4: Example output from the scan-build frontend for Clang

1 scan -build: Using ’/usr/lib/llvm -5.0/ bin/clang ’ for static analysis

2 memory_doublefree1_alias1.c:19:5: warning: Attempt to free released

↪→ memory

3 free(c2); /* DANGER */

4 ^~~~~~~~

5 1 warning generated.

6 scan -build: 1 bug found.

7 scan -build: Run ’scan -view /tmp/scan -build -<directory suffix > to examine

↪→ bug reports.

5.5.5 Frama-C

Frama-C’s command line output was very verbose, most information given is not rele-
vant to any detected defects. The detected defects are described by giving a technical
description of the kind of defect and the assertion that failed where the other tools’
descriptions are closer to normal sentences. The information about the issue is limited
to line-number and the failed assertion which contains the variable related to the defect.
Compared to the other tools it offers some unique information: the domains of the final
values of the variables present in the analyzed functions. With the GUI one can view
the value domain of a variable at any point in the code. Using the GUI the location of
the defects can be reached by selecting the warning.

Frama-C does not support supplying compilation information by supplying a compilation
database nor is it able to acquire this information by analyzing the build process.

36

Listing 5.5: Example output from Frama-C

1 [kernel] Parsing memory_doublefree1_alias1.c (with preprocessing)

2 [value] Analyzing a complete application starting at main

3 [value] Computing initial state

4 [value] Initial state computed

5 [value:initial -state] Values of globals at initialization

6 __fc_random_counter ∈ {0}

7 __fc_rand_max ∈ {32767}

8 __fc_heap_status ∈ [--..--]

9 __fc_mblen_state ∈ {0}

10 __fc_mbtowc_state ∈ {0}

11 __fc_wctomb_state ∈ {0}

12 memory_doublefree1_alias1.c:12:[value] allocating variable

↪→ __malloc_main_l12

13 memory_doublefree1_alias1.c:16:[value] warning: accessing left -value that

↪→ contains escaping addresses.

14 assert ¬\dangling (&c);
15 [value] done for function main

16 [value] ====== VALUES COMPUTED ======

17 [value:final -states] Values at end of function main:

18 __fc_heap_status ∈ [--..--]

19 c ∈ {{ NULL ; &__malloc_main_l12 [0] }} or ESCAPINGADDR

20 c1 ∈ {{ NULL ; &__malloc_main_l12 [0] }} or ESCAPINGADDR

21 c2 ∈ {{ NULL ; &__malloc_main_l12 [0] }} or ESCAPINGADDR

22 __retres ∈ {1}

37

Chapter 6

Discussion

6.1 Results

We will look at general properties exhibited by the tested static analysis tools. Appendix
A contains the reasoning behind these observations.

Splint’s path analysis was the weakest of all tested tools which caused this tool to achieve
very low precision in nearly all tests.

Cppcheck’s path sensitivity proved to be sufficient only in simple cases while its analysis
in situations requiring alias analysis was the least-sensitive of all tested tools. It is
generally unable to find defects in code in which a fault occurs for some, but not all of
the possible execution paths. Additionally, it is not as precise as the other tools (barring
splint) when it does find issues. It may be unable to detect that code is unreachable which
may lead to false positives in this code. Cppcheck struggled to detect issues consisting of
incorrect usage of memory that can not directly be accessed from a variable (e.g. global
variables, struct members, etc.) in the current function.

Infer performed well in most cases, generally achieving a high precision and recall. Infer
did however not achieve good precision in tests containing loops and offered no options
to improve this precision. A potential issue that was found is that Infer analyzes for
parameters that will not occur during the runtime of the program analyzed. Infer did
generally perform better than any other tool in cases in which variables are compared
to other variables of which the exact value is unknown. However, in cases where the
values of the memory used can be fully determined it generally did not perform as well
as Clang or Frama-C.

Clang’s precision was higher than any other tool tested. Its abstract domain did how-
ever not seem expressive enough to represent numeric states relative to other numeric
variables, which led to low precision in cases where two integers of unknown value are
compared. Another issue was that Clang was not able to do cross-file analysis which will
limit its recall in practice as dangerous calls to functions defined in other .c files will

38

not be detected. Clang’s loop analysis was excellent as long as the number of iterations
per loop to analyze does not exceed the configured maximum prior to encountering a
defect, otherwise, no defects were detected.

Frama-C performed well in sequential cases in which the exact value of all memory
can be known. In cases where code branches based on a comparison that includes a
variable of which the exact value is not known it achieved very low precision. This
is caused by its abstract domain not being expressive enough for the type of analysis
used. When Frama-C’s default configuration was used Frama-C was not able to achieve
good precision for most tests containing loops. Frama-C can, however, be configured to
achieve better precision in these cases.

6.2 Usability

Frama-C is not suitable for use as a general purpose static analysis tool because of the
verbosity of its output and the amount of manual work needed. Using Frama-C requires
a significant amount of manual work in order to analyze an entire application. Analyzing
a library requires additional work as this can only be done by analyzing a single exported
function at a time. The verbosity of the output renders it unsuitable to analyze large
amounts of code on a frequent basis. When used to analyze smaller, self-contained pieces
of code near the end of development these issues have less of a negative impact. In that
case, Frama-C’s high recall may be worth the larger amount of effort required to gain
and analyze results.

Infer and Clang are both very suitable for analyzing complex applications as both inte-
grate well with a large selection of build systems and output clear descriptions of issues.
Clangs ability to output the which path was taken and assumptions were made can be
especially useful when looking at issues in complex code.

Even though Cppcheck’s path-analysis is too simple to perform well on complex code it
does have some advantages over the other tools. It can detect a wide array of defects
and secondly, it is able to analyze incomplete code. This last property can be especially
useful as it allows for using this tool on code that is still being written.

6.3 Related work

This article is heavily influenced by Chatzieleftheriou and Katsaros [2011] and this article
originally included an attempt to reproduce the results from this original article. This
attempt failed as the measured recall for both Splint and Cppcheck did not match the
recall described in the original article1. I have described the method used to acquire recall

1The measured recall was higher than expected: a ˜15 percent point difference with what was found
in [Chatzieleftheriou and Katsaros, 2011]. The difference in measured precision was within 2 percent
point.

39

and precision in more detail and hope that this will lead to more success in reproducing
the results from this article, should one want to do so. The kind of defects the tools
were capable of finding did also not match the original article2. Chatzieleftheriou and
Katsaros [2011] includes a quantitative test suite to measure how the memory usage and
execution time of tools scales with increasingly large source files. These tests consist of
repeating segments of code making it trivial to generate larger source files while no other
conditions are changed. An increasing number of source files as well as an increase of
dependencies between pieces of code, what one would expect for a growing code base, is
unfortunately not taken into account. Measuring the effects of increasing code size on
execution time and memory scaling using real code bases alongside these tests may give
a more complete picture. Measuring execution time using several programs of varying
complexity may be an interesting subject for further research.

In McLean [2012], Mantere et al. [2009] the usability of tested tools is described in
more detail. Both of these articles test a small number of static analysis tools (McLean
benchmarks two tools while the article from Mantere et al. benchmarks three tools).
These articles are less suitable for determining how well a tool performs as the testing
method does not generate conclusive results. McLean [2012] is less suitable as the
output of the tools is not checked for false positives. The test suite used in Mantere
et al. contains 18 test cases total for 5 different kinds of defects. This number is too
small to test the tools in a manner similar to this article.

Newsham and Chess [2006], Liu et al. [2012] propose an automatic benchmark system
in which the performance of static analysis tools can be measured automatically. The
way these test suites benchmark the tools is different from the test suites used in this
article. The test suites do not seem to systematically test the recall and precision for
each kind of defect in different situations.

Zitser et al. [2004] measured the ability of static analysis tools to find real buffer overflow
defects by testing these tools on versions of several open source programs that contained
exploitable buffer overflows, making its scope more limited and the used method differ-
ent.

2According to my findings Splint is not able to detect incorrect usage of sprintf , but instead warns
that sprintf is used. Similarly, it was not able to detect sign errors, it did instead warn about any usage
of signed integers in an unsigned integer context. All tools that are capable of finding the usage of
uninitialized pointers were found to able to find the usage of unopened files (usage of uninitialized file
pointers), while according to the original article none of the tools were able to find this kind of defect.

40

Chapter 7

Conclusion

We have looked at in what situations the tested tools perform well in terms of precision
and recall and have evaluated the usability of several open source static analysis tools.
To accomplish this a new test suite addressing one of the issues of C&K-2011TS was
used. This new test suite also increased the number of scenarios in which a defect can
occur. Using this new suite allows us to observe shortcomings of static analysis tools
that could not be detected when C&K-2011TS was used on its own. Most notably it
allowed us to see what the performance of static analysis tools is in cases where the value
of function parameters is not known and/or functions are defined in separate C file. This
test suite is freely available at https://github.com/JMoerman/JM2018TS. The results
show that both Infer and Clang can compete with Frama-C, which in previous articles
often performed significantly better than other open source static analysis tools. Clang’s
ability to annotate source code with information on what circumstances may lead to a
fault was also found to be useful as this may ease the analysis of the detected issues.

41

https://github.com/JMoerman/JM2018TS

Chapter 8

Bibliography

Clang static analyzer project website. https://clang-analyzer.llvm.org/ - accessed
5-February-2018.

Cppcheck project website. http://cppcheck.sourceforge.net/ - accessed 3-February-
2018.

Frama-c project website. https://frama-c.com - accessed 4-February-2018.

Infer website. http://fbinfer.com - accessed 4-February-2018.

Clang static analyzer (scan-build utility) project website.

Splint project site on virginia.edu. http://lclint.cs.virginia.edu/ - accessed 3-
February-2018, mirror of inaccessible http://splint.org site.

Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines of
code later: using static analysis to find bugs in the real world. Communications of the
ACM, 53(2):66–75, 2010.

Géraud Canet, Pascal Cuoq, and Benjamin Monate. A value analysis for c programs. In
Source Code Analysis and Manipulation, 2009. SCAM’09. Ninth IEEE International
Working Conference on, pages 123–124. IEEE, 2009.

George Chatzieleftheriou and Panagiotis Katsaros. Test-driving static analysis tools in
search of c code vulnerabilities. In Computer Software and Applications Conference
Workshops (COMPSACW), 2011 IEEE 35th Annual, pages 96–103. IEEE, 2011.

Nancy Chinchor. Muc-4 evaluation metrics. In Proceedings of the 4th conference on
Message understanding, pages 22–29. Association for Computational Linguistics, 1992.

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why
don’t software developers use static analysis tools to find bugs? In Software Engi-
neering (ICSE), 2013 35th International Conference on, pages 672–681. IEEE, 2013.

42

https://clang-analyzer.llvm.org/
http://cppcheck.sourceforge.net/
https://frama-c.com
http://fbinfer.com
http://lclint.cs.virginia.edu/
http://splint.org

William Landi. Undecidability of static analysis. ACM Letters on Programming Lan-
guages and Systems (LOPLAS), 1(4):323–337, 1992.

Jiangchao Liu, Liqian Chen, Longming Dong, and Ji Wang. Ucbench: A user-centric
benchmark suite for c code static analyzers. In Information Science and Technology
(ICIST), 2012 International Conference on, pages 230–237. IEEE, 2012.

Matti Mantere, Ilkka Uusitalo, and Juha Roning. Comparison of static code analysis
tools. In Emerging Security Information, Systems and Technologies, 2009. SECUR-
WARE’09. Third International Conference on, pages 15–22. IEEE, 2009.

Daniel Marjamäki. Cppcheck design, 2010. http://sourceforge.net/projects/

cppcheck/files/Articles/cppcheck-design-2010.pdf.

Ryan K McLean. Comparing static security analysis tools using open source software.
In Software Security and Reliability Companion (SERE-C), 2012 IEEE Sixth Inter-
national Conference on, pages 68–74. IEEE, 2012.

Tim Newsham and Brian Chess. Abm: A prototype for benchmarking source code ana-
lyzers. In Workshop on Software Security Assurance Tools, Techniques, and Metrics.
US National Institute of Standards and Technology (NIST) Special Publication (SP),
pages 500–265, 2006.

Lucas Torri, Guilherme Fachini, Leonardo Steinfeld, Vesmar Camara, Luigi Carro, and
Érika Cota. An evaluation of free/open source static analysis tools applied to em-
bedded software. In Test Workshop (LATW), 2010 11th Latin American, pages 1–6.
IEEE, 2010.

Misha Zitser, Richard Lippmann, and Tim Leek. Testing static analysis tools using
exploitable buffer overflows from open source code. In ACM SIGSOFT Software En-
gineering Notes, volume 29, pages 97–106. ACM, 2004.

43

http://sourceforge.net/projects/cppcheck/files/Articles/cppcheck-design-2010.pdf
http://sourceforge.net/projects/cppcheck/files/Articles/cppcheck-design-2010.pdf

Appendix A

Results in detail

A.1 Splint

In C&K-2011TS Splint achieved the lowest precision of all of the tools: a precision of
54%, which dropped to 51% when taking false positives from the entire test suite into
account. In nearly every path-sensitive test a false positive was detected, meaning that
the tool has extremely poor path-sensitivity. Splint fared a little better precision wise
when looking at context-sensitive tests, yet it remained very poor. The recall for the
context-sensitive tests was the lowest of all of the tested tools. One part of the test suite
where this tool did perform well was on the alias analysis tests, here it did not miss any
defects, while not yielding any false positives.

A.2 Cppcheck

In C&K-2011TS Cppcheck’s performance was held back mainly by lower precision in the
path-sensitive tests and generally low recall. The false positives in Cppcheck’s output
consist of detections of possible problems in statements that cannot be reached. When
we look at Daniel Marjamäki’s article on Cppcheck design [Marjamäki, 2010], a good
explanation for these false positives can be found. According to this article, Cppcheck
assumes that all statements are reachable. If it could be assumed that these statements
were indeed reachable then these statements would indeed have caused a fault where
the statement to be executed after the last reachable previous statement. Cppcheck’s
recall for the alias analysis tests was the lowest of all tools. Cppcheck had a low recall
for tests which depend on accessing memory (global variables, struct members, etc.)
not directly accessible from variables defined in the function being analyzed. Cppcheck
was the only tool not capable of finding defects in tests contain functions reached by a
function pointer.

Cppcheck performed significantly worse in JM-2018TS. Here the tool detected nearly no
defects while precision, for tests containing if statements, is reduced to 50% where this

44

was ˜77% for C&K-2011TS. A difference between the two test suites is that all of the
test programs in JM-2018TS consist of multiple functions. The usage of function calls
can result in a lower recall as can be seen from the Context sensitivity: simple function
calls results in table 5.2. However, even when rewriting tests containing if statements to
only contain a single function the low recall remained. This means that the difference in
results can instead be attributed to the difference in the structure of the tests. Unlike
the path-sensitive tests in C&K-2011TS, for most tests in JM-2018TS, all statements
can be reached without a fault occurring. Whether a statement will cause a fault in
the majority of tests from JM-2018TS is determined by which path was taken prior to
reaching a statement. This means that the path by which a statement can be reached
must be taken into account1, something Cppcheck struggles with.

A.3 Frama-C

Frama-C performed very well in most cases, however, non-sequential code and code
where the exact code of parameters is not known was problematic.

Frama-C does not consider each path separately but instead unifies paths by unifying the
possible states of each piece of memory for each path. An example of this can be seen in
figure A.1 showing how Frama-C joins two paths that split based on an unknown value
of A. Reducing the number of paths to analyze in this way creates problems, however, as
the set of possible states of the entirety of the program memory can then include states
that are not possible during execution of the code. This issue causes Frama-C to emit
false positives mainly in situations where the exact value of the memory in use cannot be
determined, Listing A.1 provides an example of code for which this issue causes Frama-C
to emit a false positive. This issue caused Frama-C to perform very poorly on all tests
that do not belong the loop category for JM-2018TS in the case where the value of the
parameters is not known.

Frama-C also struggles with memory mutations within loops when loops are not fully
unrolled. The new range of possible states for a piece of memory that results from an
assignment to this memory can be larger than is possible during execution. This issue
was the cause of the false positives in tests containing for or while loops for tests from
both JM-2018TS and C&K-2011. An example of this issue resulting in false positives
can be seen in listing A.2. Fortunately, Frama-C includes an option to unroll loops to a
configurable amount. By configuring Frama-C to unroll sufficient iterations of each loop
good precision could be achieved for these tests.

1In C&K-2011TS all that needs to be considered is if a statement can be reached, not how.

45

Listing A.1: Example of correct code for which Frama-C detects an issue as dependencies
between values are not taken into account

1 void safe_function () {

2 int* data;

3 bool a = rand() & 1;

4 bool b = rand() & 1;

5
6 if(!a && !b) {return ;}

7
8 data = malloc (20 * sizeof(int));

9 ... // Code contains check causing the function to terminate if ’data

↪→ ’ is NULL.

10 // Pointer ’data’ points to the memory data at line 8.

11
12 if(a) {

13 free(data);

14 // Frama -C: Pointer ’data’ contains an escaping address.

15 }

16 // Frama -C: At this point ’data’ either points to the memory data at line

↪→ 8, or it contains an escaping address. This is correct but

↪→ imprecise as we know it will only contain an escaping address if a
↪→ was true.

17
18 ...

19
20 if(b && !a) {

21 free(data);

22 // Frama -C warns that it is possible that ’data’ is accessed while it

↪→ contains an escaping address , which is incorrect as line 13 can not

↪→ be reached if ¬a
23 }

24
25 // Final state of ’data’ according to Frama -C: ’data’ can be NULL , can

↪→ point to the memory data at line 8, can be uninitialized or

↪→ contains an escaping address. In reality , it can not point to the

↪→ memory data at line 8 as ¬(¬a ∧ ¬b) ∧ ¬a ∧ ¬(b ∧ ¬a) can not be true

26 }

46

Listing A.2: Example of imprecise loop analysis by Frama-C

1 int arr [10];

2 int i;

3 int a = 0;

4
5 for(i = 0; i < 10; i++) {

6 arr[i] = i;

7 }

8
9 // According to Frama -C the elements in arr will at this point be

↪→ initialized to 0-9 or are uninitialized. In reality arr will always

↪→ be fully initialized as the loop above is guaranteed to initialize

↪→ the entire array.

10
11 for(i = 0; i < 10; i++) {

12 a += arr[i];

13 // Frama -C warns here that it is possible for arr[i] to not be

↪→ initialized. Frama -C also warns of a possible integer sign overflow

↪→ , which is not possible with the values stored in arr. If one or

↪→ multiple elements of arr were not initialized this would indeed be

↪→ possible as these elements could have any value.

14 }

15
16 printf("%i\n", a);

17 // According to Frama -C this statement will output a number in the range

↪→ [0..2147483646] while the only output possible is 45.

47

x = 1

If A:
x = 2

x∈{1,2}

¬A A

x = 1

If A:
x = 2

x∈A⇒ {2 }∨¬A⇒ {1 }

¬A A

x = 1

If A:
x = 2

x∈{1}

¬A A

x∈{2}

Frama-C Sufficiently expressive
abstract domain

No unification of paths

Figure A.1: Figure showing how Frama-C unifies paths as well as two examples that
would yield better results

A.4 Clang

Similar to Frama-C Clang did not perform well on tests where memory modified within
loops. When using the default configuration, If memory was modified within a loop
containing more iterations (> 3) than Clang can analyze no positive of any kind was
returned regarding usage of that memory. Like Frama-C Clang offers an option to
improve its performance on loops, in this case, the number of times a block of code can
be visited can be increased. When increasing this number to n+1, where n is the largest
number of iterations present in the code to analyze, Clang found most of the defects
while the number of false positives was not increased.

Clang does not support cross-file analysis, when memory was passed to a function located
in another .c file no positive of any kind was returned regarding usage of that memory.

Clang’s abstract domain does not seem to be expressive enough to describe the value
of a piece of numerical memory relative to other memory. This was concluded as it is
unable to detect which branch can be taken if two integers are compared of which the
exact value is not knowable, but of which the ordinal relation can be known. An example
of this causing Clang to emit a false positive can be seen in listing A.3. This behavior
caused the tool to achieve very low precision for a number of tests from JM-2018TS and
the source of all of the false positives for this test suite could be traced back to this issue.

48

Listing A.3: Example of clang detecting an issue in correct code

1 void safe_function(int x, int y) {

2 int* data = malloc(sizeof(int));

3
4 if(!data) {

5 return;

6 }

7
8 ...

9
10 if(x <= y) { // Clang: taking true branch

11 free(data); // Clang: Memory is released

12 }

13
14 ...

15
16 if(x > y) { // Clang: taking true branch

17 free(data); // Clang: Attempt to free released memory

18 // Taking the true branch for this if statement and the previous

↪→ if statement is not possible during execution as the

↪→ conditions contradict eachother

19 }

20 }

Clang’s recall for code in which static or global variables are used was far lower than
both Infer and Frama-C, tools that have similar performance.

When analyzing the suite from C&K-2011 it returned a few false positives caused by
different causes: poor alias analysis2 caused two false positives while incorrect modeling
of the realloc function3 was responsible for the third false positive.

A.5 Infer

Like Clang and Frama-C Infer struggled with loops. Unlike these two tools Infer also
struggled with some of the tests containing loops from C&K-2011TS where memory
modifications within the loop were not relevant in code that follows this loop. It also
differed from these tools in that it did not provide any means to improve its performance
for code containing loops.

Infer performed very poorly when looking at the results of JM-2018TS in the case where
the entry point is known to the static analysis tool. When the tool was benchmarked in

2Clang erroneously detected out-of-bound array access errors when argument A in the function call
strncpy(A, B, sizeof(A)) is an alias of a string (Strings, truncation: alias analysis)

3Clang also issued a warning (double free) when freeing memory of which reallocation had failed, it
seems to assume that realloc frees memory regardless of whether memory could be reallocated success-
fully.

49

the same way as all of the other tools the ratio between valid detections and expected
false positives was 1:1 for all tests save the struct with counter test, which was the only
test not relying on parameter values which determine whether a defect is reached or
not. When this tool was benchmarked with tests where functions abort when dangerous
parameters are supplied the performance, however, greatly increased. Meaning that the
lowered precision can largely be attributed to the tool analyzing functions for parameters
other than those possible during the execution of the program.

Unlike Clang and Frama-C Infer did not perform worse when no entry point was pro-
vided. In this case, Infers performance was comparable or better compared to these
tools when tests containing loops are not taken into account.

This tool did have the second lowest performance when looking at the alias analysis
tests.

Aside from these issues, Infer did not perform as well as Clang or Frama-C for a number
of tests. Unlike Clang and Frama-C Infer was not able to detect defects in tests where
a function pointer is passed to a function where it is then called. However, it was able
to detect defects in code in which a function pointer is assigned and called within the
same function as is the case in the Context sensitivity: function pointers tests from
C&K-2011TS. Infer was also the only tool that was greatly affected by splitting the
main function from the If (boolean) test into multiple functions. For JM-2018TS Infer
was not able to distinguish real defects from the expected false positives in the Switch
test. This test differs from the equivalent test in the other suite in C&K-2011TS that
it contains an additional if statement which influences the state.

50

Appendix B

Test suite information

B.1 Types of tests in JM2018TS

Most tests consist of several parts

Memtest Condition Ca, Condition Cb these conditions can consist of the evaluation of
boolean values passed to the test function, or comparison between two integers.

Most tests fall in one of two categories: simple sequential tests and tests containing
iterative loops.

B.1.1 Simple sequential tests

The simple sequential tests consist of the following parts:

1. Program entry point containing a call to the test function.

2. Preparation of the test, variables are initialized to their initial state.

3. De state of Memtest is set, with its value depending on Ca. We will call these
states SCa and S¬Ca .

4. Depending on whether condition Cb is true two different things can happen. If Cb
is true Memtest is used in a way that is safe regardless of whether Ca was true or
false, in some cases Memtest is not used at all. If ¬Cb holds then Memtest is used
in a way that is safe only if the state of Memtest is SCa .

5. Finalization of the test: allocated resources not yet freed are freed.

Description of tests within this category:

51

• If (boolean): A simple test where steps 2 up to and including 5 are executed
within a single function. This test function is called with two boolean values a and
b as parameters. The conditions consist of the evaluation of the boolean values
passed to the test function (Ca = a, Cb = b).

• If (integer): A simple test where steps 2 up to and including 5 are executed
within a single function. This test function is called with two integer values x and
y as parameters. The conditions consist of the comparison of integer values, one
comparison between the two parameters and one comparison between one of the
parameters and a static value (for example Ca = (x > 10), Cb = (x ≥ y)).

• If (boolean, multiple functions): This test is a variation on the If (boolean)
test, it differs from this test in that steps 3 and 4 are executed in separate functions
called by the main test function containing steps 2 and 5. (The value to assign to
Memtest in step 3 is returned by a separate function.)

• Switch: This test is a variation on the If (integer) test, it differs in that step 4
does not contain a branch based on a single condition, instead this step is built
using a switch statement comparing the value of one of the parameters to several
static values, some of the values lead to safe usage of Memtest regardless of the
outcome of step 3, others lead to usage of Memtest in a way that is unsafe if Ca is
false.

• Pass by reference: This test is a variation on the If (boolean) test, in this test a
reference to Memtest is passed to a function which executes step 3.

• Cross-file analysis: This test is a variation on the If (boolean) test, in this test
the value assigned to Memtest in step 3 is generated by a function defined in a c
file different from the c file containing the rest of the code of the test.

• Pseudo recursion: This test is a variation on the If (integer) test with the test
function split into two functions f1 and f2. Function f1 will call f2 if this f1 itself
wasn’t called from f2 and vice versa. This test was included as for most tools the
recall for tests with recursive functions was far lower than average, this test may
help give insight in why this is the case: are functions that appear to be recursive
also an issue?

• Function pointers: This test is a variation on the Pass by reference test with
the function executing step 3 passed to the test function instead of being defined
there.

• Accessing structs: This test is a variation on the If (integer) test, it differs from
this test in that Memtest is stored in a statically allocated struct instead of being
directly accessible via a variable. This struct is accessed via get and set functions.

52

B.1.2 Loops

The test functions in these tests take a parameter x. Aside from x two variables are used:
1. integer i of which the value is equal to the current iteration of the loop, starting from
iteration 0, and test memory Memtest.

B.1.2.1 Simple Loops

Memtestis initialized to a value which is unsafe within the context of all statements
within the loop. Each test contains a single loop of 20 iterations. If and only if the loop
counter i is larger than parameter x and the memory is in an unsafe state a defect is
reached. At the start of the 11th iteration, the memory Memtest is set to a safe state.
The initialization of variables and the body of the loop is the same for all of the tests
that belong to this category.

• Loop: for: This test is built around a typical for loop (for (i = 0;

i < 20; i ++) {...}).

• Loop: for, complex: This test is built around a typical for loop (for (;;)

{...; i ++; if (i >= 20) { break ;}}).

• Loop: while+continue: This test is built around a while loop one continue

statement which causes the tenth iteration to be skipped.

1 while(i < 20) {

2 if(i == 9) {

3 i++;

4 continue;

5 }

6 ...

7 i++;

8 }

• Loop: do-while+continue: This test is a slight variation on the Loop: while+continue
test, here a do-while construction is used instead of a normal while loop.

1 do {

2 if(i == 9) {

3 i++;

4 continue;

5 }

6 ...

7 i++;

8 } while(i < 20);

53

B.1.2.2 Loops with arrays

• Loop: for, branching based on values in array: This test is built around an
array of 20 elements of which 19 are set to 0. The value of the element at index
x is set to 1. The elements are accessed sequentialy in a loop containing a single
if statement of which the branch condition is whether the element has a value of
1. The statement(s) in the branch accessed when the value of the element is not
equal to 1 use Memtest, of which the value remains safe within the context of all
statements present in the test code. The statement(s) in the other branch set the
value of Memtest to a value that is unsafe within the context of the statements of
the other branch.

1 for(i = 0; i < 20; i++) {

2 p[i] = 0;

3 }

4 p[x] = 1;

5
6 for(i = 0; i < 20; i++) {

7 if(p[i] == 1) {

8 ... /* Statement(s) that changes the state of the memory

↪→ used in the other branch */

9 } else {

10 ... /* Statement(s) that is/are safe iff the other branch

↪→ has not been executed */

11 }

12 }

• Loop: for, pointer arithmetic: This test is built around an array of 10 elements.
Using pointer arithmetic all elements are accessed sequentialy in a way that could
be unsafe depending on the value of the element. The number of elements that are
assigned a safe value is equal to the value of parameter x, meaning that an x with
any value other than 10 will lead to a defect.

B.1.3 Recursive loops

The tests that belong to this category are similar to the tests of the Simple loops category,
the main difference is that recursion is used instead of for or while loops.

• Loop: recursion: This test contains a recursive function that is called with 20
as value for i. The values passed to the next iteration are the same as the one the
function was called with1, with the exception of i, of which the value is decreased
by 1 each call.

1The state of Memtest , can change, but its location remains the same, meaning that the reference
does not change.

54

1 int recursive_func(int i, int x, reference_to_mem_test) {

2 if(i <= 1) {

3 return 0;

4 }

5
6 ...

7
8 return ... + recursive_func(i-1, x, reference_to_mem_test);

9 }

• Loop: recursion, multiple functions: This test is nearly identical in function
the the Loop: recursion test. The recursive function is split in two with the first
function calling the second and vice versa.

•
1 int recursive_func1(int i, int x, reference_to_mem_test) {

2 if(i <= 1) {

3 return 0;

4 }

5
6 ...

7
8 return recursive_func2(i-1, x, reference_to_mem_test);

9 }

10
11 int recursive_func2(int i, int x, reference_to_mem_test) {

12 if(i <= 1) {

13 return 0;

14 }

15
16 ...

17
18 return ... + recursive_func1(i, x, reference_to_mem_test);

19 }

B.1.4 Miscellaneous

• Goto: This test contains a goto jump to an earlier part of the code, this jump is
executed once. The piece of code between the goto statement and the label this
statement contains an if statement of which one branch is always safe and one
branch that is safe as long as Memtest has the value it was initialized to. The
statement before the goto statement sets the value of Memtest to a dangerous
value (in the context of the aforementioned branch).

• Struct with counter: This test is built around a struct in which some data
is stored that is used within the test. This data is accessed solely using get

and set functions. Aside from this data the struct also contains an integer that
functions as a counter which is initialized to 1. This counter can be incremented

55

and decremented using two functions. If this counter is decremented while the
counter has a value of 1 the data returned by the get function is no longer the same
data as set by the set function, instead, the data returned is dangerous within the
context of the program. In case of the user after free and double free defects, this
test functions a little differently. Here the struct is freed upon decrementing the
counter when this counter has a value of 1, matching a simple reference counting
situation. The struct is allocated using malloc at the start of the program.

56

Appendix C

Performance numbers per defect
for JM2018TS

C.1 Tool performance per defect for JM2018TS (with en-
try point)

57

Divi
de

 by
 ze

ro

Null
po

int
er

de
ref

ere
nc

e

Unin
iti

ali
zed

 va
ria

ble
s (

va
lue

s)

Unin
iti

ali
zed

 va
ria

ble
s (

po
int

ers
)

Int
eg

ers
: o

ve
rfl

ow

St
rin

gs:
 ov

erfl
ow

St
rin

gs:
 un

bo
un

de
d C

op
y

M
em

ory
: d

ou
ble

 fr
ee

M
em

ory
: r

efe
r f

ree

M
em

ory
: z

ero
 si

ze
all

oc
ati

on

M
em

ory
: r

ea
d u

nin
iti

ali
zed

M
em

ory
 le

ak

Fi
les

: a
cce

ss
clo

sed

Fi
les

: d
ou

ble
 cl

ose

Fi
les

: r
eso

ur
ce

lea
k

0

4

8

12

16

20

TP
eFP
uFP

(a) Performance with the default configuration

Divi
de

 by
 ze

ro

Null
po

int
er

de
ref

ere
nc

e

Unin
iti

ali
zed

 va
ria

ble
s (

va
lue

s)

Unin
iti

ali
zed

 va
ria

ble
s (

po
int

ers
)

Int
eg

ers
: o

ve
rfl

ow

St
rin

gs:
 ov

erfl
ow

St
rin

gs:
 un

bo
un

de
d C

op
y

M
em

ory
: d

ou
ble

 fr
ee

M
em

ory
: r

efe
r f

ree

M
em

ory
: z

ero
 si

ze
all

oc
ati

on

M
em

ory
: r

ea
d u

nin
iti

ali
zed

M
em

ory
 le

ak

Fi
les

: a
cce

ss
clo

sed

Fi
les

: d
ou

ble
 cl

ose

Fi
les

: r
eso

ur
ce

lea
k

0

4

8

12

16

20

TP
eFP
uFP

(b) Performance with improved loop analysis

Figure C.1: Performance of Clang on the different types of defects present in the new
test suite

58

Divi
de

 by
 ze

ro

Null
po

int
er

de
ref

ere
nc

e

Unin
iti

ali
zed

 va
ria

ble
s (

va
lue

s)

Unin
iti

ali
zed

 va
ria

ble
s (

po
int

ers
)

Int
eg

ers
: o

ve
rfl

ow

St
rin

gs:
 ov

erfl
ow

St
rin

gs:
 un

bo
un

de
d C

op
y

M
em

ory
: d

ou
ble

 fr
ee

M
em

ory
: r

efe
r f

ree

M
em

ory
: z

ero
 si

ze
all

oc
ati

on

M
em

ory
: r

ea
d u

nin
iti

ali
zed

M
em

ory
 le

ak

Fi
les

: a
cce

ss
clo

sed

Fi
les

: d
ou

ble
 cl

ose

Fi
les

: r
eso

ur
ce

lea
k

0

4

8

12

16

20

TP
eFP
uFP

(a) Performance with the default configuration

Divi
de

 by
 ze

ro

Null
po

int
er

de
ref

ere
nc

e

Unin
iti

ali
zed

 va
ria

ble
s (

va
lue

s)

Unin
iti

ali
zed

 va
ria

ble
s (

po
int

ers
)

Int
eg

ers
: o

ve
rfl

ow

St
rin

gs:
 ov

erfl
ow

St
rin

gs:
 un

bo
un

de
d C

op
y

M
em

ory
: d

ou
ble

 fr
ee

M
em

ory
: r

efe
r f

ree

M
em

ory
: z

ero
 si

ze
all

oc
ati

on

M
em

ory
: r

ea
d u

nin
iti

ali
zed

M
em

ory
 le

ak

Fi
les

: a
cce

ss
clo

sed

Fi
les

: d
ou

ble
 cl

ose

Fi
les

: r
eso

ur
ce

lea
k

0

4

8

12

16

20

TP
eFP
uFP

(b) Performance with improved loop analysis

Figure C.2: Performance of Frama-C on the different types of defects present in the new
test suite

59

Divi
de

 by
 ze

ro

Null
po

int
er

de
ref

ere
nc

e

Unin
iti

ali
zed

 va
ria

ble
s (

va
lue

s)

Unin
iti

ali
zed

 va
ria

ble
s (

po
int

ers
)

Int
eg

ers
: o

ve
rfl

ow

St
rin

gs:
 ov

erfl
ow

St
rin

gs:
 un

bo
un

de
d C

op
y

M
em

ory
: d

ou
ble

 fr
ee

M
em

ory
: r

efe
r f

ree

M
em

ory
: z

ero
 si

ze
all

oc
ati

on

M
em

ory
: r

ea
d u

nin
iti

ali
zed

M
em

ory
 le

ak

Fi
les

: a
cce

ss
clo

sed

Fi
les

: d
ou

ble
 cl

ose

Fi
les

: r
eso

ur
ce

lea
k

0

4

8

12

16

20

TP
eFP
uFP

(a) Performance with the default configuration

Divi
de

 by
 ze

ro

Null
po

int
er

de
ref

ere
nc

e

Unin
iti

ali
zed

 va
ria

ble
s (

va
lue

s)

Unin
iti

ali
zed

 va
ria

ble
s (

po
int

ers
)

Int
eg

ers
: o

ve
rfl

ow

St
rin

gs:
 ov

erfl
ow

St
rin

gs:
 un

bo
un

de
d C

op
y

Mem
ory

: d
ou

ble
 fr

ee

Mem
ory

: r
efe

r f
ree

Mem
ory

: z
ero

 si
ze

all
oc

ati
on

Mem
ory

: r
ea

d u
nin

iti
ali

zed

Mem
ory

 le
ak

Fil
es:

 ac
ces

s c
los

ed

Fil
es:

 do
ub

le
clo

se

Fil
es:

 re
sou

rce
 le

ak
0

4

8

12

16

20

TP
eFP
uFP

(b) Performance when testing safe functions

Figure C.3: Performance of Infer on the different types of defects present in the new test
suite

60

Divi
de

 by
 ze

ro

Null
po

int
er

de
ref

ere
nc

e

Unin
iti

ali
zed

 va
ria

ble
s (

va
lue

s)

Unin
iti

ali
zed

 va
ria

ble
s (

po
int

ers
)

Int
eg

ers
: o

ve
rfl

ow

St
rin

gs:
 ov

erfl
ow

St
rin

gs:
 un

bo
un

de
d C

op
y

M
em

ory
: d

ou
ble

 fr
ee

M
em

ory
: r

efe
r f

ree

M
em

ory
: z

ero
 si

ze
all

oc
ati

on

M
em

ory
: r

ea
d u

nin
iti

ali
zed

M
em

ory
 le

ak

Fi
les

: a
cce

ss
clo

sed

Fi
les

: d
ou

ble
 cl

ose

Fi
les

: r
eso

ur
ce

lea
k

0

4

8

12

16

20

TP
eFP
uFP

Figure C.4: Performance of cppcheck on the different types of defects present in the new
test suite

C.2 Tool performance per defect for JM2018TS, no known
entry point

61

Divi
de

 by
 ze

ro

Null
po

int
er

de
ref

ere
nc

e

Unin
iti

ali
zed

 va
ria

ble
s (

va
lue

s)

Unin
iti

ali
zed

 va
ria

ble
s (

po
int

ers
)

Int
eg

ers
: o

ve
rfl

ow

St
rin

gs:
 ov

erfl
ow

St
rin

gs:
 un

bo
un

de
d C

op
y

M
em

ory
: d

ou
ble

 fr
ee

M
em

ory
: r

efe
r f

ree

M
em

ory
: z

ero
 si

ze
all

oc
ati

on

M
em

ory
: r

ea
d u

nin
iti

ali
zed

M
em

ory
 le

ak

Fi
les

: a
cce

ss
clo

sed

Fi
les

: d
ou

ble
 cl

ose

Fi
les

: r
eso

ur
ce

lea
k

0
2
4
6
8

10
12
14
16
18

TP
eFP
uFP

(a) Performance with the default configuration

Divi
de

 by
 ze

ro

Null
po

int
er

de
ref

ere
nc

e

Unin
iti

ali
zed

 va
ria

ble
s (

va
lue

s)

Unin
iti

ali
zed

 va
ria

ble
s (

po
int

ers
)

Int
eg

ers
: o

ve
rfl

ow

St
rin

gs:
 ov

erfl
ow

St
rin

gs:
 un

bo
un

de
d C

op
y

M
em

ory
: d

ou
ble

 fr
ee

M
em

ory
: r

efe
r f

ree

M
em

ory
: z

ero
 si

ze
all

oc
ati

on

M
em

ory
: r

ea
d u

nin
iti

ali
zed

M
em

ory
 le

ak

Fi
les

: a
cce

ss
clo

sed

Fi
les

: d
ou

ble
 cl

ose

Fi
les

: r
eso

ur
ce

lea
k

0
2
4
6
8

10
12
14
16
18

TP
eFP
uFP

(b) Performance with improved loop analysis

Figure C.5: Performance of Clang on the different types of defects present in the new
test suite

62

Divi
de

 by
 ze

ro

Null
po

int
er

de
ref

ere
nc

e

Unin
iti

ali
zed

 va
ria

ble
s (

va
lue

s)

Unin
iti

ali
zed

 va
ria

ble
s (

po
int

ers
)

Int
eg

ers
: o

ve
rfl

ow

St
rin

gs:
 ov

erfl
ow

St
rin

gs:
 un

bo
un

de
d C

op
y

M
em

ory
: d

ou
ble

 fr
ee

M
em

ory
: r

efe
r f

ree

M
em

ory
: z

ero
 si

ze
all

oc
ati

on

M
em

ory
: r

ea
d u

nin
iti

ali
zed

M
em

ory
 le

ak

Fi
les

: a
cce

ss
clo

sed

Fi
les

: d
ou

ble
 cl

ose

Fi
les

: r
eso

ur
ce

lea
k

0
2
4
6
8

10
12
14
16
18

TP
eFP
uFP

(a) Performance with the default configuration

Divi
de

 by
 ze

ro

Null
po

int
er

de
ref

ere
nc

e

Unin
iti

ali
zed

 va
ria

ble
s (

va
lue

s)

Unin
iti

ali
zed

 va
ria

ble
s (

po
int

ers
)

Int
eg

ers
: o

ve
rfl

ow

St
rin

gs:
 ov

erfl
ow

St
rin

gs:
 un

bo
un

de
d C

op
y

M
em

ory
: d

ou
ble

 fr
ee

M
em

ory
: r

efe
r f

ree

M
em

ory
: z

ero
 si

ze
all

oc
ati

on

M
em

ory
: r

ea
d u

nin
iti

ali
zed

M
em

ory
 le

ak

Fi
les

: a
cce

ss
clo

sed

Fi
les

: d
ou

ble
 cl

ose

Fi
les

: r
eso

ur
ce

lea
k

0
2
4
6
8

10
12
14
16
18

TP
eFP
uFP

(b) Performance with improved loop analysis

Figure C.6: Performance of Frama-C on the different types of defects present in the new
test suite

63

Divi
de

 by
 ze

ro

Null
po

int
er

de
ref

ere
nc

e

Unin
iti

ali
zed

 va
ria

ble
s (

va
lue

s)

Unin
iti

ali
zed

 va
ria

ble
s (

po
int

ers
)

Int
eg

ers
: o

ve
rfl

ow

St
rin

gs:
 ov

erfl
ow

St
rin

gs:
 un

bo
un

de
d C

op
y

M
em

ory
: d

ou
ble

 fr
ee

M
em

ory
: r

efe
r f

ree

M
em

ory
: z

ero
 si

ze
all

oc
ati

on

M
em

ory
: r

ea
d u

nin
iti

ali
zed

M
em

ory
 le

ak

Fi
les

: a
cce

ss
clo

sed

Fi
les

: d
ou

ble
 cl

ose

Fi
les

: r
eso

ur
ce

lea
k

0
2
4
6
8

10
12
14
16
18

TP
eFP
uFP

Figure C.7: Performance of Infer on the different types of defects present in the new test
suite

Divi
de

 by
 ze

ro

Null
po

int
er

de
ref

ere
nc

e

Unin
iti

ali
zed

 va
ria

ble
s (

va
lue

s)

Unin
iti

ali
zed

 va
ria

ble
s (

po
int

ers
)

Int
eg

ers
: o

ve
rfl

ow

St
rin

gs:
 ov

erfl
ow

St
rin

gs:
 un

bo
un

de
d C

op
y

M
em

ory
: d

ou
ble

 fr
ee

M
em

ory
: r

efe
r f

ree

M
em

ory
: z

ero
 si

ze
all

oc
ati

on

M
em

ory
: r

ea
d u

nin
iti

ali
zed

M
em

ory
 le

ak

Fi
les

: a
cce

ss
clo

sed

Fi
les

: d
ou

ble
 cl

ose

Fi
les

: r
eso

ur
ce

lea
k

0

4

8

12

16

20

TP
eFP
uFP

Figure C.8: Performance of cppcheck on the different types of defects present in the new
test suite

64

	Introduction
	Limitations of static analysis
	The scope of this article
	Benchmarking performance
	User experience

	Definitions
	Test suites
	Abstract domains
	Path-sensitivity and alias analysis
	Entry points
	Performance metrics

	The static analysis tools
	Method
	The different kind of detections
	Description of the test suites
	Test suite from Test-driving static analysis tools in search of C code vulnerabilities
	New test suite

	How the test programs were analyzed
	Suite from C&K-2011
	JM-2018TS

	Results
	Defects detectable by the tools
	General trends and differences between test suite results
	Performance per tool
	Timed real world example
	Usability
	Splint
	Cppcheck
	Infer
	Clang
	Frama-C

	Discussion
	Results
	Usability
	Related work

	Conclusion
	Bibliography
	Results in detail
	Splint
	Cppcheck
	Frama-C
	Clang
	Infer

	Test suite information
	Types of tests in JM2018TS
	Simple sequential tests
	Loops
	Simple Loops
	Loops with arrays

	Recursive loops
	Miscellaneous

	Performance numbers per defect for JM2018TS
	Tool performance per defect for JM2018TS (with entry point)
	Tool performance per defect for JM2018TS, no known entry point

