
Bachelor thesis
Computer Science

Radboud University

An efficient parsing machine for PEGs

Author:
Jos Craaijo
s4481674

First supervisor/assessor:
Prof. dr. Herman Geuvers

herman@cs.ru.nl

Second assessor:
Dr. Freek Wiedijk
freek@cs.ru.nl

January 11, 2018

Abstract

Popular PEG matching algorithms make use of memoization through PACKRAT which
results in linear space complexity, making the algorithms unsuitable as an alternative for
regular experssions. We introduce a novel Parsing Machine that is optimized for JIT
compilation, and show that our implementation of this machine has run time perfor-
mance similar to that of regular expression matching libraries. We also introduce a tool,
peg-match, which can be used as a replacement for grep.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Parsing expression grammars . 5

2.1.1 Semantics . 6
2.1.2 Syntactic sugar . 7
2.1.3 Well-formedness . 8

2.2 PACKRAT . 8

3 The Parsing Machine 9
3.1 Extended PEG grammar . 9

3.1.1 Fixed repeat . 9
3.1.2 Parameterized non-terminals . 9
3.1.3 Inline non-terminals . 10
3.1.4 Namespaces . 10

3.2 The Parsing Machine . 11
3.2.1 Programs . 11
3.2.2 Compilation . 12

3.3 Operational Semantics . 12
3.3.1 Auxiliary definitions . 12
3.3.2 Semantics . 13

4 Compiling PEGs 14
4.1 Program generation . 14

4.1.1 The Π-function . 14
4.2 Correctness . 16

4.2.1 Base cases . 16
4.2.2 Inductive cases . 17

4.3 A note on complexity . 22
4.3.1 General complexity . 22
4.3.2 Complexity for simple patterns . 22

5 Optimizations 23
5.1 Modifying Π . 24

5.1.1 Character classes . 24
5.1.2 Reducing the number of Advance-instructions 24
5.1.3 Non-terminal inlining . 25

5.2 Transforming instruction sequences . 26
5.2.1 Normalization . 26

1

5.2.2 Char ordering . 27
5.2.3 Consolidating BoundsChecks . 27
5.2.4 Deduplication . 28
5.2.5 Delaying BoundsChecks, Advances and StorePositions 28
5.2.6 Removing unnecessary instructions 29
5.2.7 Jump target optimization . 30
5.2.8 Skipping or removing unneeded RestorePositions 37
5.2.9 Merging StorePositions . 38
5.2.10 Adding fast-paths to loops . 38

6 Implementation 40
6.1 peg-match . 40

6.1.1 The peg-match standard library 40
6.1.2 Structured output . 42

6.2 The Library . 42
6.2.1 Overview . 42
6.2.2 Captures . 43
6.2.3 Representing PEGs . 44
6.2.4 Compilation . 44
6.2.5 Optimization . 45
6.2.6 Code generation and execution . 45
6.2.7 Captures . 46
6.2.8 The self-parser . 46

7 Related Work and Conclusions 47
7.1 Regular expressions . 47

7.1.1 Benchmarks . 47
7.1.2 Benchmarking issues . 48

7.2 LPeg . 49
7.2.1 Benchmarks . 49
7.2.2 Instruction design . 49

7.3 PACKRAT parsing . 50

A Converted regular expressions 54

2

Chapter 1

Introduction

Regular expressions, first introduced by Kleene [9], are often used for pattern matching
and input validation. However, regular languages did not provide enough flexibility and
expressive power, which lead many libraries to include their own extensions. Surprisingly,
almost every ”regular” expression library is capable of matching non-regular languages
because of these extensions. Few of these extensions have a formal basis, which means
that it’s difficult determine the complexity of a regular expression.

Additionally, regular expressions can quickly turn into very complex patterns, for
example a 6000-character regular expression to match vaild e-mail addresses [1]. The fact
that regular expressions offer no way to re-use expressions means that there is no way to
logically group parts of the expression or re-use components multiple times.

RFCs often define grammars for formats like IPv6 address notation, domain names
or e-mail addresses in augmented BNF form [5]. These grammars are difficult or even
impossible to translate to regular expressions because of a lack of recursion in regular
expressions.

One alternative to regular expressions are Parsing Expression Grammars (PEGs).
First introduced by Ford in 2004 [7], PEGs eliminate all problems we describe above:

1. PEGs are more expressive, so no extensions are needed

2. PEGs support both expression re-use and recursion, which allows for more readable
expressions and easy translation from RFC grammars to PEGs.

3. PEGs have a formal basis, making it easy to determine complexity of expressions

PEGs are generally matched using an algorithm called PACKRAT, also introduced
by Ford in 2002 [6]. PACKRAT can match any formal language representable by a PEG
in linear time, at the cost of memory usage linear to the size of the input because of
memoization. The memory usage poses a problem when using PEGs as a replacement for
regular expressions, since we need to be able to match simple expressions on very large
inputs. If we’re matching a 5Gb file, we cannot afford to use another multiple of 5Gb to
keep track of the memoization.

One alternative to PACKRAT, introduced by Mereidos and Ierusalimschy in 2008 [11],
proposes using a ’parsing machine’, where PEGs are translated to a small instruction set
that can be executed on the parsing machine. This parsing machine uses very little
memory, at the cost of having exponential run-time complexity.

One issue with this parsing machine is that it pushes code addresses on the stack,
and jumps to those addresses at a later point in the execution. This is problematic when

3

using Just-In-Time (JIT) compilation to compile the instruction set to machine code, as
languages like C# (using the .NET runtime) and Java (using the JVM) enforce a certain
degree of memory safety that does not allow jumping to arbitrary addresses on the stack.

In this paper we introduce a new parsing machine that can be efficiently compiled to
machine code at runtime, which can be used as a replacement for regular expressions.
Our implementation does not jump to addresses on the stack, which means that it does
not suffer from the problem described above. We show that our implementation can
use just-in-time compilation by building a C# implementation that leverages the .NET
JIT compiler to compile PEGs at runtime. We also show that this implementation has
performance similar to commonly-used regular expression libraries, like PCRE2 and RE2.

4

Chapter 2

Preliminaries

2.1 Parsing expression grammars

Parsing expression grammars (PEGs) are a form of formal grammars used to describe
formal languages.

Definition 1. A PEG is a tuple G = (Σ, A,R,As), where:

1. Σ is a finite alphabet over which the grammar will operate

2. A is a set of non-terminal symbols

3. R is a finite function A→ e, i.e. it maps a non-terminal to a parsing expression

4. As is the start rule

Note that some definitions of PEGs use a start expression instead of a start rule. These
definitions are interchangable.

Given Σ and A, the set of parsing expressions E is inductively defined as follows:

1. Atomic expressions:

(a) Terminal symbol c ∈ E , where c ∈ Σ, which matches a single character c.

(b) Non-terminal Ax ∈ E , which matches if the non-terminal Ax matches.

(c) Empty string ε ∈ E , matching 0 characters. This will always succeed.

2. Given the expressions e ∈ E , e1 ∈ E and e2 ∈ E , a new parsing expression can be
constructed by using one of the following operators:

(a) Concatenation: e1e2 ∈ E , which matches only if e1 matches, and e2 matches
after e1.

(b) Prioritized choice: e1/e2 ∈ E , which first attempts to match e1. If matching
e1 succeeds, the entire expression succeeds. Only if e1 fails will we attempt to
match e2.

(c) Zero-or-more: e∗ ∈ E , which matches any number of es in the input string.

(d) Not: !e ∈ E , which matches only if e does not match. This operator does not
consume any characters in the input string.

The operator precedence is as follows (from strongest to weakest):

5

1. Suffix operators: zero or more (and syntactic sugar: one or more, optional)

2. Prefix operators: not (and syntactic sugar: and)

3. Concatenation

4. Prioritized choice

2.1.1 Semantics

We define the semantics of PEGs using match g p s i, where:

1. g is a grammar

2. p is an expression

3. s is the input string

4. i is the position in the input-string (0-based)

match will return any natural number greater than or equal to i if p matched at
position i in s, or nil if matching failed.

ch.1
s[i] = c i < |s|

match g ’c’ s i = i + 1

ch.2
s[i] 6= c ∨ i ≥ |s|

match g ’c’ s i = nil

any.1
i < |s|

match g . s i = i + 1

any.2
i ≥ |s|

match g . s i = nil

not.1
match g p s i = nil

match g !p s i = i

not.2
match g p s i = i + j

match g !p s i = nil

con.1
match g p1 s i = i + j match g p2 s (i + j) = i + j + k

match g p1p2 s i = i + j + k

con.2
match g p1 s i = i + j match g p2 s (i + j) = nil

match g p1p2 s i = nil

con.3
match g p1 s i = nil

match g p1p2 s i = nil

6

ord.1
match g p1 s i = nil match g p2 s i = nil

match g p1/p2 s i = nil

ord.2
match g p1 s i = i + j

match g p1/p2 s i = i + j

ord.3
match g p1 s i = nil match g p2 s i = i + j

match g p1/p2 s i = i + j

rep.1
match g p s i = i + j match g p ∗ s (i + j) = i + j + k

match g p ∗ s i = i + j + k

rep.2
match g p s i = nil

match g p ∗ s i = i

var.1
match g g(Ak) s i = i + j

match g Ak s i = i + j

var.2
match g g(Ak) s i = nil

match g Ak s i = nil

Example 2. match g (’T’ ’o’ ’m’) s i will either match the entire word ’Tom’ from
the input string s and return i + 3, or it will fail and return nil.

Example 3. Prioritized choices are fundamentally different from the choice operator (|)
in regular expressions. For example, match g ((’a’ / ’a’ ’a’) ’c’) s i will never
match the input string ’aac’, since the match of the first choice inside the prioritized
choice, ’a’, succeeds. The concatenation does, unlike the | operator in regular expressions,
not backtrack to try and match the other choice. If we change the expression to ’a’ ’c’

/ ’a’ ’a’ ’c’, it does match the word ’aac’, since matching ’c’ will now fail inside
the prioritized choice.

2.1.2 Syntactic sugar

There are also five additional operators that can be defined in terms of the expressions
above:

1. Any character: ., which is syntactic sugar for a1/a2/.../an, where Σ = a1, a2, ..., an

2. A character class: [a− z], which is syntactic sugar for a/b/.../z. This assumes that
the alphabet Σ has some logical ordering

3. One-or-more: e+, which is syntactic sugar for ee∗

4. Optional: e?, which is syntactic sugar for e/ε

5. And: &e, which is syntactic sugar for !!e

7

2.1.3 Well-formedness

Definition 4. A well-formed grammar is a grammar that contains no directly or mutually
left-recursive rules. We define this inductively as follows [7]:

For any grammar G = (Σ, A,R,As), all atomic expressions are well-formed:

1. ε is well-formed

2. c is well-formed

3. A is well-formed if R(A) is well-formed

The following rules state when composed expressions are also well-formed:

1. e1e2 is well-formed if e1 is well-formed and e1 will always match at least one character

2. e1e2 is well-formed if e1 is well-formed and if e1 and e2 are well-formed and e2 will
always match at least one character

3. e1/e2 is well-formed if e1 is well-formed and e2 is well-formed

4. e∗ is well-formed if e is well-formed and e will always match at least one character

5. !e is well-formed if e is well-formed

A grammar G is well-formed if all rules in the gramar are well-formed.

Example 5. A <- A / ’a’ A is not well-formed, because it allows for direct left-recursion
of the non-terminal ’A’.

Example 6. A <- B / ’a’ A; B <- A is not well-formed, because it is mutually left-
recursive through the non-terminal ’B’.

Example 7. A <- ’a’ A ’a’ / ε is well-formed, because it will always read at least
one terminal character before recursing, which means that it’s not left-recursive.

From now on, we will assume all PEGs are well-formed unless mentioned otherwise.

2.2 PACKRAT

PACKRAT parsing introduces memoization to the matching process. While matching, we
maintain a list of matching outcomes of non-terminals. When matching a non-terminal
Ax at position p, we first check if we’ve ever matched Ax at position p before. If we have,
we can look up the result in the list of outcomes, and immediately return that. If not, we
match Ax and add its outcome to the list.

Using PACKRAT, any PEG grammar can be matched in linear time. However, due
to the memoization PACKRAT will end up using linear space.

8

Chapter 3

The Parsing Machine

3.1 Extended PEG grammar

We introduce a number of extensions to the PEG grammar introduced by Ford. Our
aim for these extensions is to make PEG definitions more readable and less repetitive for
expressions similar to those commonly used in regexes. All of our extensions were added
in the process of building the standard library for our tool peg-match, and are based on
those use-cases.

In order to not cause the same issues that regular expression libraries did by intro-
ducing extensions without formal definitions, we have been careful to ensure that all of
our extensions are purely syntactic sugar. Therefore, the expressiveness of the extended
PEGs remains the same as the original expressiveness, and each of the extensions below
could be translated back to the original PEGs as defined by Ford [7].

3.1.1 Fixed repeat

First, we introduce a shorter notation for repeatedly matching an expression, with an
upper and lower limit.

Definition 8. We define r^k to mean r r r ... r r r where the number of r’s is
equal to k. We define r^k..j to mean r^j / r^j-1 / ... / r^k where j >= k.

Example 9. One example of where these definitions come in helpful, is when defining a
grammar for IPv6 addresses. Each IPv6 ”hextet” consists of 4 hexadecimal characters.
Without the ^ operator, we need to define a ”hextet” as [0-9a-fA-F] [0-9a-fA-F]

[0-9a-fA-F] [0-9a-fA-F]. This can now be simplified to [0-9a-fA-F]^4.
Additionally, one of the possible forms of an IPv6 address is a double colon (::) followed

by one or more hextets, separated by a single colon. Using the fixed repeat operator ^

we can define this as follows: ’:’ (’:’ Hextet)^1..7, which is shorter and easier to
read than using a prioritized choice with 7 cases.

3.1.2 Parameterized non-terminals

Parameterized non-terminals simplify the process of combining existing PEGs. While
exising PEGs can already be combined by referencing a non-terminal of a different gram-
mar, the included pattern will still be a single, closed unit. This limits extensibility of
grammars.

9

Example 10. Consider the following regular expression [a-z]+ing.
Translating this pattern to a PEG is non-trivial, since PEGs will not backtrack. A

naive translation to the PEG expression [a-z]+’ing’ would mean that [a-z]+ will al-
ways match the entire word, leaving ’ing’ to always fail. A correct translation would
be (!(!(!’ing’) !([a-z] (!’ing’ [a-z])* ’ing’)) [a-z])* ’ing’. If we want to
(re-)use the same expression structure for matching all words ending in ’ne’, we would
have to duplicate the expression. This leads to duplicate code, which is undesired.

Parameterized non-terminals solve this problem by allowing for textual substitution
of patterns.

Example 11. We might write a generic ”until” non-terminal like this:

Unti l<Item , Ending> <- (! (! (! End) ! (Repeat (! End Repeat) ∗ End)) Repeat) ∗ End

We can now instantiate a particular version of the non-terminal like this:

A <- [a - z]
B <- ’ ing ’
EndsWithIng <- Unti l<A, B>

3.1.3 Inline non-terminals

With parameterized non-terminals, it’s counter-intuitive to declare the parameters on a
separate line. In example 11 above, A and B are separated from their context, making
it harder to understand the expression. To solve this, we introduce an extension that
allows inline definition of non-terminals inside the list of non-terminals of a parameterized
pattern: \(e), where e is a PEG expression.

Example 12. Our example above can now be simplified to just one line:
EndsWithIng <- Until<\([a-z]), \(’ing’)>
This is merely syntactic sugar for the grammar defined in Example 11.

When reading the grammar, having the non-terminals directly inside the parameter-
ized non-terminal means that you don’t need to search through all the rules to find the
non-terminals that are being used.

3.1.4 Namespaces

Lastly, since we are introducing a standard library with our tool peg-match (see Section
6.1), adding all pre-defined non-terminals to the global namespace might cause naming
conficts. It is also not desirable to expose all defined non-terminals publicly. For example,
we might need to define an ”internal” pattern containing all reseved characters in an URI.
We don’t want this pattern to be used by anyone else, since we want to be able to change
this expression if we find a more efficient way to define it. This means that we cannot
have anyone else directly using the expression.

To solve this, we introduce namespaced non-terminals. As far as the PEG grammar
is concerned, this change merely allows ’::’ to appear inside the name of a non-terminal:

Example 13. Our standard library includes a String namespace containing common
parameterized non-terminals for strings, like String::Until (which is similar to the
expression defined in Example 11). Our example can now be written as:

EndsWithIng <- String::Until<\([a-z]), \(’ing’)>

10

Secondly, we introduce the keyword export. This keyword can be placed in front of
a non-terminal definition to indicate that it should be accessible from other namespaces.

Namespace consistency and non-terminal accessibility is not enforced in the PEG
grammar itself. In implementations, It should be enforced when resolving the non-
terminal references and substituting the parmeters of the parameterized non-terminals.

3.2 The Parsing Machine

3.2.1 Programs

Before diving into semantics and program generation, we will describe the general design of
our parsing machine. The parsing machine shares many similarities with a real computer.
It runs one ’program’ at a time, where a program C is defined as follows:

Definition 14. C = (As,m), where As is the starting non-terminal, and m is a finite
function A→ InstructionList, where A are non-terminals. These programs are generated
by a compiler, which we will describe in Section 4.1.

An InstructionList is a sequence of instructions, which are defined in Section 3.3.
In practice, to execute a program C on the parsing machine, instructions in the pro-

gram are executed on a state t = 〈(Ax, pc, V) : e, i〉, where:

• (Ax, pc, V) is a single stack frame, at the top of the stack

– Ax is the non-terminal that is being executed

– pc is the program counter, which is the index of the next instruction that will
be executed

– V is a finite function Var → N which the program uses to store string indices

• e is the tail of the stack, which may be empty or it may consist of one or more stack
frames.

• i keeps track of the position in the string

Each step, an instruction is fetched from m[Ax][pc], and an associated state transfor-
mation is applied to the state. This process is repeated until the program terminates.

The parsing machine uses a stack in the same way a computer program would: the
stack consists of one or more ’stack frames’, where each stack frame stores variables v
and a program counter pc. When the stack is empty, the program terminates. If i ≥ 0,
matching was succesful. If i = nil, matching failed. Non-terminals are sometimes also
called ’variables’. To avoid confusion we will always use ’variable’ to refer to a variable
in a stack frame, and ’non-terminal’ to refer to non-terminals.

When executing a program C, the inital state will be 〈(As, 0, ∅), 0〉, i.e. the matching
starts by executing the first instruction of the non-terminal As at position 0 in the string,
without any variables. An instruction can modify the state, producing a new state. This
is denoted using an arrow:

〈(Ax, pc, V) : e, i〉 Instruction parameters−−−−−−−−−−−−−−−−−−−−→ 〈(Ax, pc
′, V ′) : e, i′〉 (3.1)

Note that the compiled program C is not included in the state, since it cannot be
mutated by an instruction.

11

3.2.2 Compilation

PEG grammars are compiled into programs using one of three functions:

1. ΠG(G) compiles an entire grammar. It takes a grammar G as input, and produces
a mapping from patterns to sequences of instructions as output.

2. ΠNT (Ax) compiles a single non-terminal. It takes a pattern p as input, and produces
a sequence of instructions as output.

3. ΠP (p, f) recursively compiles an expression. It takes an expression p and a fail label
f as input, and produces a sequence of instructions as output.

For PEGs, a compiled program C = (As,ΠG(G)), where As is the starting pattern of
grammar G.

3.3 Operational Semantics

3.3.1 Auxiliary definitions

Since we want to be able to easily insert and re-order instructions, we cannot use relative
or absolute jumping offsets, as this would mean that we need to re-calculate the offset
of every instruction each time we insert or remove an instruction. Instead, we mark the
jump targets using a special instruction MarkLabel L. This instruction does not modify
the state, and is only used by other instructions to determine the next value of the
program counter pc. These MarkLabel instructions do not impact performance, as they
are translated to offsets when compiling the PEG to machine code.

Definition 15. We define indexOf to be a function (A → L) → N, that returns the
position of any occurrence of a MarkLabel instruction with the matching label:

indexOf(Ax, l) = i such that m[Ax][i] = MarkLabel l

12

3.3.2 Semantics

〈(Ax, pc, V) : e, i〉 Advance N−−−−−−−−→ 〈(Ax, pc + 1, V) : e, i + N〉 (3.2)

〈(Ax, pc, V) : e, i〉 BoundsCheck N f−−−−−−−−−−−−−→ 〈(Ax, pc
′, V) : e, i〉

where pc′ =

pc + 1 if i + N < |s|

indexOf(f, p) otherwise

(3.3)

〈(Ax, pc, V) : e, i〉 Char C N f−−−−−−−−−→ 〈(Ax, pc
′, V) : e, i〉

where pc′ =

pc + 1 if C = s[i + N]

indexOf(f, p) otherwise

(3.4)

〈(Ax, pc, V) : e, i〉
Jump L
−−−−−→ 〈(Ax, indexOf(L, p), V) : e, i〉 (3.5)

〈(Ax, pc, V) : e, i〉 MarkLabel L−−−−−−−−−−→ 〈(Ax, pc + 1, V) : e, i〉 (3.6)

〈(Ax, pc, V) : e, i〉 StorePosition v−−−−−−−−−−−−−→ 〈(Ax, pc + 1, V [v := i]) : e, i〉 (3.7)

〈(Ax, pc, V) : e, i〉 RestorePosition v−−−−−−−−−−−−−−−→ 〈(Ax, pc + 1, V) : e, V [v]〉 (3.8)

〈(Ax, pc, V) : e, i〉 Call Am−−−−−−→ 〈(Am, 0, ∅) : (Ax, pc + 1, V) : e, i〉 (3.9)

〈(Ax, pc, V) : e, i〉 EndCall f−−−−−−−−→ 〈(Ax, pc
′, V) : e, i〉

where pc′ =

pc + 1 if i 6= nil

indexOf(f, p) otherwise

(3.10)

〈(Ax, pc, V) : e, i〉 Return B−−−−−−−→ 〈e, i′〉

where i′ =

i if B = 1

nil otherwise

(3.11)

13

Chapter 4

Compiling PEGs

4.1 Program generation

4.1.1 The Π-function

Now that the semantics of the instructions are defined, we can use these instructions to
transform grammars and patterns into sequences of instructions that can be executed by
the parsing machine.

In the following definitions, v is always a fresh variable (i.e. a variable that has not
already been used anywhere in the sequence of instructions), and L, L1 or L2 are fresh
labels.

Definition 16. We define ΠG, which compiles an entire grammar, as follows:

ΠG(G) = {Ax ⇒ ΠNT (Ax) | Ax ∈ G} (4.1)

Definition 17. We define ΠNT , which compiles a single non-terminal, as follows:

ΠNT (Ax) ≡ ΠP (R(Ax), L)

Return 1

MarkLabel L

Return 0

(4.2)

14

Definition 18. We define ΠP , which recursively compiles an expression, as follows:

ΠP (c, f) ≡ BoundsCheck 0 f

Char c 0 f

Advance 1

ΠP (., f) ≡ BoundsCheck 0 f

Advance 1

ΠP (p1p2, f) ≡ ΠP (p1, f)

ΠP (p2, f)

ΠP (p1/p2, f) ≡ StorePosition v

ΠP (p1, L1)

Jump L2

MarkLabel L1

RestorePosition v 0

ΠP (p2, f)

MarkLabel L2

ΠP (!p1, f) ≡ StorePosition v

ΠP (p1, L1)

Jump f

MarkLabel L1

RestorePosition v 0

ΠP (p∗, f) ≡ MarkLabel L1

StorePosition v

ΠP (p, L2)

Jump L1

MarkLabel L2

RestorePosition v 0

ΠP (Ax, f) ≡ Call Ax

EndCall f

(4.3)

Note that for repetition (p∗), the same variable may be updated multiple times.

Example 19. Consider the expression ’ab’* ’c’. If we match this on the input string
’abababc’, the parsing machine will write to the variable v used in the repeat 4 times: at
input position 0, 2, 4 and 6. At position 0 we add the variable to the collection, and the
next 3 times we update the value of the variable.

We are allowed to overwrite the variable, since PEG backtracking will not backtrack
more than one iteration of a repetition, unlike regular expressions.

15

4.2 Correctness

Definition 20. We define |ΠP (r, f)| to be the length of the InstructionList, i.e. the
number of instructions in the instruction list. This is equivalent to the number of lines,
when writing each instruction on its own line, as we have done in the definitions of the Π
functions.

Note that we will not prove the correctness of any of the syntactic sugar operators, as
they can all be expressed in terms of the operators that we do prove to be correct.

We start by proving the correctness of the program generation for patterns, by pro-
viding proof that for any grammar g, for any non-terminal Ax, for any position i in any
string s, any expression r and any fail label f the following two implications hold:

Theorem 21.

If match g r s i = i + j

then 〈(Ax, pc, V) : e, i〉 ΠP (Ax,f)−−−−−−→ 〈(Ax, pc + |ΠP (r, f)|, V ′) : e, i + j〉
where ∀v∈V [v /∈ ΠP (Ax, f)⇒ V [v] = V ′[v]]

If match g r s i = nil

then 〈(Ax, pc, V) : e, i〉 ΠP (Ax,f)−−−−−−→ 〈(Ax, indexOf(r, f), V ′) : e, z〉
where ∀v∈V [v /∈ ΠP (Ax, f)⇒ V [v] = V ′[v]] and z ∈ Z

(4.4)

The constraint on V specifies that only the variables that appear in the InstructionList
can be modified by those instructions. We will use this later on, in combination with the
fact that Π uses a fresh variable each time one is needed, to infer that certain variables
are not changed.

Proof is done by induction over the derivation of match g r s i.

4.2.1 Base cases

Matching a character

First the case where match g c s i = i+1 (ch.1). We know that s[i] = ’c’ and consequently
also that i < |s|. This matches the behaviour of the parsing machine, which can be seen
by applying the state transitions:

〈(Ax, pc, V) : e, i〉 BoundsCheck 0 f−−−−−−−−−−−−−→ (using i < |s|)

〈(Ax, pc + 1, V) : e, i〉 Char c 0 f−−−−−−−→ (using s[i] = ’c’)

〈(Ax, pc + 2, V) : e, i〉 Advance 1−−−−−−−−→
〈(Ax, pc + 3, V) : e, i + 1〉

(4.5)

In the fail case, where match g c s i = nil (ch.2), either i ≥ |s| or s[i] 6=′ c′. If i ≥ |s|,
the parsing machine will execute the following sequence of transitions:

〈(Ax, pc, V) : e, i〉 BoundsCheck 0 f−−−−−−−−−−−−−→
〈(Ax, indexOf(Ax, f), V) : e, i〉

(4.6)

16

If s[i] 6= ’c’, the associated sequence of transitions is:

〈(Ax, pc, V) : e, i〉 BoundsCheck 0 f−−−−−−−−−−−−−→

〈(Ax, pc + 1, V) : e, i〉 Char c 0 f−−−−−−−→
〈(Ax, indexOf(Ax, f), V) : e, i〉

(4.7)

This proves the correctness of matching a single character.

Matching any character

The proof for matching any character is very similar. In the case where match g . s i = i+1
(any.1), we know that i < |s|. Therefore, the sequence of transitions looks like this:

〈(Ax, pc, V) : e, i〉 BoundsCheck 0 f−−−−−−−−−−−−−→ (using i < |s|)

〈(Ax, pc + 1, V) : e, i〉 Advance 1−−−−−−−−→
〈(Ax, pc + 2, V) : e, i + 1〉

(4.8)

In the fail case, where match g . s i = nil (any.2), we know that i ≥ |s|. The parsing
machine will execute the following sequence of transitions:

〈(Ax, pc, V) : e, i〉 BoundsCheck 0 f−−−−−−−−−−−−−→
〈(Ax, indexOf(Ax, f), V) : e, i〉

(4.9)

This proves the correctness of matching any character.

4.2.2 Inductive cases

Not Predicate

For the not predicate there are once again two rules. In the first case, not.1, we know
that match g r s i = nil. Therefore, the sequence of transitions looks like this:

〈(Ax, pc, V) : e, i〉 StorePosition v−−−−−−−−−−−−−→

〈(Ax, pc + 1, V [V ⇒ i]) : e, i〉 ΠP (r,L1)−−−−−−→ (using the IH)

〈(Ax, pc + 1 + |ΠP (r, f)|, V ′[v ⇒ i]) : e, z〉 MarkLabel L1−−−−−−−−−−−→

〈(Ax, pc + 2 + |ΠP (r, f)|, V ′[v ⇒ i]) : e, z〉 RestorePosition v0−−−−−−−−−−−−−−−−→
〈(Ax, pc + 3 + |ΠP (r, f)|, V ′[v ⇒ i]) : e, V [v] + 0〉

(4.10)

Note that:

1. pc+ 1 + |ΠP (r, f)| = indexOf(Ax, L1), since all labels are fresh and never re-used in
a MarkLabel L instruction.

2. Variable v will not be modified by ΠP (Ax, L1), which follows from the IH. This
means that V [v] + 0 = i.

17

In the second case, not.2 where match g r s i = i + j, the parsing machine will execute
the following sequence of transitions:

〈(Ax, pc, V) : e, i〉 StorePosition v−−−−−−−−−−−−−→

〈(Ax, pc + 1, V [v ⇒ i]) : e, i〉 ΠP (r,L1)−−−−−−→ (using the IH)

〈(Ax, pc + 1 + |ΠP (r, f)|, V ′[v ⇒ i]) : e, i〉
Jump f
−−−−−→

〈(Ax, indexOf(Ax, f), V ′[v ⇒ i]) : e, i + j〉

(4.11)

This proves the correctness of the not predicate.

Concatenation

There are three concatenation rules. In the case of the first rule, con.1 (match g r1r2 s i =
i + j + k), we know that match g r1 s i = i + j and match g r2 s (i + j) = i + j + k. The
state transition sequence is shown below. In both steps, the induction hypothesis is used:

〈(Ax, pc, V) : e, i〉 ΠP (r1,f)−−−−−→

〈(Ax, pc + |ΠP (r1, f)|, V ′) : e, i + j〉 ΠP (r2,f)−−−−−→
〈(Ax, pc + |ΠP (r1, f)|+ |ΠP (r2, f)|, V ′′) : e, i + j + k〉

(4.12)

Note that |ΠP (r1, f)| + |ΠP (r2, f)| = |ΠP (r1, f)ΠP (r2, f)| = |ΠP (r1r2, f)|, since pro-
grams are composed using concatenation.

In the case of the second rule, con.2 (match g r1r2 s i = nil), we know that
match g r1 s i = i + j and match g r2 s (i + j) = nil. The state transition sequence is
shown below. In both steps, the induction hypothesis is used:

〈(Ax, pc, V) : e, i〉 ΠP (r1,f)−−−−−→

〈(Ax, pc + |ΠP (r1, f)|, V ′) : e, i + j〉 ΠP (r2,f)−−−−−→
〈(Ax, indexOf(Ax, f), V ′′) : e, z〉

(4.13)

In the case of the third rule, con.3 (match g r1r2 s i = nil), we know that match g r1 s i =
nil The state transition sequence is shown below. In the first step, the induction hypoth-
esis is used:

〈(Ax, pc, V) : e, i〉 ΠP (r1,f)−−−−−→
〈(Ax, indexOf(Ax, f), V ′) : e, z〉

(4.14)

This proves the correctness of concatenation.

Ordered choice

There are three choice rules. In the case of the first rule, ord.1 (match g r1/r2 s i = nil),
we know that match g r1 s i = nil and match g r2 s i = nil. The state transition

18

sequence is shown below:

〈(Ax, pc, V) : e, i〉 StorePosition V−−−−−−−−−−−−−−→

〈(Ax, pc + 1, V [v ⇒ i]) : e, i〉 ΠP (r1,L1)−−−−−−→ (using the IH)

〈(Ax, pc + 2 + |ΠP (r1, f)|, V ′[v ⇒ i]) : e, z〉 MarkLabel L1−−−−−−−−−−−→

〈(Ax, pc + 3 + |ΠP (r1, f)|, V ′[v ⇒ i]) : e, z〉 RestorePosition V 0−−−−−−−−−−−−−−−−→

〈(Ax, pc + 4 + |ΠP (r1, f)|, V ′[v ⇒ i]) : e, i〉 ΠP (r2,f)−−−−−→ (using the IH)

〈(Ax, indexOf(Ax, f), V ′′[v ⇒ i]) : e, z′〉

(4.15)

Note that in the following two cases 5+|ΠP (r1, f)|+|ΠP (r2, f)| = |ΠP (r1, f)ΠP (r2, f)| =
|ΠP (r1/r2, f)|, since programs are composed using concatenation.

In the case of the second rule, ord.2 (match g r1/r2 s i = i + j), we know that
match g r1 s i = i + j. The state transition sequence is shown below:

〈(Ax, pc, V) : e, i〉 StorePosition V−−−−−−−−−−−−−−→

〈(Ax, pc + 1, V [v ⇒ i]) : e, i〉 ΠP (r1,L1)−−−−−−→ (using the IH)

〈(Ax, pc + 1 + |ΠP (r1, f)|, V ′[v ⇒ i]) : e, i + j〉
Jump L2−−−−−−→

〈(Ax, pc + 4 + |ΠP (r1, f)|+ |ΠP (r2, f)|, V ′[v ⇒ i]) : e, i + j〉 MarkLabel L2−−−−−−−−−−−→
〈(Ax, pc + 5 + |ΠP (r1, f)|+ |ΠP (r2, f)|, V ′[v ⇒ i]) : e, i + j〉

(4.16)

In the case of the third rule, ord.3 (match g r1/r2 s i = nil) we know that match g r1 s i =
nil and match g r2 s i = i + j. The state transition sequence is shown below:

〈(Ax, pc, V) : e, i〉 StorePosition V−−−−−−−−−−−−−−→

〈(Ax, pc + 1, V [v ⇒ i]) : e, i〉 ΠP (r1,L1)−−−−−−→ (using the IH)

〈(Ax, pc + 2 + |ΠP (r1, f)|, V ′[v ⇒ i]) : e, z〉 MarkLabel L1−−−−−−−−−−−→

〈(Ax, pc + 3 + |ΠP (r1, f)|, V ′[v ⇒ i]) : e, z〉 RestorePosition V 0−−−−−−−−−−−−−−−−→

〈(Ax, pc + 4 + |ΠP (r1, f)|, V ′[v ⇒ i]) : e, i〉 ΠP (r2,f)−−−−−→ (using the IH)

〈(Ax, pc + 4 + |ΠP (r1, f)|+ |ΠP (r2, f)|, V ′′[v ⇒ i]) : e, i + j〉 MarkLabel L2−−−−−−−−−−−→
〈(Ax, pc + 5 + |ΠP (r1, f)|+ |ΠP (r2, f)|, V ′′[v ⇒ i]) : e, i + j〉

(4.17)

This proves the correctness of ordered choice.

19

Repetition

There are two repetition rules. In the case of the second rule, rep.2 (match g r ∗ s i = i),
we know that match g r s i = nil. The state transition sequence is shown below:

〈(Ax, pc, V) : e, i〉 MarkLabel L1−−−−−−−−−−−→

〈(Ax, pc + 1, V) : e, i〉 StorePosition v−−−−−−−−−−−−−→

〈(Ax, pc + 2, V [v ⇒ i]) : e, i〉 ΠP (Ax,L2)−−−−−−−→ (using the IH)

〈(Ax, pc + 2 + |ΠP (Ax, L2)|, V ′[v ⇒ i]) : e, z〉 MarkLabel L2−−−−−−−−−−−→

〈(Ax, pc + 2 + |ΠP (Ax, f)|, V ′[v ⇒ i]) : e, z〉 RestorePosition v0−−−−−−−−−−−−−−−−→
〈(Ax, pc + 4 + |ΠP (Ax, L2)|, V ′′[v ⇒ i]) : e, i〉

(4.18)

To prove the first rule, rep.1 (match g r ∗ s i = i + j + k), we know that there must
exist a derivation tree of the following shape:

rep.1
match g r s i = i + jn

rep.1
match g r s (i + jn) = i + jn + jn−1

rep.1
rep.1

rep.2
match g r s (i + jn + jn−1 + ... + j1) = nil

match g r ∗ s (i + jn + jn−1 + ... + j1) = (i + jn + jn−1 + ... + j1)
...

match g r ∗ s (i + jn + jn−1) = i + jn + jn−1 + ... + j1

match g r ∗ s (i + j1) = i + jn + jn−1 + ... + j1

match g r ∗ s i = i + jn + jn−1 + ... + j1

(4.19)
We provide proof of the following implication by induction over the derivation tree

depth n:

Theorem 22.

If match g r ∗ s i = i + jn + jn−1 + ... + j1

then 〈(Ax, pc, V) : e, ph〉
ΠP (r∗,f)−−−−−−→ 〈(Ax, pc + |ΠP (r∗, f)|, V ′) : e, p0〉

where ∀v∈V [v /∈ ΠP (r∗, f)⇒ V [v] = V ′[v]]

(4.20)

Proof of the base case, where n = 0 and match g r∗ s i = i, has already been provided
above.

The state transition sequence which proves the inductive case is shown below:

〈(Ax, pc, V) : e, i〉 MarkLabel L1−−−−−−−−−−−→

〈(Ax, pc + 1, V) : e, i〉 StorePosition V−−−−−−−−−−−−−−→

〈(Ax, pc + 2, V [v ⇒ i]) : e, i〉 ΠP (r,L2)−−−−−−→ (using main IH)

〈(Ax, pc + 2 + |ΠP (r, L2)|, V ′[v ⇒ i]) : e, i + jn〉
Jump L1−−−−−−→

〈(Ax, pc, V
′[v ⇒ i]) : e, ph−1〉

ΠP (r∗,f)−−−−−−→ (using both IHs)

〈(Ax, pc, V
′[v ⇒ i]) : e, i + jn + jn−1 + ... + j1〉

(4.21)

This proves the correctness of repetition.

Non-terminals

To prove the correctness of non-terminals, an auxiliary theorem is needed. We will prove
that for any grammar g, for any non-terminal Ax, for any position i in any string s, the
following two implications hold:

20

Theorem 23.

match g r s i = i + j ⇒ 〈(Ax, 0, ∅) : e, i〉 ΠNT (r)−−−−−→ 〈e, i + j〉

match g r s i = nil⇒ 〈(Ax, 0, ∅) : e, i〉 ΠNT (r)−−−−−→ 〈e,−1〉
(4.22)

Proof: The first part is proven by the following state transition sequence (using the
definition of ΠNT):

〈(Ax, 0, ∅) : e, i〉 ΠP (r,L1)−−−−−−→ (using the IH)

〈(Ax, |ΠP (r, L1)|, V ′) : e, i〉 Return 1−−−−−−−→
〈e, i〉

(4.23)

The second part is proven by the following state transition sequence (also using the
definition of ΠNT):

〈(Ax, 0, ∅) : e, i〉 ΠP (r,L1)−−−−−−→ (using the IH)

〈(Ax, |ΠP (r, L1)|, V ′) : e, z〉 MarkLabel L1−−−−−−−−−−−→

〈(Ax, 1 + |ΠP (r, L1)|, V ′) : e, z〉 Return 0−−−−−−−→
〈e,−1〉

(4.24)

Use of non-terminals With the help of the theorems described above, we can prove
the correctness of non-terminals. There are once again two rules. For the first rule (var.1),
match g Am s i = i + j, we know that match g g(Am) s i = i + j, with the following
associated state transition sequence:

〈(Ax, pc, V) : e, i〉 Call Am−−−−−−→

〈(Am, 0, ∅) : (Ax, pc + 1, V) : e, i〉 ΠNT (Am)−−−−−−→ (Using the auxiliary theorem above)

〈(Ax, pc + 1, V) : e, i〉 EndCall f−−−−−−−−→
〈(Ax, pc, V) : e, i + j〉

(4.25)

For the second rule (var.2), match g Am s i = nil, we know that match g g(Am) s i =
nil, with the following associated state transition sequence:

〈(Ax, pc, V) : e, i〉 Call Am−−−−−−→

〈(Am, 0, ∅) : (Ax, pc + 1, V) : e, i〉 ΠNT (Am)−−−−−−→ (Using the auxiliary theorem above)

〈(Ax, pc + 1, V) : e,−1〉 EndCall f−−−−−−−−→
〈(Ax, indexOf(Ax, f), V) : e, nil〉

(4.26)

This proves correctness of non-terminals.

21

4.3 A note on complexity

4.3.1 General complexity

Our parsing machine does not improve worst case time or space complexity, compared to
the parsing machine from Medeiros and Ierusalimschy [11]. To demonstrate, the following
PEG will use a O(n) memory, where n is the input size: A <- (. A)?. The linear
memory usage in this case is because of the recursion. Each time we recurse, we push a
new stack frame on the stack, which uses a constant amount of memory depending only
on the PEG expression.

We also do not improve on worst case time complexity, which is still exponential. This
cannot be improved without adding memoization.

4.3.2 Complexity for simple patterns

For patterns that do not use recursion, we can make a stronger claim about space com-
plexity. We expect this to be the more common case: most pattern-matching tasks use
simple expressions and do not require recursion.

We know that the maximum call depth is a constant number independent of the input
string, because recusion is not allowed. The maximum stack frame size is determined by
the PEG that we’re matching, and is also independent of the input string. This means
that the memory usage is O(C ∗ F) where C is the maximum call depth and F is the
maximum frame size. Note that the memory usage is no longer dependent on the input
string.

22

Chapter 5

Optimizations

It’s hard to formally quantify the effectiveness of optimizations, as some improvements
might depend on processor architecture. In general, we assume that executing less in-
structions is better. Note that this is different from the number of instruction in the
sequence, since the sequence might contain loops. This means that we should optimize in
the following way:

1. Failing as early as possible, to ensure that if we fail we have done as little work as
possible

2. Delaying instructions as long as possible, to once again ensure that if we fail we
have done as little work as possible

3. Removing or skipping any instructions that will not affect the outcome

In our implementation we are using all of the optimizations described below. These
benchmarks improve run times by a factor roughly bewteen 4 to 10, according to the
benchmarks we performed in Chapter 7.

The general compilation process is shown in Figure 5.1. There are two points where
we can apply optimizations. The first is inside the Π function, which transforms a PEG
into a compiled program C. These optimizations are described in Section 5.1. The second
point is actual ’Optimizations’ step, for which we describe all optimizations in Section
5.2. Note that all optimizations happen before the input string is known.

PEG
(Σ, A,R,As)

Π Optimizations
C

(As,m)
Match C

on s

Input
s

Figure 5.1: The PEG compilation and execution process

23

5.1 Modifying Π

5.1.1 Character classes

Instead of only allowing single characters to be matched by the Char instruction, we can
extend it to match any set of characters.

Definition 24. The definition of the Char instruction now becomes:

〈(Ax, pc, V) : e, i〉 Char C N f−−−−−−−−−→ 〈(Ax, pc
′, V) : e, i〉

where pc′ =

pc + 1 if s[i + N] ∈ C

indexOf(f, p) otherwise

(5.1)

In the definition above, C is no longer a single character, but a set of characters.

This optimization allows each implementation to define its own way to check if a
character is within a certain set. For example, one common expression in a PEG is
[a-z]. Instead of producing a prioritized choice for each of the 26 characters, forcing
every implementation to check the characters one-by-one, this optimization grants the
implementation the freedom to implement a more efficient check. For example, on most
platforms [a-z] can be translated to a subtract followed by an unsigned comparison.

Example 25. The expression [a-z] can now be translated to just three instructions:

BoundsCheck 0 f

Char {’a’, ’b’, ’c’, ..., ’z’} 0 f

Advance 1

(5.2)

5.1.2 Reducing the number of Advance-instructions

As you may have noticed, most instructions contain offsets, which have so far always been
0. We will now use these offset parameters to reduce the number of instructions needed
for matching strings (i.e. multiple characters that are matched sequentially).

Example 26. Consider the following sequence of instructions:

BoundsCheck 0 f

Char ’a’ 0 f

Advance 1

BoundsCheck 0 f

Char ’b’ 0 f

Advance 1

BoundsCheck 0 f

Char ’c’ 0 f

Advance 1

(5.3)

This is unnecessarily verbose. Since all three instructions jump to the same fail label,
we know that it does not matter whether the pattern fails after the first, second, fourth,
or sixth instruction. We can save four instructions by changing the sequence to:

24

BoundsCheck 2 f

Char ’a’ 0 f

Char ’b’ 1 f

Char ’c’ 2 f

Advance 3

(5.4)

This does not pose a problem to the correctness claims we have made, since we allowed
the position i to be any natural number after an instruction fails. It does however sig-
nificantly improve performance, because we eliminate not only three additions, but also
three branching instructions, which can cause costly branch mispredictions on the CPU.

Definition 27. We define expression r to be a ’string’, if and only if r contains only
concatenations of terminals and the any operator.

Definition 28. A function stringSize(r) is used to determine the size of the string inside
r. It is defined as follows:

stringSize(c) = 1

stringSize(.) = 1

stringSize(r1r2) =

stringSize(r1) + stringSize(r2) if r1 is a string

stringSize(r1) otherwise

stringSize(r) = 0

(5.5)

We can now use this function to define ΠS , a function that generates the faster string
matching code:

Definition 29.

ΠS(., f, n,m) =∅
ΠS(c, f, n,m) =Char c n f if n < m

ΠS(c, f, n,m) =
Char c n f

Advance n
if n = m

ΠS(r1r2, f, n) =ΠS(r1, f, n,m)

ΠS(r2, f, n + stringSize(r1),m)

ΠS(r, f, n) =ΠP (r, f)

(5.6)

Definition 30. Finally, we can use ΠS in our previously defined function ΠP :

ΠP (r1r2, f) =


BoundsCheck (stringSize(r1r2)− 1) f
ΠS(r1r2, f, 0, stringSize(r1r2)− 1)

if stringSize(r1r2) > 0

ΠP (r1r2, f) otherwise

(5.7)

5.1.3 Non-terminal inlining

If non-terminals are really small, the method invocation overhead is often the main cause
of slowdowns. Assume we have some processor-dependent heuristic Hinline that tells us
when the method invocation overhead is more costly than the code size increase (increased
code size might cause slowdowns if the code does not fit inside the processor cache) caused
by inlining the invocation, for example by looking at:

25

1. The size of the non-terminal

2. Whether the non-terminal is recursive

3. How many other non-terminals are called by the non-terminal

Definition 31. We modify the definition of Π to include this heuristic:

ΠP (Ax, f) ≡ Call Ax

EndCall f
if not Hinline(Ax)

ΠP (Ax, f) ≡ ΠP (R(Ax), f) if Hinline(Ax)

(5.8)

This optimization can be especially useful when using parameterized non-terminals.

Example 32. Re-using our example from Section 3.1:
EndsWithIng <- Until<\([a-z]), \(’ing’)>
Because of this optimization, both [a-z] and ’ing’ can be inlined, making the pa-

rameterized non-terminal as fast as the hand-written expression.

5.2 Transforming instruction sequences

This second set of optimizations is executed after the initial compilation using Π. All
optimizations below operate on a single InstructionList (i.e. a single non-terminal), and
produce a new list of optimized instructions. An implementation might iteratively run
the optimizations until the instructions sequence reaches a form where none of the opti-
mizations have any effect on it.

5.2.1 Normalization

For all following optimizations, we assume that the sequence of instructions is in a normal
form. In particular, we want the sequence of instructions to adhere to the following rules:

1. A label refers to a unique position in the code, i.e. a MarkLabel instruction will
never be followed by another MarkLabel instruction.

2. For each MarkLabel Li instruction, there is at least one instruction that can jump
to Li.

3. For each StorePosition Vi instruction, there is at least one RestorePosition Vi

instruction.

4. An instruction is reachable, i.e. there exists at least one execution path that contains
the instruction.

Example 33. To illustrate point 4, consider the following sequence of instructions:

Jump L

Char [a− z] 0 f

Char ’:’ 1 f

MarkLabel L

(5.9)

26

The two instructions between the Jump and the MarkLabel can never be reached,
because the Jump will always jump over the two instructions. Therefore, no execution
path contains the two Char instructions, so they should be removed from the instruction
sequence.

Note that optimizations will still produce correct results if a sequence of instructions is
not in the described normal form. Rather, the optimizations often have preconditions that
require the normal form, so not having this form renders the optimizations ineffective.
Implementing an algorithm that modifies an instruction sequence to make sure it adheres
to the rules above should be trivial.

5.2.2 Char ordering

This optimization falls into the category of ensuring that if we fail to match, we fail
as early as possible. It should be noted that the effectiveness of this optimization is
dependent on the character distribution of the input text, which is unknown when this
optimization is used. Therefore, we assume the characters in the string are uniformly
distributed. In practice this assumption turns out to be precise enough most of the time.

Example 34. Consider the following sequence of instructions, which match any lower
case letter followed by a colon:

BoundsCheck 2 f

Char [a− z] 0 f

Char ’:’ 1 f

Advance 3

(5.10)

Assuming an uniformly distributed input, the probability that s[i] is a lower case letter
is greater than the probability that s[i + 1] is a colon. Therefore it makes more sense to
order the instructions like this:

BoundsCheck 2 f

Char ’:’ 1 f

Char [a− z] 0 f

Advance 3

(5.11)

For any two Char instructions at position pc and pc + 1 respectively, we swap the
instructions if they both have the same fail label, and the second Char instruction matches
less characters than the first Char instruction.

5.2.3 Consolidating BoundsChecks

Consider a subsequence that looks like the following:

BoundsCheck j f

Char c1 x1 f

Char c2 x2 f

...

Char cn xn f

BoundsCheck k f

(5.12)

27

Since all instructions will jump to the same fail label, we can safely remove the second
BoundsCheck, and modify the first BoundsCheck to BoundsCheck max(j, k) f .

5.2.4 Deduplication

Given a subsequence of instructions of the following shape:

I1

I2

...

In

Jump Lk

(5.13)

If this subsequence occurs twice or more in the full sequence, we can optimize this by
replacing the subsequences by a Jump Lk′ instruction, and then modifying the sequence
around the MarkLabel Lk instruction to this:

Jump Lk

MarkLabel Lk′

I1

I2

...

In

MarkLabel Lk

(5.14)

While this optimization does not reduce the number of instructions that are executed,
it does reduce the overal instruction list size, which increases the chances that the entire
program will fit in the CPU’s instruction cache. Additionally, in some cases deduplication
renders some instructions unnecessary, which allows other optimizations to remove them.

5.2.5 Delaying BoundsChecks, Advances and StorePositions

The Advance and StorePosition instructions cannot fail, so we want to execute them
as late as possible. The BoundsCheck instruction can fail, but this is highly unlikely
for pattern-matching tasks, since most of the time we will not be at the end of the file.
Therefore, we want to execute the Char-instructions before the three instructions above,
and the BoundsCheck before the Advance and StorePosition instructions.

We can achieve this by ’pushing’ the instructions down. Consider the following sub-
sequence:

StorePosition V3

Char c 0 Lk

(5.15)

After storing the position, the machine may take one of two paths. It may successfully
match c, and continue executing, or it may fail to match c, and jump to Lk. If we want to
push the StorePosition instruction down, we can do this by moving it to two locations.

28

For the successful match case, we push it down one instruction:

Char c 0 Lk

StorePosition V3
(5.16)

For the unsuccesful case, we add a stub before the MarkLabel instruction, and patch
the Char instruction:

Char c 0 Lk′

...

Jump Lk

MarkLabel Lk′

StorePosition V3

MarkLabel Lk

(5.17)

We can apply this same technique to BoundsCheck, Advance and StorePosition

instructions.

5.2.6 Removing unnecessary instructions

Definition 35. An Advance N instruction at position pc in sequence I is useful if, and
only if:

1. N 6= 0

2. If neededadv(pc) = true, where neededadv is defined as follows:

neededadv(pc) =



false if I[pc] = RestorePosition v

neededadv(pc + 1) if I[pc] = Advance N

neededadv(pc + 1) if I[pc] = MarkLabel L

neededadv(indexOf(L)) if I[pc] = Jump L

true otherwise

Informally, we are checking if the instructions will do anything with the modified
position. If we know that the modified position will be disregarded without being used
anywhere, it’s unnecessary.

Definition 36. A StorePosition v instruction at position pc in sequence I is useful if,
and only if:

1. N 6= 0

2. If neededstore(pc) = true, where neededstore is defined as follows:

29

neededstore(pc) =



true if I[pc] = RestorePosition v

false if I[pc] = StorePosition v

neededstore(indexOf(L)) if I[pc] = Jump L

neededstore(indexOf(L)) ∨ neededstore(pc + 1) if

I[pc] = Char

or I[pc] = BoundsCheck

or I[pc] = BeginCall

neededstore(pc + 1) otherwise

Informally, we are checking whether the position that we’re storing is used at all before
it is overwritten by another value. If it’s never used, the instruction is not needed. While
this might seem equivalent to removing any StorePosition v instruction for which no
RestorePosition v exists, this optimization also works in cases like the following:

Example 37.

StorePosition v

Jump Lk

...

MarkLabel Lk

StorePosition v

...

RestorePosition v

(5.18)

Here, we store the position in v, jump to Lk, and store the position again, then restore it.
While there exists a RestorePosition v, the first StorePosition v can still be removed,
because it is overwritten by the second StorePosition a few instructions later.

All instructions that are not useful can be removed without changing the semantics
of the program.

5.2.7 Jump target optimization

This optimization is aimed at reducing the number of instructions that are executed by
skipping over instructions that will not affect the outcome. We do this by performing
an analysis of the instruction sequence to determine how far bounds have been checked,
and which characters either matched or failed to match at any point in the sequence. We
call this process ’backtracing’ since it involves following execution paths in the reverse
direction back to the start of the execution. We describe this in Section 5.2.7

After doing this, we can use this information to skip over instructions that don’t affect
the outcome. We call this ’forwardtracing’, since it involves simulating the execution of
the instruction sequence using the information gathered using backtracing. We describe
this in Section 5.2.7

We can also use the information gathered using backtracing to eliminate instructions
that are guaranteed to always succeed or fail, which we descibe in Section 5.2.7

30

Backtracing

Informally, bactracing performs static analysis on a single InstructionList. Given any
position pos in the InstructionList, we can build a list of all execution paths that will
eventually end up executing the instruction at position pos. In other words, when rep-
resenting the InstructionList as a directed flow graph, this list consists of all paths from
the start node to the node belonging to the instruction at position pos.

Example 38. Consider a situation where there are two paths to the instruction at posi-
tion pos. (For the sake of the example, we assume that there are no Advance instructions
anywhese in the paths)

1. Path 1 contains a BoundsCheck 4 Lf instruction which succeeds, and a BoundsCheck

7 Lf instruction which fails

2. Path 3 contains a BoundsCheck 2 Lf instruction which succeeds, and a BoundsCheck

10 L′f instruction which fails

From this information, we can establish the bounds at position pos: The input string
is at least i + 2, and no more than i + 10 characters long.

We can do this analysis for both Char and BoundsCheck instructions. Below, we will
describe how the information that we retrieve from separate paths can be merged into a
something that holds for all paths. We also describe the backtracing algorithm in more
detail.

We are using two auxiliary functions. Both are described in Algorithm 1. Jump-
Sources returns a list of all locations that can jump to a certain label. We will use this
to follow the execution path in reverse. Store-Sources returns a list of all locations where
a variable might have been stored, given a RestorePosition instruction. This is used to
backtrace through a RestorePosition instruction.

Definition 39. We can store the known bounds of the input string in a tuple (B>=, B<).
We define the intersection ∩ of two tuples to be:

(a>=, a<) ∩ (b>=, b<) = (min(a>=, b>=),max(a<, b<))
We define subtraction as follows:
(a>=, a<)− k = (a>= − k, a< − k)

Definition 40. We can store the characters that have matched and that failed to match
in a tuple (Cm, Cf), where Cm and Cf are finite functions N → Chars. This function
maps a position in the string, relative to the current position i, to a list of all characters
that (failed to) match at that position.

We define the intersection (Cm, Cf) ∩ (C ′m, C ′f) = (Cm ∩ C ′m, Cf ∩ C ′f).
We define advance(n, (Cm, Cf)) to subtract n from all indices of the finite function,

and remove all numbers that are now less than 0.

Removing unneeded instructions

We can use the backtracing to determine if there are any BoundsCheck or Char instructions
that will always fail or always succeed. Instructions that always fail can be replaced by
an unconditional Jump, and instructions that always succeed can be removed entirely.

31

Algorithm 1 Auxiliary procedures

1: procedure Jump-Sources(I, L)
2: result← ∅
3: for pos ∈ 1...|I| do
4: if I[pos] = Jump L ∨ I[pos] = BoundsCheck N L ∨ I[pos] = Char C N L then
5: result← result ∪ {pos}

return result
6: procedure Store-Sources(I, pos, v)
7: stack← ∅
8: processed← ∅
9: result← ∅

10: stack.push(pos)
11: while do|stack| > 0
12: pos← stack.pop()
13: if pos /∈ processed then
14: processed← processed ∪ {pos}
15: instr← I[pos]
16: if instr = MarkLabel L then
17: stack.pushMultiple(Jump-Sources(L,pos))
18: stack.push(pos− 1)
19: else if instr = StorePosition v then
20: result← result ∪ {pos}
21: else if instr /∈ {Jump L, Return B, EndCall L} then
22: stack.push(pos− 1)

return result

32

Algorithm 2 Backtracing bounds

1: procedure Check-Bounds(I, pos, visited)
2: if pos < 0 then return (−1,∞)

3: instr← I[pos]
4: if instr = MarkLabel L then
5: if L ∈ visited then return (−1,∞)

return
⋂

x∈Jump-Sources(L,pos) Check-Bounds-Helper(x, visited ∪ {L}, true)
6: else if instr = Advance N then

return Check-Bounds-Helper(pos− 1, visited, false)−N
7: else if instr = RestorePosition v then

return
⋂

x∈Store-Sources(L,pos) Check-Bounds-Helper(x, visited, true)

8: else if instr ∈ {Jump L, Return B, EndCall L} then
return (−1,∞)

9: else
return Check-Bounds-Helper(pos− 1, visited, false)

10: procedure Check-Bounds-Helper(I, pos, visited, jump)
11: instr← I[pos]
12: if instr = BoundsCheck N L then
13: result← Check-Bounds(I,pos)
14: if jump then

return result ∩ (−1, N)
15: else

return result ∩ (N,∞)

16: else
return Check-Bounds(I,pos)

33

Algorithm 3 Backtracing chars

1: procedure Check-Chars(I, pos, visited)
2: if pos < 0 then return (−1,∞)

3: instr← I[pos]
4: if instr = MarkLabel L then
5: if L ∈ visited then return (−1,∞)

return
⋂

x∈Jump-Sources(L,pos) Check-Chars-Helper(x, visited ∪ {L}, true)
6: else if instr = Advance N then

return Check-Chars-Helper(pos− 1, visited, false)−N
7: else if instr = RestorePosition v then

return
⋂

x∈Store-Sources(L,pos) Check-Chars-Helper(x, visited, true)

8: else if instr ∈ {Jump L, Return B, EndCall L} then
return (−1,∞)

9: else
return Check-Bounds-Helper(pos− 1, visited, false)

10: procedure Check-Chars-Helper(I, pos, visited, jump)
11: instr← I[pos]
12: if instr = Char C NL then
13: result← Check-Chars(I, pos)
14: if jump then

return result ∩ (∅, {})
15: else

return result ∩ (, ∅)
16: else

return Check-Chars(I, pos)

34

Forwardtracing

We use forward tracing, described in Algorithm 4, to optimize the jump target of Jump,
BoundsCheck and Char instructions. Informally, we do this by updating the jump target
of these instructions to skip any instruction that we know to be unneeded because of the
backtracing result.

Example 41. Consider an instruction sequence of the following shape:

Jumpf

...

MarkLabel f

BoundsCheck 2 f

...

(5.19)

Assume that backtracing has established that there are at least 3 more characters in
the input string. This means that the BoundsCheck 2 f instruction is unneeded when
jumping to f from the Jump f instruction. Therefore, we can update the instruction
sequence to the following:

Jumpf ′

...

MarkLabel f

BoundsCheck 2 f

MarkLabel f ′

...

(5.20)

Note that we have to leave the old MarkLabel f in the sequence, since we do not know
if there are any other jumps to f .

Our forwardtracing algorithm has two tiers. Forward-Trace-Single will follow a single
path for as far as it can be skipped. Forward-Trace will then use the results of the single
trace to look past jumps for which we were not able to gather enough information during
backtracing to predict their outcome, by following both jumps. If both of the jumps still
lead to the same location, the outcome of the current jump does not matter and we can
skip it.

Optimizing jump targets

We use the forward tracing methods to determine the best jump target for Char, Bounds-
Check and Jump instructions. We can then insert a new label at that position, and update
the label of the instruction to the new label.

35

Algorithm 4 Forwardtracing

1: procedure Forward-Trace(I, pos, backtracePos)
2: result← Forward-Trace-Single(I, pos, backtracePos)
3: instr← I[pos]
4: if instr = RestorePosition v then
5: if L ∈ visited then return (−1,∞)

6: result2← Forward-Trace-Single(I, pos, backtracePos)
7: if I[result2] = RestorePosition v2 then return result2

return result
8: else if instr = Char C N L ∨ instr = BoundsCheck N L then
9: result1← Forward-Trace-Single(I, pos + 1, backtracePos)

10: result2← Forward-Trace-Single(I, indexOf(I, L), backtracePos)
11: if result1 = result2 then return result1

return result
12: procedure Forward-Trace-Single(I, pos, backtracePos)
13: while true do
14: instr← I[pos]
15: if instr = Jump L then
16: pos← indexOf(I, L)
17: else if instr = MarkLabel L then
18: pos← pos + 1
19: else if instr = Char C NL then
20: (Cm, Cf)← Check-Chars(I, pos, ∅)
21: if C ∈ Cm[N] then
22: pos← pos + 1
23: else if C ∈ Cf [N] then
24: pos← indexOf(I, L)
25: else return pos

26: else if instr = BoundsCheck N L then
27: (B⇐, B>)← Check-Bounds(I,pos, ∅)
28: if N ⇐ B⇐ then
29: pos← pos + 1
30: else if N > B> then
31: pos← indexOf(I, L)
32: else return pos

33: else return Check-Chars(I,pos)

36

5.2.8 Skipping or removing unneeded RestorePositions

If we have an instruction sequence of the following shape, where all Ix are not an Advance

or BeginCall instruction:

StorePosition v

I1

I2

...

In

BoundsCheck N Lfail

...

MarkLabel Lfail

RestorePosition v

(5.21)

We can optimize this sequence to:

StorePosition v

I1

I2

...

In

BoundsCheck N L′fail

...

MarkLabel Lfail

RestorePosition v

MarkLabel L′fail

(5.22)

We can take this one step further and perform abstract interpretation [4] on the entire
instruction sequence, to infer the offsets stored in all variables.

Example 42. The RestorePosition in the following instruction sequence is unneeded:

StorePosition v

Advance 3

BoundsCheck N L′fail

RestorePosition v

MarkLabel L′fail

(5.23)

Using abstract interpretation can infer that when arriving at the RestorePosition

instruction, v will be equal to i−3. We can now replace the RestorePosition instruction
with Advance -3.

In general we can replace all RestorePosition instructions, where we have inferred
that the offset is always a fixed number, by an Advance instruction.

37

5.2.9 Merging StorePositions

Definition 43. We can merge two StorePosition instructions, StorePosition vA and
StorePosition vB when for each position where we find StorePosition vA, the other
instruction StorePosition vB can be found directly before or after it.

Definition 44. We merge StorePosition vA and StorePosition vB by removing all
StorePosition vB instructions, and substituting all RestorePosition vB instructions
with RestorePosition vA

Merging two variables into one reduces the number of StorePosition needed, and
also reduces the stack frame size, which reduces memory usage and increases performance.

5.2.10 Adding fast-paths to loops

BoundsChecks can become very costly when executing them inside a loop (i.e. a repeat).
When matching patterns on text files, we attempt to match the pattern on each input
position in the string, so most of the time we will not be at the end of the file. This
means we don’t need the BoundsChecks in the common case. We can solve this problem
by adding a separate fast and slow path for the loop. Consider the following structure:

MarkLabel Lloop

I1

I2

...

In

Jump Lloop

(5.24)

Here, I1, I2, In are instructions, and Lloop is a label. Assume we know heuristically
that the loop body (I1, I2, ..., In) contains many BoundsChecks. We can then optimize
the instruction sequence to the following:

MarkLabel Lfast

BoundsCheck K Lslow

I1

I2

...

In

Jump Lfast

MarkLabel Lslow

I ′1

I ′2

...

I ′n

Jump Lslow

(5.25)

We choose K to be some large number, for example the largest bound checked in the
loop body. We generate the duplicated instruction sequence I ′1, I

′
2, ..., I

′
n by replacing each

38

label that is marked inside the loop body with a fresh label. This ensures that we will
not have duplicate MarkLabel L instructions, and that we do not jump back to the fast
path.

Other optimizations will be able to further optimize the fast path, by removing un-
needed BoundsChecks, or delaying them for longer. The slow path will only be invoked
for the last K characters in the input string.

39

Chapter 6

Implementation

Our implementation provides both a library and a grep-like tool named peg-match. Both
are available on GitHub, under the LGPL v3.0 1.

6.1 peg-match

peg-match is a command-line tool that provides functionality similar to the popular unix-
tool grep:

Example 45. The following command will print all words starting with ’th’ in the file
’input.txt’:

peg -match ” ’ th ’ [a - z]+” input . txt

Having a tool that is just as good as an existing tool will not convince users of the
existing tool to switch, since there is no direct benefit associated with switching. To make
the switch worthwhile, peg-match needs to also have functionality that cannot be found
in grep. The PEG extensions described in Section 3.1 were aimed at making PEGs easier
to use in pattern-matching use cases. We have attempted to do the same thing for the
tool itself, by adding features not found in tools like grep that make using it easier.

6.1.1 The peg-match standard library

Since we’re no longer bound to the limitations of regular expressions, we can add a
standard library of commonly used patterns and parameterized non-terminals. Having
a standard library available means that hard-to-remember patterns or constructs can be
stored under an easy-to-remember name.

Example 46. As discussed before, matching all words ending in ’ing’ is more complicated
due to the limited backtracking of PEGs. Therefore, peg-match provides a parameterized
non-terminal to make this process as easy as it would be when using regular expressions.
The following command will match all words ending in ’ing’:

peg -match ’ S t r ing : : Unti l <\([a - z]) , \(” ing ”)>’ input . txt

This uses the extended grammar described in Section 3.1.

Currently, the following modules for common tasks are included with peg-match:

1https://github.com/Jos635/SharpPeg

40

1. The Char:: namespace provides sets of commonly used character classes, which
aims to replace the backslash-followed-by-a-letter commonly used in regular expres-
sion matching libraries. For example, \w in a regular expression is available as
Char::Letter in peg-match.

2. The String:: namespace provides mostly parameterized non-terminals for common
string structures, for example:

(a) String::Until<Repeat, Ending> - A word consisting of Repeats, ending in
Ending

(b) String::Join<Separator, Item> - One or more Items, with Separator in-
between the items.

(c) String::Quoted<Repeat, QuoteChar> - Zero or more Repeats surrounded
by QuoteChar. QuoteChar may also occur in the string, if it is preceded by a
backslash.

3. The Phone namespace provides a grammar that can be used to match common
phone number notation formats.

4. The Net::Email namespace can be used to match e-mail addresses.

5. The Net::Ip namespace can be used to match any IP address, which includes IPv4,
IPv6 and future IP formats, currently named ”IPvFuture”.

6. The Net::Ipv4 namespace can be used to match IPv4 addresses, as well as the
CIDR notation.

7. The Net::Ipv6 namespace can be used to match IPv6 addresses, as well as the
CIDR notation.

8. The Net::IpvFuture namespace can be used to match any IPvFuture address.

9. The Net::Rfc1035 namespace contains an implementation of the domain name
format descibed in rfc1035 [13].

10. The Net::Rfc1235 namespace contains an implementation of the updated domain
name format descibed in rfc1123 [3].

11. The Net::Uri namespace implements the entire URI grammar described in rfc3986
[2]. It can be used to match URIs, web addresses or parts of URIs.

12. The File::Csv namespace contains a CSV grammar adapted from rfc4180 [15]. It
contains a parameterized non-terminal that accepts a custom field separator. Fields
escaped with double quotes are also supported.

13. The DateTime::Rfc3339 namespace contains a full grammar adapted from rfc3339
[10], which is a subset of the ISO 8601 date, time, interval and period notation.

14. The DateTime::Informal namespace contains a few grammars that can be helpful
for matching informal date and time notation.

41

6.1.2 Structured output

Traditionally, tools like grep have been limited to only printing text as output. peg-match
can optionally output structured JSON instead. This can be useful when using peg-match

as part of a script, or for example when attempting to extract a certain column from a
CSV file.

Example 47. Using the File::Csv::CsvFile non-terminal from the File::Csv:: names-
pace, we can parse an entire CSV file at once. The CSV data can be output as JSON,
which makes it much easier to manipulate. For example, the output could be piped into
the tool jq, which can manipulate JSON files.

Without the structured output, we would have needed to write a small program that
imports a CSV library, parses the file using the library, and outputs our desired format.
In practice, this works as follows:

$> peg -match - j ’ F i l e : : Csv : : CsvFile ’ data . csv
{

” r e co rd s ” : [
[

” id ” ,
”name” ,
” value ”

] ,
[

”1” ,
”Danie l ” ,
”60”

] ,
[

”2” ,
”Mark” ,
”20”

]
]

}

6.2 The Library

6.2.1 Overview

The library is split into 5 namespaces:

1. Operators - Classes needed to represent a PEG.

2. Common - Classes that are shared between multiple namespaces.

3. Compilation - Classes that are needed for the PEG compiler.

4. Runner - Classes that are needed to match a compiled PEG on an input string.

5. SelfParser - Classes that implement a PEG that can parse itself.

To get started quickly, the PatternCompiler class contains the boilerplate code
needed for the most common use-case: compiling a pattern and building a runner. To
match a PEG on an input string, all that is needed is the following:

42

var runner = PatternCompiler . De fau l t . Compile (somePeg) ;
var r e s u l t = runner .Run(inputSt r ing) ;

The PatternCompiler is a combination of the main three parts in the compilation
pipeline of the library, the compiler, the optimizer and the jitter. The compiler is re-
sponsible for transforming a PEG, defined using the classes in Operators to a compiled
program C (see Section 3.2.1). The optimizer performs any number of transformations on
the compiled program C to make it faster or more efficient. The jitter is responsible for
the last-minute conversion to a format that can be executed. This might be as simple as
initializing an instance of an interpreter class, or it might be compilation to another lan-
guage. For example, the Runner.ILRunner.ILJitter class will translate the instructions
from our parsing machine to the .NET Common Intermediate Language (CIL).

All three components can be extended separately. For example, a new compiler could
be written that directly translates regular expressions to the instruction set of our pars-
ing machine, reusing the existing jitter. Similarly a new jitter could be written that,
for example, skips the CIL generation (described in Section 6.2.6) and directly out-
puts x86 assembly, while re-using the existing compilers. Lastly, optimizations can be
extended at two points. An individual optimization can be added by adding a class
that extends Optimizations.BaseOptimization to the list of optimizations. If the
Optimizations.Default.BaseOptimization is too restricting, a class that implements
IOptimizer can be added, which is only required to receive a program C and return a
new, optimized C ′.

6.2.2 Captures

When defining languages formally, we are only interested in whether an input string
matches the PEG or regular expression. However, in the real world we often want to
know more than just a boolean result indicating whether the string matched. Many
regular expression libraries re-use the grouping parentheses as a ’capture’.

Example 48. When matching the regular expression ab(c+)d to an input string, ’abcc-
cccd’, the regular expression library will not only return that the expression matched the
input string, but it can also return the c+ part of the regular expression separately.

When using a regular expression library to search and replace certain parts of an input
text, the captures can also be used to copy certain parts of the input to the replacement.
This is often denoted using ’$N’ or ’\N’, which refers to the Nth capture in the expression.

Our implementation has optional support for captures. Instead of re-using the group-
ing operator, we are using a separate operator, which looks like this: e1 { ec } e2, where
e1, e2 are PEG expressions and ec is the PEG expression that will be captured.

Captures are implemented using a new instruction, Capture N v K, where N is an
offset, v a variable, and K a capture key. This instruction adds an entry (K,V [v], i) to
the capture list, where V [v] is the value of the variable, and i is the current position in
the input string. The capture key K ∈ N can be used to identify the capture afterwards,
and has no meaning in and of itself.

According to our formal model of the machine, the instruction has no effect on the
PEG matching process because our model does not take captures into account. Therefore,
it made little sense to include the Capture instruction as part of the formal definition of
the machine.

43

6.2.3 Representing PEGs

PEGs are represented using the classes inside the Operators namespace. Each non-
abstract class represents a single operator. Only the essential operators are implemented.
Syntactic sugar is available in the form of static methods in the Operator class. The
following operators are defined:

1. Any, the any operator (.)

2. CharacterClass, a terminal character, extended to optionally match a set of char-
acters.

3. Empty, the empty string (ε)

4. Not, the any operator (.)

5. Pattern, a non-terminal (Ai)

6. PrioritizedChoice, the prioritized choice operator (e1/e2)

7. Sequence, the concatenation operator (e1e2)

8. ZeroOrMore, the repeat operator (e∗)

9. CaptureGroup, an operator which will add a capture entry for everything that is
matched inside (e)

These operators all inherit from the abstract Operator class, and if the operators are
not atomic they inherit from the SingleChildOperator (Not, ZeroOrMore, CaptureGroup)
or MultiChildOperator (Sequence, PrioritizedChoice) as well.

Example 49. Consider the expression ’a’ / (!(’bc’+)). We represent this as follows:

new Pr i o r i t i z e dCho i c e (new CharacterClass (’ a ’) , new Not (Operator . OneOrMore(
CharacterClass . S t r ing (”bc”))))

Due to the verbosity, these declarations are hard to read. We have implemented
implicit conversion from characters and strings to their respective operators, so that the
above expression can also be declared like this:

new Pr i o r i t i z e dCho i c e (’ a ’ , new Not (Operator . OneOrMore(”bc”))) }

However, this is still very verbose. Therefore, we have also implemented a PEG parser
that can parse a PEG from a string input, which we describe in Section 6.2.8.

6.2.4 Compilation

Compilation of the PEGs is handled in the Compilation.Compiler class. The compiler
only takes a start non-terminal (’pattern’). We start by building PatternInfo for the
start non-terminals, to discover all the non-terminals we will need to compile. We also
keep track of whether non-terminals are recursive and how big non-terminals are. We
use this info to inline extremely small non-terminals, to avoid the method invocation
overhead. Currently the compiler will inline non-terminals of 16 operators or less that do
not contain any non-terminals.

Compilation itself is very straight-forward, and implemented in about 200 lines of
code. We take a different approach for reducing the number of advances than described

44

in Section 5.1.2. Instead of pre-calculating the prefix size (which would take a recursive
iteration over all child nodes every time), we generate a BoundsCheck and keep track of
its position, so we can modify that instruction afterwards to patch the offset.

6.2.5 Optimization

An optimizer can be defined by implementing the Optimizations.IOptimizer interface.
By default, the optimizations are handled by the Optimizations.DefaultOptimizer

class. This class can be instantiated with a list of optimizations, which inherit from
Optimizations.Default.BaseOptimization. When optimizing it will repeatedly run all
optimizations sequentially, until the instruction sequence reaches a ’stable’ point where
no optimizations are changing it anymore.

6.2.6 Code generation and execution

A code generator can be implemented by adding a class that implements IJitter. The
IJitter interface requires a Compile method to be implemented, which can translate the
CompiledPeg to an IRunner. The IRunner interface defines an interface for matching a
string. The jitter can either return an instantiation of an existing class, or dynamically
generate a new class and return an instantiation of that class.

CIL generation

The conversion from our instruction set to the Common Intermediate Language (CIL,
formerly called Microsoft Intermediate Language) is done by the ILJitter class. This
class translates instructions one-by-one to equivalent CIL opcodes.

The implementation translates each non-terminal to a separate method, and adds one
additional method, char* RunInternal(char*), which invokes the start non-terminal.
We use unsafe pointer arithmetic to avoid array bounds checks. This makes the methods
incompatible with the IRunner interface. Therefore, we have added a class, BaseJitted-
Runner, which implements the IRunner interface, and sets up fields that are used by the
dynamically generated code. The class that’s generated dynamically inherits from the
BaseJittedRunner, so that we can avoid generating boilerplate code for interfacing with
IRunner at runtime.

Interpreter

The InterpreterRunner class implements a simple interpreter for our parsing machine.
Instructions are directly fetched from the instruction list, and then executed using one
big switch statement. Positions of the MarkLabel instructions are pre-calculated when
the class is instantiated, so that jumping to a label consists of just 2 array lookups.

The implementation of the intepreter is not optimized for speed. Our parsing machine
is mostly designed to be compiled to machine code, which does not need an interpreter to
be executed. Therefore, we do not expect the interpreter to be used in general. Instead, its
intention is to be as reliable as possible so it can be used as a debugging tool for the parsing
machine. There are often limited to no debugging symbols available for dynamically
compiled code, like the code generated by the ILJitter, which makes debugging the
parsing machine difficult. Since the interpreter does not generate any code dynamically,
debugging is much easier.

45

6.2.7 Captures

The IRunner can, besides returning whether a match was successful, also output a list
of all captures using the Runner.Capture class. This class contains fields that mark the
beginning and the end position of the captured string, as well as the associated capture
key. The class also contains a field CaptureCloseIndex, which indicates how far in the
matching process the capture was added. This can be useful when determining the capture
order of two nested captures that matched the same part of the string.

Example 50. We’ll use {name:expression} to indicate a capture group.
Consider the expression {outer:{inner:’abc’}}. If mached on the input string

”abc”, we’ll receive two captures: outer and inner, both from position 0 to position 2
in the input string. Without looking at the expression, we cannot determine which cap-
ture group was captured first. However, when looking at the CaptureCloseIndex, the
CaptureCloseIndex of outer will be greater than the CaptureCloseIndex of inner, so we
know that inner must have matched before outer.

6.2.8 The self-parser

The SelfParser.PegGrammar class provides an extensible PEG grammar definition. The
class itself only implements the grammar as defined by Ford [7]. All our extensions are
defined separately in the peg-match tool.

The grammar contains capture operators with distinct capture keys for each operator
or construct in the PEG grammar. We then match our grammar to the input string, which
will return a list of all captures. Using these captures, we build the PEG expression in a
bottom-up fashion.

To extend the parser, a class that inherits from the parser can be implemented. This
class can then modify any of the existing non-terminals, which are all stored in class fields.
The class can also hook into the method that builds an expression from the captures by
overriding it. This allows for virtually unlimited extensibility.

46

Chapter 7

Related Work and Conclusions

Our own work has mainly been focussed on the parsing machine and the PEG extensions.
We use the same definitions for match as used by Ierusalimschy and Medeiros. We also
use similar notation when describing state transtitions, states, instructions and the PEG
compilation.

Due to the very different instruction design of our parsing machine, most optimiza-
tions were designed from scratch. We do implement character classes (Section 5.1.1), an
optimization also implemented by Ierusalimschy and Medeiros. The PEG extensions and
the implementation are our own work.

7.1 Regular expressions

7.1.1 Benchmarks

Table 7.1 shows a comparision of different regex runtimes and SharpPEG, our implemen-
tation. The numbers listed are the best time (in ms) out of 50 runs. Each run consists
of finding all occurrences of the pattern in all works of Mark Twain, which is available in
the public domain1. The benchmarks were run on a PC running Windows 10, build 1703,
with 16 GB of 1600Mhz DDR3 RAM and an Intel Core i7-4770K, clocked at 3.5Ghz.
This benchmark has been adapted from a regular expressions benchmark [14], which is
an updated version of a benchmark that was used to show the performance improvements
in the PCRE JIT compiler.

The following regex libraries were benchmarked:

1. PCRE2 2

2. tre 3

3. Oniguruma 4

4. re2 5

5. Hyperscan (hscan) 6

1http://www.gutenberg.org/ebooks/3200
2http://www.pcre.org/
3https://github.com/laurikari/tre
4https://github.com/kkos/oniguruma
5https://github.com/kkos/oniguruma
6https://github.com/01org/hyperscan

47

6. Rust regex crate (rust regex) 7

We benchmarked the following regular expressions:

1. B1: Twain

2. B2: [a-z]shing

3. B3: Huck[a-zA-Z]+|Saw[a-zA-Z]+

4. B4: Tom|Sawyer|Huckleberry|Finn

5. B5: .{0,2}(Tom|Sawyer|Huckleberry|Finn)

6. B6: .{2,4}(Tom|Sawyer|Huckleberry|Finn)

7. B7: Tom.{10,25}river|river.{10,25}Tom

8. B8: [a-zA-Z]+ing

9. B9: ([A-Za-z]awyer|[A-Za-z]inn)\s

SharpPEG pcre2 pcre2-dfa pcre-jit re2 onig tre hscan rust regex

B1 9 3 9 12 2 13 195 1 2

B2 16 332 539 12 68 12 277 3 5

B3 13 16 17 2 27 31 340 2 4

B4 13 20 21 19 29 35 623 2 33

B5 35 3464 2531 233 34 64 1612 2 32

B6 43 3440 3035 265 34 65 2437 3 32

B7 20 49 62 12 36 62 362 2 23

B8 105 786 1212 54 82 613 359 12 13

B9 30 713 769 27 66 136 653 4 33

Table 7.1: Performance comparison of regular expression libraries and SharpPEG

The regular expressions in the table were translated to PEGs before running them
in our solution, using the conversion algorithm of [12]. We have manually checked the
correctness of these translations, and included them in Appendix A.

7.1.2 Benchmarking issues

There are a number of possible issues with the benchmarks. Most importantly, most
of the other PEG libraries operate directly on the raw UTF-8 formatted string data.
This did not make sense for our implementation, as strings in C# are always arrays of
UTF-16 data. While using UTF-16 requires processing twice as much memory, UTF-8
contains continuation bytes which means that advancing one character is more complex
than incrementing a pointer by 1.

7https://doc.rust-lang.org/regex/regex/index.html

48

Another issue is the fact that we are comparing regular expression libraries to a PEG
library. While this is necessary to establish a rough comparison between our implemen-
tation, which is aimed to be a replacement for regular expressions, a direct translation
from regular expression to PEG might not always yield the best PEG.

One last issue is that some of the regular expression libraries seem to be using tricks
that defeat the point of the benchmarks. For example, the minimal time needed to iterate
over every character in the input string seems to be around 5-8ms. As can be seen in Table
7.1, the Hyperscan library is able to match most expressions in just 1-2ms. Hyperscan
is using many special string searching algorithms that happen to be applicable to all our
benchmarks. The point can be made that this defeats the goals of the benchmarks, as we
are comparing general-purpose pattern matching libaries to a large collection of highly
specific string searching algorithms.

7.2 LPeg

Our new parsing machine and implementation improve upon the work done by Ierusal-
imschy and Medeiros [11].

1. Our Parsing Machine is suitable for JIT compilation, which eliminates all interpreter
overhead and brings performance on par with other regular expression matching
libraries

2. Our PEG extensions make PEGs easier to use for pattern matching. In particular,
we added the following:

(a) Parameterized non-terminals solve the absence of native operators like the ’a
ending with b’ operator, which can be implemented in regular expressions using
a+ b

(b) Fixed repeat operators allow for conciser definitions of repetitive patterns

(c) Namespaces add proper support for PEG libraries, allowing code to be re-used

3. Our smaller instruction set reduces the work required to implement the parsing
machine

7.2.1 Benchmarks

While the LPeg implementation was benchmarked by the authors [8], they unfortunately
did not provide the code they used to benchmark their implementation. Therefore, instead
of trying to replicate their benchmarking setup we implemented the above benchmark for
LPeg too. The benchmarking results are listed in Table 7.2.

Note that our interpreter is not aimed to be as fast as possible, as described in Section
6.2.6.

Unfortunately benchmark B7 did not function properly, and returned incorrect results.
We have not been able to determine whether this is the result of an error on our end, or
a bug in LPeg.

7.2.2 Instruction design

The LPeg Parsing Machine requires at least 8 instructions, but to reach full performance
19 instructions are required. Our implementation uses only 9 instructions, and does not

49

SharpPEG (UJ) SharpPEG (OI) SharpPEG (OJ) LPeg

B1 99 404 9 114

B2 138 401 16 204

B3 102 553 13 115

B4 119 1143 13 113

B5 209 2823 35 739

B6 213 3136 43 725

B7 106 597 20 ERR (10401)

B8 193 2123 105 959

B9 171 628 30 302

Table 7.2: Performance comparison SharpPEG and LPeg. UJ = unoptimized, jitted, OI
= optimized, interpreted, OJ = optimized, jitted

require more instructions to increase performance. Instead, performance is increased by
altering the sequence of instructions, removing unneeded instructions and re-ordering
existing instructions.

While the difference in the number of instructions might seem to indicate that one
solution is better than the other, this is not the case. The difference mostly highlights
the different design goals of the libraries: LPeg is implemented as an interpreter, which
introduces a fixed overhead to each instruction that’s executed, so having many complex
instructions can be faster than having fewer smaller instructions. Our implementation on
the other hand, is meant to be JIT-compiled to machine code, which does not have any
overhead for executing an instruction. Therefore, having fewer instructions is beneficial,
as it reduces the number of possible instructions the optimizations have to deal with.

7.3 PACKRAT parsing

PACKRAT parsing [6], which uses memoization, is needed for guaranteed linear parsing of
any language. However, we claim that for the most common pattern matching expressions
we do not need memoization to achieve linear run time. Since our machine is built to be
a replacement for regular expressions, most expressions will be simple and often use only
a single non-terminal, which renders memoization useless.

In our benchmark, there is only one pattern that could benefit from memoization,
namely: [a-zA-Z]+ing. Since this pattern relies on the backtracking behaviour of reg-
ular expressions, we need to translate it to a more complex pattern in PEGs. Our tool
peg-match contains a parameterized non-terminal to simplify this process, where we are
translating as follows:

Unti l<Repeat , End> <- (! (! (! End) ! (Repeat (! End Repeat) ∗ End)) Repeat) ∗ End

We could also translate this to a recursive solution:

Unti l<Repeat , End> <- Repeat Unti l<Repeat , End> / End

To determine whether PACKRAT could help improve run-time performance, we have
implemented memoization in our implementation, which can be toggled by setting a flag in
the ILJitter. Benchmarking the two different versions shows that this does not improve
performance, as can be seen in Table 7.3.

50

Benchmark Non-recursive Recursive (not memoized) Recursive (memoized)

[a-zA-Z]+ing 105 228 310

Table 7.3: Memoization versus no memoization versus a non-recursive alternative

These results are most likely the result of two factors:

1. Method invocation is relatively costly. A new stack frame needs to be allocated, and
registers must be temporarily stored on the stack. Upon returning, a stack frame
needs to be removed and any stored registers need to be loaded back in. This in
and of itself is relatively costly.

2. When there exists a non-recursive solution for a particular expression, the additional
memory look-up in the recursive variant caused by the memoization is just as slow
as the overhead caused by the non-recursive solution.

51

Bibliography

[1] Atwood, J. (2005). Regex use vs. regex abuse. [accessed 22-November-2017].
https://blog.codinghorror.com/regex-use-vs-regex-abuse/.

[2] Berners-Lee, T., Fielding, R., and Masinter, L. (2005). Uniform Resource Identifier
(URI): Generic Syntax. RFC 3986 (Internet Standard). Updated by RFCs 6874, 7320.
https://www.rfc-editor.org/rfc/rfc3986.txt.

[3] Braden, R. (1989). Requirements for Internet Hosts - Application and Support.
RFC 1123 (Internet Standard). Updated by RFCs 1349, 2181, 5321, 5966, 7766.
https://www.rfc-editor.org/rfc/rfc1123.txt.

[4] Cousot, P. and Cousot, R. (1977). Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceed-
ings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’77, pages 238–252, New York, NY, USA. ACM.

[5] Crocker, D. and Overell, P. (2008). Augmented BNF for Syntax Specifications:
ABNF. RFC 5234 (Internet Standard). Updated by RFC 7405. https://www.rfc-
editor.org/rfc/rfc5234.txt.

[6] Ford, B. (2002). Packrat parsing:: Simple, powerful, lazy, linear time, functional pearl.
In Proceedings of the Seventh ACM SIGPLAN International Conference on Functional
Programming, ICFP ’02, pages 36–47, New York, NY, USA. ACM.

[7] Ford, B. (2004). Parsing expression grammars: A recognition-based syntactic foun-
dation. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’04, pages 111–122, New York, NY, USA. ACM.

[8] Ierusalimschy, R. (2009). A text pattern-matching tool based on parsing expression
grammars. Softw. Pract. Exper., 39(3):221–258.

[9] Kleene, S. C. (1956). Representation of events in nerve nets and finite automata.
In Shannon, C. and McCarthy, J., editors, Automata Studies, pages 3–41. Princeton
University Press, Princeton, NJ.

[10] Klyne, G. and Newman, C. (2002). Date and Time on the Internet: Timestamps.
RFC 3339 (Proposed Standard). https://www.rfc-editor.org/rfc/rfc3339.txt.

[11] Medeiros, S. and Ierusalimschy, R. (2008). A parsing machine for pegs. In Proceedings
of the 2008 Symposium on Dynamic Languages, DLS ’08, pages 2:1–2:12, New York,
NY, USA. ACM.

[12] Medeiros, S., Mascarenhas, F., and Ierusalimschy, R. (2014). From regexes to parsing
expression grammars. Sci. Comput. Program., 93:3–18.

52

[13] Mockapetris, P. (1987). Domain names - implementation and specification. RFC
1035 (Internet Standard). Updated by RFCs 1101, 1183, 1348, 1876, 1982, 1995, 1996,
2065, 2136, 2181, 2137, 2308, 2535, 2673, 2845, 3425, 3658, 4033, 4034, 4035, 4343,
5936, 5966, 6604, 7766. https://www.rfc-editor.org/rfc/rfc1035.txt.

[14] Schmidt, D. (2017). A comparison of regex engines. [accessed 11-December-2017].
https://rust-leipzig.github.io/regex/2017/03/28/comparison-of-regex-engines/.

[15] Shafranovich, Y. (2005). Common Format and MIME Type for Comma-
Separated Values (CSV) Files. RFC 4180 (Informational). Updated by RFC 7111.
https://www.rfc-editor.org/rfc/rfc4180.txt.

53

Appendix A

Converted regular expressions

The benchmarks used an experimental implementation of the regex conversion method
intruduced in a paper by Medeiros et al. [12]. However, the implementation of the
conversion is still very experimental. As such, we include the translated and de-sugared
PEGs used in the benchmarks here, so that correctness can be verified manually.

We have replaced all occurences of ’!([\n-\r]) .’ with s to improve readability.
These s ’s are a side-effect of the meaning of ’.’ (the any operator). Because of historical
reasons, in virtually all regex-matching libraries a ’.’ matches any character except newline
characters, instead of just matching any character.

54

Regex PEG

Twain ’Twain’

[a-z]shing [a-z] ’shing’

Huck[a-zA-Z]+|Saw[a-zA-Z]+ (’H’ (’u’ (’c’ (’k’ ([a-zA-Z] [a-zA-Z]*))))) / (’S’

(’a’ (’w’ ([a-zA-Z] [a-zA-Z]*))))

Tom|Sawyer|Huckleberry|Finn ’Tom’ / ’Sawyer’ / ’Huckleberry’ / ’Finn’

.{0,2}(Tom|Sawyer|Huckleberry|Finn) e (((s s) (’Tom’ / ’Sawyer’ / ’Huckleberry’ /

’Finn’)) / (s (’Tom’ / ’Sawyer’ / ’Huckleberry’ /

’Finn’)) / ’Tom’ / ’Sawyer’ / ’Huckleberry’ / ’Finn’)

.{2,4}(Tom|Sawyer|Huckleberry|Finn) (s s) (((s s) (’Tom’ / ’Sawyer’ / ’Huckleberry’

/ ’Finn’)) / (s (’Tom’ / ’Sawyer’ / ’Huckleberry’ /

’Finn’)) / ’Tom’ / ’Sawyer’ / ’Huckleberry’ / ’Finn’)

Tom.{10,25}river|river.{10,25}Tom (’T’ (’o’ (’m’ ((s (s (s (s (s (s (s (s (s

s))))))))) (((s (s (s (s (s (s (s (s (s

(s (s (s (s (s s)))))))))))))) ’river’) /

((s (s (s (s (s (s (s (s (s (s (s (s

(s s))))))))))))) ’river’) / ((s (s (s (s (s

(s (s (s (s (s (s (s s)))))))))))) ’river’)

/ ((s (s (s (s (s (s (s (s (s (s (s

s))))))))))) ’river’) / ((s (s (s (s (s (s

(s (s (s (s s)))))))))) ’river’) / ((s (s (s

(s (s (s (s (s (s s))))))))) ’river’) / ((s

(s (s (s (s (s (s (s s)))))))) ’river’) /

((s (s (s (s (s (s (s s))))))) ’river’) /

((s (s (s (s (s (s s)))))) ’river’) / ((s

(s (s (s (s s))))) ’river’) / ((s (s (s (s

s)))) ’river’) / ((s (s (s s))) ’river’) / ((s

(s s)) ’river’) / ((s s) ’river’) / (s ’river’)

/ ’river’))))) / (’r’ (’i’ (’v’ (’e’ (’r’ ((s (s

(s (s (s (s (s (s (s s))))))))) (((s (s

(s (s (s (s (s (s (s (s (s (s (s (s

s)))))))))))))) ’Tom’) / ((s (s (s (s (s (s

(s (s (s (s (s (s (s s))))))))))))) ’Tom’)

/ ((s (s (s (s (s (s (s (s (s (s (s (s

s)))))))))))) ’Tom’) / ((s (s (s (s (s (s (s

(s (s (s (s s))))))))))) ’Tom’) / ((s (s (s

(s (s (s (s (s (s (s s)))))))))) ’Tom’) /

((s (s (s (s (s (s (s (s (s s)))))))))

’Tom’) / ((s (s (s (s (s (s (s (s s))))))))

’Tom’) / ((s (s (s (s (s (s (s s)))))))

’Tom’) / ((s (s (s (s (s (s s)))))) ’Tom’)

/ ((s (s (s (s (s s))))) ’Tom’) / ((s (s

(s (s s)))) ’Tom’) / ((s (s (s s))) ’Tom’) /

((s (s s)) ’Tom’) / ((s s) ’Tom’) / (s ’Tom’) /

’Tom’)))))))

[a-zA-Z]+ing [a-zA-Z] (((!((!(!’ing’)) (!([a-zA-Z] (((!’ing’)

[a-zA-Z])* ’ing’))))) [a-zA-Z])* ’ing’)

([A-Za-z]awyer|[A-Za-z]inn)\s ([A-Za-z] (’a’ (’w’ (’y’ (’e’ (’r’ [

\u0009-\u000A\u000C-\u000D])))))) / ([A-Za-z] (’i’

(’n’ (’n’ [\u0009-\u000A\u000C-\u000D]))))

55

