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Abstract

In this thesis, we examine and demonstrate the use of characteristic
formulae for program verification using automated theorem provers/proof
assistants. In particular, we examine the implementation of characteristic
formulae for the CakeML language. CakeML is a subset of the functional
programming language Standard ML, with a verified compiler backend and
a range of tools for verification proofs, implemented in the HOL4 theorem
prover. The formal definitions presented in this thesis are based on those
developed by Arthur Chargueraud in his thesis [§]. The thesis aims to
provide a clear overview of the theory and practise of using characteristic
formulae for program verification proofs.
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Introduction

The traditional way of verifying software using a mechanized proof is to
manually write a logical representation of the behaviour of a program, and
to prove that this representation satisfies a certain specification in the same
logic. Using characteristic formulas, it is possible to compute a representa-
tion of a function that describes the behaviour of a piece of code as a formula
in higher-order logic. This eliminates the need to manually translate code
to logic, thus reducing workload of the verification process and human er-
ror. The CakeML [I2] programming and verification toolset contains an
implementation of this theory for a subset of ML (metalanguage).

In this thesis we research the viability of CakeML’s program verification
method. In order to do this we aim to produce a fully verified implementa-
tion of a simple function double. The function simply takes an integer as
input and doubles it. We will first go through the entire process on paper.
Afterwards we will go through the same process in HOL4, to demonstrate
how the theory is to be used in practice. The process of implementing and
verifying a program using CakeML is documented from start to finish, in-
cluding installation instructions to replicate the development setup used for
the project. We aim to elaborate on the link between the formal defini-
tions of characteristic formulas as defined by Charguéraud [§] and the CF
implementation of CakeML [10] in the HOL4 theorem prover [1].

I would like to than



Chapter 1

Background

1.1 Mechanized software verification proofs

The traditional way of verifying software using a mechanized proof is to
manually write a logical embedding of a program, and to prove that this
representation satisfies a certain specification in the same logic. Using char-
acteristic formulas, it is possible to compute a representation of a function
that describes the behaviour of a piece of code as a formula in higher-order
separation logic. This eliminates the need to manually translate code to
logic, thus reducing workload of the verification process and human error.

1.2 HOL

1.2.1 Overview

HOLA4 is an interactive theorem prover for higher order logic. It is a pro-
grammable environment for specifying and proving theorems. HOL is pro-
grammed in SML (Standard ML). HOL4 is only one of four major HOL-type
theorem provers, all with essentially the same basic logic.

Other interactive theorem provers in the HOL-family are HOL Light [5],
ProofPower [4], HOL Zero [2] and Isabelle/HOL [3]. HOL Light started out
as a minimalistic implementation effort of HOL, but has since grown to a
major theorem prover with many supporting libraries, even though its core
code is still modestly simple.

The precursor to all HOL-systems is LCF [9]. LCF is a proof-checking
program developed at Stanford University in 1972 by Robert Milner. Mil-
ner also designed the programming language ML underlying both LCF and
modern day HOL. Notable members of the original LCF team include Whit-
field Diffie, now well-known in cryptography. An early problem of LCF was
that proofs were stored as data structures representing the proof, which
consumed a significant amount of memory. To repair this, Milner devised



a representation of theorems as an abstract data type, which had axioms
as predefined instances and inference rules as operations over the datatype.
Strict type checking ensured that the values of this type could only be cre-
ated when they could be obtained from the axioms by applying the inference
rules. This idea of theorems as an abstract datatype is fundamental to mod-
ern day HOL.

Milner designed ML in order to make the set of commands used in LCF
easily extendable, and ML was strictly typed in order to support the theorem
datatype. ML was made as a functional programming language so that
subgoaling strategies (named “tactics” by Milner, they are still called tactics
in HOL) could be implemented as functions and combining tactics could
be implemented as higher-order functions taking tactics as argument, and
returning them as a result. Standard ML design was strongly influenced by
the needs of theorem proving, which is why it, and its derivative languages
(such as OCaml), remains a standard for theorem prover implementation
today.

Development of HOL started at Cambridge by Mike Gordon, when he
was using LCF for hardware and started making his own alterations and
additions to the program. HOLS8S8 was the eventual result of the development
process started by Mike Gordon. HOLS88 was developed alongside its own
version of ML, which was implemented in Common Lisp. Further iterations
of HOL88 (HOL90, HOL98 and HOL4) were all implemented in Standard
ML. HOL4 is the latest iteration and is the only version that is still being
maintained.

1.2.2 Installation

For the case study HOL4 was used alongside the text-editor emacs, which
made the specification of theorems and the construction of proofs very con-
venient. This section will explain how to replicate the setup used in the case
study. It is assumed you are working on a Unix-like operating system such
as Linux or MacOS.

First HOL4 needs to be installed. The program will have to be compiled
on your machine. You can download the code from github:

git clone git://github.com/HOL-Theorem-Prover/HOL.git

After cloning the repository you will have a directory HOL containing all
the current source files.

HOLA4 is built in Standard ML. Standard ML currently has two major
implementations: Moscow ML and Poly/ML. For the case study Poly/ML
was used, as it is the preferred implementation of ML for building large
projects such as HOL4. The source tarball can be downloaded here:

https://github.com/polyml/polyml/releases



Extract the tarball and build Poly /ML:

./configure
make
make install

Now that you have an SML compiler, HOL can be built:

polyml < tools/smart-configure.sml
bin/build

For making interaction with HOL significantly easier it is recommended to
install the emacs text editor for your distribution. This can probably be
done through your distribution’s package manager. Add this line to your
emacs init file (*/.emacs or “/.emacs.d/init.el):

(load "<path>/HOL/tools/hol-mode")

A guide by Magnus O. Myreen[I4] further elaborates on the use of emacs
with HOLA4.



1.3 CakeML

1.3.1 Overview

The implementation of CF studied in this thesis is the implementation of
CakeML [18][12][L7][10)[15][16]. CakeML is a functional programming lan-
guage that is a subset of Standard ML, with an environment of tools for
program verification.

Ecosystem
Proof-producing synthesis Verified compiler backend

HOL functions Eudl CakeML AST Eadl CakeML AST —>

Verified parsing Verified type inference

LN — N TEIRA S — RETEI RS — typeable yes/no

Proof-producing verification-condition generation

(oG — Petirta-at etk j.e. a ‘verification condition’

The most significant part of the CakeML ecosystem is the verified compiler
backend[17] which takes a CakeML abstract syntax tree and produces ma-
chine code for 5 different architectures: x86-64, ARMv6, ARMv8, MIPS-64,
and RISC-V. The compiler passes through a total of 12 intermediate lan-
guage, abstracting away high level features, in order for verification to take
place at the right levels of semantic detail. It has been developed entirely
within the HOL4 theorem prover.

The CakeML compiler has two different frontends, one of which is the
translator [15], which generates CakeML abstract syntax trees from HOL4
specifications in higher order logic. The translator tool also proves that the
generated CakeML behaves the same as the HOL4 function. This theorem
can then be used with proofs of claims in the logic, which transfers to the
program through this generated theorem. The other frontend is a verified
parser that generates ASTs from CakeML source code.

This thesis focuses on the CakeML implementation of Chargueraud’s
CFML verification framework. This is a verification framework using char-
acteristic formulas for the Caml programming language.



1.3.2 Grammar

CakeML is syntactically a subset of Standard ML. Its grammar is described
below, as taken from [12]:

id:=x| Mn.x
cid:==Cn| M.Cn
t:=int |bool |unit |« | id | t id| (t(,t)")id
| txt |t => t |t ref | (1)
[:=1i|true|false| () | []
p==a|l|cid|cidp|ref p| | (p(,p)") | p(,p)]
|p::p
e=1]id|cid]| cid e| (e,e(,e)*) | [e(,e)*]
| raise e | e handle p => e(|p=>e)*
|fn x => e|ee]| ((e;)"e) |uop e| e op e
| if e then e else e|case e of p => e(|lp=>e)*
| let (ld| ;)" in (e;)* e end
ld==val v = e|fun 2y =c(and v y" =¢)*
uop :==ref | ! |
opi==|:=|+|-|*|div|mod |<|<=|>|>=|<> ] ::
| before | andalso | orelse
c=0Cn| Cnoft
tyd :== tyn = c(lc)*
tyn = (a(, o))z |ax|x
d = datatype tyd (and tyd)* | valp=e
| fun zyt =e(and zy* =¢)*
| exception ¢
sig:= :>sig (sl| ;)" end
sl:=val x :t | type type | datatype tyd (and tyd)*
top := structure Mn sig’ = struct (d | ;)* end; | d; | e;

where x and y range over identifiers (must not start with a capital letter), «
over SML-style type variables (e.g. ’a), Cn over constructor names (must
start with a capital letter), Mn over module names, and i over integers.
1.3.3 Formalization

CakeML’s semantics are defined using so-called functional big-step seman-
tics [16]. In contrast to conventional big-step semantics, these are defined



by recursive equations rather than inductively defined relations. Initially
CakeML semantics were defined using a combination of big-step and small-
step operational semantics. A functional big-step semantics is essentially an
purely functional interpreter equipped with a clock, to ensure totality of the
interpreter even if it is run on a diverging program. The definition of the
semantics can be found in the CakeML repository [18§].

1.3.4 Installation
You can get CakeML by cloning the repository:

git clone https://github.com/CakeML/cakeml
And you can build it using Holmake:

cd cakeml
~/HOL/bin/Holmake

This does require a lot of RAM (~16 GB) and takes a very long time (~20
hours) so I recommend only building the parts you need. Running Holmake
in the directory cakeml/characteristic/examples is enough for following
along with the examples in this thesis.



Chapter 2

Characteristic Formulas

2.1 Overview

The concept of characteristic formulas originates in concurrency theory, as
the characterization theorem of bisimulation equivalence [7]. Developed by
Mathew Hennessy and Robin Milner [I1], this theorem states that two bisil-
imar processes are equivalent if and only if they satisfy the same formula
in Hennessy-Milner logic. Bisimilarity is a notion to describe behavioural
equivalence of processes, and Hennessy-Milner logic is a logic used to specify
labelled transition systems. Other iterations include Graf and Sifakis’ trans-
lation from a term in CCS [6], Milner’s calculus of communicating systems
[13], to a formula in a modal language that represents an equivalence class
with respect to observational congruence (a weaker definition of equivalence
than bisimilar equivalence) of terms in CCS.

A characteristic formula, in the context of this thesis, is a higher-order
logical formula that describes the behaviour of the program it is generated
from. These types of characteristic formulas have been developed by Arthur
Charguéraud for the Caml language. Charguéraud’s work includes software
to generate characteristic formulas for Caml programs in Coq. These for-
mulas have been proven sound and correct (on paper) with the respect to
the semantics of the language. The software studied in this thesis is the
CakeML implementation of Charguéraud’s work, since in combination with
the other CakeML tools, such as the verified compiler and the translation
tool, this provides an elegant framework for verified programming. Char-
acteristic formulas are generated by a recursive function that generates the
formula top-down. In order to illustrate how this work, we will define a
very simple functional programming language, along with a definition of the
generation function over this language.

10



2.2 Example language

For illustration we will use a very simple language containing variables,
integers, booleans and basic constructions such as let and if. For simpli-
fication purposes we do not define a type system for this language, but
we assume that some type system exist. In our proofs we type all pro-
gram values as ‘MLVal’ types. Although the language does not contain un-
bounded lambda expressions, every lambda expression can be constructed:
(Az.t)v=letrec f = Az.tin fo.

x, f = variables
n = integers
b = {true, false}
vi=x|n|b|ufrct
t:==v|(ft)|iftthentelset|let z=tint|letrec f=Ax.tint

Before a characteristic formula is generated, a program is reduced to a ‘nor-
mal form‘, where function arguments and if-statement conditions are bound
to let-expressions. The normal form ensures an evaluation order that makes
it possible for characteristic formulas to abstract away from these terms,
making it possible to prove something general about the term and using
this in the rest of the proof, when this term is replaced by a quantification.
Take the characteristic formula for the let-rule:
llet z =t in to] = AP.3P". [t1]P' A (Vx. P'z = [t2] P)

Here P and P’ are postconditions, predicates of type MLVal — Prop, Prop
being the type of logical propositions, and MLVal is the type of some value in
the language. When proving this characteristic formula, you instantiate P’
as some predicate, prove that this predicate is true for ¢1, and then abstract
away from this term, using P’z as an abstract representation of what t;
does. This makes proving the characteristic formulas of if-statements easier;
we first prove whether ¢; is true or false, and abstract away from the term,
using the fact that it evaluates to either true or false. The normal form is
given by the function nf:

11



nflv) = v
nf(ft) =let x =nf(t) in fz
with x a fresh variable
nf(if t. then t; else t.) =let ¢ = t. in (if ¢ then nf(t;) else nf(te))
with ¢ a fresh variable
nf(let x =t in ta) = let x = nf(t1) in nfits)
nf(let rec f = Ax.ty in to) =let rec f = Ax.nf(t1) in nf(ts)

The grammar of programs in normal form is then:

x, f = variables
n = integers
b = {true, false}
vi=x|n|b|pufret
t==v|(fv)|ifvthentelset|let x =tint|let rec f=Az.tint

Function closures (uf.Az.t) are used to represent functions as a value. These
are not found in actual program code but are used in the natural semantics
rules. The semantics (for closed programs):

([f = ufArzti]lz = volt) 4 v

App
v | v VAL ((ufAxtr)ve) | v
t1 J v [t = wvta J v ([f = pfArzti]ta) U v
: ET : REC
(let x =t1in ta) | v (let rec f=Azx.tyinte) | v
tl u v t2 ll v
if true then ¢1 else to | v IrT if false then t1 else to | v IrF

12



The substitution operation pt, where the domain of p only contains free
variables in ¢, is defined as:

. v’ if (x—v)ep
a x otherwise

o =n

pb =10

plpfArx.t) = pfix.pt
p(fv) = (pf) (pv)
p(let x =t1 in tg) = let x = pt; in pto
p(let rec f = Az.ty in to) = let rec f = Ax.pty in ptay
p(if v then t; else to) = if v then pt; else pty
where x is a variable, n is an integer and b is a boolean.

2.3 Definition of CF

Now that we have established a small example language, we can define the
function that calculates characteristic formulas. The characteristic formula
of a term ¢ is notated as [t]. P denotes the postcondition, a predicate of
type MLVal — Prop, Prop being the type of logical propositions, and MLVal
being the type of program values.

[v], =AP. P (v),
[f v], =AP. AppReturns (f), (v), P
[if v then t1 else to] , =AP. ((v), = true = [t1],P) A ((v), = false = [t2],P)
[[let r=1t; in tg]]p =\P.3P. [[tl]]ppl VAN (VX P'X = [[t2]](p,z»—>X)P)
[let recf = Az. t1inty], =AP.VF.
(VX.VP'. [t1](p, s Fosx)P' = AppReturns F X P')

= Ht?ﬂ(p,fHF)P
The characteristic formula also takes a substitution p, to take care of the
quantifications over variables in the code. For [t],, the domain of p only

contains free variables in ¢, it cannot contain any variables bound in ¢ (this
also follows from the definition of []). This substitution is applied as such,

13



where z is a variable, n an integer and b a boolean:

()p =pa
(n)p=n
<b>p =b

(ufdxt), =pf = Ae.pt

2.4 Definition of AppReturns

In Chargueraud’s CFML the predicate AppReturns is used to specify func-
tions. Because program functions can fail or diverge, and logical functions
cannot, an abstract type Func is needed to describe program functions in
the logic. This type can be viewed as the set of all function closures. Values
of this type are specified using the predicate AppReturns. Informally, the
proposition AppReturns f x P states that a function f applied on argument
x returns a value satisfying P. The type of AppReturns is then:

AppReturns : YAB. Func — A — (B — Prop) — Prop

Prop is the type of propositions, expressions that can be true or false.
AppReturns is defined in terms of the predicate AppEval. AppEval is one of
three axioms that the CEML library is built on. The proposition AppEval
f v o' states that the application of f on v produces the value v'. The type
of AppEval is:

AppEval : VAB. Func -+ A — B — Prop
Using AppEval we can intuitively define AppReturns:
AppReturns f v P = 3. AppEval fv v APV

which that the application of f over v produces a values v’ satisfying P.
Chargueraud gives an interpretation of the AppEval predicate in his sound-
ness proof of CFML. In our example we work with a very small example
language and abstract higher order logic and thus we are disregarding the
translation that has to take place between Caml and Coq values. The for-
mal interpretation of AppEval then comes down to the following proposition:

AppEval fvdo' = fold

14



2.5 Soundness and completeness

In this section the defined characteristic formulas will be proven sound and
complete with respect to the defined big-step semantics of the example lan-
guage. Before we start we need to prove some preliminary lemmas.

Lemma 3.1.1 (Substitution lemma for values) Let v' be a value in
the normal form language, let v be some value and let p be a substitution
not containing ¥, and only containing free variables in v. Then:

<[y = U]U,>p = <UI>(p,yr—>v)

Proof For values that are not the variable y or function closures the propo-
sition trivially holds. If v’ is the variable v, then:

<y>(p,y»—>v)
=[p,y = v](y)

If v/ is a closure puf = A\z.t:
(f = Az.t)(pysv)
=(uf = Az.[p,y — v]t)
=pf = Az.p(ly — vlt)
=(uf = Az.ly = v]t),
=(ly = vl(uf = Az.1)),

Lemma 3.1.2 (Substitution lemma) Let ¢ be a term in normal form
with a free variable x, let v be some value and let p be a substitution not
containing z. Then:

[[[x = U]t]]p = [[t]](p,xr—w)

Proof With induction over the structure of t. When we encounter a value
we apply Lemma 3.1.1.

15



Soundness says that if the characteristic formula of a term ¢ holds for a
some postcondition P, then ¢ will reduce to some value r for which P holds,
according to the big-step semantics. It essentially means that the character-
istic formula describes the corresponding program correctly. The soundness
of our CF definition is described by the following theorem:

Theorem 3.2 For every term ¢, postcondition P and substitution p (where
p contains the free variables in t) it holds that, if the characteristic formula
of t satisfies P then t reduces to some value r for which P holds. Formally:

Vt.VP.Vp.[t],P = Fr.pt L rAPr

We prove this theorem by induction over the structure of ¢, proving that this
theorem holds for every CF rule, starting with the non-recursive rules. Since
the CF corresponds closely to the semantics, this works quite intuitively.

Proof: We prove theorem 2.1 by induction over the structure of ¢.

case [v],: Assume [v],P, then P (v), holds, and by the first substitution
lemma P (pv) holds. According to semantics rule VAL, (pv) | (pv). Then
3r. (pv) § r A Pr.

case [fv],: Assume [fv],P. Then AppReturns ( f), (v), P gives us AppReturns (pf) (pv) P
by the first substitution lemma. From the definition of AppReturns we get

that there exists a v’ such that AppEval (pf) (pv) v' A P v'. The definition

of AppEval then gives us (pf) (pv) | v/, which is equivalent to p(f v) | v'.

case [if v then t; else t3],: We have [t1],P = 3r.pt1 | r A Pr and

[t2] ,P = 3r.pta | rAPr by the induction hypothesis. Assume [if v then ¢; else t5],P.
Then we know (v = true = [t1],P) A (v = false = [t2],P). For the case

that v = true, we know by the induction hypothesis that Jr. pt; | » A Pr.

We can then apply rule IFT, which gives us 3r.if true then pt; else pts | r,

which is the same as Jr. p(if true then ¢ else t3) |} r Equivalently for the

case where v = false.

case [let x = t; in to],: Assume [let x = ¢1 in 3] ,P, which gives us 3P". [t1],P'A
(VX. P'X = [ta](pzsx)P) - We then have to find an r such that p(let x =

t1 in t2) § r and P r. By the induction hypothesis we have that VP. [t;],P =
dri.pty I 11 A Pri. We can instantiate this P with P’ and thus get
Jry.pty I 71 A P'ri. We can now instantiate X in our assumption with

this r1, so we have [t2](, zr,) P- We can then use the induction hypothe-

sis, giving us Jra. [p,x — r1]ta | roa A Pra. Since x ¢ p, this is equivalent to
stating 3Jry. [x — r1]pte | 72 A Pry. From the semantics rule LET we can
conclude that let © = pty in pty | 7o and thus p(let x = 1 in t3) | ro.

16



case [let recf = Az.t1 intz],: The assumption is VE. (VX.VP'. [t1](,, fs ros x) P =
AppReturns F X P') = [ta](, s P- We first prove the part between
the brackets, instantiating F' with (uf. A\x. pt;). We take an arbitrary X
(whose value we will denote with v1) and P’, giving us the assumption
[t1](p, s (ufraptr) o) P’ and goal AppReturns (uuf. Ax. pt1) v1 P'. We can
use the induction hypothesis to get 3ry. [p, f — (uf. Az.pt1),z — vi]t1 |
r1 A P'rq, which is equivalent to 3rq.[f — (uf. Ax.pt1),x — vi]pt; |
ry A P'ry.

From the semantics rule APP we get that (uf = Az. pt;) vy |} 7. This
gives us AppEval (uf. Az. pt1) v1 r1 and thus AppReturns (uf. Az. pt1) vy P’.

We now have that [t2](, s (ufrz.tr)) P- We use the induction hypoth-
esis to get Jra.[p, f — (uf.-Ax.t1)]ta § r2 A Pry, which is the same as
Jro. [f = (uf. Ax.t1)]pta | ro A Pre. Using the semantics rule REC we then
get Jry. (let rec f = Ax.pty in pta) | ro A Pry and thus Jry. p(let rec f =
Ax.t1 in tg) UroAPry

Completeness is the converse of soundness. If soundness states that charac-
teristic formulas describe their corresponding language, then completeness
means that for every program that satisfies a set of postconditions, there
is a characteristic formula that holds for exactly those postconditions. It
states that for any term there is a corresponding characteristic formula that
describes its behaviour. In other words, that any correct program can be
proved correct using characteristic formulas. If a term ¢ runs and returns
some value v, then the characteristic formula of ¢ will hold for the most
general specification of t. In order to prove the completeness of CF, we will
need a definition of this most general specification. Completeness can then
be defined as, for a term ¢ and a value v:

tho = []( mes) (2.1)
Here (mgs,) denotes the most general specification of term ¢. For an ordinary
v containing just a value, this most general specification is just (= v), the
partial application of equality on v, but if v contains a function this will not
work.

17



2.6 Example of CF

2.6.1 Example program

The calculation of a CF will be demonstrated in detail on a simple exam-
ple program double, which is a simple recursive program that doubles its
input. It is by no means efficient but since it contains most of the language
constructs it is a good example.

let rec double =
AZ.
if (zero x) then 0
else let y = double (pred; z) in
sucy y
in

double

It contains members of the families of functions pred,, and suc,, which are
unbound in this program. They apply a predecessor or successor function n
times. It also contains the function zero, which checks if its argument is 0.
These can be seen as library functions. In our example proof we will assume
some specifications about them:

Vx. AppReturns pred,, z (Av.v =z —n)
V. AppReturns suc, z (Av.v =z +n)
Vx. AppReturns zero z (Av.z = 0 = v = true A x # 0 = v = false)

We will also substitute them implicitly in the CF calculation.

2.6.2 CF Calculation

First the program needs to be reduced to the normal form described in
section 3.2, where terms in if-conditions and function arguments are instead

18



bound by a let-expression:
let rec double =
AZ.
let a = (zero x) in
if @ then 0
else let b = (pred; x) in
let y = double b in
sucg y
in

double

We then apply the CF function ([]):

[let rec double =
Ax.
let a = (zero x) in
if @ then 0
else let b = (pred; x) in
let y = double b in
sucg y
in
double
Jo

First the let rec is calculated:

19



AP.VD.
(VX.VP'.
[let a = (zero x) in
if @ then 0
else let b = (pred; z) in
let y = double b in

sucs y

/
]] (double — D,z X) P

=
AppReturns D z P’
)
-
[double](gouble —n) P

Here P is a predicate of type A — Prop and double is of type Func.
We calculate the let a expression first:

[let a = (zero x) in
if @ then 0
else let b = (pred; =) in
let y = double b in

/
suc2 Yl (double s D,z x) P

Which becomes:

20



ap”.

[(zero )] (double s D,z x) P

(VA.
P'A

Jif a then 0
else let b = (pred; x) in
let y = double b in

/
Suca y]] (double —D,z+— X, a—A) P

First we calculate [(zero x)] (double D,z x) P, which becomes AppReturns zero X P".
Then we calculate the CF for the if-statement:

[if a then 0O
else let b = (pred; z) in
let y = double b in

/
Suca yﬂ (double —D,z—X,a—A) P

Which is equal to:

A= true = P'0

A = false =
[let b = (pred; x) in
let y = double b in

/
Suca y]] (double —D,z—X,a—A) P

We also applied ([]) on 0, which is a literal and just becomes the application
of predicate P’ on 0. Then we calculate the CF of the expression in the else-
part:
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[let b = (pred; z) in
let y = double b in

/
Suca y]] (double =D, z—X,a—A) P

Which is the CF of two nested let-expressions. Since we have already
seen how the CF of a let-expression is calculated we do the two nested
expression in one step:

IpP".

1"
[[predl JJ]] (double —D,x— X,a—A) P

VB.P"B =
ElP”/.

[double b] (double Dz X s 4,0 B) P

VY.P"Y =

/
[suca Yll(double s D,z X a5 A,bs B,y V) P

The few remaining expressions are all function applications, which become
AppReturns pred; X P”, AppReturns D B P” and AppReturns (+2)Y P’.
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Putting everything together, the full characteristic formula of this pro-
gram becomes:

AP.VD.
(VX.VP.
apP’.
AppReturns zero X P”
A
(
VA.P"A
=
A= true = P'0
A
A = false =
IpP”.
AppReturns pred; X P”
A
VB.P"B =
ap”.
AppReturns D B P"”
A
VY.P"Y =
AppReturns sucy Y P’

)

=
AppReturns D x P’
)
=

DP
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2.6.3 Example Proof

As a demonstration of the power of characteristic formulas in correctness
proofs, we will show a proof of a specification for the program double, using
the characteristic formula calculated in the previous section. An obvious
specification for the program double would be:

Vr.Vn.n=2+x = (doublez) =n

The characteristic formula is:

AP.VD.
VX.VP.
[let a = (zero x) in
if @ then 0
else let b = (pred; z) in
let y = double b in

suce ¥

/
[ (@oubles D,z x) P

AppReturns D X P’

PD

Also recall the assumptions we made about pred,,, suc,, and zero:

Va. AppReturns pred,, z (Av.v =2 —n)
Va. AppReturns suc, = (A\v.v =z + n)
V. AppReturns zero z (Av.z =0 = v = true A x # 0 = v = false)

We instantiate P as our specification: P = (Af.Vz.Vn.n = 2x2x —
AppReturns f z (Av.v = n)) and D as double. Note that double is a variable
in the language, D (in the characteristic formula below) is a bound variable
that quantifies over all closure values, and double is some function closure
(this can be seen as the actual value that the variable double in the code
is bound to, but is actually more general). This gives us the following
proposition:
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VX.VP'.
[let a = (zero x) in
if @ then 0
else let b = (pred; z) in
let y = double b in
sucg y

] Boubleesx) T
(double—double,z+— X)

AppReturns double X P’

Vz.Vn.n =2+x = AppReturns double z (= n)

We prove this by induction over x. For the base case, we instantiate X
as 0 and P’ as (A\v.v = 0). We have to prove the left side of the upper
implication, which is:

apP”.
AppReturns zero0 P”

VA.P"A

[if a then 0O
else let b = (pred; x) in
let y = double b in

sucz y]] (double—double,z+—0,a— A) P

We instantiate P” as (Av.v = true), which proves the first part of the
conjunction. We then have to prove the right side of the implication in the
second part of the conjuction, which is:

25



A= true = (A.v=0)0

A = false =
[let b = (pred; z) in
let y = double b in

/
sucy y] (doublems double,ar0)

We have that A = true, so both parts of the conjunction are trivially true.
This concludes the proof of the case where z = 0.
For the inductive case we have that

n =2%xr = AppReturns double z (= n)
for some n and x. We have to prove:
n' =2% (x+1) = AppReturns double x + 1 (= n)
for some n’, which we will instantiate as n + 2.

We instantiate VX with 2 4+ 1 and VP’ with (Av.v = n + 2) in the CF and
we once again have to prove the left side of the implication:

apP”.
AppReturns zero (z + 1) P”
VA.P"A
[if a then 0

else let b = (pred; z) in
let y = double b in

sucz y]] (double—double,z—(z+1),a—A) (AU v=n-+ 2)

We instantiate P’ as (Av.v = false), since we have that x > 0 and thus
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x + 1 # 0. We then have to prove
A= true = (AWw.v=n+2)0

A = false =
[let b = (pred; x) in
let y = double b in

sucz y]] (doubler~double,z+(z+1)) ()\'U v=n+ 2)

We have that A = false which makes the first part of the conjunction trivially
true, so now we have to prove:

ap”.
AppReturns pred; (z + 1) P”
A
VB.P"B =
ElP//,.

AppReturns double B P"”

VY.P"Y =
AppReturns suce Y (Av.v =n+2)

Instantiating P” with (Av.v = x) gives us AppReturns pred; (z+1) (Av.v =
x), which is true. In the second part of the conjunction, we have to prove
the right side of implication. We instantiate P as (Av.v = n). We
have (Av.v = x) B so by application of the induction hypothesis we have
AppReturns double B (Av.v = n). Then we have AppReturns sucy Y (Av.v =
n+2), since Y = n. We now have that AppReturns double (z + 1) (Av.v =
n + 2), proving the inductive case.
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2.7 Example in CakeML

Our example program is easily translated to actual CakeML code:

fun double x =
if (x = 0)
then O
else (let val y = (double (x - 1)); in (y + 2) end);

Then we set up our proofscript. We need the following libraries:

open preamble
open ml_translatorTheory cfTacticsBaselLib cfTacticsLib
local open ml_proglib basisProgTheory in end

The library ml_translatorTheory contains various predicates to describe
relations between HOL logic values and values in the deep embedding of
CakeML. These predicates will be used in specifications. The libraries
cfTacticsBaseLib and cfTacticsLib contain the various tactics used in
CF proofs. ml_progLib is used for managing the state after evaluation of
toplevel declarations (such as the declaration of our double function). We
fetch a basic state from basisProgTheory containing basic defintions and
comes with specifications for these definitions:

val basis_st =
ml_progLib.unpack_ml_prog_state
basisProgTheory.basis_prog_state

We can now define our function:

val double_def = process_topdecs
‘fun double x =
(if (x = 0)
then O
else (let val y = (double (x - 1)); in (y + 2) end));*

This definition is then added to the basis state:

val st = ml_proglLib.add_prog double_def ml_progLib.pick_name basis_st
Now we can start proving a specification for double.

val double_spec = store_thm ("double_spec",

Specifications for CF proofs should be of a certain form, as explained in
cakeml/characteristic/examples/cf_tutorialScript.sml, found in the
CakeML repository:
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'xl..xn argvl.. argvm.

facts_about_xi_argvj x1 .. xn .. argvl .. argvm ==>

app (p:’ffi ffi_proj) ~(fetch_v "name" st) [argvl, argv2,...
precondition postcondition

where

e name is the name of the function in the toplevel declaration we added
to the m1_prog_state

e st is the state containing the function

e x1, ..., xn are values from the logic (HOL-values) used in the specifi-
cation
e argvl, ..., argvm are the arguments of the function, as values of the

deep embedding (cakeML values as represented in HOL4 logic)

e facts_about_xi_argvj contain predicates from m1_translatorTheory
that relate values of the logic (xi) to values of the deep embedding

(argvj)

e precondition is a heap predicate (of type hprop), and describes the
state of the memory heap before execution of the function. The syntax
for heap predicates we will use includes:

— emp, the empty heap

— & P, where & is an operation that lifts a boolean value P: bool
to the level of heap predicates

e postcondition is a heap predicate which describes the state after
execution of the function. A function can either return a value or
raise an exception, there are helper functions that can deal with either
case:

— POSTv v. Qis a post-condition that asserts that execution of the
function always returns a value, which in this case is represented
by v, and that the heap satisfies heap predicate Q. Usually Q also
specifies what value v should have.

— POSTe v. Q works much the same, but asserts that execution of
the function will always raise an exception.

— POST Qv Qe is the general case. Qv is a post-condition where the
function returns a value, and Qe is a post-condition where the
function raises an exception.

e the exclamation mark ! represents a universal quantifier (V)
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Now that we know what CF-specifications should look like, we can define a
specification for double:

Ix xv.

NUM x xv ==>

app (p:’ffi ffi_proj) ~(fetch_v "double" st) [xv]
emp (POSTv v. &NUM (2 * x) v)

This specification states that, given a HOL-value x and a value of the deep
embedding xv, if NUM x xv, where NUM is a predicate from m1_translatorTheory
which states that xv represents a natural number x in the deep embedding,
the application of the top level declaration double in the state st on xv will
satisfy the precondition emp (since it is a pure function) and postcondition
(POSTv v. &NUM (2 * x) v) which states that the value which the appli-
cation of double reduces to will be a representation of the number 2 * x in
the deep embedding. In this specification, the predicate app fulfills the same
role as the predicate AppReturns in the formal definitions of this chapter,
and the specification of double in the pen-and-paper proof. The specification
in HOL is in essence the same as the specification in the previous section,
but in the pen-and-paper proof we ignored that the program logic and proof
logic were different, and in HOL these layers are made explicit.

The mechanized proof of this specification is very similar to the pen-
and-paper proof. We will use induction on the argument, x:

Induct_on ‘x°
which results in the following sequents:

Ixv. NUM x xv app p double_v [xv] emp (POSTv v. &NUM (2 * x) v)

NUM (SUC x) xv app p double_v [xv] emp (POSTv v. &NUM (2 * SUC x) v)

Ixv. NUM O xv app p double_v [xv] emp (POSTv v. &NUM (2 * 0) v)
We then calculate the CF of double in state st:
xcf "double" st

and start proving the base case:

cf_let (SOME "a")
(cf_app p (Var (Short "=")) [Var (Short "x"); Lit (IntLit 0)])
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(cf_if (Var (Short "a")) (cf_lit (IntLit 0))
(cf_let (SOME "b")
(cf_app p (Var (Short "-")) [Var (Short "x"); Lit (IntLit 1)]1)
(cf_let (SOME "y")
(cf_app p (Var (Short "double")) [Var (Short "b")])
(cf_app p (Var (Short "+")) [Var (Short "y"); Lit (IntLit 2)1))))
(...) emp (POSTv v. &NUM O v)

The CF looks different from the CF calculated by hand, because the program
is first reduced to a ’normal form’;, in which if-statement conditions get
replaced by a variable bound by a let-expression which binds this variable
to the expression that was in the condition. In our pen-and-paper proof,
we also treated operators on numbers, such as 4+, — and =, more implicitly
for simplification, but here they become function applications. Since the
top-level expression is a let-expression, we use the tactic xlet. As in our
paper proof, we have to provide an postcondition when proving statements
about a characteristic formula of a let-expression:

xlet ‘POSTv bv. &BOOL T bv‘

In this case, since we have NUM 0 xv, which means that x is 0 in the deep
embedding, and the condition expression is x = 0, we instantiate the post-
condition of the let-expression with POSTv bv. &BOOL T bv which states
that the bound expression reduces to "True’ in the deep embedding.

0. NUM O xv
1. BOOL T bv
cf_if (Var (Short "a")) (cf_lit (IntLit 0))
(cf_let (SOME "b")
(cf_app p (Var (Short "-")) [Var (Short "x"); Lit (IntLit 1)]1)
(cf_let (SOME "y")
(cf_app p (Var (Short "double")) [Var (Short "b")])
(cf_app p (Var (Short "+")) [Var (Short "y"); Lit (IntLit 2)1)))
(...) emp (POSTv v. &NUM O v)

cf_app p (Var (Short "=")) [Var (Short "x"); Lit (IntLit 0)] (...) emp
(POSTv bv. &BOOL T bv)

Now we have to prove that, given this postcondition, the program is correct,
but also that the postcondition holds for the bound expression x = 0. The
latter will be proved first, the second sequent describes this case. It states
that the application of the function = on arguments x and 0 will satisfy the
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precondition emp and the postcondition described before. The tactic used
to deal with a CF of an application expression does not specify types, so we
will need to prove an extra theorem for type specivity:

val eq_v_NUM_thm = Q.prove(‘(NUM --> NUM --> BOOL) $= eq_v°,
metis_tac[DISCH_ALL mlbasicsProgTheory.eq_v_thm,EqualityType_NUM_BOOL]) ;

We then use the more specific tactic xapp_spec along with this theorem:
xapp_spec eq_v_NUM_thm

which results in:

7H2 x1 x0.
(NUM %0 xv /\ NUM x1 (Litv (IntLit 0))) /\ emp ==>> emp * H2 /\
(POSTv v. &BOOL (x0 = x1) v) *+ H2 ==+> (POSTv bv. &BOOL T bv) *+ GC

and can be simplified to:
xsimpl

NUM O xv

?x0. NUM x0 xv /\ !'v. BOOL (xO0 = 0) v . BOOL T v

Where ? represents an existential quantifier (3). We instantiate x0 with 0
and use a rewrite tactic £s[] to prove this subgoal:

gexists_tac ‘0°
NUM 0 xv /\ !v. BOOL (0 = 0) v . BOOL T v
fs [

Goal proved.

Remaining subgoals:
val it =

0. NUM O xv
1. BOOL T bv

cf_if (Var (Short "a")) (cf_lit (IntLit 0))
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(cf_let (SOME "b")
(cf_app p (Var (Short "-")) [Var (Short "x"); Lit (IntLit 1)])
(cf_let (SOME "y")
(cf_app p (Var (Short "double")) [Var (Short "b")])
(cf_app p (Var (Short "+")) [Var (Short "y"); Lit (IntLit 2)1)))
(...) emp (POSTv v. &NUM O v)

We use the tactic xif for dealing with a CF of an if-expression:
xif

b.
BOOL b bv (b cf_lit (IntLit 0) (...) emp (POSTv v. &NUM O v))
(=b
cf_let (SOME "b")
(cf_app p (Var (Short "-")) [Var (Short "x"); Lit (IntLit 1)]1)
(cf_let (SOME "y")
(cf_app p (Var (Short "double")) [Var (Short "b")1)
(cf_app p (Var (Short "+")) [Var (Short "y"); Lit (IntLit 2)]1))
(...) emp (POSTv v. &NUM O v))

We can instantiate b with T, and simplify

gexists_tac ‘T¢ \\ xsimpl

0. NUM O xv
1. BOOL T bv

cf_lit (IntLit 0) (...) emp (POSTv v. &NUM O v)

We then finish the proof by using the CF tactic for dealing with literals, and
simplifying:

xlit \\ xsimpl

Goal proved.

Remaining subgoals:
val it =
xv. NUM x xv app p double_v [xv] emp (POSTv v. &NUM (2 * x) v)

NUM (SUC x) xv app p double_v [xv] emp (POSTv v. &NUM (2 * SUC x) v)

This concludes the base case, where the argument of double equals 0. We
now move on to the inductive case. Once again, we calculate the CF of
double:
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xcf "double" st

0. xv. NUM x xv app p double_v [xv] emp (POSTv v. &NUM (2 * x) v)
1. NUM (SUC x) xv
cf_let (SOME "a")
(cf_app p (Var (Short "=")) [Var (Short "x"); Lit (IntLit 0)])
(cf_if (Var (Short "a")) (cf_lit (IntLit 0))
(cf_let (SOME "b")
(cf_app p (Var (Short "-")) [Var (Short "x"); Lit (IntLit 1)]1)
(cf_let (SOME "y")
(cf_app p (Var (Short "double")) [Var (Short "b")])
(cf_app p (Var (Short "+")) [Var (Short "y"); Lit (IntLit 2)1))))
(...) emp (POSTv v. &NUM (2 * SUC x) v)

Once again we have to deal with the CF for let-expression arising from the
if-statement. This is done in mostly the same way as before, only this time
with the result being T:

xlet ‘POSTv bv. &BOOL F bv®

xv. NUM x xv app p double_v [xv] emp (POSTv v. &NUM (2 * x) v)
NUM (SUC x) xv
BOOL F bv
cf_if (Var (Short "a")) (cf_lit (IntLit 0))
(cf_let (SOME "b")
(cf_app p (Var (Short "-")) [Var (Short "x"); Lit (IntLit 1)])
(cf_let (SOME "y")
(cf_app p (Var (Short "double")) [Var (Short "b")])
(cf_app p (Var (Short "+")) [Var (Short "y"); Lit (IntLit 2)1)))
(...) emp (POSTv v. &NUM (2 * SUC x) v)

N —~ O

0. xv. NUM x xv app p double_v [xv] emp (POSTv v. &NUM (2 * x) v)
1. NUM (SUC x) xv

cf_app p (Var (Short "=")) [Var (Short "x"); Lit (IntLit 0)] (...) emp
(POSTv bv. &BOOL F bv)

The bottom subgoal is practically the same as in the previous if-expression,
and proven in the same way:

xapp_spec eq_v_NUM_thm \\
xsimpl \\
gexists_tac ‘SUC x‘ \\

fs []
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The only difference is we instantiate the x0 with (SUC x), since that is the
value of our argument in the inductive case, and because it is a succesor of
some x (which is a natural number) it cannot be equal to 0.

Goal proved.

[..]

cf_app p (Var (Short "=")) [Var (Short "x"); Lit (IntLit 0)] (...) emp
(POSTv bv. &BOOL F bv)

Remaining subgoals:
val it =
0. xv. NUM x xv app p double_v [xv] emp (POSTv v. &NUM (2 * x) v)
1. NUM (SUC x) xv
2. BOOL F bv
cf_if (Var (Short "a")) (cf_lit (IntLit 0))
(cf_let (SOME "b")
(cf_app p (Var (Short "-")) [Var (Short "x"); Lit (IntLit 1)]1)
(cf_let (SOME "y")
(cf_app p (Var (Short "double")) [Var (Short "b")1)
(cf_app p (Var (Short "+")) [Var (Short "y"); Lit (IntLit 2)]1)))
(...) emp (POSTv v. &NUM (2 * SUC x) v)

Once again we use the tactic xif, this time instantiating the condition
boolean with F (False).

xif \\
gexists_tac ‘F¢ \\
xsimpl

0. xv. NUM x xv app p double_v [xv] emp (POSTv v. &NUM (2 * x) v)
1. NUM (SUC x) xv
2. BOOL F bv
cf_let (SOME "b")
(cf_app p (Var (Short "-")) [Var (Short "x"); Lit (IntLit 1)]1)
(cf_let (SOME "y") (cf_app p (Var (Short "double")) [Var (Short "b")]1)
(cf_app p (Var (Short "+")) [Var (Short "y"); Lit (IntLit 2)1)) (...)
emp (POSTv v. &NUM (2 * SUC x) v)

Another change to the program that happened in normalization is that
arguments of a function that are an expression and not a variable get bound
to a variable by a preceding let-expression. In this case, the expression x - 1
is bound to the variable b. This expression should reduce to the value of
the argument minus one, in this case (SUC x) - 1. We use the xlet-tactic
as such:
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xlet ‘POSTv cv. &NUM ((SUC x) - 1) cv¢

0. xv. NUM x xv app p double_v [xv] emp (POSTv v. &NUM (2 * x) v)
1. NUM (SUC x) xv
2. BOOL F bv
3. NUM x cv

cf_let (SOME "y") (cf_app p (Var (Short "double")) [Var (Short "b")])
(cf_app p (Var (Short "+")) [Var (Short "y"); Lit (IntLit 2)]) (...) emp
(POSTv v. &NUM (2 * SUC x) v)

0. xv. NUM x xv app p double_v [xv] emp (POSTv v. &NUM (2 * x) v)
1. NUM (SUC x) xv
2. BOOL F bv

cf_app p (Var (Short "-")) [Var (Short "x"); Lit (IntLit 1)] (...) emp
(POSTv cv. &NUM (SUC x 1) cv)

Starting with the bottom sequent we use xapp and simplify:
xapp // xsimpl

xv. NUM x xv app p double_v [xv] emp (POSTv v. &NUM (2 * x) v)
NUM (SUC x) =xv
BOOL F bv

x0. INT xO xv v. INT (xO 1) v. NUM x v

N~ O

We have a mix of INT and NUM terms, so we rewrite the NUM terms, since
NUM x xv is equivalent to INT (&SUC x) xv.

fs [NUM_def]

0. xv’.
INT (&x) xv’
app p double_v [xv’] emp (POSTv v. &INT (&(2 * x)) v)
1. INT (&SUC x) xv
2. BOOL F bv

x0. INT xO0 xv v. INT (xO 1) v INT (&x) v

Now it is clear that we have to instantiate x0 with &SUC x, where& : num -> int
denotes the injection function from natural numbers to integers, and sim-

plify.
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gexists_tac ‘&SUC x¢ \\ xsimpl

0. =xv’.

INT (&x) xv’

app p double_v [xv’] emp (POSTv v. &INT (&(2 * x)) v)
1. INT (&SUC x) xv
2. BOOL F bv

v. INT (&SUC x 1) v INT (&x)

To prove this we need to prove an extra theorem:

val eq_suc_subl = Q.prove(
‘Ix. ( int_of_num (SUC x)) - (int_of_num 1) = int_of_num x°¢,
intLib.ARITH_TAC);

where int_of_num is the type-specific version of & (& is also the injection
function for rational numbers and real numbers). intLib.ARITH_TAC is a
decision procedure that deals with linear arithmetic over integers and natural
numbers. We can now use this theorem to prove our subgoal:

fs [eq_suc_subi]

Goal proved.

Remaining subgoals:
val it =

0. xv. NUM x xv app p double_v [xv] emp (POSTv v. &NUM (2 * x) v)
1. NUM (SUC x) xv
2. BOOL F bv
3. NUM x cv

cf_let (SOME "y") (cf_app p (Var (Short "double")) [Var (Short "b")]1)
(cf_app p (Var (Short "+")) [Var (Short "y"); Lit (IntLit 2)]) (...) emp
(POSTv v. &NUM (2 * SUC x) v)

The last part of the proof is of a very similar structure as the previous
subgoals. Because we had &SUC x - 1 as postcondition of the previous let-
expression, we should instantiate this one with 2 * x, since2 * (&SUC x - 1)
is 2 * x.

0. xv. NUM x xv app p double_v [xv] emp (POSTv v. &NUM (2 * x) v)
1. NUM (SUC x) xv
2. BOOL F bv
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3. NUM x cv
4. NUM (2 * x) nv

cf_app p (Var (Short "+")) [Var (Short "y"); Lit (IntLit 2)] (...) emp
(POSTv v. &NUM (2 * SUC x) v)

0. xv. NUM x xv app p double_v [xv] emp (POSTv v. &NUM (2 * x) v)
1. NUM (SUC x) =xv
2. BOOL F bv
3. NUM x cv
cf_app p (Var (Short "double")) [Var (Short "b")] (...) emp
(POSTv nv. &NUM (2 * x) nv)

The bottom subgoal can be proven easily using assumption 0:

xapp // fs [1]

Using a CF specification from the assumptions
Goal proved.

Remaining subgoals:
val it =

0. =xv. NUM x xv app p double_v [xv] emp (POSTv v. &NUM (2 * x) v)
1. NUM (SUC x) xv
2. BOOL F bv
3. NUM x cv
4. NUM (2 * x) nv

cf_app p (Var (Short "+")) [Var (Short "y"); Lit (IntLit 2)] (...) emp
(POSTv v. &NUM (2 * SUC x) v)

We use xapp and simplify:
xapp \\ xsimpl

0. xv. NUM x xv app p double_v [xv] emp (POSTv v. &NUM (2 * x) v)
1. NUM (SUC x) xv
2. BOOL F bv
3. NUM x cv
4. NUM (2 * x) nv

x0. INT xO nv v. INT (x0 + 2) v. NUM (2 * SUC x) v
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Again we rewrite the NUM terms to INT terms:

0. =xv’.
INT (&x) xv’
app p double_v [xv’] emp (POSTv v. &INT (&(2 * x)) v)
1. INT (&SUC x) xv
2. BOOL F bv
3. INT (&x) cv
4. INT (&(2 * x)) nv

x0. INT xO nv v. INT (xO0 + 2) v INT (&(2 * SUC x)) v
We instantiate x0 with &(2 * x), and simplify:

gexists_tac ‘&(2 * x) ¢ \\ xsimpl

0. =xv’.
INT (&x) xv’
app p double_v [xv’] emp (POSTv v. &INT (&(2 * x)) v)
1. INT (&SUC x) xv
2. BOOL F bv
3. INT (&x) cv
4. INT (&(2 * x)) nv

v. INT (&(2 * x) + 2) v INT (&(2 * SUC x)) v

We prove a similar theorem to eq_suc_subl:

val eq_suc_mul2 = Q.prove (
‘“Ix. ( int_of_num (2 * x)) + (int_of_num 2) = int_of_num (2 * SUC x)°,
intLib.ARITH_TAC);

and use this to finalize the proof:
fs [eq_suc_mul?2]
Goal proved.

val it =

Initial goal proved.
x xv. NUM x xv app p double_v [xv] emp (POSTv v. &NUM (2 * x) v):
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Chapter 3

Conclusions

Characteristic formulae are a relatively new and underutilized method of
program verification using mechanized proofs. The most significant contri-
bution of CF is that the automatic generation of the formulas removes the
previously error-prone step of manually translating code to some embedding
in the logic of the theorem prover. CF proofs are also relatively straightfor-
ward; someone who has experience with HOL4 should not have too hard of
a time utilizing this technique.

This thesis examines both the theory and practise of using characteristic
formulae for verification. It aims to clearly show the parallels between the
formal definitions and the machinations within the theorem prover HOLA4.
This work can also be used as a somewhat gentle introduction to using char-
acteristic formulae for program verification, demonstrating all the necessary
steps to get one started on this task.

What has been examined in this thesis is only a minor part of what char-
acteristic formulas can do, as the theoretical framework in this thesis has
been significantly simplified. Characteristic formulas also exist for imper-
ative programs, defining preconditions and postconditions for the program
state before and after the program, using higher-order separation logic. 1
have chosen not to discuss this in the thesis due to time constraints.

How characteristic formulae compare to other methods of program verifi-
cation is up to reader’s judgement. It is certainly a very precise and efficient
method, but it does somewhat restrict the usable proof tactics to the tactics
specific to the characteristic formulae framework. Documentation in the
case of CakeML is also slightly sparse or lacking, especially to someone with
little to no experience using HOL4. We hope this thesis can provide a new
user with a smoother start to using the technique.
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Appendix A

Proofscript double

(*
Example program double for thesis on characteristic formulae

*)

open preamble

open ml_translatorTheory cfTacticsBaselLib cfTacticsLib
local open ml_proglLib basisProgTheory in end

open arithmeticTheory

open integerTheory

val _ = new_theory"double";
val pick_name = ml_progLib.pick_name;
val basis_st =
ml_proglLib.unpack_ml_prog_state
basisProgTheory.basis_prog_state
val double_def = process_topdecs
‘fun double x =
(if (x = 0)
then 0O
else (let val y = (double (x - 1)); in (y + 2) end));"®
val st = ml_proglib.add_prog double_def ml_proglLib.pick_name basis_st

val eq_v_NUM_thm = Q.prove(‘(NUM --> NUM --> BOOL) $= eq_v°,
metis_tac [DISCH_ALL mlbasicsProgTheory.eq_v_thm,EqualityType_NUM_BOOL]) ;

val eq_suc_subl = Q.prove(
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‘1. ( int_of_num (SUC x)) - (int_of_num 1)
intLib.ARITH_TAC);

int_of_num x°¢,

val eq_suc_mul2 = Q.prove (
‘1z, ( int_of_num (2 * x)) + (int_of_num 2)
intLib.ARITH_TAC);

int_of_num (2 * SUC x)°,

VAL DOUBLE_SPEC = store_thm ("double_spec",
“lx xv.
NUM x xv ==
app (p:’ffi ffi_proj) ~(fetch_v "double" st) [xv]
emp (POSTv v. &NUM (2 * x) v) ‘¢,
Induct_on ‘x‘ \\
xcf "double" st
THEN1 (xlet ‘POSTv bv. &BOOL T bv‘
THEN1 (xapp_spec eq_v_NUM_thm \\
xsimpl \\ gexists_tac ‘0°¢ \\
fs [0 ) \\
xif \\ gexists_tac ‘T¢ \\ xsimpl \\ x1it \\ xsimpl) \\
xcf "double" st
xlet ‘POSTv bv. &BOOL F bv¢
THEN1 (xapp_spec eq_v_NUM_thm \\
xsimpl \\
gexists_tac ‘SUC x‘ \\
fs [1) \\
xif \\
gexists_tac ‘F¢ \\
xsimpl \\
xlet ‘POSTv cv. &NUM ((SUC x) - 1) cv
THEN1 (xapp \\
xsimpl \\
gexists_tac ‘&SUC x¢ \\
fs [NUM_def]
fs [eq_suc_subl]) \\

xlet ‘POSTv nv. &NUM (2 * x) nv
THEN1 (xapp \\
fs [1) \\
xapp \\
xsimpl \\
gexists_tac ‘&(2 * x)‘ \\
fs [eq_suc_mul2]);
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Appendix B

Proofscript rev

In the original plan there was going to be a case study on programming and
verifying the Unix program rev in CakeML, demonstrating the imperative
and IO features of the CakeML implementation of characteristic formulas.
Howver in the process the focus shifted towards the theoretical framework
and rev was too complicated to verify by hand. Eventually we decided that
the elaborated example of the double function was sufficient to demonstrate
the basic idea of characteristic formulas, and due to time constraints rev was
abandoned, but the (unfinished) proofscript is attached here as an appendix.

(*

Simple rev program
*)
open preamble basis
val new_theory'"rev";
translation_extends"basisProg";
val rev_lines_def = Define’

rev_lines lines = (MAP (implode o REVERSE o explode) lines)‘;
val res = translate rev_lines_def
(*
val Prog_thm =

get_ml_prog_state ()

|> ml_progLib.clean_state

|> ml_progLib.remove_snocs

|> ml_progLib.get_thm

|> REWRITE_RULE [ml_progTheory.ML_code_def];
*)
val rev = process_topdecs®

fun rev u =

case TextIO.inputLinesFrom (List.hd (CommandLine.arguments()))
of SOME lines =>
(TextIO.print (concat (rev_lines lines));

val
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TextI0.outputl TextIO.stdOut #"\n")°‘;
val _ = append_prog rev;
val rev_spec = Q.store_thm("rev_spec",
¢ hasFreeFD fs FILENAME fnm fnv
cl = [pname; fname]
contents = THE (ALOOKUP fs.files (File fname))
app (p:’ffi ffi_proj) ~(fetch_v "rev" (get_ml_prog_state())) [fnv]
(STDIO fs * COMMANDLINE cl)
(POSTv uv. &UNIT_TYPE () uv *
STDIO (add_stdout fs
(concat [concat (rev_lines (MAP implode (splitlines contents)));
strlit "\n"1))
* COMMANDLINE cl) ¢
simp [concat_def] \\
strip_tac \\
xcf "rev" (get_ml_prog_state()) \\
xlet_auto >- (xcon \\ xsimpl) \\
xlet_auto >- (xsimpl) \\
xlet_auto >- (xsimpl) \\
reverse(Cases_on‘wfcl cl¢) >- (rfs[COMMANDLINE_def] \\ xpull) \\
reverse(Cases_on‘STD_streams fs) >- (fs[STDIO_def] \\ xpull) \\
xlet_auto_spec(SOME inputLinesFrom_spec) >- (
xsimpl \\
rfs[wfcl_def,validArg_def ,EVERY_MEM] ) \\
xmatch \\ fs[OPTION_TYPE_def] \\
reverse conj_tac >- (EVAL_TAC \\ fs[]) \\ (* unfinished *)
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