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ABSTRACT 

The Lego Mindstorms line of ‘toys’ has been popular in computer science education for a while; with its 

highly configurable set-ups and support for all kinds of programming languages. The latest edition, 

called the EV3, is able to run custom Linux operating systems. Simulating these robots could save 

schools money and time. Furthermore, the idea of a programmable robot could be extended to offer 

even more benefits. This thesis handles the creation a framework to mirror the process of controlling a 

robot with custom code in simulation. Python is used to write programs for the robot/simulator, and the 

game engine Unity is used to create a digital environment for the robots to interact with. To start 

development, a list of requirements is created to narrow down the scope of the project. These 

requirements are then compared to other EV3 simulators are available online. 
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1 INTRODUCTION 

1.1 SIMULATING EMBEDDED SYSTEMS 
An ‘embedded system’ is usually defined as a piece of hardware that is part of a bigger system or device. 

This hardware contains microprocessors and other chips that are focused on and optimized for a small 

number of tasks. Verifying and testing such an embedded system proves difficult: it can be impractical 

or time consuming for various reasons.  Sometimes hardware and software for embedded systems are 

developed in parallel, making it impossible to debug and test before the physical hardware is finished. 

Therefore, it is often useful to create software that simulates (Engblom, 2008) the hardware to get 

information about the expected performance and behavior of an embedded system. Those simulations 

can range from accurate reimplementation of the actual hardware, to a more surface level reimagining 

of the system. This principle is also referred to as ‘virtual prototyping’ or ‘digital twins’.  

However, reimplementing systems can be used for more than just industrial purposes. One example is 

using digital twins for entertainment and preservation: ‘emulators’ for old video game consoles read 

game code that is only executable by the original console, and convert them for use on modern 

hardware (Wikipedia contributors, n.d.). Furthermore, it is an increasingly popular concept in education: 

The principle of teaching students with assistance of simulation has applications among the fields of 

molecular science (Allen, 2007), medicine (Beer, Grit, Good, & Gravenstein, 2001) and construction 

(Purnus & Bodea, 2015). 

1.2 LEGO MINDSTORMS 
This thesis addresses virtual prototyping for the latest Lego Mindstorms robot: the EV3. Lego 

Mindstorms is a platform that allows individuals to control a programmable and customizable ‘brick’ 

(Lego, 2018). This brick supports a collection of additional connectable modules for all kinds of 

objectives: examples include LED’s, motors, color sensors and buttons. These sensors and actuators can 

then be commanded by writing code and uploading it to the brick. EV3 is the third and latest entry in the 

Mindstorms line as of 2013, which includes an improved brick that locally runs Linux. 

The Mindstorms series has proven to be popular in education (Klassner & Anderson, 2003), where it is 

used as a tool for teaching programming and computer science subjects. There are, however, several 

drawbacks that come with this method of teaching. Mindstorms robots are costly, which means it is 

hard to provide every student with their own robot. Frequent switching of the robot between students 

reduces the available time for each individual to actively work with it. Additionally, working with 

Mindstorms can be inefficient due to the significant effort it takes to repeatedly upload code to the 

brick.  

Considering the popularity of the Mindstorms series in education and its drawback, simulation software 

for the EV3 series would be helpful. Because the main concept of these robots is the real-life 

interactivity (driving around, flashing LEDs, handling physical input, etc.) the simulation aspect would be 

different from usual virtual prototyping, as it requires a fully visual representation of the brick and its 

connected modules. 
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1.3 GOAL 
The main research question of this thesis is as follows: 

“What is an effective method of developing an open-source simulation framework for the use of Lego 

Mindstorms EV3 in education?” 

Sub questions handle different aspects of this enquiry: 

a) “What are the primary requirements for educational use of this software, and how can they be 

sufficiently met?”  

b) “What previous work exists for this problem field?” 

c) “How is this realized, keeping extendibility and future developers in mind?” 
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2 LITERATURE AND APPROACH 

Answering sub question (a) will narrow the scope of what are considered necessary features for this 

thesis. The educational aspects will be researched to provide the base requirements. 

Currently, Mindstorms are used in multiple levels of education with success: high school students 

perceived less difficulty in learning to program with the help of a robot (Mason, 2013), elementary 

school children show more attention when robots are introduced (Zygouris, et al., 2017) and 

undergraduate student have indicated that the robots helped them understand practical applications of 

coding (Gandy, Bradley, Arnold-Brookes, & Allen, 2015). 

One - and perhaps the most important - benefit of educational simulation software is the ‘hands-on’ 

aspect, also referred to as experiential learning: “Experiential learning enhances the learner's critical 

thinking, problem-solving, and decision-making skills, all being aims of teaching” (Pasquale, 2015). This is 

in part because of direct application of learned knowledge in situations where it applies. A Mindstorms 

simulator would teach learners coding by showing a visual and practical example of how those skills can 

be used. This is similar to use of real robots in education. When considering features for this thesis, the 

importance of experiential learning should be central. 

Experiential learning is described in four stages by David Kolb (McLeod, 2017): first, the learner has 

some kind of experience. Then, the learner reflects on and subsequently learns from that experience. 

Finally, the learner takes that new knowledge and applies it, looping back to the first stage. Some of 

these four stages can be made more accessible for learners in simulation software. A digital 

environment can boost the effectiveness of reflection by showing information that would be hidden in a 

real-life situation; e.g. internal values of a robot. Furthermore, applying new knowledge from previous 

experiences can be far more efficient when working entirely in simulation. 

Availability is another aspect that is important when developing educational software. Considering the 

disadvantage of lower socio-economic circles when it comes to education technologies such as 

Mindstorms (Anderson, 2005), the software should be freely available on multiple platforms. Moreover, 

the target audience must be expanded by distributing the software in an accessible manner. 

Answers to sub question (b) will be based on other work on the stated problem in this thesis, and the 

associated solutions to common problems. Analyzing previous work and their strong/weak points is can 

give insight in how and why certain choices are made in the development of robot simulation software. 

This will involve looking for similar software projects on the internet, and comparing them. Research 

conducted by Giel Besouw shows and compares various solutions for the NXT entry in the Mindstorms 

series (Besouw, 2018). 

Finally, the requirements and choices made with the answers to sub question (a) and (b) are realized by 

answering sub question (c). A custom solution to the stated problem will be developed by iterating 

prototypes of an EV3 simulation software. A demo of this software will be made available for 

intermediate evaluation. The set of features that would be implemented by the end of this thesis should 

be sufficient for educational use, and provide a straightforward skeleton structure for future developers 

to complete. 
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3 REQUIREMENTS 

Various categories of requirements are considered. First, the target platform of the software will be 

investigated. Next, the method of controlling and coding the simulation is considered. Aspects involving 

the simulation and its properties are finally narrowed down. All of these properties should conform to 

the educational nature of the simulation. 

3.1 PLATFORM 
About 78% of all personal computers run Windows, while around 14% runs macOS. Various Linux 

distributions cover most of the remaining share (statcounter, 2018). However, among people with an 

interest in programming, this rate differs: Linux-based operating systems are frequently preferred for 

their openness.  A cross-platform based solution is a strong requirement because of this. 

3.2 CODING 
The simulated robot would need some sort of input to be commanded by a user of the software. A real-

life EV3 brick runs code that in a programming language that is supported by its installed operating 

system. Consider these two distinct methods to imitate this concept in simulation: 

- The simulated robot acts according to a representation of a program that a user has created 

within a visual programming environment. 

- The robot is controlled by a program written by a user in a textual programming language.  

The latter method has a major benefit: a programming language can be used that is supported by an 

EV3 operating system. This makes interchangeability between code written for the simulation and a 

real-life EV3 brick possible. 

Ideally, coding in combination with the simulation software should not require experienced users to 

learn a new programming language. That in turn allows users to apply their new skills in other areas, in 

accordance to the hands-on learning experience. The EV3 brick runs Linux locally, meaning hobbyists 

have free reign over their machine. This made it possible for various programming languages and 

operating systems to be ported for commanding the EV3 robot. The following are some of the most 

popular available: 

- leJOS is a Java Virtual machine ported to a few robots including the EV3, making it possible to 

control the brick using Java code. leJOS is available for free. 

- RobotC (Robomatter, 2005-2014) enables licensed users to write C-like code for various robot 

systems including the EV3.  

- An open-source Debian-based operating system called ev3dev (ev3dev, 2018). This OS can be 

started from an SD card inserted in the EV3 brick. Its supported languages include Python, Java, 

C++ and more. 

Python has a number of benefits for both the users and developers. It is one of the most widely used 

languages to teach programming, and a huge amount of information and support is available for the 

language. Combined with the huge number of devices and operating systems that support Python, these 

aspects are useful for the students using an educational piece of software. On the development side,  
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Python development for the EV3 is made possible by using a library called ev3dev2 (python-ev3dev2, 

2018). Included in this library are different classes and methods that can be imported and called to in a 

Python script, representing the different modules connected to the EV3 brick. 

3.3 SIMULATING 
There are various tools to create a visual environment with objects moving around according to 

developed code, with differing levels of complexity and incorporated features. These tools either have 

two-dimensional or three-dimensional capabilities. A 2D environment in this would mean the simulation 

has a top-down view, while 3D allows for full 360-degree camera system. Another aspect that is 

necessary in this project is a support for physics and collision, meaning the simulated robot would be 

able to physically interact with other objects in the environment. Additionally, there is a need for the 

developed visual environment to be functional on multiple operating systems. Game engines are an 

example of such tools, usually containing all the features that are necessary for game development 

(such as the examples above). 

Unity (Unity Technologies, 2018) is a well-documented game engine with 2D and 3D functionality, that 

includes an editor for multiple platforms. This editor contains all the necessary tools to make games and 

other interactive programs, such as physics and collision systems. Most developers write in C# or 

JavaScript in combination with Unity. Applications created in Unity can be exported to multiple 

platforms with identical functionality: Windows, macOS, Linux, Android, iPhone and many more. 

Unity works with so-called GameObjects. These GameObjects have different components added to 

them. Components hold information on variables such as position, rotation, physics, 3D representation 

and much more. It is also possible to add scripts to a GameObject; making it possible for developers to 

control aspects of that GameObject and other variables through coding.  

Unity applications run with a variable framerate, which changes depending on the CPU or GPU load. 

Normally this framerate hovers around 60 frames per second. 

3.4 CUSTOMIZABILITY 
The Mindstorms platform is in part successful because of the extendibility of both hardware and 

software. The Lego structure that all connectable Mindstorms modules adhere to facilitates 

personalized robots, further extending the practical uses. Standard Mindstorms modules and Lego 

pieces are combined to create a solver for Rubik’s Cubes (Gilday, 2016), in addition to a fully automatic 

assembly line (Superlegosam, 2014) and a looming machine (Zając, 2013). In this spirit, customizability 

within and outside of the simulation should be an essential part of the software. This means granting 

users the ability to customize their simulated robot/environment and engineering the software in such a 

way that it can be extended upon in a clear way. The former requires a ‘building mode’ within the 

software, such that the users can connect modules in their chosen position on the brick and edit the 

environment that the robot exists in. The latter would at minimum involve creating a framework that 

facilitates the addition of new (possibly fictional) modules to be used in the simulation, without having 

to rework the entire code. 
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4 OTHER SOLUTIONS 

There are five EV3 simulators found on the internet: 

- Virtual Robotics Toolkit (Cogmation Robotics, 2018), a Windows-based 3D simulator that 

requires users to buy a one-time license. 

- Robot Virtual World (RoboMatter, n.d.), similar specifics as Virtual Robotics Toolkit. 

- QEV3Bot (Simmons, 2018), a free 2D simulator for Windows. 

- Open Roberta Lab (Fraunhofer IAIS, 2018), a web-based 2D simulator that is free to use. 

- TRIK Studio (TRIK, 2014), a fully Russian 2D simulator software for Windows/Mac/Linux. 

Since the TRIK Studio application and documentation is fully Russian, it is excluded the discussion below. 

Besides being cross-platform, it doesn’t seem to have any outstanding features not present in other 

available simulators. 

4.1 CODING 
The four remaining EV3 simulators support the following programming solutions: 

- Visual Robotics Toolkit implements a visual programming environment based on the official 

Lego Mindstorms programming software (Lego, 2018). This software allows customers to create 

pseudo-code to command their robot. Users can place different blocks that control the program 

flow, sensors, light, sound and motors. Additionally, there are advanced blocks which are 

capable of e.g. file transfer and Bluetooth connections. 

- Robot Virtual Worlds also implements the official Lego visual programming software, besides 

allowing for textual and visual RobotC programming. 

- QEV3Bot Simulator allows users to write full RobotC code manually.  

- Open Roberta Lab has a more comprehensive visual programming compared to the official Lego 

Mindstorms software.  

These simulators all allow users to save and load their created programs. Visual programs created in 

Open Roberta Lab can be saved to source code for a variety of robots and target operating systems. It 

supports two EV3 operating systems: leJOS EV3 and ev3dev. Open Roberta Lab can also export and 

import produced visual code as a *.xml file. 

These source files can all be uploaded to an actual EV3 robot with the target OS. Excluding QEV3Bot, 

these simulators are capable of connecting to the real-life brick through a cable or a wireless connection 

to upload programs directly. 
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4.2 PLATFORM 
Virtual Robotics Toolkit, Robot Virtual Worlds and QEV3Bot only work on Windows. Open Roberta Lab 

functions in any modern browser. A web-based simulator has a few benefits: no installation is necessary, 

and as long as a operating system has a modern browser it is almost guaranteed to work without 

configuration. A major drawback is the difficulty of web development, especially when trying to create a 

fully dynamic (3D) graphical simulation. 

4.3 SIMULATION 
Virtual Robotics Toolkit and Robot Virtual Worlds have a fully three-dimensional simulation, while the 

others have only two-dimensional top-down views. Both of the 3D environments implement a physics 

engine, allowing the simulated robot to interact with various objects. 

4.4 CUSTOMIZABILITY 
Virtual Robotics Toolkit can import ‘LDraw’ models that are created using the Lego Digital Designer 

(Lego, n.d.). These models represent digital structures built using actual Lego bricks. Those imported 

models can then be used in the simulation as a replacement of the standard robot. Robot Virtual Worlds 

does not have this functionality; one can choose from a set of predefined robots. QEV3Bot has the 

ability to configure up to four sensors from a set of eight available sensors. Open Roberta Lab has no 

customizability options for the robot. 

All of the available robot simulators come with various environments for the robot to work in.  Robot 

Virtual Worlds can even important custom models for use as surroundings.  
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5 DESIGN 

The requirements and personal preferences lead to the choice of tools: Unity with C# is used on the 

virtual prototyping side, while Python programs are used to command both the actual EV3 bricks and 

the simulation. First, a general overview of the structure of these programs are given. A clarification of 

specific choices and their alternatives is provided in section 5.3. 

5.1 FRAMEWORK FOR COMMUNICATION 
A real-life EV3 brick communicates with its hardware to set and get values according to the execution of 

a program. Figure 1 demonstrates the progress with various example modules connected to a brick. 

This principle must be replicated in the simulation. A problem arises when programming languages are 

not compatible: the simulation software is developed in Unity using C# and Python is used to control the 

simulated robot. One way to overcome this problem is to implement an interpreter within the 

simulation software, allowing the simulated brick to natively run compatible code. A more attainable 

solution is to find a way to communicate between the simulation software and a user-written program 

that is executed on the same machine. This would function as displayed in figure 2. 

Figure 1: a reduced representation of the EV3 hardware and software 
interaction. 
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This approach has the two different processes running in tandem, with some method of communication. 

The most straight-forward way to implement this is to set up networking sockets on both ends. To send 

and receive information, data would need to be convertible to and from bytes. However, the 

communication between two different programming languages requires this specific method of 

encoding to be standard across platforms. JSON is a multiplatform solution that converts class objects to 

convenient string representations (and vice versa). 

Since the Python programs in this scenario does not run on the actual brick with the ev3dev OS, the 

functionality of the ev2dev2 Python package will need to be reimplemented for this purpose. Rewriting 

the ev3dev2 package, using the same method and variable names, also conforms to the requirement of 

Python code executing identically on the simulation and the real-life EV3. 

The hardware of the EV3 robot can be simplified as a collection of (sensor) modules. Every such module 

has a unique ID, type and list of values. For example, a brick with two LEDs and an Ultrasonic sensor 

connected to it can be described as demonstrated in figure 3. 

 

 

 

 

 

 

 

 

Figure 2: a reduced representation of the simulator and a user-written 
program interaction. 
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A distinction is made between ‘input’ and ‘output’ values. Input values are assigned by the Python 

program, while output values are retrieved from the simulation. The ‘Color’ value of an LED module 

counts as input, and the ‘Distance’ value of an ultrasonic sensor as output. 

The goal is the reach structural parity between the simulation (in C#) and ev3dev2 regarding the 

modeling of the hardware. This way, a correspondence can be achieved between the two processes 

beyond their language difference. 

Implementing this model on the simulator side creates a ‘virtual’ brick representing the current state of 

the simulated hardware. The simulation can then run according to these variables. On the Python side, 

there is no locally stored representation of the brick. The re-implemented ev3dev2 methods directly 

communicates with the simulation to get and set values. 

A general structure must be constructed for communication between the two processes. The Python 

program being executed (essentially replacing the EV3 brick operating system) acts as the client in this 

relationship, whereas the simulated hardware acts as the server. First, the connection must be started. 

This is done through a simple handshake: the client sends its name, to which the simulator responds 

with its own. After this, the communication can start. 

Figure 3: a simplified representation of EV3 
hardware. 
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The getting and setting of variables is done by sending either a ‘request’ (for output values) or 

‘command’ (for input values) to the simulated hardware. A request contains information about a certain 

value of a module, and expects an answer containing that requested value. A command tells the 

simulated hardware that some value should be updated. This is illustrated in figure 4. A complete 

overview of the framework is shown in figure 5. 

 

Figure 4: the messages that are used in communication 
between the simulator (server) and Python program (client). 

Figure 5: an overview of the EV3 simulation software. 
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5.2 MODES OF OPERATION 

5.2.1 Building mode 

To make the simulator adhere to the customizability requirements, a ‘building mode’ will be 

constructed. This mode makes it possible for users of the simulation software to construct their own 

robot with the implemented modules available. When the full robot is constructed, it should be able to 

be used in a subsequent simulation. The data that represents a certain robot should be convertible to a 

file that can be loaded. 

5.2.2 Action mode 
In the action mode, the simulation happens. This is where the communication framework starts to work 

with a created robot. Information on the current state of the connected modules should be shown on 

screen. 

5.3 DESIGN CHOICES 
There are two problems that need to be solved in order to have functional communication between two 

programs: the method of communication and serialization format need to be chosen. 

The concept of inter-process communication is not a new one, and there are multiple approaches: 

- One can create a local file that is being written to and read from. The biggest drawback of this 

form of communication is the dependence on ownership. If one party (for example, the 

simulator) claims a file for use, it will not be accessible by any other party. This can cause 

problems in a situation where different parties keep switching ownership. Furthermore, the 

precise mechanisms concerning file systems are different for every OS, causing more potential 

problems. 

- Pipelines are somewhat similar to the current method. Data flows from one process (output) to 

another process (input). With some tinkering this can also work bidirectionally. This is the 

standard way of communicating between processes. However, due to the multiplatform and 

extendable nature of this framework, using this approach would be too obtuse. Like files, this 

methods behavior is OS dependent too. 

Socket networking comes with some benefits. Sending and receiving values is practically instantaneous 

when hosting locally, and could even be extended to allow remote access. Multiple clients can be 

connected to one server; in this case possibly multiple robots to a single simulation software instance. 

Using JSON is not the only way to tackle the serialization problem. There are various other formats 

freely available for developers to use, such as XML, YAML and CSV. There isn’t much difference between 

these formats, and only basic serialization is needed in this case. JSON support comes with Python in the 

form of the json library. An additional framework is needed for JSON integration with C#: Newtonsoft’s 

Json.NET (Newtonsoft, n.d.) is a solution that is fully open-source. 
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The structure of the messages send through networking is in line with the expected behavior concerning 

server-client communication. The client initiates the contact, and subsequently sends requests to the 

server. The server handles these actions appropriately. 



18 
 

6 IMPLEMENTATION  

6.1 FRAMEWORK FOR COMMUNICATION 

6.1.1 Python side 
The first step to implementing the previously mentioned framework, is to re-implement the ev3dev2 

package. For every sensor/actuator for the EV3 that is supported by this library, a virtual counterpart is 

to be created. This makes it possible to set up the communication framework later on. These virtual 

modules are manipulated with calls to the re-implemented ev3dev2, using the original method and 

variable names. 

The user-written program needs to be located in the same directory as a folder called ev3dev2. This 

folder then needs an empty file named __init__.py to indicate it is a Python package. Various files 

and folders (with their unique __init__.py file) can then be added to further add functionality and 

nesting. For example, the following imports are requested by a Python program called Program.py: 

from ev3dev2.display import Display 

from ev3dev2.led import Leds 

from ev3dev2.sensor.lego import UltrasonicSensor 

 

These imports correspond to the created file structure (where the *.sensor.lego import is located in 

a nested folder): 

 

 

 

Figure 6: the recreated file system inherited from the ‘ev3dev2’ package. 
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A file, such as lego.py, contains at least one class that represents a module (in this case an ultrasonic 

sensor). To facilitate the communication framework, this ‘module class representation’ inherit from a 

single class: the ModuleClass. The ModuleClass contains properties to identify the specific module 

(ID and type) and two functions that handle the getting and setting of values (get_value and 

set_value). This inheritable class is stored in the ev3dev2 folder in a file called module_class.py. 

Coding a specific module class is straightforward from that point: 

from ev3dev2.module_class import ModuleClass 

 

class UltrasonicSensorModule(ModuleClass): 

    def __init__(self, id, module_type): 

        ModuleClass.__init__(self, id, module_type) 

         

    def get_distance(self): 
        return float(self.get_value("Distance")) 

 
This class can be initialized (with the ID and type parameters) and its functions can be called. The 

initialization and handling of classes inheriting from ModuleClass is hidden in the re-implementation 

of ev3dev2 to become synonymous with the normal usage of ev3dev2. Combined, this is the re-

implementation of the ultrasonic sensor module contained in lego.py: 

class UltrasonicSensor: 

    sensor = UltrasonicSensorModule("Sensor 1", "UltrasonicSensor") 

     

    def value(self): 
        return self.sensor.get_distance() 

 
The ultrasonic sensor is now ready for use in a user-written Python program with the same syntax as the 
original ev3dev2: 
 

from ev3dev2.sensor.lego import UltrasonicSensor 

 

us = UltrasonicSensor() 

distance = us.value() 
print(distance) 

 
The next step is providing functionality to the get_value and set_value functions contained in 

ModuleClass. These functions depend on the C# simulator, for which we first need to establish a 

communication channel. For this purpose, a separate file (unityev3) and class (ClientInfo) that 

handle communication are created. This class has a static function get_main that returns the currently 

running client socket. If the socket is not yet up and running, it will be set up and returned. 
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This piece of codes starts a socket client looking to connect to the local host on port 24197: 

port = 24197 

host = "127.0.0.1" 
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

print ("Waiting for simulator..") 

 

s.connect((host,port)) 

 
print ("Found simulator!") 

 

This code waits until another party (the simulator) accepts the connection. If no such party can be 

found, execution will be stalled indefinitely to prevent code running with no simulator attached. After a 

connection is formed, the handshake (as stated previously) will be started. 

For timing purposes, the Python program should only start executing when the simulator is connected 

and ready. The __init__.py file in the root folder of ev3dev2 can be edited to execute code upon 

import. Because the imports are stated at the start of every Python program, we can use this method to 

stall the program until a socket is correctly set up: 

from ev3dev2.unityev3 import ClientInfo 

 

ClientInfo.get_main() 
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After the connection with the simulation is established, get_server_value and set_server_value 

functions of ClientInfo can be used to communicate. The former expects a Request to send and 

returns the Answer it received, while the latter expects a Command to send. These classes represent the 

messages used for communication as previously stated and are defined as such: 

class Request: 

    def __init__(self, id, module_type, value_name): 

        self.ModuleID = id 

        self.ModuleType = module_type 

        self.ValueName = value_name 
         

class Answer: 

    def __init__(self, value): 

        self.Value = value 

         

class Command: 

    def __init__(self, id, module_type, value_name, value): 

        self.ModuleID = id 

        self.ModuleType = module_type 

        self.ValueName = value_name 

        self.Value = value 

Additional functions are added to those classes to convert between JSON strings and bytes. These bytes 

are then sent to the server alongside some information about the message. If the message was a 

Request, the client will then start listening to receive an Answer JSON string. 

If the (C#) server is not ready to receive a message by the client, the Python program will (deliberately) 

stall until it is. No Python code should be executed when the simulator is not responding, preventing 

timing and simulation errors. This makes the server responsible for the client program execution flow. 

This has an interesting property: it can be used to model the delay between an actual EV3 brick and its 

hardware. This delay is necessary due to the way game engines execute code every frame, instead of 

continuously (more on this in the Unity Side subsection).  

Finally, the get_value and set_value functions of ModuleClass can be defined: 

def get_value(self, value_name): 

        request = Request(self.id, self.module_type, value_name) 

        return ClientInfo.get_main().get_server_value(request) 

     
    def set_value(self, value_name, value): 

        command = Command(self.id, self.module_type, value_name, value) 
        ClientInfo.get_main().set_server_value(command) 

 

6.1.2 Unity Side 
On the Unity side, counterparts of the implemented ModuleClass Python modules should be created 

to facilitate communication. Since Unity is a game engine, some things need to be set up before this 

step can be completed. 
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First, a new project is created in Unity. Unity has both 2D and 3D functionality, selected at startup. For 

this simulator, a 3D environment is needed. Upon creation, the Unity editor will make a new scene. 

Then, GameObjects can be added. GameObjects can represent any type of object. For example, the 

camera and light sources in a scene are instances of a GameObject. These objects have a set of 

components that control its behavior. What all GameObjects have in common is the Transform 

component: A Transform is responsible for the objects position, orientation and size. Furthermore, it’s 

possible to add scripts to a GameObject. These scripts (written in C#) make it possible for developers to 

code their own GameObject behavior and directly interact with other objects or components. 

To understand how to code with a game engine like Unity, it must first be clear how that code will run. 

Scripts attached to a GameObject must inherit from MonoBehaviour, which provides a set of methods 

that can be overridden. MonoBehaviour is the base class responsible for much of the program 

execution flow.  The Awake and Update methods make it possible to code according to the Unity 

execution flow: Awake runs when the GameObject is activated for the first time (i.e. at the start of 

execution) and Update runs every frame. A frame is a fraction of time in which (among other things) the 

Update method of all activated scripts is ran.  

 

 

 

 

 

public class CustomScript : MonoBehaviour { 

     void Awake() { 

         transform.position = Vector3.zero; 

     }  

 
 void Update() { 

  transform.position += Vector3.up * Time.deltaTime; 

} 
} 

 

At the end of each frame, the current state of the scene is drawn to the screen. If the framerate is 60 Hz, 

the GameObjects and graphics will thus be updated 60 times per second. The framerate is dependent on 

the specifications of the device the application is running on. For example, slower computers will need 

more time to execute one frame, resulting in a lower framerate. The Time.deltaTime variable shown 

above makes sure the position translation is scaled to the time of a frame, so that the application runs 

correctly independent of the frame rate. 

This does not mean conventional C# coding is not useful here: custom classes that do not inherit from 

MonoBehaviour can be created and called to within those functions. Sometimes it is necessary to 

execute some code with a different rate than the applications framerate. Coroutines exist for this 
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purpose. Using a coroutine is similar to threading, as it can be running in parallel without stalling the 

Unity execution loop. A coroutine can be halted for any number of seconds and used to create an 

infinite loop: 

private IEnumerator CustomCoroutine(){ 

        while (true) { 

            PrintTime(); 

            yield return new WaitForSeconds(0.01f); 

        } 
} 

 
An overview of the different timings using these two examples is presented in figure 7. 
 

 
Since the MonoBehaviour framerate is variable, it’s good practice to use coroutines for secondary 

processes (Unity, n.d.). The static rate of a coroutine is more suitable to communicate with the Python 

client. Furthermore, it’s beneficiary when the communication slows down or stops: the 

MonoBehaviour update loop needs to finish executing all code in that frame before it can be rendered 

(thus slowing down its variable framerate), while coroutines are exempt from this. 

A new GameObject is created with the ServerInfo script. This script contains the code that mirrors 

the networking part of the Python program: first, the handshake is completed. Then, a coroutine is 

started that handles a message receiver from the Python client according to a set rate. The simulated 

robot seems to function fine with a rate of 100Hz. If the coroutine wants to handle a message but can’t 

receive any at that moment, the coroutine will immediately (after 1 millisecond) stop trying to receive 

and wait according to the set rate. When a message is received, it will need to interact with the 

requested module. 

The C# equivalent of the Python ModuleClass will function somewhat differently in Unity. The 
individual modules should be updated according to the MonoBehaviour structure, as to properly make 
the simulation work. Modules are represented as GameObjects with a unique ModuleScript 
component. ModuleScript inherits from MonoBehaviour, to keep access to the Awake and Update 
functions. A ModuleScript will have the same identifying data as the Python class: ID and type. Added 
to this is a dictionary of values. This specific dictionary links a key (string) to a value (object). GetValue 
and SetValue functions are also added, similarly to the Python class: 

Figure 7: the timing differences between the regular Unity update loop and coroutines. 
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public object GetValue(string valueName) { 

if (Values.ContainsKey(valueName)) { 

   return Values[valueName]; 

} 

return null; 

} 
 

public void SetValue(string valueName, object value) { 

if (Values.ContainsKey(valueName)) { 

  Values[valueName] = value; 

} else { 

   Values.Add(valueName, value); 

} 
} 

 
Every type of module has a script that inherits from ModuleScript, providing specific behavior. For 
example, the ultrasonic sensor ModuleScript gets the distance using a raycasting. Raycasting is a 
technique where a ray is shot according to a given point and direction to check if it hits an object. If it 
does, information regarding this path is stored in a RaycastHit object. 
 

public class UltrasonicSensorScript : ModuleScript { 

void Update() { 

  float distance = 0; 

  RaycastHit hit = new RaycastHit(); 

  bool hitSomething = Physics.Raycast(transform.position, 

transform.forward, out hit); 
 

  if (hitSomething) { 

   distance = hit.distance; 

  } else { 

   distance = float.MaxValue; 

  } 
  SetValue("Distance", distance); 

} 
} 

 

The values dictionary acts as a buffer between the rate of message handling and updating the Unity 

execution loop. If a value is set by the server in the middle of one frame, its effects will only be visible on 

the next frame.  

The collection of ModuleScripts which are active in a scene make up the so-called ‘virtual brick’. One 

more problem remains: how are the Python modules linked to the C# modules? This is solved by 

matching the IDs and module types. First, the IDs must be set within the simulation software when 

creating a robot. Afterwards, when the Python client asks or sets a value of a module with a unique ID, 



25 
 

the C# server will search for connected modules of the same ID. For cases where no ID is set, the server 

will try to find any connected module with the same type and an empty ID. When it finds that module, 

the ID will automatically be assigned for further use. 

6.2 MODES OF OPERATION 

6.2.1 Building mode 
The building mode will first need to have access to all implemented ModuleScripts. However, every 

module has its own dimensions, 3D model and GameObject quirks. Distances in Unity are measured in 

no specific unit; making the developer responsible for choosing the scale. Most commonly, these units 

are set to be equal to meters. Unity allows developers to create Prefabs. A Prefab is a copy of a 

GameObject that can be instantiated (added to the scene) at any time at runtime. Every implemented 

ModuleScript is combined with a model and some measurement information to make a Prefab. 

These are then placed in a specific folder. A major benefit of the Prefabs is the convenient finetuning 

that is available from the Unity editor. 

Figure 8 shows the standard EV3 brick with its dimensions, as well as its Prefab’s ModuleScript 

component. 

 

The building mode is started in a new scene. At startup, all Prefabs are loaded into the scene and 

shown to the user to choose from. These objects can then be placed on the (initially empty) robot. To 

accommodate this placing, a BuildModule is created from the ModuleScript attached to a chosen 

Prefab. This newly created class contains all the functions and variables needed to correctly place and 

rotate a multidimensional object. The modules are placed on a grid to reduce the complexity of this 

editor and the created robots.  

A script is added to the scene to handle this process: PointsHandlerScript. Every point in the three-

dimensional grid can either be free or occupied. If a point is an immediate neighbor of an occupied 

point, this point is legible for placement of a new module (as everything should be connected directly to 

each other). To compensate for the scale of Unity units, the size of every module Prefab is divided by 

ten. The brick in figure 8 would thus end up being about 40 x 20 x 60 cm. The PointsHandlerScript 

creates a grid of ten points per unit, or 10 cm between every point. 

Figure 8: the dimensions of the ‘Brick’ module with its script representation. 
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When the user has completed the robot, a blueprint of the entire robot (including all connected 

modules) is converted to a JSON string and stored. The robot can then be reconstructed with this string. 

The current version of the building mode scene when running is presented in figure 9. 

 

6.2.2 Action Mode 
On startup, the currently stored robot will be loaded into the action mode scene. This scene also 

contains the standard environment to drive around in. The robot will then activate its RigidBody 

component. A RigidBody makes an object adhere to the rules of physics, as long as these objects have 

a collider. Colliders describe the bounds of an object, allowing them to interact with each other instead 

of intersecting. These components cause the robot to immediately drop to the ground, as expected. 

The physics system of Unity has many more features to more closely model the real world. The center of 

mass can be directly set or accessed. Every RigidBody has its customizable settings for mass, 

bounciness, friction and other physical properties. Collision can be configured to find the balance 

between performance and accuracy. 

Now the communication between the Python program can start. The ModuleScripts start executing 

their Awake and Update functions. A list of the currently connected modules is shown on screen, 

indicating whether these are being communicated with or not. If so, the latest values of its variables are 

displayed. 

The bare-bones version of the present action mode scene is shown in figure 10. 

Figure 9: the building mode scene, with buttons to place the currently selected module and to 
start communication. 
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Figure 10: the action mode scene with the list of connected modules exhibited on the right. 
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7 CONCLUSION 

7.1 EASE OF USE 
Installation of this software should be intuitive. Luckily, the design choices lead to a convenient setup: a 

user only needs the built Unity application (a single executable provided for download) and a folder 

containing the re-implemented ev3dev2. Furthermore, the user should have Python 3 installed. Unity 

executables are completely standalone; the Unity Editor will not have to be installed. The Unity 

application comes with a settings menu on launch. This menu allows the user to finetune the graphical 

fidelity of the ‘game’. Since the application is not visually demanding, most computers should run it fine 

at the least graphically-demanding settings without losing performance. Issues might occur when 

running the simulator on a computer with no dedicated graphics card or outdated/no drivers. However, 

choosing a smaller output resolution might resolve this problem. 

Gaining access to the source code (for further development) should be as easy. The Python side of the 

project is customizable out of the box, as it is an interpreted programming language. Developing the 

Unity application requires installing the latest version of the Unity Editor, freely available online. Then, 

the project files can be loaded into the editor. These files will be shared on GitHub. After a developer is 

finished, it can distribute the application for any supported platform with a few clicks. Currently only 

one environment is supported for the action mode. 

7.2 REQUIREMENTS 
The educational aspects of the simulation software have taken a back seat in comparison to the 

produced framework. These ideas need to be implemented in the next step of the development cycle, 

where the user interface and functionality is added to the simulator. The four requirements categories 

stated before have been implemented as follows: 

7.2.1 Platform 
Because of the multiplatform nature of both Unity and Python, this simulation framework should be 

able to run on most platforms. It has been fully developed and tested in Windows, but might need some 

operating system specific fixes or changes to work on other platforms. For example, different operating 

systems or computer setups might have different rules concerning the use of networking sockets and 

the GPU, resulting in unexpected behavior and timing. 

7.2.2 Coding 
Choosing Python as the programming language on the user-end, keeps its educational benefits intact. 

The Python programs needed for the real-life EV3 program and simulator are identical with this 

framework. 

New programs can be written in the root folder containing the ev3dev2 folder. These programs can call 

to the re-implemented ev3dev2 package, causing them to stall on execution waiting to connect.  
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7.2.3 Simulating 

Unity as the development environment has reduced the difficulty of implementing certain features such 

as 360-degree cameras and storing the module prefabs, in addition to its built-in rendering and 

graphical features. The support for the engine and its efficiency makes it a long-term solution too. 

Currently, no significant effort has been put in the visualization of the simulation. However, due to the 

Unity UI system and the accessibility of the framework this should not be too difficult. More 

visualization methods can be used to show for example the frequency of request/commands or the 

change of the module values over time. Furthermore, a more robust camera system should be 

implemented for the action mode. 

7.2.4 Customizability 
This framework has customizability at its roots. In particular, the implementation of the modules on 

both the Python and Unity side (including the ModuleScript component) is built to be easily 

extendable. With this solution, it would also be possible to implement features that are not present in 

real-life Mindstorms sets.  

The workflow of creating a new module starts with the implementation of a new class inheriting from 

ModuleClass, stored in a Python file in the ev3dev2 folder. This class needs to call the ModuleClass 

initialization method correctly. Methods can be added to the class to get and set values with the use of 

the inherited get_value and set_value methods. This class can then be imported and initialized in 

the EV3 program. 

In the Unity project, a prefab must be made for the new module. This prefab is a GameObject with a 

newly created script component, inheriting from ModuleScript. This new script can call to its 

‘hardware’ by using the GetValue and SetValue methods, with the same value names as the Python 

definitions. This prefab should then be dragged in to the ‘Prefabs’ assets folder. 

Now, if everything is set up correctly, the new module is available for use in the building mode. After 

switching to action mode, the module will appear in the ‘connected modules’ list and interacts with the 

Python program. 
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8 DISCUSSION 

8.1 SIMULATION ACCURACY 
The simulation is not very accurate in its current iteration; various ‘essential’ sensors/actuators (such as 

the wheels) are not yet implemented. However, due to the tools that Unity provide and the created 

framework, most of these would be fairly easy to add. Unity has a preset solution for wheels in its 

physics system, with support for various real-life concepts (dampening, motors, braking). However, the 

miniature nature of the Mindstorms wheels makes it a bit different to implement. For example, the 

wheels are practically locked in place when no torque is applied, instead of freely rolling around. That 

and the instant acceleration of the electric motor result in a unorthodox motion path. More research 

should be done on how this works exactly.  

Accuracy can be provided through finetuning, provided a comparison of execution on the simulator and 

a real-life robot. It is necessary to implement certain features to not be perfect; as the real world is not 

perfect either. This comes in the form of adding random noise to sensors and slightly randomizing the 

module behaviors. Simulation of the (real-life) delay of a call to hardware can also be further improved. 

It’s possible that this delay is different for every unique module. In this case, the ModuleClass 

representation would need a slight modification to acknowledge this. 

8.2 FUTURE WORK 
The conceptual framework for these two programs can be ported to other programming languages 

and/or simulators. The basic functionality in Python and C# used in this implementation that is available 

for (almost every) other language. For example, Python can be replaced by Java to communicate with 

the simulator. The ModuleClass, messages, and networking (including JSON) would need to be 

correctly implemented in Java for this to work. No major changes should be necessary to get this 

working. 

Several features are still missing. Most importantly, not all of ev3dev2 is re-implemented. Besides this, 

the simulation software currently has no support for environment editing. Only the standard 

surroundings are available for the robot to work with. The current system for building a robot could be 

extended for this purpose.  

Disconnecting and connecting is somewhat slow currently, networking errors are not sufficiently 

handled in both applications.  

Beyond these basic features, here are some ideas for new functionality: 

- Allow for multiple robots in one environment. Due to the server-client nature of the 

communication framework, it would be possible to make multiple concurrent connections. For 

example: two different programs each running its own robot in the simulator. 

- Non-local connections. The communication now rests on the concept of hosting a local server. 

This could be changed to facilitate outside connections: e.g. running the simulator on a phone, 

with the Python program running from a PC. Timing would certainly be different in this scenario, 

possibly breaking some of the communication. 
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- An easier way to import new modules into the Unity program. In the current structure, 

developers would need to download both the Unity editor and the source project file to add 

functionality in the simulator. Perhaps there is some method of importing these custom 

modules at runtime. 

- A way to easily program a Python ev3dev2 program without having to be connected to a 

simulator. This can be achieved by storing the simulated hardware values locally, so the user can 

test the program against default values. 



32 
 

9 BIBLIOGRAPHY 

Allen, M. P. (2007). Educational aspects of molecular simulation. Molecular Physics, 157-166. 

Anderson, N. (2005). ‘Mindstorms’ and ‘Mindtools’ Aren’t Happening: streaming of students via socio-

economic disadvantage. E-Learning, 144-152. 

Beer, N. A., Grit, M. B., Good, M. L., & Gravenstein, D. (2001). Educational simulation of the 

electroencephalogram (EEG). Technology and Health Care, 237-256. 

Besouw, G. (2018, April 16). Simulating NXT-robots. Retrieved from https://www.cs.ru.nl/bachelors-

theses/2018/Giel_Besouw___4483898___Simulating_NXT_robots.pdf  

Cogmation Robotics. (2018). Retrieved from Visual Robotics Toolkit: 

https://www.virtualroboticstoolkit.com/ 

Engblom, J. (2008). Using Simulation Tools for Embedded Development. Embedded Systems Conference, 

Silicon Valley, 1. 

ev3dev. (2018). Retrieved from ev3dev: https://www.ev3dev.org/ 

Fraunhofer IAIS. (2018). Retrieved from Open Roberta Lab: https://lab.open-roberta.org/ 

Gandy, E. A., Bradley, S., Arnold-Brookes, D., & Allen, N. R. (2015, December 15). The use of LEGO 

Mindstorms NXT Robots in the Teaching of Introductory Java Programming to Undergraduate 

Students. Innovation in Teaching and Learning in Information and Computer Sciences, pp. 2-9. 

Gilday, D. (2016). Retrieved from MindCub3r: http://mindcuber.com/ 

Klassner, F., & Anderson, S. D. (2003, July 22). LEGO MindStorms: Not Just for K-12 Anymore. IEEE 

Robotics & Automation Magazine, pp. 12-18. 

Lego. (n.d.). Retrieved from Lego Digital Designer: https://www.lego.com/en-us/ldd 

Lego. (2018). Retrieved from Mindstorms: https://www.lego.com/en-us/mindstorms/learn-to-program 

Lego. (2018). Learn to Program. Retrieved from Mindstorms: https://www.lego.com/en-us/mindstorms 

Mason, R. (2013, August 30). Mindstorms robots and the application of cognitive load theory in 

introductory programming. Computer Science Education, pp. 296-314. 

McLeod, S. A. (2017). Simply Psychology. Retrieved from Kolb - learning styles: 

https://www.simplypsychology.org/learning-kolb.html 

Newtonsoft. (n.d.). Json.NET. Retrieved from https://www.newtonsoft.com/json 

Pasquale, S. J. (2015, March). Educational science meets simulation. Best Practice & Research Clinical 

Anaesthesiology, pp. 5-12. 

Purnus, A., & Bodea, C.-N. (2015). Educational Simulation in Construction Project Financial Risks 

Management. Procedia Engineering, 449-461. 



33 
 

python-ev3dev2. (2018). Retrieved from python-ev3dev2 2.0.0b2: https://pypi.org/project/python-

ev3dev2/ 

RoboMatter. (n.d.). Retrieved from Robot Virtual Worlds: http://www.robotvirtualworlds.com 

Robomatter. (2005-2014). Retrieved from RobotC: http://www.robotc.net/ 

Simmons, S. (2018). Retrieved from QEV3Bot Simulator: https://sites.google.com/site/qev3bot/qev3bot-

simulator 

statcounter. (2018). Retrieved from Desktop Operating System Market Share Worldwide: 

http://gs.statcounter.com/os-market-share/desktop/worldwide 

Superlegosam. (2014, 8 26). LEGO car factory - ONLY ONE NXT. Retrieved from YouTube: 

https://www.youtube.com/watch?v=4Bp0GJSqfso 

TRIK. (2014). Retrieved from TRIK Studio: http://blog.trikset.com/p/trik-studio.html 

Unity. (n.d.). Coroutines. Retrieved from https://docs.unity3d.com/Manual/Coroutines.html 

Unity Technologies. (2018). Retrieved from Unity: https://unity3d.com/ 

Wikipedia contributors. (n.d.). Emulator. Retrieved from Wikipedia, The Free Encyclopedia: 

https://en.wikipedia.org/w/index.php?title=Emulator&oldid=866614331 

Zając, T. (2013, 1 31). LEGO Mindstorms NXT Loom Machine. Retrieved from YouTube: 

https://youtu.be/IPIJsdvDjsc 

Zygouris, N. C., Striftou, A., Dadaliaris, A. N., Stamoulis, G. I., Xenakis, A. C., & Vavougios, D. (2017). The 

use of LEGO mindstorms in elementary schools. IEEE Global Engineering Education Conference 

(EDUCON), (pp. 514-516). Athens. 

 


