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Abstract

The TLS (Transport Layer Security) protocol is a widely used cryptographic
protocol that secures communication over networks. It provides security
when browsing the internet (HTTPS), sending emails (SMTP) or, for exam-
ple, connecting to a VPN. TLS 1.3, its upcoming version, introduces some
drastic changes with respect to the previous TLS version (TLS 1.2), including
both security and speed improvements. We automatically inferred the imple-
mented state machines from two major TLS 1.3 implementations (OpenSSL
and WolfSSL) and analysed them on unexpected behaviour, using a strat-
egy called state machine learning. State Machine learning is a very useful
protocol-analysis technique for various reasons, the most important being
that state machines are easy to analyse and, once set up, the learning pro-
cess can easily be repeated for other implementations of the same protocol.
In the learning process, we made use of a mapper to send messages back and
forth between the learning tools and the implementations themselves. The
TLS 1.3 implementations analysed showed no behaviour that could cause se-
rious security flaws, although one of them, WolfSSL, returned peculiar output
on some of the inputs sent.
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Chapter 1

Introduction

In a world where our daily lives are becoming more and more dependent on
software and technology, the security of our data, applications and commu-
nication is a fast-growing concern. In 2010, the global internet traffic was
approximately twenty thousand petabytes per month [1]. Last year, 2016,
this has already increased to 96,000 petabytes. According to Cisco, global
IP traffic will again increase nearly threefold over the next 5 years, reaching
3.3 zettabytes in 2021 [2]. While this huge increase in internet traffic may
be a positive advance, it is quite disturbing to know that half of the web’s
traffic is still not encrypted, according to a report from EFF [3].

Almost all important organisations nowadays use the internet for communi-
cation and storing, transporting and retrieving data (think of governments,
banks, hospitals, insurance companies or webshops). Therefore, it is nec-
essary that our communication over the internet is secure. We don’t want
others to be able to spy on our communication, to modify messages we send
over social media or personal information stored on Amazon and most of
all, we want to know that the party we are communicating with is who they
claim to be. This can all be summarized in three requirements: confidential-
ity, integrity and authenticity. To meet these requirements, a lot of modern
websites and servers make use of a security protocol called Transport Layer
Security (TLS). When visiting a website, the small green padlock on the left
of the address bar is an indication that the HTTP traffic to and from this
website is encrypted using TLS, resulting in HTTPS.

Like any protocol, security related or not, TLS is not perfect. It is in need
of constant improvement, which is why there are already five major versions
of it released over the past two decades. From SSL 2.0 in 1995 to TLS 1.2
in 2008, the protocol has seen many changes and improvements, which made



each version more secure than the one before. Since it is already more than
nine years ago that the last TLS version (TLS 1.2) was released, one might
wonder whether version 1.2 will be the final TLS version. Since there have
been some high profile attacks against TLS 1.2 [4], it is good that this is not
the case. As of April 2014, TLS 1.3 is in the making and will bring with it
the most drastic changes so far. Even though it does not have an official RFC
yet but only a draft!, many TLS 1.3 implementations are already released,
including some major ones like OpenSSL 1.1.1% and WolfSSL 3.13.03.

Since most of the time it is the implementation of the protocol that causes
a problem (think of the disastrous Heartbleed bug in OpenSSL in 2014 [5])
rather than the protocol itself, it would prove useful to have a technique to
test a protocol implementation on unexpected behaviour. This is where state
machine learning enters the stage. In this context, when we talk about state
machine learning, we mean the derivation of a finite-state automaton from
a particular implementation of a protocol, here TLS 1.3. State machines
can be very helpful when testing a specific implementation on flaws or bugs.
First, they are a great alternative to digging through lines and lines of code to
find errors in the execution of a program. Second, the same derivation tech-
nique can be applied to all implementations of a specific protocol. Finally,
when comparing multiple implementations of a protocol, it is often easier to
compare the derived state machines than the code of the implementations
themselves.

1.1 Aim of the thesis

In this thesis, finite state machines will be derived from the server side of
two very popular TLS implementations that support TLS 1.3: OpenSSL 1.1.1
and WolfSSL 3.13.0. We will not do this by hand, but use a tool, Learnlib?,
that automates this process, since it will be easy to reproduce it this way
and apply it to other TLS 1.3 implementations. After the state machines are
derived, we will analyse them to see if the implementations show behaviour
that they should not, according to the TLS 1.3 specification and draw our
conclusions from this. We will also compare the two state machines, to see
if there are any differences between them.

Thttps://tools.ietf.org/html/draft-ietf-tls-tls13-23
2https://github.com/openssl/openssl
3https://github.com/wolfSSL /wolfssl
4https://github.com/LearnLib/learnlib



1.2 Thesis organisation

The thesis will be organised as follows. In chapter 2, we give a brief overview
of the related work done on the subject of state machine learning and security
protocol analysis, especially on TLS. Chapter 3 will give an overview of the
TLS 1.3 protocol and the improvements compared to previous versions. We
will discuss both speed improvements and security enhancements. Chapter
4 will introduce the reader to the concept of state machine learning with
all its aspects, including Mealy machines, the L* algorithm and equivalence
algorithms. In chapter 5 we focus on implementation specific details. We
discuss the configurations used (i.e. cipher suites and key exchange methods),
the input and output alphabet for the state machines and the necessary tools
to derive the state machines from the implementations. We also give a brief
overview of OpenSSL and WolfSSL and our final setup. Chapter 6 will be
entirely devoted to the analysis of and comparison between the inferred state
machines and their possible undesirable behaviour. Finally, in chapter 7 we
discuss our conclusions and give suggestions for future work.



Chapter 2
Related Work

Several studies have been done on the use of state machine learning to anal-
yse implementations of both security-related protocols (like IPSec, Open-
VPN, SSH, TLS [6, 7, 8, 9]) and non security-related protocols like TCP
[10]. These studies all focused on one or more implementations and derived
state machines from them. Based on these machines, the implementations
were analyzed on unexpected behaviour or security flaws.

Below, we discuss the studies that are most related to our own research,
namely the two that also focused on TLS. We give a quick overview of the
methods used and the most prominent results.

Nine implementations of TLS 1.0 and 1.2 were analysed in 2015 by De Ruiter
et al. [9], including OpenSSL, Java Secure Socket Extension (JSSE) and
GnuTLS. These were tested both server side and client side, using a test
harness supporting client certificate authentication and the HeartBeat Ex-
tension. The state machines were inferred using LearnLib, which utilized
a modified version of the L* algorithm to construct the hypotheses and an
improved version of Chow’s W method [11] for equivalence testing.

The result was that three of the nine analysed implementations contained
previously undiscovered security flaws. One of them (Java Secure Socket Ex-
tension!) even contained a bug that made it possible for the server to accept
plaintext data. The method used here to learn the state machines from these
implementations will form the base for our own approach.

Another research in the field of TLS and state machines was done by Beur-
douche et al. in 2015 [12]. Various TLS 1.0 implementations (including
OpenSSL 1.0.1) were tested for state machine bugs, using FlexTLS?. FlexTLS

Thttps://docs.oracle.com /javase/7/docs/technotes/guides/security /jsse/JSSERefGuide.html
https://github.com/mitls/mitls-flex



is built upon MiTLS? (a verified reference TLS implementation) and is a tool
for prototyping and testing TLS implementations.

Serious flaws were discovered, most of them in OpenSSL. For example, send-
ing an early ChangeCipherSpec message triggered derivation of a record key
from the session key, which in turn could lead to client and server imperson-
ation attacks.

In 2016, a total of 145 OpenSSL and LibreSSL versions were tested both
server side and client side by Joeri de Ruiter [13], also by using state machine
inference. Security vulnerabilities and erroneous behaviour was observed in
many versions, together with the point in time where it was fixed by the
developers [13].

3https://github.com/mitls



Chapter 3
TLS 1.3

In this chapter, we will accustom the reader to the TLS 1.3 protocol. We
will first give a detailed description of the protocol itself (section 3.1). This
includes three sub-protocols: the Handshake Protocol, the Record Protocol
and the Alert Protocol. After this, we compare TLS 1.3 with version 1.2.
We will discuss the differences and improvements made in TLS 1.3 regarding
its predecessor in section 3.2. The changes made in TLS 1.3 can be divided
into two categories: security enhancements and speed improvements.

3.1 TLS 1.3 overview

TLS 1.3 consists of three sub-protocols: the Handshake Protocol, used to
establish the TLS session, the Record Protocol, which transmits, fragments,
decrypts and reassembles messages and the Alert protocol, which contains
messages indicating that some kind of problem occurred. Below, we will
discuss each of them and describe the different types of messages they con-
tain. Note: the content of this overview is loosely based on the information
provided in the current working draft (21) of TLS 1.3'.

3.1.1 Handshake Protocol

The handshake protocol is perhaps the most complex part of TLS 1.3. During
the handshake phase, the following takes place between client and server:

e Cipher suites are negotiated;

e The server (and possibly the client) is authenticated;

Thttps://tools.ietf.org/html/draft-ietf-tls-tls13-21



e Keys are exchanged for encryption and decryption.

If all goes well, a secure session should be established between client and
server at the end of this phase. Figure 3.1 shows a basic TLS 1.3 handshake.
The messages in parentheses are optional.

client Basic TLS 1.3 server
| Handshake Fresass )
Zzzzzjk 127200 «]

Y

lHIHHHHHiiHII

ServerHello
(Encrypted
Extensions)
(Certificate
Request)
Certificate
Certificate
verify
Finished
(Certificate)
(Certificate
verify)
Finished
Application
Data
B Application
h Data

|:| = encrypted
D = unencrypted

Figure 3.1: Depiction of a basic TLS 1.3 handshake, with optional messages
in parentheses.

The Handshake Protocol can be divided into three phases: the Key Ex-
change (including the ClientHello and ServerHello), the Server Param-
eters (EncryptedExtensions and CertificateRequest) and the Authenti-
cation (Certificate, CertificateVerify and Finished). In the remaining
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part of this subsection, we will explain each phase as well as the messages
they contain.

Key Exchange

In this phase, the client and server agree on cipher suites and establish shared
keying material for the rest of the handshake. The messages in this phase
are not encrypted.

e ClientHello: The ClientHello message initiates the handshake. The
most important components are: a random 32 byte integer, a list of
supported cipher suites and the list of extensions. Of these extensions,
there are two that are necessary for the handshake to succeed:

— supported_versions: indicates the preferred TLS versions;

— signature algorithms: the signature algorithms the client ac-
cepts.

In addition to this, there are also extensions in the ClientHello that
are mandatory for the key exchange. In TLS 1.3 there are two options
for the key exchange mode: (Elliptic Curve) Diffie-Hellman Ephemeral

((EC)DHE) or Pre Shared Key (PSK). If (EC)DHE is desired, the
following two extensions need to be included:

— supported_groups: a list of supported (EC)DHE groups sup-
ported by the client;

— key_share: the (EC)DHE key shares for each of the preceding
groups.

For PSK mode, the mandatory extensions are:

— pre_shared key: a set of PSK labels to be used for the handshake;

— psk_key_exchange modes: the mode to be used with PSK. Either
PSK-only or PSK with (EC)DHE key establishment.

e ServerHello: The server responds to the ClientHello with a Server-
Hello. The ServerHello consists of: the TLS version used, a random
32 byte integer, the cipher suite selected by the server from the clients
extension-list and a list of extensions. The only extensions that are
allowed in the ServerHello are the key_share extension (in case of
(EC)DHE) or the pre_shared key extension (in case of PSK).

10



After the ClientHello and ServerHello, the HMAC-based Key Derivation
Function (HKDF)? as described in RFC 5869 is used to create the keys
for encrypting and decrypting the messages in the rest of the handshake.
The resulting keys are called the client_handshake traffic_secret and
server_handshake_traffic_secret.

Server Parameters

The messages contained in this phase are both optional. Among other things,
it is decided here if client authentication is needed.

e EncryptedExtensions: contains extensions that are not necessary for
the cryptographic parameters, i.e., server_name, supported_groups
and client certificate_type.

e CertificateRequest: indicates if client authentication is desired.

Authentication

The authentication phase concludes the handshake. Server (and client) are
being authenticated, keys are confirmed and the integrity of the handshake
is verified.

e Certificate: the certificate used for server (and possibly client) au-
thentication.

e CertificateVerify: the CertificateVerify message serves two pur-
poses. First, it proves to the other endpoint that its certificate is correct
(by showing that it possesses the corresponding private key). Second, it
provides integrity for all the handshake messages used so far. This is ac-
complished by the so-called Transcript-Hash. The Transcript-Hash
is a hash computed over the concatenated content (including headers)
of all the handshake messages received so far. For the server, this is a
hash over the ClientHello, ServerHello, EncryptedExtensions and
Certificate.

e Finished: the final message of the authentication phase, Finished, is
sent by both the client and server. An HMAC is computed over the
following two components:

2HKDF is used in TLS 1.3 to convert shared secrets into useful keying material.
3https:/ /tools.ietf.org/html/rfc5869
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— finished key: the output of the HKDF function described earlier
over the client/server_handshake traffic_secret, the string
"finished” and the length of the hash algorithms output

— Transcript-Hash: the same Transcript-Hash as in the
CertificateVerify, only now including all the additional mes-
sages received so far

The Finished message of one endpoint (client or server) must be ver-
ified by the other, before any application data can be sent. If one
endpoint finds out that the other endpoints Finished is incorrect, it
should terminate the connection with an appropriate alert.

3.1.2 Record Protocol

The Record Protocol handles the communication between client and server
and is, therefore, a very important component of TLS 1.3. On the sending
side, each message is processed by the Record Protocol as follows:

1. The message is chopped up into fragments.

2. (a) If encryption is not needed yet, the record is sent as a so-called
TLSPlaintext message, containing the type of the record (either
handshake, application data or alert), the length and the record
itself.

(b) If encryption is needed, The record is first converted to a
TLSInnerPlaintext message, containing the record itself, the type
and an amount of zeroes for padding. Next, this TLSInnerPlain-
text is encrypted by the AEAD (Authenticated Encryption with
Associated Data) algorithm, using the client /server write-key and
a nonce!. The output is placed inside a TLSCiphertext message,
together with its length and a few other fields.

3. The message, being either TLSPlaintext or TLSCiphertext is trans-
mitted.

On the receiving side, the Record Protocol proceeds as follows:

1. If it contains TLSCiphertext, the received data is decrypted and ver-
ified using the same AEAD algorithm, the key and the nonce as men-
tioned before.

4The nonce represents a sequence number that is maintained by the client and server
to prevent replay-attacks
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2. (a) If the decryption failed, an alert message is sent and the connection
is closed.

(b) If the decryption succeeded (or there is no encryption used at
all), the records are reassembled and delivered to the higher-level
entity.

In figure 3.2, the different types of records are depicted.

/ TLSPlaintext \ / TLSCiphertext \

type 1F.'ng‘th
Tength
//+LSInnerP1aintex£x\
type
Zeros
fragment
[ fragment }

\_ NG .

Figure 3.2: Depiction of the two types of messages in the Record Protocol:
TLSPlaintext and TLSCiphertext

3.1.3 Alert Protocol

Like the name suggests, the Alert Protocol contains messages that indicate
the occurrence of some kind of problem during a TLS session. Upon receiving
an alert message, the receiving side should notify this to the application layer
and close the connection as soon as possible. Any secret or key associated
with this failed session must be forgotten. An alert consists of an alert
description and an alert level. In TLS version 1.3, the level can safely be
ignored since the connection is always closed upon receiving any kind of
alert. Below, we will summarize the most important alert descriptions and
their meanings:

e close notify: an indication that the connection will be closed by the
sender. Data received after this alert can be ignored;

13



e decode_error: the message does not follow the syntax specified by the
TLS 1.3 protocol;

e illegal parameter: the message follows the correct syntax, but con-
tains some semantic incorrect value(s);

e decrypt_error: an indication that a cryptographic operation during
the handshake failed;

e insufficient_security: the parameters offered by the client during
the handshake were found insufficient by the server;

e unexpected message: an indication that a message is encountered that
is not appropriate at this stage;

e unsupported_extension: the message contained an extension that was
either forbidden in the particular message or was not first offered by
the client;

e bad record mac: a failure in the decryption of a certain message.

3.2 Differences from TLS 1.2

Nine years have passed since the release of TLS 1.2 in 2008. This is a rel-
atively long time in the cybersecurity world, since technology is advancing
rapidly. On top of that, attacker’s skill sets improve as time progresses,
resulting in some high profile attacks against TLS 1.2. In the remaining
part of this chapter, we will describe the security enhancements and speed
improvements made in TLS 1.3 compared to TLS 1.2.

3.2.1 TLS 1.3 security enhancements

The security enhancements made in TLS 1.3 primarily consist of the removal
of TLS 1.2 features that are considered insecure:

e CBC mode ciphers
e RSA key transport
e RC4 and SHA-1 algorithms

e Arbitrary Diffie Hellman groups

Most of these features caused some high-profile attacks against TLS 1.2 (i.e.
Lucky 13, BEAST and FREAK [14, 4, 15]). Therefore, in TLS 1.3 they are
not used anymore.

14



3.2.2 TLS 1.3 Speed improvements

TLS 1.3 has made a huge advance when it comes to speed. When requesting
a web page over HT'TPS using TLS 1.2, it took three round trips before the
actual HTML data was received (two for the handshake and one for the GET
request and response).

In TLS 1.3 however, the first GET is sent together with the final handshake
message (the Finished from the client). The combined handshake and GET
now take only two round-trips, which makes it much faster than its prede-
cessor. Figure 3.3 nicely illustrates this difference.

client server client server
TLS 1.2 [rarerr o] TLS 1.3 [ axrear o)

(#2117 o] [ 721827 o]

[#a1rts o) [ arrear o

— [ r2aair o — | 207821 o]
Lsarrrs o] Lsrr1sr o]

ClientHello ClientHello

round
trip 1 ServerHello, Certificate,

Servertello, Certificate, Certificateverify, Finished

servertelloDone

ClientKeyExchange,

ChangeCipherspec, Finished Finished, GET HTTP/1.1

round
trip 2 ChangeCipherSpec, Finished
HTTP Response

GET HTTP/1.1

round

trip 3
HTTP Response

€ > €-----> €----->

Figure 3.3: The round-trips needed for TLS 1.2 (left) and 1.3 (right)
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Chapter 4

State Machine Learning

In this chapter, we will familiarize the reader with the concept of state ma-
chine learning. First, state machines are discussed in section 4.1. We will
describe the type of state machines that we will use in our own research, the
Mealy Machines. Section 4.2 is about the first part of the learning process,
the construction of a hypothetical state machine with the L* algorithm. We
also describe the equivalence algorithm Randomwords.

4.1 State machines

A state machine (often called a finite state machine or finite state automaton)
is a mathematical model used to represent an execution flow [16]. A state
machine consists of a finite set of states (Q)) and transitions between them.
These transitions go from one state to another, representing some kind of
input that is received when in a particular state. It is only possible for the
machine to be in exactly one state at a particular time. The transitions in a
state machine can be described by a transition function ¢:

5:(Qx%)=Q

where X is the input alphabet (a set of different symbols that represent the
input at a given state). The initial state is called gy and the set of final
states (the states in which an execution flow is ’accepted’) F. With these
five items (the set of states, the transition function, the input alphabet, the
initial state and the set of final states) we can define any state machine as
a five-tuple (Q, 0,3, qo, F'). We call this kind of state machine a determin-
istic state machine because in each state it has exactly one transition for
each input symbol. In a non-deterministic state machine, the machine can
have multiple transitions with the same input symbol from a given state, or

16



even have no transitions at all. In this thesis, however, we only make use of
deterministic finite state machines, since we assume the implementations we
analyse don’t have non-deterministic behaviour.

Figure 4.1: Example of a finite state machine

State machines (being either deterministic or not) can be used to model both
real-world devices and computer programs. Figure 4.1 shows a simple state
machine that determines for a given binary number if it is even. In this
example, @ = {odd, even}, ¥ = {0,1},qy = odd, F' = {even} and J can be
described as the function that maps each combination of state (odd or even)
and input (0 or 1) to another state.

4.1.1 Mealy machines

Since this thesis is about deriving a state machine from TLS 1.3 implemen-
tations, we want the state machine to represent the general execution of such
implementations as accurately as possible. The TLS handshake (and the rest
of the protocol) consists of sending and receiving certain types of messages.
Therefore, we need the inferred state machine to also return an output to
each input message that it receives in a particular state. Fortunately, there
is a type of state machine that does exactly this: the Mealy machine.

Mealy machines are a special kind of state machine. In addition to the state
machines as we described them above, Mealy machines also return an output
upon each input. This adds two extra elements to the five-tuple we used
to describe general state machines: an output alphabet O (containing the
various output symbols that are returned on each transition) and an output
function X that computes for each combination of state and input symbol
the corresponding output symbol. The output symbol is usually written next

17



to the input symbol on each transition, separated with a forward slash, as
can be seen in figure 4.2.

1/0

<N

O O
OO

1/0 0/0

Figure 4.2: Example of a Mealy machine [27]

4.2 State Machine Learning

In this section, we will describe the process of learning the state machine.
Our approach is based on the L* algorithm, which we will use to infer state
machines from the TLS 1.3 implementations. The L* algorithm was designed
by Dana Angluin in 1987 [17]. Its goal is to learn a finite state machine from
a certain kind of system.

4.2.1 General overview

The learning process consists of two parts: the learner and the teacher. The
learner tries to infer the state machine, by communicating with the teacher.
Normally, the teacher knows the state machine and answers the learner’s
questions. In our case, however, the state machine is not known by the
teacher, so we will use the TLS implementation itself as the teacher. Below
we will sketch the four operations that take place when we infer state ma-
chines from TLS 1.3 implementations:



1. The learner tries to build a hypothetical state machine by continu-
ously sending probe messages to the teacher (in this case the TLS 1.3
implementation itself).

2. The teacher answers the learner’s messages with TLS 1.3 response mes-
sages (or no message at all).

3. Once the learner has formed its hypothetical state machine, it asks the
teacher to check if this machine matches the actual state machine.

4. Since the teacher does not know the state machine in our case, it uses
an equivalence algorithm to check the client’s hypothesis (More about
this below).

(a) If the algorithm returns true, the teacher will let the learner know
that the state machine is assumed to be correct.

(b) If not, the teacher sends a counterexample to the learner, which
in turn adjusts its guess. The process now starts again.

4.2.2 Equivalence Algorithm

Below, we will give a brief description of the equivalence algorithm we used,
Randomwords.

Randomwords

The Randomwords equivalence algorithm is perhaps the easiest of the two.
It just sends random input sequences of a specified minimum and maximum
length to the teacher. The teacher sends output back, and if this output
matches the output of the hypothetical state machine, a next input sequence
is sent, and so on. After the specified number of successful input sequences,
the teacher concludes that the state machine is probably correct. If the out-
puts do not match, the teacher gives the violating input sequence back and
the learner knows that the state machine is not correct. The advantage of
this approach is that it can be relatively fast to execute. On the other hand,
with Randomwords there is no guarantee of the correctness of the inferred
state machine.
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Chapter 5

Implementation

This chapter will be devoted to our implementation and setup. We will
first discuss the tools needed to provide the state machines: LearnLib and
StateLearner. In section 2, we present the mapper that is used to translate
StateLearner’s input symbols to TLS 1.3 messages and vice versa. Then, we
will list the conventions used, like the cipher suites, signature algorithms and
the key exchange method. The next section will be about the two TLS 1.3
implementations we considered (OpenSSL 1.1.1 and WolfSSL 3.13.0), and
finally we present our complete setup.

5.1 Inferring the state machines

In this section, we will discuss the two tools needed to learn the state ma-
chines from our TLS 1.3 implementations. The first is LearnLib, an open
source framework for automata learning. The second, StateLearner, is a
wrapper around LearnLib, which provides us an easier way to communicate
with the mapper we designed.

5.1.1 LearnLib

LearnLib, designed by the Chair for Programming Systems at the TU Dort-
mund University, is an open-source Java framework for active automata
learning [29]. LearnLib contains both learning algorithms (i.e. the L* algo-
rithm) and equivalence algorithms to check the hypothetical machines. We
will not directly use Learnlib for our method, but instead use StateLearner,
a wrapper around LearnLib.
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5.1.2 StateLearner

StateLearner, designed by Joeri de Ruiter, is a tool that serves as a wrap-
per around the LearnLib API and makes communicating with the mapper
much easier. Settings like the input alphabet, the learning and equivalence
algorithms and the hostname and port need to be specified in a configuration
file, after which the program uses a black-box approach to infer the state ma-
chine. For this, it sends the symbols from the input alphabet to the mapper
and receives output responses back, upon which it builds the hypotheses.

5.2 Mapper

StateLearner is not designed to communicate directly with our TLS imple-
mentations. On one hand, this makes it a very versatile tool, since it can be
used for implementations of many different protocols. On the other, it means
that there is still some work to do before we can test OpenSSL and WolfSSL.
For this, we designed a so-called mapper. The mapper is a program, written
in Java, which receives the input strings from StateLearner and translates
them to the corresponding TLS 1.3 messages, which will then be sent to the
implementations servers. It also needs to intercept the TLS responses from
the servers, convert them to strings and forward them to StateLearner.

5.2.1 TLS-Attacker

Our mapper uses a framework called TLS-Attacker!, developed by the Chair
of Network and Data Security of the Ruhr University Bochum. Amongst
other things, it contains functionality to communicate with both TLS servers
and clients.

5.2.2 Changes made

The mapper as we use it in our setup is based on code that is written
by Joeri the Ruiter to derive state machines from TLS 1.2 implementa-
tions. The code consists of two Java files, TLSAttackerConnector. java
and ConnectorTransportHandler. java. Both Java files rely on the previ-
ously mentioned TLS-Attacker framework for creating and parsing valid TLS
messages.

Thttps://github.com/RUB-NDS/TLS-Attacker
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The code written by Joeri de Ruiter serves as a mapper between State-
Learner and TLS 1.2. Since we need to communicate with TLS 1.3, we
made some changes to it for this purpose. The ConnectorTransportHandler
could be used for TLS 1.3 right away. The most important changes to
TLSAttackerConnecter. java are:

e Variables like timeout, tlsContext and the port to listen for State-
Learner messages are declared before the constructor, instead of being
given as arguments;

e We added a setupConfig function, which contains all TLS 1.3 specific
configurations we will discuss in section 5.3;

e Functionality for the ChangeCipherSpec in the sendMessage method
was removed;

e Some functionality was moved to an initializeSession function;

e The processInput method was edited to only contain valid TLS 1.3
messages ;

e Various small fixes of methods that were not up-to-date anymore;
e The class was renamed to Mapper.
The two files are made publicly available on https://gitlab.science.ru.nl/

vthoor/bachelorscriptie-2018/tree/master/Code.

5.2.3 Input and output alphabet
The standard input and output alphabet for the mapper are as follows:
Input:
e ClientHello
e Finished
e ApplicationData
Output:
e ServerHello

e EncryptedExtensions
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e Certificate

e CertificateVerify
e Finished

e NewSessionTicket

e Numerous alert messages, i.e. UNEXPECTED MESSAGE, BAD_RECORD_MAC
and DECRYPTION_FAILED

e ConnectionClosed

In addition to this, we also decided to infer state machines with an ex-
tended set of input symbols, including server side messages (ServerHello,
CertificateRequest, CertificateVerify, HelloRetryRequest) and mes-
sages that would typically be used in PSK mode (End0fEarlyData,
NewSessionTicket).

5.3 Configurations used

In this part, we will discuss all the TLS specific configurations we used in our
setup. We will take a look at cipher suites, signature and hash algorithms
and the key share method with its supported groups.

5.3.1 Cipher suites

Cipher suites in TLS 1.3 consist of a pair of AEAD algorithm and a hash
algorithm to be used with HKDF. We chose to support the following cipher
suites for the handshake?:

e TLS_AES_128_GCM_SHA256

TLS_AES_256_GCM_SHA384

TLS_CHACHA20_POLY1305_SHA256

TLS_AES_128_CCM_SHA256

TLS_AES_128_CCM_8_SHA256

2The format in which the cipher suites are listed is the standard from the RFC draft,
with the "TLS” string first, then the AEAD algorithm and at the end the hash algorithm
used for HKDF, separated by underscores.
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The cipher suites listed here were the only ones to be considered secure
enough to remain in the TLS protocol, so we just decided to add them all
to our ClientHello message. We added them in the exact order as listed
above.

5.3.2 Signature algorithms

Signature algorithms are used during the handshake whenever a digital sig-
nature is required. An example is the certificate which has to be signed for
authentication purposes. The list of TLS 1.3 supported signature algorithms
is fairly large, so we just made a selection with the most common algorithm
of each type that contains SHA-2 algorithms:

e rsa pkcsl_sha2b6
e ecdsa_secp256rl_sha256

e rsa pss_sha2b6

5.3.3 Key share and Groups

We use Elliptic Curve Diffie Hellmann Ephemeral (ECDHE) as key exchange
method, since ECDHE is more efficient in terms of computation power than
Diffie Hellmann over 'normal’ groups. The curve we chose to use for this is
Curve25519, one of the fastest curves available [18] with 128 bits of security.

5.4 OpenSSL 1.1.1

The first TLS 1.3 implementation we will derive state machines from is
OpenSSL 1.1.1. OpenSSL is perhaps the most well-known of all the TLS
implementations currently available. The majority of all web servers use
OpenSSL to secure their transport layer communication. OpenSSL is writ-
ten in C and completely open-source. Besides containing implementations of
all the SSL and TLS protocols, it also serves as a general-purpose cryptog-
raphy library.

From version 1.1.1 on, OpenSSL also includes TLS 1.3 support up to the
latest RFC draft at the moment of writing (23). When learning the state
machine, we will communicate with a server demo that comes shipped with
OpenSSL. After creating a public key in key . pem and a certificate in cert . pem,

24



we can run the server with the command:

$ openssl s_server -cert cert.pem -key key.pem -p 4433 -HTTP

5.5 WolfSSL 3.13.0

The other implementation we test, WolfSSL 3.13.0, is a more lightweight TLS
library. It is open-source and also written in C. In terms of size, WolfSSL
is (according to the developers®) about 20 times smaller than OpenSSL, and
its focus lies primarily on Internet of Things (IoT).

WolfSSL includes TLS 1.3 (draft 22) support from version 3.11.1 on and
comes, just like OpenSSL with a client and server demo. We use this server-
demo to derive our state machine, with the command:

$ .wolfss/examples/server/server -v 4 -p 4433 -c cert.pem -k
key.pem -d -x -1

As with OpenSSL, we let the server run on port 4433 (because our mapper
is configured to connect to that port). The v argument specifies the TLS
version (1.3), the ¢ and k arguments provide the certificate and public key
files and the d, x and i arguments disable client authentication and let the
server loop indefinitely.

5.6 Complete setup

Our complete setup is as in Figure 5.1 below. StateLearner, relying on Learn-
Lib, sends its input symbols as strings to our implemented mapper. The
mapper uses the TLS-Attacker framework (as described above) to translate
these strings to real TLS 1.3 messages, which are sent as bytes to OpenSSL
and WolfSSL. The implementations may respond with other TLS 1.3 mes-
sages (or alerts), which are returned as bytes to the mapper. The mapper
translates this again to string format and forwards it to StateLearner. State-
Learner now uses this response in the learning process, and after repeating
this cycle a certain amount of times is able to give us the state machine
corresponding to the TLS 1.3 implementation.

3https:/ /www.wolfssl.com/docs/wolfssl-openssl/
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Figure 5.1: Complete overview of all the tools needed
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Chapter 6

Analysis

In this chapter, we will analyse the state machines we derived from the
tested TLS 1.3 implementations. We begin with inspecting OpenSSL’s server
side state machines and then do the same for WolfSSL. After that, we will
compare the two to see if they show different behaviour when sending the
same messages. We tried to learn the state machines multiple times to avoid
inconsistencies.

6.1 The OpenSSL state machines

We will now evaluate OpenSSL’s behaviour when sending both normal mes-
sages and messages that do not belong to the standard execution flow. We
configured OpenSSL with the enable-tls1 3 option to enable TLS 1.3.

6.1.1 Standard messages

In Appendix A.1, the complete OpenSSL 1.1.1 server side state machine can
be found. In this section, we will discuss the states and transitions in the
state machine and which kind of messages cause certain reactions from the
OpenSSL server. When a message produces an alert, we also explain what
the alert means in this situation, and what (probably) caused it.

The first state machine to discuss is the OpenSSL 1.1.1 server side state ma-
chine with only the standard client input symbols. For each state here, we

will describe the outgoing transitions with their input and output values.

State 0: This is the state we enter once we have set up the connection.
Normally, the first message during the TLS 1.3 handshake phase should be
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a ClientHello. When sending the ClientHello, we see that the OpenSSL
server responds as expected, giving back ServerHello, EncryptedExtensions,
Certificate, CertificateVerify and Finished messages. Sending either
a Finished or an ApplicationData at this stage results in UNEXPECTED
_MESSAGE alerts, after which the connection is closed. These alerts are ex-
actly what we expected, since (according to the specification) a ClientHello
must always be sent by the client before sending or receiving any other mes-
sages.

State 1: The state machine enters this state once a correct ClientHello
message has been received in the initial state. When sending another Client-
Hello at this point, we again get an UNEXPECTED MESSAGE alert, which
is what one should expect. Sending ApplicationData results in another
alert, the DECRYPTION_FAILED alert. This alert is caused by the fact that
no Finished has been sent, which means that the encryption keys are not
yet authenticated. As can be seen in the state diagram in Appendix A.1,
the Finished transition leads us to State 3, while receiving as output a
NewSessionTicket message. This message includes a so-called Pre Shared
Key (PSK) to resume the handshake in the future.

State 2: This state is the least interesting, since entering this state means
that the connection is closed, and all further messages will get no response.

State 3: State 3 can be reached within the normal execution flow, once
the Finished is sent. Since the server already received a Finished, it
now expects to receive ApplicationData messages. Doing so results in
ApplicationData, but sending either another ClientHello or a Finished at
this point returns respectively an UNEXPECTED _MESSAGE and a BAD_RECORD_MAC
alert. The latter seems a bit strange, because an UNEXPECTED MESSAGE alert
would be more fitting at this point. When we look up the description of the
BAD_RECORD_MAC in the RFC draft, it says:

This alert is returned if a record is received which cannot be
deprotected. Because AEAD algorithms combine decryption and
verification, and also to avoid side channel attacks, this alert is
used for all deprotection failures.

Deprotection in this context stands for both decryption and verification of
the received message. Although the exact cause of the alert is left vague on
purpose by the designers (as can be read in the description above), the cause
for this alert probably lies in the fact that the HMAC in the latter Finished
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is now also computed over the content of the earlier Finished (which is not
correct), leading to the verification at the server side not succeeding. The
OpenSSL debug output offered no clues on this.

6.1.2 Adding extra input symbols

After the previous state machine (see A.1) was established, we decided to
also include server input symbols to increase the chance of detecting unex-
pected behaviour in OpenSSL. The complete state machine can be found in
Appendix A.2.

We chose to add the following input symbols to StateLearners alphabet:

e ServerHello
e EncryptedExtensions
e CertificateVerify

e CertificateRequest

The addition of the server input symbols resulted in a state machine with the
same number of states but with some extra transitions. We see that all of
the server input symbols result in UNEXPECTED _MESSAGE alerts, except when
sending a ServerHello after a ClientHello, which gives ApplicationData
in return. When examining the OpenSSL debug info however, we see that
this data is not actual ApplicationData, but an UNEXPECTED MESSAGE alert
that is not correctly decrypted! by the TLS-Attacker framework. According
to the developers, the problem is caused by the fact that TLS 1.3 does not
contain a ChangeCipherSuite message, which leads to the framework not
being able to correctly determine if the returned message is decrypted or
not at this point. It is very likely that this problem is already fixed by the
developers at the time of reading.

6.2 The WOolfSSL state machines

We will now use the same approach to examine WolfSSL. Just like before,
we begin with sending standard input symbols and extend this with server
input symbols. The complete diagrams can be found in Appendix A.3 and

!According to the RFC draft, alerts should be encrypted once the keys have been
established, e.g. after the ClientHello and ServerHello
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A.4. When configuring WolfSSL, we used parameters ——enable-tls1 3 and
-—enable-curve25519 to respectively enable TLS 1.3 and Curve25519 for
the key exchange.

6.2.1 Standard messages

State 0: from the initial state, there are, just like the OpenSSL state ma-
chine, three transitions. The first one, representing a ClientHello, re-
sults in the standard ServerHello, EncryptedExtensions, Certificate,
CertificateVerify and Finished messages and takes us to state 1. The
other two (Finished and ApplicationData) result in an UNEXPECTED MESSAGE
alert with the connection being closed.

State 1: After the "correct” ClientHello has been sent, sending a Finished
takes us to state 4. There is no NewSessionTicket, since WolfSSL does
not have this implemented yet. Another ClientHello results in a BAD_
RECORD_MAC alert and a closed connection. This alert could be considered
fairly strange at this point, since the handshake_traffic_secrets are al-
ready established, so WolfSSL should at least be able to decrypt the ”out-of-
order” ClientHello. However, this alert is probably sent because the Wolf-
SSL server expects encrypted messages after the ClientHello (which is, to-
gether with the ServerHello the only message that should be sent over plain-
text) and not another unencrypted ClientHello. Sending ApplicationData
closes the connection and returns a WARNING_CLOSE NOTIFY alert.

State 2: This state is comparable with state 2 in the OpenSSL state ma-
chine. The connection is closed here, so the WolfSSL server does not return
anything.

State 3: Since the Finished has already been sent, ApplicationData re-
sults (as expected) in ApplicationData from the server. Remarkable is
that ClientHello and Finished messages at this point give back a whole
list of alerts (BAD_-RECORD_MAC, UNEXPECTED_MESSAGE, UNDEFINED_UNKNOWN,
UNDEFINED CERTIFICATE BAD HASH VALUE). This will probably be a bug in
the WolfSSL server, because when we consult WolfSSL’s debugging info we
indeed see multiple errors upon receiving the messages (which means it is
not just data that is wrongly interpreted by the TLS-Attacker framework).
We reported this issue to the WolfSSL developers. After this response, the
server closes the connection.
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6.2.2 Adding extra input symbols

When extending the standard input alphabet with EncryptedExtensions,
Certificate, CertificateRequest, CertificateVerify, HelloRetryRequest,
EndO0fEarlyData and NewSessionTicket messages, the resulting state ma-
chine is (apart from its increased size) quite different from the one we derived
before:

e All the extra transitions from the initial state cause the same type of
alert (UNEXPECTEDJVIESSAGE)

e After the first ClientHello has been sent, all additional messages
except CertificateVerify and NewSessionTicket cause a WARNING
_CLOSE_NOTIFY alert, while the latter result in a BAD_RECORD_MAC alert.
Of these two BAD RECORD MAC alerts, the first can be explained by
the fact that no Certificate is sent, so the Transcript Hash in
the CertificateVerify is not computed over a Certificate mes-
sage, which makes the verification fail. The other, being the result of
sending a NewSessionTicket after a ClientHello, could be caused
by the server not being able to handle NewSessionTickets (which are
encrypted) correctly. Still, all messages except Finished cause the
connection to be closed immediately.

e When the correct Finished is sent to the server, sending a NewSessionTicket

gives us no output, but leads us to an extra state. CertificateVerify
and End0fEarlyData seem to result in ApplicationData, but when ex-
amining this in the WolfSSL debugging info, we just see two alerts with
descriptions out of order error and sanity check on message order error.
This means that the output is just wrongly interpreted by the TLS-
Attacker framework. All the other input symbols give us the same list
of alerts as in the original WolfSSL state machine. All messages except
the NewSessionTicket and ApplicationData cause the connection to
be closed immediately.

e From the new state, all transitions lead to the "dump” state that repre-
sents a closed connection, and return the list of alerts that we described
in the previous subsection, except CertificateVerify, End0fEarlyData
and a new NewSessionTicket. These all return ApplicationData, be-
fore the connection is closed. However, when examining this in Wolf-
SSL’s debugging info, we see that this is not real application data, but
alerts that are not handled properly by TLS-Attacker. The error de-
scriptions WolfSSL assigns to these messages are respectively: out of
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order error, sanity check of message order error and duplicate hand-
shake messages.

6.3 A comparison

We will now compare the state machines derived from OpenSSL and WolfSSL
by listing the major differences between them:

e The second state machine of the WolfSSL server has one additional
state, which can be reached when sending a NewSessionTicket after
a ClientHello and a Finished. The WOolfSSL server gives no re-

sponse to this message, instead of closing the connection immediately
like OpenSSL.

e After sending a ClientHello and Finished, incorrect messages to
the OpenSSL server result in either an UNEXPECTED _MESSAGE or a BAD
_RECORD_MAC alert. WolfSSL gives back a whole list of alerts.

e WolfSSL does not send a NewSessionTicket when the client sends its
Finished, whereas OpenSSL does return this ticket.

e A CertificateVerify or EndOfEarlyData after the clients Finished
make WolfSSL first return ApplicationData, while OpenSSL just sends
alerts and closes the connection immediately.

e On numerous occasions (see the previous sections) the two implemen-
tations return different kinds of alerts.
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Chapter 7

Conclusions

In this chapter, we will present the conclusions of our research, after which we
will suggest further work that could be done on the subject of state machines
and TLS 1.3.

7.1 Conclusions

We will now give our conclusion about each part of the research done in this
thesis:

OpenSSL

The server side of OpenSSL 1.1.1 contained no unexpected behaviour that we
could track using state machine learning. Whenever we sent a message that
’should not be there’, we got an alert back from the server and the connection
was closed. The type of alert sometimes was not what one should expect (see
section 6.1), but overall the connection was always closed, which means that
none of the 'wrong’ messages could cause in itself any harm. Of course it
is not guaranteed that if some messages are, e.g., sent a thousand times to
the server this would still be the case, but that falls outside of the scope of
this research. So, we can conclude that TLS 1.3 and OpenSSL made some
serious improvements to respectively the TLS protocol and the old OpenSSL
versions (regarding the bugs that were found in past research [9, 12]).

WolfSSL

The results regarding WolfSSL’s two state machines where almost the same.
We found no behaviour in the state machine that could cause serious damage,
since almost every out-of-order message caused the connection to be closed.

33



The amount and type of alerts were sometimes not what one would expect,
but except confusion at the user’s side, we see no harm there. We can,
therefore, conclude that WolfSSL’s TLS 1.3 implementation does not contain
any security flaws that could be detected by state-machine learning.

7.2 Future work

There are a lot of ways to expand the research done in this thesis. We roughly
divide them into three categories:

Different methods of analysis

Instead of using state machines to analyse TLS 1.3 implementations, a dif-
ferent method can be used, for example:

e Fuzzing: a technique to test software or protocol implementations by
sending large amounts of random data with the goal to trigger unex-
pected behaviour at the client- or server side [19]. Software tools can
then be used to examine the cause of this crash.

e Symbolic execution: a way of analyzing which inputs cause which
execution paths in an implementation. With symbolic execution, one
can find bugs or infeasible paths in a programs execution.

Another protocol implementation

One could also use state machine learning to analyse different security pro-
tocols. The protocols described in the Related Work section are already
examined in the past, but for i.e. Fast Initial Link Setup! (FILS) there is
still some work to do.

Other areas of TLS 1.3

The research we did into TLS 1.3 using state machine derivation can also be
expanded by examining more TLS 1.3 implementations, like the ones that
can be found here:

https://github.com/tlswg/tls13-spec/wiki/Implementations

It is also possible to add more extensions to the mapper, for example Heart-
beat, Early Data, Cookie or to use pre-shared keys instead of ECDHE.

thttp: //www.isaet.org/images/extraimages/P1215040.pdf
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Appendix A

State Machine Diagrams

In this Appendix, all the derived state machines are included. We have two
state machines for the OpenSSL 1.1.1 server and two for the WolfSSL 3.13.0
server. In the first and third we only send client input symbols, the second
and fourth also contain a selection of server input symbols. Since most of
these diagrams might not be readable on paper, we also made them publicly
available on https://gitlab.science.ru.nl/vthoor/bachelorscriptie-
2018/tree/master/State’20Machine’20Diagrams.
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Figure A.2: OpenSSL 1.1.1 server side state machine with server input sym-
bols
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Figure A.3: WolfSSL 3.13.0 server side state machine
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Figure A.4: WolfSSL 3.13.0 server side state machine with server input sym-
bols
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