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Abstract

We study uncertain Markov decision processes with interval uncertainty.
The problem is to find a scheduler that satisfies both a reachability prop-
erty and an expected cost property. We a propose robust geometric program
(robust GP) to find this scheduler. Solutions to this robust geometric pro-
gram are proven to be correct but not complete: if the solution to the robust
GP defines a valid scheduler, it is a solution to the problem, but getting a
valid scheduler is not guaranteed. Because robust geometric programming is
PSPACE-hard, we employ an approximation method that results in a robust
linear program (robust LP). A solution to this robust LP is also a solution
to the robust GP. Robust LPs can be solved efficiently depending on the
uncertainty set that is used. What specific kind the uncertainty set in the
robust GP (and as a consequence in the robust LP) is, remains open.
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Chapter 1

Introduction

Imagine a robot in a room with other moving objects. We want it to reach
the other end of the room without bumping into anything, or more real-
istically: with the probability of bumping into something smaller than a
percentage of our choice. Our robot is, of course, smart. We don’t tell it
how the other objects move. Nor do we tell it how it should move itself
through the room. We want it to find its own way, within the limits of its
the battery power. The general idea behind this is illustrated in figure 1.1

Figure 1: Illustration of the problem

The blue truck is our robot. The red ones are other moving objects.
The buildings don’t move of course, but our robot doesn’t know that. With
some form of machine learning, it can learn about the movements of other
objects, and translate those into probabilities and confidence bounds that
tell whether a position is free or not.

1Images from https://kenney.nl/assets/sci-fi-rts under CC0 1.0 license,
https://creativecommons.org/publicdomain/zero/1.0/
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Using reinforcement learning, an optimal strategy for this scenario and
the underlying model can be determined [23]. It can be modeled using an
uncertain Markov Decision Process (uMDP), where the uncertainty is given
by intervals, and a reachability property for which we want to find a sched-
uler. This is a realistic model: as our robot is self-learning, it will determine
the likelihood with which an event occurs together with a confidence bound.
This can be translated to intervals. At first, the intervals will be large, as
its confidence is low. The longer the robot spends learning about its envi-
ronment, the higher the confidence becomes and as a result the smaller the
intervals become.

Verifying whether a reachability property holds can be done with model
checking [3]. Model checking can be used to formally verify that in a model
the probability of reaching a certain state is less than a predefined percent-
age. That way we can verify whether the model behaves as intended and, if
the model properly models the object, we can conclude whether the object
behaves as intended. In our case, the problem of verifying a reachability
property lies in the uncertainty of the uMDP.

To that end, we want to find a valid scheduler such that the probability of
reaching the target set (a set of ’bad’ states we want to avoid) is smaller than
a given value, and that the expected cost of reaching the goal set is as small
as possible. This problem can be formulated as a robust nonlinear program.
Nonlinear programming in general is hard to solve. Even small NLPs can
be extremely challenging [6]. However, a subset of optimization problems,
where all functions in the optimization problem are convex functions, like
in linear programming or after a transformation in geometric programming
can be solved efficiently, [8, 11, 1, 13]. These problems are called convex
optimization problems.

Robust optimization problems are optimization problems that account
for uncertainty in the problem data. This is typically done through an
uncertainty set. Depending on the optimization problem and the uncertainty
set, a robust optimization problem can be solved efficiently, like robust linear
programming with box or polyhedral uncertainty [4].

We reduce the robust nonlinear programming formulation of our problem
to a robust geometric program to make it feasible. A robust geometric
program can be approximated by a robust linear program [20], which can
then be solved efficiently depending on which type of uncertainty set is used
[4, 26].

1.1 Contributions

This thesis provides the following key results:

• a robust geometric programming encoding of the problem and a cor-
rectness proof,
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• a counter example that shows that the robust GP encoding is not
complete,

• a convex reformulation of the robust GP,

• a Python implementation of the algorithm that calculates both the
upper and lower r-term piecewise-linear approximation of the 2-term
lse-function,

• a robust LP that approximates the robust GP.

1.2 Structure of the thesis

In chapter 4 we give a formal problem statement and propose a solution
through robust geometric programming. We show that this method gives us
solutions that are correct (section 4.3), and show by counter example that
this method is not complete (section 4.4). Then, in chapter 5, we show how
to transform the posynomial form robust geometric program into a convex
form robust geometric program. In chapter 6 we solve the robust GP by
transforming it into a robust linear program. In order to solve the robust LP,
we need to determine what kind of uncertainty set is used. This remains
an open problem. A solution to this robust LP can then be transformed
back into a solution satisfying the robust GP, and satisfies for all possible
instantiations of the uncertainty in the uMDP. We present our conclusions
in chapter 7.
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Chapter 2

Related work

Verifying reachability is not new. This and similar problems have been
examined for various kinds of Markov Decision Processes, like bounded-
parameter MDPs [25, 17] or parametric MDPs [16, 10]. Different approaches
to solving these problems exist, like the use of machine learning [7], or sta-
tistical methods [18]. Convex optimization has proven successful in the
verification of parametric MDPs [10]. Dedicated model checkers that can
verify these properties for certain types of MDPs exist [15, 21].

For uncertain MDPs, this problem is as of yet unsolved, though for the spe-
cific case where the uncertainty is given by intervals, the problem has been
analyzed before [14]. Different problems for uMDPs have been examined and
solved before. A method for finding a robust control policy for uMDPs with
temporal logic specifications exists [24]. And for uncertain MDPs where the
uncertainty is given by convex sets, verification of PCTL properties can be
done in polynomial time [22].
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Chapter 3

Preliminaries

We define R+ = {r ∈ R | r ≥ 0} and R++ = {r ∈ R | r > 0}. For a finite set
A we write |A| for the number of elements in A. A probability distribution
over a finite set A is a function µ : A → R with

∑
a∈A µ(a) = 1. Distr(A)

is the set of all probability distributions over A. Vectors and matrices are
written in bold, like x ∈ Rn, and for a vector x we write xi for the i-th
element in the vector.

Definition 1 (Monomial). A monomial is a function f : Rn++ → R as

f(x) = d
n∏
j=1

x
aj
j

where d ≥ 0 and aj ∈ R.

Definition 2 (Posynomial). A posynomial is the sum of a number of mono-
mials:

f(x) =

K∑
k=1

dk

n∏
j=1

x
ajk
j .

Definition 3 (Markov decision process (MDP)). LetM = (S,Act, sI ,P) be
a tuple where S is a finite set of states, Act a finite set of actions, sI an initial
state (sI ∈ S), and P a transition function defined as P : S×Act×S → [0, 1].
M is a Markov decision process (MDP) if the transition function P is a valid
probability distribution:

∑
s′∈S P(s, α, s′) = 1 for all s ∈ S and α ∈ Act.

For a MDP, we can also define a cost function c : S × Act → R that
assigns a value in R (cost) to each act going out of state s.

Definition 4 (Scheduler). A scheduler for an MDPM is a function σ : S →
Distr(Act) such that σ(s)(α) > 0 implies α ∈ Act(s). SchedM is the set of
all schedulers over M.
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So a scheduler assigns probabilities to each action going out of a state s.
That way, after applying a scheduler, the full probability for each transition
(from a state s over an action α) is known. Applying a scheduler to a MDP
yields an induced Markov chain:

Definition 5 (Induced Markov chain). Given MDPM = (S,Act, sI ,P) and
scheduler σ ∈ SchedM, the Markov chain induced by M and σ is Mσ =
(S,Act, sI ,Pσ), where for all s, s′ ∈ S

Pσ(s, s′) =
∑
α∈Act

σ(s)(α) · P(s, α, s′).

We write Pr(Mσ,♦B, s) for the probability of reaching a state in the
set B ⊆ S from state s in the MDP M under scheduler σ. We write
EC(Mσ,♦B, s) for the expected cost of reaching a state in the set B ⊆ S
from state s in the MDP M under scheduler σ. In case the state s is not
specified in both Pr and EC, it is assumed to be the initial state sI .

Definition 6 (Reachabiltiy Property). We write P≤λ(♦B) for the reacha-
bility property where the probability of eventually reaching B is smaller than
λ.

Definition 7 (Expected cost property). We write EC≤κ(♦B) for the ex-
pected cost property where the expected cost of eventually reaching B is
smaller than κ.

A MDP can be extended into an uncertain Markov decision process.

Definition 8 (Uncertain MDP (uMDP)). An uncertain Markov decision
process (uMDP) is a tuple M = (S,Act, sI , I,P), where S is a finite set
of states, Act a finite set of actions, sI an initial state (sI ∈ S), and I a
set of intervals between 0 and 1: I = {[a, b] | a, b ∈ [0, 1] and a ≤ b}. The
uncertain transition probabilities are given by a function P : S×Act×S → I,
for a certain I ∈ I.

For a function P : S × Act × S → Distr(S), we write P ∈ P if for
each s, s′ ∈ S, α ∈ Act, P (s, α, s′) ∈ P(s, a, s′) holds. That is, a transi-
tion between states s and s′ by choosing action α is a value in the interval
P(s, α, s′), and the sum over the values of all transitions out of s is 1. A
uMDP M can be instantiated by a P ∈ P, and that instantiation is given
by the MDP M[P ] = (S,Act, sI , P ).

Definition 9 (Nonlinear program (NLP)). A nonlinear program is an op-
timization problem of the form:

minimize f0(x),

subject to fi(x) ≤ 0, i = 1, . . . ,m,

gj(x) = 0, j = 1, . . . , p,

where the functions fi or gj are allowed to be nonlinear.
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Definition 10 (Geometric program (GP) in posynomial form). A geometric
program in posynomial (or standard) form is an optimization problem of the
form:

minimize f0(x),

subject to fi(x) ≤ 1, i = 1, . . . ,m,

gj(x) = 1, j = 1, . . . , p,

where the objective function f0 is a posynomial, all other fi are posynomial
inequality constraints, and all gj are monomial equality constraints.

A GP in posynomial form is not a convex optimization problem, but it
can be transformed into one.

Definition 11 (Log-sum-exp (lse-) function). We define the convex function
lse : Rk → R by

lse(z1, ..., zk) = log(ez1 + · · ·+ ezk), z1, ..., zk ∈ R,

and call this the (k-term) log-sum-exp function, or lse-function.

Definition 12 (Geometric program (GP) in convex form). A geometric
program in convex form is a convex optimization problem of the form:

minimize cTy,

subject to lse(Aiy + bi) ≤ 0, i = 1, . . . ,m,

Gy + h = 0, j = 1, . . . , p,

where y ∈ Rn is a vector of n optimization variables. The problem data is
given by c, veh ∈ Rn, A ∈ Rk×n, with k the number of terms in the lse-
function, and G ∈ Rl×n, with l the number of monomial equality constraints
in the corresponding posynomial form GP.

Definition 13 (Linear program (LP)). A linear program is an optimization
problem of the form:

minimize f0(x),

subject to fi(x) ≤ 1, i = 1, . . . ,m,

gj(x) = 1, j = 1, . . . , p,

where all fi and gj are linear functions.

We say that a NLP, GP (in posynomial and in convex form) or LP is
feasible if a solution that satisfies all the constraints in the problem exists and
the objective function takes a value in R. If such an optimization problem is
not feasible, it is either unbounded (if the objective function takes a value in
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{−∞,∞} when minimizing or maximizing respectively), or it is infeasible:
a solution satisfying all constraints does not exist.

The optimization problems defined in definitions 9 10, 12 and 13 can be
extended to account for uncertainty in their problem data. The general idea
behind this is that one or more coefficients in one or more of the functions
that form the constraints is not deterministic, but can be any value in a
certain uncertainty set.

Definition 14 (Robust LP). A robust linear program (written in its vector
form) with uncertainty set U is written as

minimize cTx,

subject to Ax + b ≤ 0,

Bx + d = 0,

where (A,b,B,d) ∈ U , for matrices A and B, and vectors b and d. x is
the vector of optimization variables.

Of course not all coefficients have to be in the uncertainty set, for ex-
ample if only b ∈ U , it would still be a robust LP. Only if none of the
coefficients lie in the uncertainty set, the LP above is not robust. Robust
GPs and robust NLPs are defined analogously.

All of our definitions are consistent with [5], [10], [20], [6] and [4].
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Chapter 4

Problem Statement

Problem 1

Given an uMDP M, a reachability property P≤λ(♦T ), and an
expected cost property EC≤κ(♦G), we want to find a scheduler
σ ∈ SchedM such that

∀P ∈ P. Pr(Mσ[P ],♦T ) ≤ λ, and EC(Mσ[P ],♦G) ≤ κ.

In other words, a scheduler σ is a solution to this problem if the proba-
bility of reaching the target set T ⊆ S is less than λ, and the expected cost
of reaching the goal set G ⊆ S is less than κ.

4.1 A robust nonlinear programming encoding
of uncertain Markov decision processes

We can express problem 1 as a nonlinear program, using the following opti-
mization variables:

• {σs,α | s ∈ S, α ∈ Act(s)}, which define the randomized schedulers σ
given by σ(s)(α) = σs,α,

• {ps | s ∈ S}, where ps is the probability of reaching the target set
T ⊆ S from state s under scheduler σ,

• {cs | s ∈ S}, where cs is the expected cost to reach G ⊆ S from state
s under scheduler σ.
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We define the robust nonlinear program as follows and will then explain how
this encodes problem 1.

minimize csI , (NLPobj)

subject to psI ≤ λ, (NLP1)

csI ≤ κ, (NLP2)

∀s ∈ S.
∑

α∈Act(s)

σs,α = 1, (NLP3)

∀s ∈ T. ps = 1, (NLP4)

∀s ∈ S \ T.
∀P ∈ P.

ps =
∑

α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′) · ps′ , (NLP5)

∀s ∈ G. cs = 0 (NLP6)

∀s ∈ S \G.
∀P ∈ P.

cs =
∑

α∈Act(s)

σs,α ·
(
c(s, α) +

∑
s′∈S

P (s, α, s′) · cs′
)
. (NLP7)

The objective function (NLPobj) can be any function f over the opti-
mization variables. We choose to minimize the expected cost for the initial
state sI .

The first constraint, (NLP1), expresses that the probability of reaching
the target set T from start state sI is less than or equal to λ. This is exactly
our reachability property.

The second constraint, (NLP2), expresses the expected cost property in
a similar way the reachability property is expressed: the expected cost of
reaching the goal set G from sI is less than or equal to κ.

The third constraint, (NLP3), ensures that the values we find for σ
when solving this NLP sum up to 1 for every state s, thus forming a valid
scheduler.

The fourth constraint, (NLP4), ensures that for all states s in the set of
target states T , the probability of reaching the target set is 1.

The fifth constraint, (NLP5), encodes how the reachability properties
depend on each other. For states in the target set T , we have a reachability
probability of 1 by constraint (NLP3). States not in the target set have
probabilities that depend on the probability of the successor state s′, the
probability of the transition function, and the probability of the scheduler.

The sixth constraint, (NLP6), is similar to the fourth. We want to ensure
that the cost to reach any of the goal states in G is 0 for any state that is
in the set of goal states.
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The seventh constraint, (NLP7), is similar to the fifth. For all goal states
cs is defined 0 by constraint (NLP6). For all non-goal states, the cost cs
is given by the cost function c(s, α), the cost of reaching the goal set from
successor state s′ and the probability of reaching that s′.

Theorem 1. The NLP-encoding given by (NLPobj)—(NLP7) of problem 1
is correct and complete by construction.

By correctness, we mean that a solution to the NLP gives us values for the
optimization variables in R that satisfy the constraints, and by construction
form a valid scheduler that solves problem 1.

Completeness means that all possible solutions to problem 1 can be en-
coded in this NLP. The NLP then has either a solution, which is a correct
solution to problem 1, or is infeasable: no solution to the NLP exists, mean-
ing there is no solution to problem 1 either.

Unfortunately, nonlinear programming in general is hard to solve [6].
However, with some relatively small changes, we can transform the robust
NLP given by (NLPobj)—(NLP7) into a robust geometric program.

4.2 Robust geometric programming

In this section, we define a robust geometric program (robust GP) and show
how this robust GP follows from the robust NLP in (NLPobj)—(NLP7).
We use the same optimization variables σs,α and ps as in the NLP en-
coding. For the expected cost we introduce new optimization variables
{c′s | s ∈ S, c′s = cs+1}. With these optimization variables we can transform
the robust NLP into the following robust GP:

13



minimize c′sI +
∑

s∈S, α∈Act

1

σs,α
, (RGPobj)

subject to
psI
λ
≤ 1, (RGP1)

c′sI
κ+ 1

≤ 1, (RGP2)

∀s ∈ S.
∑

α∈Act(s)

σs,α ≤ 1, (RGP3)

∀s ∈ T. ps = 1, (RGP4)

∀s ∈ S \ T.
∀P ∈ P.

∑
α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′) · ps′

ps
≤ 1, (RGP5)

∀s ∈ G. c′s = 1, (RGP6)

∀s ∈ S \G.
∀P ∈ P.

∑
α∈Act(s)

σs,α ·
(
c(s, α) +

∑
s′∈S

P (s, α, s′) · c′s′
)

c′s
≤ 1. (RGP7)

By definitions 10 and 14 a robust GP is only allowed to have posyn-
omial inequality constraints, and monomial equality constraints. The ob-
jective function has to be a posynomial or a monomial as well. We will
now show how each constraint in (NLPobj)—(NLP7) is transformed to get
(RGPobj)—(RGP7).

For first constraint, (NLP1), we divide both sides by λ. This gives us
the inequality (RGP1), which is a valid inequality constraint.

For the second constraint, (NLP2), we first replace csI with c′sI and add
1 to the other side of the inequality. Now we divide both sides by κ + 1,
such that we have the valid inequality constraint (RGP2).

The third constraint, (NLP3), gives us a sum over optimization variables,
which is a posynomial by definition 2. The constraint, however, is a equality,
which is not allowed for posynomial constraints in a GP. So we relax this
constraint to an inequality. This immediately results in (RGP3) which is a
posynomial inequality constraint, which is allowed in a GP.

The fourth constraint, (NLP4), is a monomial equality constraint and
can be copied over directly. This gives us (RGP4).

The fifth constraint, (NLP5), can be transformed into a posynomial in-
equality constraint. We do this by first dividing both sides of the equation by
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ps and swapping the left-hand side and the right-hand side of the equation,
giving us ∑

α∈Act(s)
σs,α ·

∑
s′∈S

P (s, α, s′) · ps′

ps
= 1. (1)

Now we relax the equality, giving us a valid posynomial inequality constraint
in (RGP5).

For the sixth constraint, (NLP6), we use our newly introduced variables
c′s to ensure we have a monomial that is equal to 1. In (NLP6) we have cs =
0, which we can rewrite as cs + 1 = 1. Because this is not a monomial but a
posynomial, we are not allowed to use equality. To amend this, we use the
new optimization variables c′s, which in this GP are considered monomials,
and thus allowed to be equal to 1.

The seventh constraint, (NLP7), is similar to the fifth. First we replace
cs with c′s, the we divide both sides by c′s, giving us a posynomial equality
constraint, which we then relax to get (RGP7).

For a GP, the objective function also has to be a monomial or posynomial
that is minimized. The changes we made to the constraints have an impact
on the correctness of the encoding, which we will discuss in detail in section
4.4. The objective function we choose in (NLPobj) is a monomial that is
minimized, and thus can be copied over.

However, because we had to relax constraint (RGP3), we are no longer
guaranteed to get a valid probability distribution over the actions enabled at
each state. In general, we can fix this by defining the following posynomial
as our objective function:

maximize
∑

s∈S,α∈Act
σs,α. (2)

Maximizing this sum, constrained by (RGP3), ensures that if a valid prob-
ability distribution for the σ that is feasible to the entire robust GP exists,
we will find it. In general, maximizing x is equivalent to minimizing x−1.
So we can rewrite (2) to

minimize
1∑

s∈S,α∈Act σ
s,α
. (3)

But this is no longer a posynomial. So instead, we use

minimize
∑

s∈S,α∈Act

1

σs,α
, (4)

and call this a regularization function. While (4) is not equivalent to (2), it
is a posynomial that is minimized, and thus allowed as an objective function.
It also expresses a preference for valid schedulers, as invalid schedulers don’t
sum up to 1, which means that (4) will be larger than for a valid scheduler.
We can combine this with the objective function we used in the NLP. This
gives us our new objective function (RGPobj).
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4.3 Correctness of the robust GP

In this section, we formally define when the robust GP is considered correct,
and prove that is indeed the case.

Theorem 2 (Correctness of the robust GP). Let (c′s)s∈S, (ps)s∈S and
(σs,α)s∈S,α∈Act be a solution to the robust GP (RGPobj)—(RGP7) such that
(σs,α)s∈S,α∈Act defines a valid scheduler σ ∈ SchedM. Then the scheduler σ
is a correct solution to problem 1, if for all P ∈ P we have Pr(Mσ[P ],♦T ) ≤
λ, and EC(Mσ[P ],♦G) ≤ κ.

In order to prove this correctness theorem, we will first introduce two
lemmas to help us. Once these lemmas are proven, we can easily prove
theorem 2.

Lemma 1 (Reachability lemma). Let (ps)s∈S and (σs,α)s∈S, α∈Act be a so-
lution satisfying constraints (RGP3), (RGP4) and (RGP5), such that
(σs,α)s∈S, α∈Act defines a valid scheduler σ ∈ SchedM. Then, for every
P ∈ P and every s ∈ S, the following holds:

Pr(Mσ[P ],♦T, s) ≤ ps. (5)

Proof. Fix an arbitrary P ∈ P. We will show that for every s ∈ S we have
Pr(Mσ[P ],♦T, s) ≤ ps.

For every s ∈ S we define qs = Pr(Mσ[P ],♦T, s), xs = qs − ps, and the
set S< = {s ∈ S | ps < qs}. For states s ∈ T we have ps = qs = 1 because
of (RGP4), so s ∈ T means that s /∈ S<. For states s with qs = 0 we
have ps ≥ qs, which implies s /∈ S<. So for every state s ∈ S<, ps satisfies
inequality (RGP5), and T is reachable with positive probability. We will
now prove this lemma by contradiction. Assume S< 6= ∅, and define

xmax = max{xs | s ∈ S},
Smax = {s ∈ S | xs = xmax}.

So xmax is the largest difference between qs and ps out of all states, and
Smax is a set of all states for which this difference is maximal. Because we
assume that S< 6= ∅, we know there is a xs > 0, so xmax > 0, and thus a
state s ∈ S exists for which xs = xmax. Then this means that s ∈ S<, and
for this state s we have

ps ≥
∑

α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′) · ps′ . (6)

And for qs we have

qs = Pr(Mσ[P ],♦T, s) =
∑

α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′) · qs′ . (7)

16



Thus we have

qs − ps ≤
∑

α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′) · (qs′ − ps′), (8)

which simplifies to

xs ≤
∑

α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′) · xs′ . (9)

By definition we know that for all α ∈ Act and s′ ∈ S we have that
σs,α · P (s, α, s′) ≥ 0 and that

∑
α∈Act(s)

∑
s′∈S σ

s,α · P (s, α, s′) = 1.
Using these facts, we establish

xmax = xs ≤
∑

α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′) · xs′

≤
∑

α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′) · xmax (10)

≤ 1 · xmax = xmax.

So the inequalities are equalities, giving us

xmax = xs =
∑

α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′) · xs′

= xmax ·
∑

α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′). (11)

By (11) we have xs′ = xmax > 0 for every successor state s′ of s in Mσ[P ].
This equality means that for every state s ∈ Smax, all successors of s are
also in Smax. Earlier we showed that S< ∩ T = ∅, which means that T is
not reachable (with positive probability) from any state s ∈ Smax. This is
a contradiction with the fact that T is reachable from every state in S<.

So S< = ∅, which means there are no states where ps < qs, thus
Pr(Mσ[P ],♦T, s) ≤ ps for all P ∈ P and all s ∈ S.

Lemma 2 (Expected cost lemma). Let (c′s)s∈S and (σs,α)s∈S, α∈Act be a
solution satisfying constraints (RGP3), (RGP6) and (RGP7), such that
(σs,α)s∈S, α∈Act defines a valid scheduler σ ∈ SchedM. Then, by defini-
tion we have cs = c′s − 1 for all states s, and for every P ∈ P and every
s ∈ S, the following holds:

EC(Mσ[P ],♦G, s) ≤ cs. (12)
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Proof. This proof is very similar to that of the reachability lemma. Fix an
arbitrary P ∈ P. We will show that for every s ∈ S EC(Mσ[P ],♦G, s) ≤ cs
holds.

For every s ∈ S we define qs = EC(Mσ[P ],♦G, s), xs = qs − cs, and
the set S< = {s ∈ S | cs < qs}. For states s ∈ G we have cs = qs = 0
because of (RGP6), so s ∈ G means that s /∈ S<. For states s with qs = 1
we have cs ≥ qs, which implies s /∈ S<. So for every state s ∈ S<, cs satisfies
inequality (RGP7), and G has expected cost zero. We will now prove this
lemma by contradiction. Assume S< 6= ∅, and define

xmax = max{xs | s ∈ S},
Smax = {s ∈ S | xs = xmax}.

So xmax is the largest difference between qs and cs out of all states, and
Smax is a set of all states for which this difference is maximal. Because we
assume that S< 6= ∅, we know there is a xs > 0, so xmax > 0, and thus a
state s ∈ S exists for which xs = xmax. Then this means that s ∈ S<, and
for this state s we have, by (RGP7) and c′s = cs + 1,

c′s ≥
∑

α∈Act(s)

σs,α ·
(
c(s, α) +

∑
s′∈S

P (s, α, s′) · c′s′
)

=
∑

α∈Act(s)

σs,α ·
(
c(s, α) +

∑
s′∈S

P (s, α, s′) · cs′
)

+
∑

α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′)

=
∑

α∈Act(s)

σs,α ·
(
c(s, α) +

∑
s′∈S

P (s, α, s′) · cs′
)

+ 1. (13)

Using c′s = cs + 1 we conclude

cs ≥
∑

α∈Act(s)

σs,α ·
(
c(s, α) +

∑
s′∈S

P (s, α, s′) · cs′
)
. (14)

For qs we have

qs = EC(Mσ[P ],♦G, s)

=
∑

α∈Act(s)

σs,α ·
(
c(s, α) +

∑
s′∈S

P (s, α, s′) · qs′
)
. (15)

Thus we have

qs − cs ≤
( ∑
α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′) · (qs′)
)
. (16)
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Which simplifies to

xs ≤
∑

α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′) · xs′ . (17)

By definition we know that for all α ∈ Act and s′ ∈ S we have that
σs,α · P (s, α, s′) ≥ 0 and that

∑
α∈Act(s)

∑
s′∈S σ

s,α · P (s, α, s′) = 1.
Using these facts, we establish

xmax = xs ≤
∑

α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′) · xs′

≤
∑

α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′) · xmax (18)

≤ 1 · xmax = xmax.

So the inequalities are equalities, giving us

xmax = xs =
∑

α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′) · xs′

= xmax ·
∑

α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′). (19)

By (19) we have xs′ = xmax > 0 for every successor state s′ of s in Mσ[P ].
This equality means that for every state s ∈ Smax, all successors of s are
also in Smax. Earlier we showed that S< ∩ G = ∅, which means that G is
not reachable (with smaller expected cost) from any state s ∈ Smax. This
is a contradiction with the fact that G is reachable from every state in S<.

So S< = ∅, which means there are no states where cs < qs, thus
EC(Mσ[P ],♦G, s) ≤ cs for all P ∈ P and all s ∈ S.

Now we can prove theorem 2.

Proof theorem 2. We have (c′s)s∈S , (ps)s∈S and (σs,α)s∈S, α∈Act satisfying
constraints (RGP1)—(RGP7), for all s ∈ S we have c′s = cs + 1, and
(σs,α)s∈S,α∈Act defines a valid scheduler.

We can apply lemma 1. This gives us

∀P ∈ P.∀s ∈ S. Pr(Mσ[P ],♦T, s) ≤ ps. (20)

So in particular
∀P ∈ P. Pr(Mσ[P ],♦T, sI) ≤ psI . (21)

And because all constraints are satisfied, we know that psI ≤ λ for all P ∈ P.
So we can rewrite (21) to

∀P ∈ P. Pr(Mσ[P ],♦T ) ≤ λ. (22)
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This proves the first part of theorem 2.

For the second part, we apply lemma 2. This gives us

∀P ∈ P.∀s ∈ S. EC(Mσ[P ],♦G, s) ≤ cs. (23)

So we also have

∀P ∈ P. EC(Mσ[P ],♦G, sI) ≤ csI . (24)

Using that c′sI satisfies (RGP2), and c′s = cs + 1, we know that csI ≤ κ.
Then (24) can be rewritten as

∀P ∈ P. EC(Mσ[P ],♦G, sI) ≤ κ. (25)

This proves the second part of theorem 2. So we conclude that if a solution to
the robust GP (RGPobj)—(RGP7) defines a valid scheduler, that scheduler
is a solution to problem 1, and thus the robust GP is correct with regards
to problem 1.

4.4 Counter example to the completeness of the
robust GP

We have shown our robust GP to be correct, but it is not complete. It is
possible a solution to a GP gives us a invalid scheduler.

Theorem 3 (Robust GP is not complete). The robust GP (RGPobj)—
(RGP7) is not complete with regards to problem 1.

Proof by counter example. We define our uMDPM = (S,Act, sI , I,P) where
S = {s1, s2, s3}, Act = {a, b}, and initial state sI = s1. We define the tran-
sitions by the diagram in figure 2.

For simplicity, we will only consider the reachability property. This is
sufficient for a counter example, as checking an expected cost property too
would add extra constraints to the GP, thus further limiting the solution
space.

We are interested in reaching state s3, so we define out target set T =
{s3}. Let ps denote the reachability probability from state s to state s3.
Then p2 = 0, since state s3 cannot be reached from s2, and p3 = 1 since s3
can never be left once reached.

For s1, the probability of reaching s3 is the addition of the probability of
reaching s3, and the probability of looping back to s1 times the probability
of reaching s3. Let P (s, s′) denote the probability of going from state s to
state s′. For p1 we have

p1 = P (s1, s3) + P (s1, s1) · p1. (26)
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Figure 2: Counter example uMDP

s1 xxs2 s3
a

b

[0.2, 0.3]

[0.4, 0.6]

[0.2, 0.3]

[0.1, 0.2]

[0.6, 0.8]

[0.1, 0.2]

1

1

Self loops for states s2 and s3 of probability 1 are over both acts.

Equation (26) can be written in closed form as

p1 =
P (s1, s3)

1− P (s1, s1)
. (27)

We now need to take the actions a and b into account. A probability P (s, s′)
can be rewritten as σs,aP (s, a, s′) + σs,bP (s, b, s′). If (σs,α)s∈S,α∈Act defines
a valid scheduler, then P (s, α, s′) ∈ P(s, α, s′). We substitute

p1 = σ1,aP (1, a, 3) + σ1,bP (1, b, 3) + (σ1,aP (1, a, 1) + σ1,bP (1, b, 1))p1

Because reaching state s3 from state s1 is dependent on reaching state s3
directly, or looping back to state s1 and then going to state s3. (Formally,
we would need to add P (1, 2)p2 to the equation too, but since p2 = 0 we
can leave this out).

Equation (27) shows us that p1 is a function of a scheduler σ. From
figure 2 it is clear that the probability of reaching s3 is highest when the
scheduler always takes action a, and lowest when the scheduler always takes
action b. So the upper bound of p1 is given by always choosing action a
and the upper bound of the intervals. The lower bound of p1 is given by
choosing action b and taking the upper bounds. This gives us upper bound
p̄1 and lower bound p

1
with the following values:

p̄1 =
0.3

1− 0.3
≈ 0.429, p

1
=

0.2

1− 0.2
= 0.25. (28)
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For δ ∈ [0, 1], we know there exists a scheduler σ with p1(σ) = δp̄1+(1−δ)p
1
.

So we choose this value as our λ in the following GP:

minimize
∑

s∈S, α∈Act

1

σs,α
, (CEXobj)

subject to
ps1

0.429 · δ + 0.25 · (1− δ)
≤ 1, (CEX1)

∀s ∈ {s1, s2, s3}.
∑

α∈Act(s)

σs,α ≤ 1, (CEX3)

p3 = 1, (CEX4)

∀s ∈ {s1}.

∑
α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′) · ps′

ps
≤ 1. (CEX5)

We can further simplify this counter example GP by filling in the values
we choose for P and some rewriting to make it easy to implement. The
following GP is implemented in GPkit [8] and used to calculate the results:

minimize
1

σs1,a
+

1

σs1,b
+

1

σs2,a
+

1

σs2,b
+

1

σs3,a
+

1

σs3,b
, (CEX ′obj)

subject to ps1 ≤ 0.429 · δ + 0.25 · (1− δ), (CEX ′1)

σs1,a + σs1,b ≤ 1,

σs2,a + σs2,b ≤ 1,

σs3,a + σs3,b ≤ 1,

(CEX ′3)

p3 = 1, (CEX ′4)

σs1,a · 0.3 + σs1,b · 0.2 + (σs1,a · 0.3 + σs1,b · 0.2) · p1
p1

≤ 1.

(CEX ′5)

GPkit offers a special function to tighten inequalities1. With this function
we can set a tolerance, and GPkit will warn us if the difference between both
sides of inequalities is larger than the allowed tolerance. We use this on the
constraints in (CEX ′3). These are our scheduler variables, and we want
them to be equal to 1. We calculate the solution to (CEX ′obj)—(CEX ′5) for
a number of different choices for δ. The results are in table 1.

1http://gpkit.readthedocs.io/en/latest/advancedcommands.html#
tight-constraintsets
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Table 1: Solutions of the counter example GP

δ λ σ1,a σ1,b σ1,a + σ1,b Error p1

1 0.429 0.5 0.5 1 0% 0.3403

0.5 0.3395 0.5 0.5 1 0% 0.3337

0.4 0.3216 0.4465 0.5469 0.9934 0.66% 0.3216

0.3 0.3037 0.4275 0.5235 0.9510 4.9% 0.3037

0.2 0.2858 0.4079 0.4995 0.9074 9.3% 0.2858

As we can see in table 1, depending on the choice of δ, and thus λ, the
GP can produce schedulers that are valid (like for δ = 1 or δ = 0.5), or
invalid schedulers (like when δ = 0.4, δ = 0.3, or δ = 0.2), while we know
that by construction of this uMDP a valid scheduler exists for all δ. Details
on how to reproduce these results can be found in appendix A.

4.5 Solving the robust GP

Now that we know we can get correct solutions to problem 1 by solving the
robust GP (RGPobj)—(RGP7), we need to find a way to solve it. Robust
geometric programming is PSPACE-hard [9]. However, an efficient approx-
imation method exists [20]. With this method, we can approximate the
robust GP by a robust linear program, which can be solved efficiently for
certain kinds of uncertainty sets [26].

The approximation method works by reformulating the posynomial form
robust GP as a convex form robust GP. The convex form robust GP consists
of lse-functions of k-terms, and each of those can be split into a number of
2-term lse-functions. The 2-term lse-function can be approximated by a
piecewise-linear function, which gives us an approximate robust LP for our
robust GP.
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Chapter 5

Convex reformulation of the
robust GP

The robust GP (RGPobj)—(RGP7) is currently defined in posynomial form,
while the method for solving robust GPs in [20] requires a robust GP in
convex form. Appendix A in [20] describes how to transform such a GP. We
will apply this method onto our GP. The method in the appendix describes
a transformation of a GP consisting of posynomial and monomial functions
of n optimization variables for each term of the posynomial. We will first
describe the transformation method in general, and then apply it to our GP.

5.1 General transformation method

Recall definitions 1 and 2. We define a monomial as a function
f : Rn++ → R, where Rn++ is the set of real n-vectors with positive compo-
nents, as

f(x) = d
n∏
j=1

x
aj
j (mon)

with d ≥ 0 and aj ∈ R. A posynomial is the sum of a number of monomials:

f(x) =

K∑
k=1

dk

n∏
j=1

x
ajk
j . (pos)

By definition 10, a geometric program in posynomial form is defined as

minimize f0(x),

subject to fi(x) ≤ 1, i = 1, . . . ,m, (GP1)

hi(x) = 1, i = 1, . . . , l,

where f1, . . . , fm are posynomials, h1, . . . , hl are monomials, and x is a vector
of n optimization variables. We write xi for the i-th optimization variable
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in the vector x. The objective function f0 is assumed to be a monomial. If
this is not the case, and f0 is a posynomial, the following transformation
can be applied:

minimize t,

subject to f0(x)t−1 ≤ 1,

fi(x) ≤ 1, i = 1, . . . ,m, (GP2)

hi(x) = 1, i = 1, . . . , l.

Where t is a new optimization variable alongside x, and f0(x)t−1 ≤ 1 is a
new posynomial constraint.

Proposition 1. The geometric programs (GP1) and (GP2) are equivalent
[20].

Equivalence of two optimization problems is very intuitive: a solution to the
first is also a solution to the second, and in reverse.

If we have a GP of the posynomial form above, a transformation to a GP
in convex form can be applied. This involves a change of variables and
transforming the objective function and each individual constraint. For
every optimization variable xi we define yi = log xi (so that xi = eyi).

First, we transform the objective function. We assume this to be a
monomial (otherwise, apply the transformation to (GP2)) of the form

f0(x) =
n∏
j=1

x
cj
j

where xj is the j-th optimization variable in the vector x = (x1, . . . , xn) and
we write c = (c1, . . . , cn) for the vector of exponents. The new objective
function becomes cTy. In case the original objective function was posyn-
omial and replaced by t, the new objective function becomes log t as the
exponents of all other variables xi are 0.

Now that we have transformed our objective function, we move on to
the posynomial constraints. If we take the function f of y = (y1, . . . , yn)
and then take the logarithm, we get

f̃(y) = log(f(ey1 , . . . , eyn)) = log(

K∑
i=1

ea
T
k y+bk). (29)

And by definition 11, (29) is equivalent to

lse(aT1 y + b1, . . . ,a
T
Ky + bK) (30)

Where ak = (a1,k, . . . , an,k) are the exponents of the k-th term of the posyn-
omial, and bk = log dk is the logarithm of the constant dk for the k-th term
of the posynomial.
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When multiplying aTi y we get a scalar that is a sum of the i-th expo-
nent times the i-th optimization variable of the posynomial. Optimization
variables that do not occur in the posynomial have exponent 0, so they will
also not occur in this sum.

Then we replace every posynomial constraint fi by the lse-function

lse(aTi,1y + bi,1, . . . ,a
T
i,Ki

y + bi,Ki) ≤ 0, i = 1, . . . ,m. (lse-constr.)

With ai,j the j-th exponent of the i-th monomial, and bi,j the logarithm of
the j-th constant in front of the of the i-th monomial.

Now, all that remains is transforming the monomial constraints. We
replace every monomial constraint hi, i = 1, . . . , l, by

gTi y + log di = 0, i = 1, . . . , l, (mon-constr.)

where gi is the vector of exponents of the i-th monomial, and di is the
constant in front of the product of the original monomial. Now we can
rewrite the GP in posynomial form into a GP in convex form:

minimize cTy,

subject to lse(aTi,1y + bi,1, . . . ,a
T
i,Ki

y + biKi) ≤ 0, i = 1, . . . ,m, (GP3)

gTi y + log di = 0, i = 1, . . . , l.

Proposition 2. The geometric program in convex form (GP3) is equivalent
to the geometric program in posynomial form (GP2), and by proposition 1
also equivalent to (GP1) [20].

We can summarize this convex reformulation of a posynomial form GP by
the following step-by-step guide:

1. Check if the objective function f0(x) in (GP1) is a monomial. If this
is the case, go to step 3, else continue with step 2.

2. Change the objective function to a new optimization variable t and
add a new constraint such that the GP is now of the form (GP2).

3. Define a new vector of optimization variables y such that yi = log xi.

4. For each constraint: rewrite it to its simplest form: a sum of products
and determine whether the constraint is a monomial or a posynomial.

5. If the constraint is a posynomial, transform it into a lse-function
as in (lse-constr.), else transform it into a linear constraint as in
(mon-constr.).

6. Repeat until all constraints are transformed, and form the new GP as
in (GP3).
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Proposition 3. The transformation method for rewriting a posynomial
form GP into a convex form GP can also be used to rewrite a robust GP in
posynomial form to a robust GP in convex form [20].

This is also a logical consequence of how robust optimization problems
are defined (see definition 14). The coefficients in the uncertainty set are
constants in the monomials and posynomials, and by definition 10 are as-
sumed to be positive. So for a coefficient a ∈ U we have a as a coefficient in
some constraint in the posynomial form GP, and log a as some bi,j or log di
in the convex form GP (GP3).

5.2 Applying the transformation method

We will now apply the transformation method discussed in section 5.1 to
the posynomial form robust GP we constructed in section 4.2. To recap:
the robust GP is given by:

minimize c′sI +
∑

s∈S, α∈Act

1

σs,α
, (RGPobj)

subject to
psI
λ
≤ 1, (RGP1)

c′sI
κ+ 1

≤ 1, (RGP2)

∀s ∈ S.
∑

α∈Act(s)

σs,α ≤ 1, (RGP3)

∀s ∈ T. ps = 1, (RGP4)

∀s ∈ S \ T.
∀P ∈ P.

∑
α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′) · ps′

ps
≤ 1, (RGP5)

∀s ∈ G. c′s = 1, (RGP6)

∀s ∈ S \G.
∀P ∈ P.

∑
α∈Act(s)

σs,α · (c(s, α) +
∑
s′∈S

P (s, α, s′) · c′s′)

c′s
≤ 1. (RGP7)

In this robust GP, we have optimization variables ps, c
′
s and σs,α for every

state s ∈ S and every action α ∈ Act. We define c̃′s = log c′s, p̃s = log ps, and
σ̃s,α = log σs,α as our new optimization variables. Additionally, the transi-
tion probability P (s, α, s′) and the cost of a transition c(s, α) are constants,
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for which we also define P̃ (s, α, s′) = logP (s, α, s′) and c̃(s, α) = log c(s, α).
We will now transform the (RGPobj)—(RGP7) step-by-step as discussed in
section 5.1.

The objective function

We start with the objective function (RGPobj):

csI +
∑

s∈S,α∈Act

1

σs,α
. (31)

This is a posynomial (step 1), so we change this to a new monomial objective
function t and add the following constraint given by step 2:

(csI +
∑

s∈S,α∈Act

1

σs,α
)t−1 ≤ 1. (32)

We add t̃ = log t to our optimization variables (step 3). Now we need to
transform the newly added constraint (32). We start by simplifying this
posynomial to a sum of products (step 4).

(csI +
∑

s∈S, α∈Act

1

σs,α
)t−1

= csI · t
−1 +

∑
s∈S, α∈Act

1

t · σs,α

= csI · t
−1 +

∑
s∈S, α∈Act

t−1 · (σs,α)−1

= csI · t
−1 + t−1 · (σs1,α1)−1 + · · ·+ t−1 · (σs|S|,α|Act|)−1

≤ 1

Now we have a function that is the sum of a product of optimization vari-
ables. (Like in the definition of a posynomial in (pos)). We have optimiza-
tion variables t, with exponent −1, csI with exponent 1 and all σs,α, each
with exponent −1. The exponents for all other decision variables are 0. So
the convex constraint is given by step 5:

lse(c̃sI − t̃,−t̃− σ̃
s1,α1 , . . . ,−t̃− σ̃s|S|,α|Act|) ≤ 0 (33)

Constraint 1

Next, the first constraint (RGP1):

psI
λ
≤ 1. (34)

28



Note that this is a monomial, but should be treated as a posynomial con-
straint because of the inequality. λ is a constant, so λ−1 is a constant too.
We rewrite (34) as

lse(p̃sI + log(λ−1)) = p̃sI + log(λ−1) ≤ 0 (35)

since the lse-function of 1 parameter is the identity (step 5).

Constraint 2

The second constraint (RGP2):

c′sI
κ+ 1

≤ 1, (36)

is transformed similarly to the first constraint. We rewrite (36) to the convex
constraint

lse(c̃sI + log((κ+ 1)−1)) = c̃sI + log((κ+ 1)−1) ≤ 0. (37)

Constraint 3

Next, the third constraint (RGP3):

∀s ∈ S.
∑

α∈Act(s)

σs,α ≤ 1. (38)

This is a posynomial. We use step 4 and write the sum out.∑
α∈Act(s)

σs,α = σs,α1 + · · ·+ σs,α|Act(s)| . (39)

Note that the exponents for all σ are 1, and for all other decision variables
are 0. There are no constants, so the resulting convex constraint is given by
step 5:

∀s ∈ S. lse(σ̃s,α1 , . . . , σ̃s,α|Act(s)|) ≤ 0. (40)

Constraint 4

The fourth constraint (RGP4) is next.

∀s ∈ T. ps = 1. (41)

We take step 4 and see this monomial already is in its simplest form, we
don’t need to rewrite it and can immediately take step 5, resulting in the
following convex constraint:

∀s ∈ T. p̃s = 0. (42)
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Constraint 5

The fifth constraint is given by (RGP5):

∀s ∈ S \ T. ∀P ∈ P.
∑

α∈Act(s) σ
s,α ·

∑
s′∈S P (s, α, s′) · ps′
ps

≤ 1. (43)

First, we take step 4 and simplify:∑
α∈Act(s) σ

s,α ·
∑

s′∈S P (s, α, s′) · ps′
ps

= (ps)
−1 · (σs,α1 · (P (s, α1, s

′
1) · ps′1 + · · ·+ P (s, α1, s

′
|S|) · ps′|S|)

+

...

+ σs,α|Act(s)| · (P (s, α|Act(s)|, s
′
1) · ps′1 + · · ·+ P (s, αkAct(s), s

′
|S|) · ps′|S|)

= p−1s σs,α1P (s, α1, s
′
1)ps′1 + · · ·+ p−1s σs,α1P (s, α1, s

′
|S|)ps′|S|

+ p−1s σs,α2P (s, α2, s
′
1)ps′1 + · · ·+ p−1s σs,α2P (s, α2, s

′
|S|)ps′|S|

+ · · ·
+ p−1s σs,α|Act(s)|P (s, α|Act(s)|, s

′
1)ps′1+

· · ·
+ p−1s σs,α|Act(s)|P (s, α|Act(s)|, s

′
|S|)ps′|S|

.

Note that in case the transition P (s, α, s′) doesn’t exist (or equivalently has
an exact probability of 0) the entire term becomes 0 and can be removed
from the posynomial. Now we transform this posynomial into a lse-function
and write it as the following constraint (step 5):
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∀s ∈ S \ T.∀P ∈ P.

lse(− p̃s + σ̃s,α1 + p̃s′1 + P̃ (s, α1, s
′
1),

...

− p̃s + σ̃s,α1 + p̃s′|S|
+ P̃ (s, α1, s

′
|S|),

− p̃s + σ̃s,α2 + p̃s′1 + P̃ (s, α2, s
′
1),

...

− p̃s + σ̃s,α2 + p̃s′|S|
+ P̃ (s, α2, s

′
|S|), (44)

...

− p̃s + σ̃s,α|Act(s)| + p̃s′1 + P̃ (s, α|Act(s)|, s
′
1),

...

− p̃s + σ̃s,α|Act(s)| + p̃s′|S|
+ P̃ (s, α|Act(s)|, s

′
|S|)

) ≤ 0.

Constraint 6

Next the monomial constraint (RGP6):

∀s ∈ G. c′s = 1, (45)

turns into
∀s ∈ G. c̃′s = 0. (46)

Constraint 7

And the last constraint (RGP7):

∀s ∈ S \G.∀P ∈ P.

∑
α∈Act(s)

σs,α · (c(s, α) +
∑
s′∈S

P (s, α, s′) · cs′)

cs
≤ 1. (47)
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Again, we start by simplifying this posynomial (step 4):∑
α∈Act(s)

σs,α · (c(s, α) +
∑
s′∈S

P (s, α, s′) · cs′)

cs

= (cs)
−1

∑
α∈Act(s)

σs,α · (c(s, α) +
∑
s′∈S

P (s, α, s′) · cs′)

= (cs)
−1σs,α1c(s, α1)

+ (cs)
−1σs,α1P (s, α1, s

′
1)cs′1

+ · · ·+
(cs)

−1σs,α1P (s, α1, s
′
|S|)cs′|S|

+ (cs)
−1σs,α2c(s, α2) (48)

+ (cs)
−1σs,α2P (s, α2, s

′
1)cs′1

+ · · ·+
(cs)

−1σs,α2P (s, α2, s
′
|S|)cs′|S|

...

+ (cs)
−1σs,α|Act(s)|c(s, α|Act(s)|)

+ (cs)
−1σs,α|Act(s)|P (s, α|Act(s)|, s

′
1)cs′1

+ · · ·+
(cs)

−1σs,α|Act(s)|P (s, α|Act(s)|, s
′
|S|)cs′|S|

And now we turn this into a convex constraint (step 5):
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∀s ∈ S \G. ∀P ∈ P.

lse(− c̃s + σ̃s,α1 + c̃(s, α1),

− c̃s + σ̃s,α1 + c̃s′1 + P̃ (s, α1, s
′
1),

...

− c̃s + σ̃s,α1 + c̃s′|S|
+ P̃ (s, α1, s

′
|S|),

− c̃s + σ̃s,α2 + c̃(s, α2),

− c̃s + σ̃s,α2 + c̃s′1 + P̃ (s, α2, s
′
1),

...

− c̃s + σ̃s,α2 + c̃s′|S|
+ P̃ (s, α2, s

′
|S|), (49)

...

− c̃s + σ̃s,α|Act(s)| + c̃(s, α|Act(s)|),

− c̃s + σ̃s,α|Act(s)| + c̃s′1 + P̃ (s, α|Act(s)|, s
′
1),

...

− c̃s + σ̃s,α|Act(s)| + c̃s′|S|
+ P̃ (s, α|Act(s)|, s

′
|S|),

) ≤ 0.

5.2.1 Resulting convex form robust GP

Now we can rewrite the posynomial form robust GP (RGPobj)—(RGP7)
as a convex form robust GP with new optimization variables, a new objec-
tive function t̃ and the transformed constraints (step 6). We will write the
resulting convex form robust GP in vector form for the large posynomial
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constraints below.

minimize t̃, (Cobj)

subject to lse(aT1,c0y + b1,c0 , . . . ,a
T
K0,c0y + bK0,c0) ≤ 0, (C0)

p̃sI + log(λ−1) ≤ 0, (C1)

c̃′sI + log((κ+ 1)−1) ≤ 0, (C2)

∀s ∈ S. lse(aT1,c2y + b1,c2 , . . . ,a
T
K2,c2y + bK2,c2) ≤ 0, (C3)

∀s ∈ T. p̃s = 0, (C4)

∀s ∈ S \ T.
∀P ∈ P.

lse(aT1,c4y + b1,c4 , . . . ,a
T
K4,c4y + bK4,c4) ≤ 0, (C5)

∀s ∈ G. c̃′s = 0, (C6)

∀s ∈ S \G.
∀P ∈ P.

lse(aT1,c6y + b1,c6 , . . . ,a
T
K6,c6y + bK6,c6) ≤ 0. (C7)

Where ai,cj is the vector of exponents of the optimization variables for the
i-th product in the posynomial of the j-th constraint, y is the vector of
(new) optimization variables, and bi,cj is the logarithm of the constant in
front of the i-th product of the j-th constraint.

Proposition 4. By proposition (2), this convex form robust GP is equivalent
to the original posynomial form robust GP.
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Chapter 6

Approximating the robust
GP by a robust LP

6.1 Simplifications to the robust GP

The robust GP in convex form given by (Cobj)—(C7) can be simplified by
defining a matrix A such that (Ay + b) = (aT1 y + b1, . . . ,a

T
ny + bn) for each

of the posynomial constraints.
So we rewrite lse(aT1,cjy + b1,cj , . . . ,a

T
Kj ,cj

y + bKj ,cj ) as lse(Acjy + bcj ),

where Acj ∈ RKj×n is the matrix formed by filling the i-th row of the matrix
with the vector aTi,cj for the j-th constraint denoted by cj , and bcj ∈ RKj is
the vector formed by the constants bi,cj . Kj is the number of terms in the
j-th lse-constraint.

Alongside the posynomial constraints, we can also simplify the monomial
constraints. The monomial inequality constraint (C1), p̃sI + log(λ−1), can
be rewritten as aTc1y + bc1 . The same can be done for (C2), resulting in
aTc2y + bc2 .

As for the monomial equality constraints, we can group these together
into one monomial constraint. We do this by defining the matrix Acmon such
that i-th row of the matrix contains the vector gTi , the vector of coefficients
in front of each optimization variable. We also define the vector bcmon as
the vector of the constants bi for each i-th constraint, giving us

Acmon =


gT1
...

gTl

 ∈ R(|T |+|G|)×n, bcmon =


b1
...

bl

 ∈ R|T |+|G|. (50)

Where l = |T |+ |G| is the number monomial constraints because (C4) and
(C6) are defined for all states in their respective sets T and G. The simplified
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convex form robust GP now looks like this:

minimize t̃, (Cobj)

subject to lse(Ac0y + bc0) ≤ 0, (C0)

aTc1y + bc1 ≤ 0, (C1)

aTc2y + bc2 ≤ 0, (C2)

∀s ∈ S. lse(Ac3y + bc3) ≤ 0, (C3)

∀s ∈ S \ T.
∀P ∈ P.

lse(Ac5y + bc5) ≤ 0, (C5)

∀s ∈ S \G.
∀P ∈ P.

lse(Ac7y + bc7) ≤ 0, (C7)

Acmony + bcmon = 0. (Cmon)

Proposition 5. The robust GP given by (Cobj)—(Cmon) is equivalent to the
robust GP given by (Cobj)—(C7) [20].

So this simplification does not affect the correctness or incompleteness in
any way.

Theorem 4. In the robust GP (Cobj)—(Cmon), the objective function (Cobj)
and constraints (C1), (C2) and (Cmon) are linear functions, and by definition
13 are allowed in a (robust) linear program.

This is easy to see. If you perform the vector or matrix multiplications in
these functions, you get a linear combination of optimization variables, thus
a linear function.

6.2 Rewriting a k-term lse-function as k-1 2-term
lse-functions

In the RGP (Cobj)—(Cmon), a function is either linear, or a lse-function.
Paragraph 2.2 of [20] describes how to rewrite a k-term lse-function as
a number of 2-term lse-functions, which can then be approximated by a
piecewise-linear function. Before we can do this, we have to reformulate the
convex form robust GP into another convex form robust GP.
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We add a new optimization variable τ at the end of our vector of opti-
mization variables y such that

η =

[
y

τ

]
∈ Rn+1. (51)

We define c̄ as a vector of c, the vector of the exponents of our monomial
objective function, and add a 0 to it, such that

c̄T = (c, 0). (52)

Note that because of the transformation we performed in section 5.2, where
we replaced the posynomial objective function by a monomial objective func-
tion t, we have c = (0, . . . , 0, 1) such that cTy = t̃. So c̄T η = t̃. So the
addition of τ to the optimization variables does not change the objective
function.

We define Ācmon as the matrix

Ācmon =

[
Acmon 0

0 1

]
∈ R(l+1)×(n+1), (53)

and the vector b̄mon as

b̄mon =

[
bmon

−1

]
∈ Rl+1. (54)

For every lse-constraint we add the vector bci as a column to the end of Aci ,
such that

Āci =
[
Aci bci

]
∈ Rki×n+1. (55)

Now define the ω-th row of Āci as āTci,ω for ω = 1, . . . ,Kci . So āTci,ω is a row

vector in R1×(n+1), such that

Āci =


āTci,1

...

āTci,Kci

 . (56)

With these new definitions, we can rewrite the convex form robust GP
(Cobj)—(Cmon) into the following convex form robust GP:
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minimize t̃, (C′obj)

subject to lse(āTc0,1η, . . . , ā
T
c0,Kc0

η) ≤ 0, (C′0)

āTc1η ≤ 0, (C′1)

āTc2η ≤ 0, (C′2)

∀s ∈ S. lse(āTc3,1η, . . . , ā
T
c3,Kc3

η) ≤ 0, (C′3)

∀s ∈ S \ T.
∀P ∈ P.

lse(āTc5,1η, . . . , ā
T
c5,Kc5

η) ≤ 0, (C′5)

∀s ∈ S \G.
∀P ∈ P.

lse(āTc7,1η, . . . , ā
T
c7,Kc7

η) ≤ 0, (C′7)

Ācmonη + b̄cmon = 0. (C′mon)

Proposition 6. The RGPs given by (Cobj)—(Cmon) and (C′obj)—(C′mon) are

equivalent: y∗ ∈ Rn is feasible to the first if and only if (y∗, τ∗) ∈ Rn+1 is
feasible to the second for some τ∗ ∈ R [20].

So this non-trivial change to the robust GP does not affect our problem in
any way. The correctness still holds and the incompleteness is unchanged.
For readability, we have chosen a slightly different notation then in [20], but
this change of notation does not affect any of the results derived form [20].
See appendix B for the details.

A k-term lse-function can be replaced by a number of 2-term lse-functions
by the approximate reduction procedure described in paragraph 2.2 of [20].
In general, we replace a single k-term lse constraint

lse(āT1 η, . . . , ā
T
k η) ≤ 0 (57)

by k − 1 2-term lse-constraints, given by

lse(āT1 η, z1) ≤ 0,

lse(āTw+1η − zw, zw+1 − zw) ≤ 0, w = 1, . . . , k − 3, (58)

lse(āTk−1η − zk−2, āTk η − zk−2) ≤ 0,

where z = (z1, . . . , zk−2) ∈ Rk−2 are k − 2 new optimization variables.
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Proposition 7. If (η∗, z∗) ∈ Rn+1+k−2 satisfies the set of constraints in
(58), then η∗ satisfies (57) [20].

A solution that satisfies the set of 2-term lse-constraints will also satisfy
the k-term lse-constraint, but not necessarily the other way around. That’s
why it is called an approximate reduction procedure.

Each 2-term lse-function can then be simplified to

lse((â1
ω)T η̂, (â2

ω)T η̂) ≤ 0, ω = 1, . . . ,Kci − 1 (59)

by extending η to include z, a vector with Kci − 2 new variables for each
k-term lse-constraint, and extending each vector ā to include coefficients for
each variable in the vector z we just added. For every constraint we want
to transform, we have to introduce new variables z.

Using the above transformation, we can rewrite the k-term convex form
robust GP (C′obj)—(C′mon) as a 2-term convex form robust GP:

minimize ĉT η̂ = t̃, (Tobj)

subject to

ω = 1, . . . ,Kc0 − 1 lse((â1
c0,ω)T η̂, (â2

c0,ω)T η̂) ≤ 0, (T0)

âTc1 η̂ ≤ 0, (T1)

âTc2 η̂ ≤ 0, (T2)

∀s ∈ S.
ω = 1, . . . ,Kc3 − 1

lse((â1
c3,ω)T η̂, (â2

c3,ω)T η̂) ≤ 0, (T3)

∀s ∈ S \ T.
∀P ∈ P.

ω = 1, . . . ,Kc5 − 1

lse((â1
c5,ω)T η̂, (â2

c5,ω)T η̂) ≤ 0, (T5)

∀s ∈ S \G.
∀P ∈ P.

ω = 1, . . . ,Kc7 − 1

lse((â1
c7,ω)T η̂, (â2

c7,ω)T η̂) ≤ 0, (T7)

Âcmon η̂ + b̂cmon = 0. (Tmon)

The optimization variables are η̂ = (y, τ, z) ∈ Rn+1+Kv , and the problem
data is given by:
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Kc0 = 1 + |S| · |Act|,

Kc3,s = |Act(s)|,

Kc5,s = |S| · |Act(s)|,

Kc7,s = (1 + |S|) · |Act(s)|,

Kv = (Kc0 − 2) +
∑
s∈S

(Kc3,s − 2) +
∑
s∈S\T

(Kc5,s − 2) +
∑
s∈S\G

(Kc7,s − 2),

â1
ci,ω and â2

ci,ω ∈ Rn+1+Kv , ω = 1, . . . ,Kci − 1, i = 0, 1, 2, 4, 6,

ĉ = (c̄,0) ∈ Rn+1+Kv ,

Âcmon =
[
Ācmon 0

]
∈ R(l+1)×(n+1+Kv),

b̂cmon = b̄cmon ∈ Rl+1.

Where l = |T | + |G|, the number of monomial equality constraints, and
n = 2 · |S| + |S||Act| + 1, the number of optimization variables in the first
convex robust GP (Cobj)—(C7).

Theorem 5. The robust GP given by (Tobj)—(Tmon) is a conservative ap-
proximation of the convex form RGP (Cobj)—(C7). This means that if
a vector of values is feasible to (Tobj)—(Tmon), then it is also feasible to
(Cobj)—(C7), and the value of the objective function (Tobj) is an upper bound
for the objective function (Cobj) [20].

This means that a solution to robust GP consisting of 2-term lse-constraints
is also a solution to the original robust GP, but the objective function is no
longer minimized.

Depending on the exact formulation of the problem, this approximation may
affect the problem. In this specific case, where both the reachability λ and
the expected cost κ are explicitly defined, the value of the objective function
doesn’t matter. If, for example, you don’t specify κ, but want the robust GP
to calculate an upper bound, you need to objective function be minimized,
and thus will be affected by this approximate reduction procedure.
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6.3 Approximating a 2-term lse-function by a
piecewise-linear function

We can now approximate the 2-term robust GP by a robust Linear Program
(robust LP). This is done by replacing every 2-term lse-function in the 2-
term robust GP (Tobj)—(Tmon) by a piecewise-linear (pwl-)function. All
other constraints are already linear (see theorem 4) and can be copied over
to the robust LP. The approximation of a 2-term lse-function is done by the
algorithm described in chapter 3 of [20].

A r-term pwl-approximation is given by a matrix Apwl ∈ Rr×2, a vector
bpwl ∈ Rr and a approximation error ε ∈ R. Such that the pwl-function to
replace the lse-function lse(x, y) is given by

max{ a1,1x+ a1,2y + b1,

... (60)

ar,1x+ ar,2y + br }.

The higher the number of terms in the piecewise-linear approximation, the
smaller the error becomes. The approximation of a 2-term lse function is
independent of its variables.

Theorem 6. If we have r-term pwl-upper approximation upper(x, y) and
r-term lower approximation lower(x, y) then they approximate every 2-term
lse-function by

lower(x, y) ≤ lse(x, y) ≤ upper(x, y), (61)

independent of the variables x and y [20].

Theorem 6 has an important corollary: we only have to calculate the
approximation for the number of pieces r once, then all lse-functions can
be approximated. The upper and lower approximation are also related: the
upper approximation is given by adding the approximation error ε to the
lower approximation. Suppose that (60) is a r-term lower approximation,
then the r-term upper approximation is given by

max{ (a1,1 + ε)x+ (a1,2 + ε)y + (b1 + ε),

... (62)

(ar,1 + ε)x+ (ar,2 + ε)y + (br + ε) }.

6.3.1 Python implementation of the pwl-approximation
method

A Matlab implementation of the algorithm that approximates the lse-function
by its lower pwl-approximation by the same authors of [20] exists.1 We

1http://web.stanford.edu/˜boyd/papers/rgp.html
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translated this Matlab implementation to Python. We have extended the
implementation so that both the upper and lower piecewise-linear approxi-
mations can easily be calculated. Details on how to use this implementation
can be found in appendix C.

6.4 Choosing between the upper and lower ap-
proximation

Now we have to decide if we replace our lse-constraints with the upper
or lower pwl-approximations. Figure 3 shows a top-down plot of the lse-
function and the upper and lower 3-term approximations. The areas below
the lines are the points (x, y) that are feasible to the ≤ 0 constraints. As
the upper approximation lies above the lse-function in three dimensions, the
feasible area lies below the lse-function in this plot. In other words: the up-
per approximation will pass through the z = 0 plane before the lse-function.
The lower approximation lies below the lse-function in three dimensions, so
the feasible area lies above the lse-function.

Figure 3: Plot of points satisfying equal-to-0 constraints for the lse-function
and the two 3-term approximations.
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The choice for upper or lower approximation has implications for the
correctness and completeness of our robust GP. If we take the upper ap-
proximation, only points below the black line in figure 3 will satisfy the
pwl-constraint. Points between the black and green line will not be ex-
cluded from the solution space, which means that if the only solutions to
the robust GP we approximate lie in that area, we won’t find them. So
choosing the upper approximation impacts completeness of the robust GP.

On the other hand, if we choose the lower approximation, points below
the red line will satisfy the constraint. So we might find a solution that
satisfies the lower approximation but not the lse-function, which means this
solution is not correct. Of course, the higher the degree of approximation
we choose, the smaller the areas between the approximations and the lse-
function become.

Theorem 7. Choosing the upper approximation impacts completeness.
Choosing the lower approximation impacts correctness.

Corollary 7.1. When choosing the lower approximation, we have to check
if the solution we found also satisfies the lse-constraints. For all non-robust
constraints, this is trivial: fill in the values of the variables and see if the
(in)equalities hold.

For the robust constraints we have the following theorem, that says that if
we have a solution, we only have to verify if that solution holds for supP.

Theorem 8. A solution to the lower approximation satisfies the robust lse-
constraints ∀P ∈ P if it satisfies the lse-constraint instantiated with supP.

Proof. By proposition (2) we know that satisfying the lse-constraint is equiv-
alent to satisfying the corresponding constraint in posynomial form. We
want to verify that if we have a solution η̂∗ = (y∗, τ∗, z∗) that x given by
xi = ey

∗
i satisfies the robust constraints given by either (RGP5) or (RGP7).

We have

P (s, α, s′) ≤ supP(s, α, s′) ∀P ∈ P.∀s, s′ ∈ S.∀α ∈ Act. (63)

We also know that all variables x∗i ∈ R++, and thus for (RGP5) we have∑
α∈Act(s)

σs,α ·
∑
s′∈S

P (s, α, s′) · ps′

ps
(64)

≤

∑
α∈Act(s)

σs,α ·
∑
s′∈S

supP(s, α, s′) · ps′

ps
(65)

for all instantiations P. So if∑
α∈Act(s)

σs,α ·
∑
s′∈S

supP(s, α, s′) · ps′

ps
≤ 1 (66)
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holds for the values of x∗ we found, then the inequality holds for all P ∈ P,
and thus the constraint (RGP5) is satisfied. The proof for satisfaction of
constraint (RGP7) is completely analogous to the proof above for (RGP5).

6.5 Robust linear programming

We can now form a robust linear program by changing the lse-constraints in
(Tobj)—(Tmon) by a piecewise-linear function. For simplicity, we write pwlr
for a pwl-function that approximates the lse-function. The robust linear
program is then given by:

minimize ĉT η̂ = t̃, (Lobj)

subject to

ω = 1, . . . ,Kc0 − 1 pwlr((â
1
c0,ω)T η̂, (â2

c0,ω)T η̂) ≤ 0, (L0)

âTc1 η̂ ≤ 0, (L1)

âTc2 η̂ ≤ 0, (L2)

∀s ∈ S.
ω = 1, . . . ,Kc3 − 1

pwlr((â
1
c3,ω)T η̂, (â2

c3,ω)T η̂) ≤ 0, (L3)

∀s ∈ S \ T.
∀P ∈ P.

ω = 1, . . . ,Kc5 − 1

pwlr((â
1
c5,ω)T η̂, (â2

c5,ω)T η̂) ≤ 0, (L5)

∀s ∈ S \G.
∀P ∈ P.

ω = 1, . . . ,Kc7 − 1

pwlr((â
1
c7,ω)T η̂, (â2

c7,ω)T η̂) ≤ 0, (L7)

Âcmon η̂ + b̂cmon = 0. (Lmon)

Robust linear programs can be solved efficiently by existing methods de-
pending on the specific kind of uncertainty set used [4]. Depending on the
choice of piecewise-linear approximation, we may need to check whether
the solution also holds for the lse-constraints. See theorem 7 and theorem
8. Once solved, we can retrieve the solution to our original robust GP
(RGPobj)—(RGP7).

Theorem 9. If η̂∗ = (y∗, τ∗, z∗) is a solution to (Lobj)—(Lmon), and
also holds for the lse-constraints, then it is an approximate solution to
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(Tobj)—(Tmon). The vector y∗ in this solution satisfies our original convex
robust GP given by (Cobj)—(C7). Each variable y∗i in this vector can then
be transformed into the variable x∗i by x∗i = ey

∗
i since we defined yi = log xi.

The vector x∗ then satisfies all constraints of the posynomial form robust
GP, and thus is a solution to (RGPobj)—(RGP7).

What this theorem says, intuitively, is that a solution to the robust LP
contains a solution to the convex form robust GP. The variables that form
the solution to the convex form robust GP can then be translated back to
a solution for the posynomial form robust GP.

A solution to the posynomial form robust GP gives us, by the correctness
theorem, a solution to problem 1, if it defines a valid scheduler. This is
formalized in the following theorem.

Theorem 10. If x∗ is a solution to the robust GP (RGPobj)—(RGP7),
then we have values for the variables (c′s)s∈S, (ps)s∈S and (σs,α)s∈S,α∈Act. If
(σs,α)s∈S,α∈Act defines a valid scheduler σ ∈ SchedM, then by the correctness
theorem (theorem 2) we have a valid scheduler that satisfies the reachability
property and expected cost property in problem 1.

And with this final theorem, we can conclude that with the robust LP
(Lobj)—(Lmon), it’s possible to find a solution to problem 1, as soon as we
know how to solve this robust LP.

6.6 Open problem: the uncertainty set P
All that remains now, is to determine the uncertainty set P to solve the
robust LP. The fact that we use intervals for our uncertain transition func-
tion does not mean that we want to solve the (Lobj)—(Lmon) for all pos-
sible values in those intervals. Recall definition 8 from the preliminaries:
P ∈ P if P (s, α, s′) ∈ P(s, α, s′) and P forms a valid probability distri-
bution:

∑
s′∈S P (s, α, s′) = 1. Consider the example uMDP in figure 4.

Figure 4: Small example uMDP

s1

x

x

a

b
s2

[0.6, 0.8]

b[0.2, 0.4]

[0.2, 0.4]

[0.6, 0.8]

1

Self loop for state s2 of probability 1 is over both acts.
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There are values in the intervals that do not form a valid probability
distribution. For example the upper bounds: 0.8 and 0.4 certainly lie in their
respective intervals, but sum up to 1.2, thus not forming a valid probability
distribution. For the function P with P (s1, a, s1) = 0.4, P (s1, a, s2) = 0.8,
we have that P is not a valid transition function, thus P /∈ P. So the
uncertainty in the robust LP given by P ∈ P is not interval uncertainty,
which means that interval linear programming [2, 12] cannot be used to
solve this robust LP without breaking the correctness proof. What specific
type of uncertainty this is, and consequently how to solve the robust LP,
remains open.
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Chapter 7

Conclusions

We have shown how a robust geometric program can be used to solve multi-
objective verification for uncertain Markov decision processes where the un-
certainty is given by intervals. This approach is correct, but not complete.
Since robust GPs cannot be solved efficiently, we use the approximation
method proposed by Hsiung, Kim and Boyd. This results in a robust linear
program, which for certain types of uncertainty can be solved efficiently.
However, we have not identified the type of uncertainty used in our robust
LP. The approximation method used is independent of the uncertainty used,
so our approach can be applied to other kinds of uMDPs.

7.1 Future work

We have shown how problem 1 can be reduced to solving a robust LP. If
(and how) this robust LP can be solved remains an open problem until the
uncertainty set P is identified as a known uncertainty set like polyhedral
or ellipsoidal uncertainty. In case the robust LPs with that uncertainty set
cannot be solved, future research can consider different kinds of uncertainty
in the uMDP, which would result into a different uncertainty set for the
robust LP.
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Appendix A

Details on the counter
example

See the accompanying counter example.py for the code used to get the
results in table 1. In order to run, the Python 2.7 is required, using the
following packages.

Package Version used

Numpy 1.14.2

Pint 0.8.1

Scipy 1.0.1

Cvxopt 1.1.9

GPkit 0.7.0.0

To reproduce the results in the table (and for other δ) run the code with a
chosen value for δ. Tight.reltol controls the tolerance for the Tight
function.
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Appendix B

Details on the robust GP
reformulation

Appendix C of [20] states that the standard convex form robust GP

minimize cTy,

subject to sup
u∈U

lse(Ãi(u)y + b̃i(u)) ≤ 0, i = 1, . . . ,m, (67)

Gy + h = 0,

where Ãi(u) = A0
i +

∑L
j=1 ujA

j
i , and b̃i(u) = b0

i +
∑L

j=1 ujb
j
i is equivalent

to the robust GP

minimize c̄T

[
y

τ

]
,

subject to sup
u∈U

lse((Ã0
i +

L∑
j=1

ujÃ
j
i )

[
y

τ

]
) ≤ 0,

i = 1, . . . ,m, (68)

Ḡ

[
y

τ

]
+ h̄ = 0,
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where Ãj
i =

[
Aj
i bji

]
. This can then readily be rewritten as

minimize c̄T

[
y

τ

]
,

subject to sup
u∈U

lse((āi1 + B̄i1u)T

[
y

τ

]
, . . . , (āiKi

+ B̄iKi
u)T

[
y

τ

]
≤ 0,

i = 1, . . . ,m (69)

Ḡ

[
y

τ

]
+ h̄ = 0.

For details on the variables, see appendix C of [20].
We transform our robust GP from (67) to (68), which is equivalent to

(69). In our case, it is easier to transform the robust GP of the form (68)
into a two-term robust GP. Since all these robust GPs are equivalent, all
theorems of [20] still hold.
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Appendix C

Details on the lse-function
approximation

Our Python implementation of the algorithm that approximates the lse-
function by either a piecewise-linear upper or lower approximation can be
found in the file lseapprox.py. There are two main functions,
upperapprox(r) and lowerapprox(r), that provide Numpy ndarrays
A and b, and a float approxerr that gives the approximation error. These
functions describe the coefficients for the r-term upper and lower pwl-ap-
proximation respectively.

The implementation is based on the Matlab function provided with [19]
and the algorithm described in [20]. Running our implementation of the
algorithm requires Python 3.6 and the Numpy package.
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